

City, University of London Institutional Repository

Citation: Hirst, E. (2023). Machine-Learning and Data Science Techniques in String and

Gauge Theories. (Unpublished Doctoral thesis, City, University of London)

This is the accepted version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/30098/

Link to published version:

Copyright: City Research Online aims to make research outputs of City,

University of London available to a wider audience. Copyright and Moral Rights

remain with the author(s) and/or copyright holders. URLs from City Research

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,

educational, or not-for-profit purposes without prior permission or charge.

Provided that the authors, title and full bibliographic details are credited, a

hyperlink and/or URL is given for the original metadata page and the content is

not changed in any way.

City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk

City Research Online

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

Machine-Learning and Data Science Techniques
in String and Gauge Theories

Edward Hirst1∗

Thesis submitted in partial fulfillment of

the requirements for a doctorate of philosophy

March 2, 2023
1 Department of Mathematics, City, University of London, EC1V 0HB, UK

∗edward.hirst@city.ac.uk

1

Contents

1 Introduction 5

2 Dramatis Personae 6
2.1 Gauge Theories . 7
2.2 String Theories . 13
2.3 Data Science . 20

3 Research Work 37
3.1 Dessins d’Enfants (2004.05218) . 37
3.2 Quiver Mutation (2006.10783) . 45
3.3 Hilbert Series (2103.13436) . 49
3.4 Amoebae (2106.03695) . 53
3.5 Polytopes (2109.09602) . 60
3.6 Calabi-Yaus (2112.06350) . 66
3.7 Brane Webs (2202.05845) . 81
3.8 Cluster Algebras (2203.13847) . 86

4 Outlook 108

Appendices 110

References 116

2

Tables

2.2.1 Brane web incidence dimensions . 18
3.1.1 Example dessin d’enfant ramification data 43
3.1.2 Dessin d’enfant ML results . 44
3.2.1 Multiclassification results amongst varying combinations of quiver mutation

classes . 49
3.3.1 ML results learning variety properties from selected Hilbert series coefficients 52
3.4.1 CNN results for learning F0 amoebae genus 56
3.5.1 Learning polygon volume from vertices and Plücker coordinates 64
3.5.2 Learning polygon properties from Plücker coordinates 64
3.6.1 ML of CY topological parameters from ambient space weights 76
3.6.2 ML of the CY property from ambient space weights 77
3.8.1 Network analysis of depth 4 seed exchange graphs 91
3.8.2 Network analysis of generalised associahedra 95
3.8.3 Finite type cluster algebra sizes with respect to permutation equivalence . . 96
3.8.4 Network analysis of quiver exchange graphs 98
3.8.5 Rank 4 finite type quiver to seed exchange graph vertex embedding 100
3.8.6 All rank finite type quiver to seed exchange graph vertex embedding ratios . 100
3.8.7 Finite type quiver to seed exchange graph minimum cycle basis embedding . 101
3.8.8 ML differentiating cluster algebras . 105
3.8.9 ML A4:D4 binary classification at varying depth class data 106
3.8.10ML identifying clusters . 108

Figures

2.1.1 Example quivers . 8
2.1.2 Quiver and cluster mutation . 9
2.1.3 Dimer model and dessin d’enfant examples 11
2.2.1 Brane web example and equivalence moves 18
2.2.2 Amoeba example . 19
2.3.1 Neural network design . 22
2.3.2 Alternative classification architectures . 24
2.3.3 Example PCA . 31
2.3.4 Example TDA persistent homology filtration 33
2.3.5 Example K-Means clustering process . 34
2.3.6 Example graph . 36
3.2.1 Initial quivers used to generate duality trees 47
3.3.1 PCA of the Hilbert series data for binary classification investigations 53
3.4.1 Example F0 amoebae images at varying resolutions 55
3.4.2 Variation of learning measures with amoeba resolution 56
3.4.3 Example amoebae with misclassified genera 58
3.4.4 Persistent diagrams for misclassified amoebae 59
3.5.1 Example lattice polygons . 62

3

3.5.2 Learning pentagon volume with varying train:test proportions 65
3.6.1 Frequencies of CY weights . 69
3.6.2 Exponentially fitted CY weights . 69
3.6.3 Projective space weight data PCA . 72
3.6.4 CY weights persistence diagram . 73
3.6.5 CY largest weight correlated against Hodge numbers 74
3.6.6 Histogram of h1,1/w5 ratios for CY data . 74
3.6.7 K-Means max-inertia elbow plot . 75
3.6.8 K-Means clustering bounds for CY data . 75
3.6.9 Hodge number correlations with CY binary classification 78
3.6.10Hodge partitioning plots for ML of CY property 80
3.7.1 Brane web persistence diagrams . 85
3.8.1 A2 quiver and exchange graph example . 88
3.8.2 Variation of seed exchange graph size with depth 90
3.8.3 Variation of cycle basis size with depth . 94
3.8.4 Variation of seed/quiver exchange graph size ratios with depth 99
3.8.5 Example D4 cycle embeddings . 102
3.8.6 ML A4:D4 binary classification at varying depth 106
A.2.1 Additional projective weight Hodge number correlations 112
A.3.1 Alternative ML architecture performance on CY 5-vectors with Hodge numbers113
B.1.1 Oriented quivers used to generate the considered cluster algebras 114
B.1.2 Additional finite type non-simply laced oriented quivers 115
B.2.1 Seed exchange graphs (to depth 4) for the considered cluster algebras 116

Acknowledgements

I would like to take this opportunity to thank my many wonderful collaborators throughout
the PhD, and in particular my academic siblings Jiakang Bao and Elli Heyes. I am grateful
to STFC for the PhD studentship, and most of all I am indebted to my supervisor Professor
Yang-Hui He for his unbounded and inspiring energy coupled perfectly with a plethora of
enthralling ideas, and sagacious guidance.

Abstract

Techniques from supervised and unsupervised machine learning, along with those from data
and network science, are applied to generated datasets of mathematical objects relevant
to string and gauge theories. Investigations show success in identifying and learning new
structure associated to these objects. Datasets considered in the research work completed for
this thesis include: dessins d’enfants, quivers, Hilbert series, amoebae, polytopes, Calabi-Yau
manifolds, brane webs, and cluster algebras.

4

1 Introduction

As physics seeks better description of the universe we live in, fundamental theory refines
itself to describe smaller and smaller scales of the universe, of which larger scales can be
statistically inferred. At these smallest scales quantum field theory dictates how particles
interact via electromagnetism and the strong and weak nuclear forces, with one final obsta-
cle of description: quantum gravity. Issues with the quantisation of the theory of general
relativity [1] indicate the need for a paradigm shift for fundamental theory.

At present, techniques from gauge theory describe the quantisable forces through the
language of group and representation theory [2], [3]. The standard model gauge group:
SU(3)×SU(2)×U(1), dictates the symmetry principles of these physical laws, which matter
particles (here fermions) obey by existing as representations of this product group. The
groups themselves are gauged, such that the degrees of freedom from the representation
redundancy in description are transferred into gauge fields (here bosons). These gauge fields
also exist as algebra representations, and hence particles in their own right.

In addition to the spin-1/2 spinor representations of fermions, and the spin-1 vector rep-
resentations of bosons, to establish mass for these particles whilst allowing gauge symmetry
spin-0 scalar Higgs fields must be introduced to spontaneously break the symmetry such
that leading scalar coupling terms in the broken regime act alike traditionally mass terms
via the Higgs mechanism [4], [5]. The standard model gauge theory may then be quantised
to produce a quantum field theory with which practical perturbative computations may be
performed [6]. However, as stated the canonical methods of quantisation are unsuccessful
with gravity, producing a theory which is perturbatively non-renormalisable and hence not
useful for computation.

String theory presents such a paradigm shift for fundamental theory, whereby the as-
sumption that the universe is built from exclusively 0-dimensional particles is relaxed, and
instead allows the presence of p-dimensional branes for varying p. Of these branes the 1-
dimensional strings are the most relevant at lower energies, and hence dominate computation
and consideration at the low coupling regimes pertinent to our world. The endpoints of these
strings trace out D-branes, and these may be considered as additional dynamical objects in
string theory also [7].

Starting as a methodology to describe hadrons [8]–[11], strings were then examined for
bosonic vibrational patterns which had the potential to describe gravity in bosonic string the-
ory [12], [13]. Extension to include fermionic vibrations, and relevant anomaly cancellations
[14], [15] led to the consistent superstring theories: Type I, Type IIA, Type IIB, heterotic
SO(32), and heterotic E8×E8 [16], [17]. Later, dualities between the theories grouped them
into a single larger M-theory [18], [19], where p > 1 dimensional branes become dominant
dependent on coupling and dimension size in consideration.

For self-consistency, M-Theory must exist as a theory in 11 space-time dimensions (re-
ducing to 10 dimensions in various superstring limits). To ensure a feasibly physical interpre-
tation of these extra dimensions beyond our familiar (1,3)-space-time, these theories require
compactification of the extra 6 dimensions on a Calabi-Yau (CY) manifold in the various
superstring limits to describe a supersymmetric gauge theory consistent with our universe

5

[20]. However the specific manifold used, and the particular formulation of M-Theory leaves
a huge amount of redundancy, with many methods of description via many mathematical
objects; objects which are rarely considered from a data science perspective.

Estimated to be at the order of 10500, the number of flux vacua over CY manifolds for
string theory compactification establishes an enormous dataset with little known structure
[21]. This string landscape alone already manifests the importance of big data approaches
to high-energy theory. Beyond CY data, many other objects used in this field can also be
computationally represented and generated. With the exponential growth of computational
power, it is becoming easier to build large datasets of these mathematical objects, allowing
analysis beyond the archetypal cases considered.

As datasets grow in size, exhaustive calculation becomes extensively more infeasible.
More traditional calculation using blackboard and chalk is quickly outcompeted by the speed
and consistency of computational methods. Data science as a field represents a colossal
number of these computational methods for data generation, management, and analysis,
and as academic research calls for more detailed examination of more scenarios, statistical
techniques become an essential tool to pragmatically extract data structure.

Machine learning (ML) is the modern umbrella term for these techniques of computational
statistics, and application of these techniques to generated databases of physically relevant
objects is the central theme to the work in this thesis. These techniques are applied with
the hope that results may inspire analytic work in new directions, through conjecture from
statistical analysis, that ultimately help to identify paths to stronger mathematical and
physical understanding.

The computational work completed in these studies made use of high performance com-
puting (HPC) resources made available at City, University of London [22], [23]. Scripts were
largely completed in python with the use of ML libraries such as tensorflow [24], sci-kit
learn [25], along with general libraries for topological data analysis (TDA) (ripser [26]),
network analysis (networkx [27]), and analytic computation (sagemath [28]), as well as
mathematica [29]. A GitHub of repositories relevant to works in this thesis is available at:
https://github.com/edhirst.

This thesis is structured such that §2 gives a brief introduction to the key players of
mathematical objects analysed in these studies, specifying how they relate to string and
gauge theories. In §3 summaries of the research work performed for each of the selected
papers is presented. Finally in §4 a general summary of this program of work is given, with
some thoughts for further academic progression on these projects. Thoughout the PhD I
have been fortunate to work on a large number of papers, in this thesis a selection of those
more relevant to this theme have been chosen for inclusion [30]–[37], whilst the other works
are acknowledged here [38]–[42].

2 Dramatis Personae

Fundamental theory addresses a wide range of potential extensions to the standard model.
Whether it be the inclusion of further conformal or super symmetries, enlarging the con-

6

https://github.com/edhirst

sidered gauge groups, changing the matter content, or changing the algebraic variety the
theory exists on, all extensions require many parameter choices within themselves. To effi-
ciently delineate similar theories different types of representation are chosen using different
mathematical tools. Naturally forming datasets associated to each chosen extension.

In this section the mathematical objects used to represent and probe certain styles of
theory are introduced, putting focus on those directly relevant to the research work of §3.
The introductions are roughly split between those more relevant to general gauge theories
§2.1, and those more relevant to a string theory interpretation §2.2 (although there is often
significant overlap). Following the introduction of these key players, the data science and
ML techniques used across the research projects are also introduced in §2.3.

2.1 Gauge Theories

Gauge theories are theories of fields that obey a set of symmetries, where the symmetries can
be categorised to be global or local. Global symmetries (such as flavour) are fixed throughout
the space-time variety of the theory, and in Lagrangian theories may be thought of as trans-
formations of fields by a constant factor which leave the Lagrangian invariant. By contrast
local symmetries act differently throughout the variety, and the action may be represented
by a function on the variety. In Lagrangian theories local symmetries now transform fields by
a factor dependent on their position on the variety, still leaving the Lagrangian unchanged.
One may then note global symmetries are a subset of local symmetries for constant functions.

In a field theory, a global symmetry can be gauged to form a local symmetry by making
the constant function a general function and introducing a gauge field that transforms exactly
to cancel the variational effects of this change. The symmetry in its new form is a type of
local symmetry known as a gauge symmetry, and depicts the redundancy in description of
the physical theory by using the field representation. Any gauge transformation changes the
fields but not the overall theory’s behaviour, hence any choice of gauge leads to the same
output and one is often chosen to simplify calculation. In the same way, to extract the pure
physics from a theory one must consider gauge-invariant objects independent of this choice
in the redundancy.

The most popular gauge theories in physics are Yang-Mills theories [3], which are based
on gauged symmetries described by Lie groups [43]. Lie groups contain the famous matrix
groups, including the orthogonal O(N), unitary U(N), and symplectic Sp(N) groups (with
their special counterparts) from the normal division algebras; commonly used as they allow
simple representation theory interpretations of the fields. Further notable Lie groups are
the exceptional groups: E6, E7, E8, F4, G2, related to the octonionic division algebra and
necessary for Dynkin classification [44] relevant to quiver mutation later discussed.

Quivers are multi-digraphs (discussed as graph theory objects in §2.3.2), often used
to represent the structure of a category in category theory. However they also have use in
representation theory, where vector spaces are affiliated to each node and linear maps to each
edge. Due to this symbolic link with representations they can be used to diagrammatically
represent the symmetry and matter content of certain supersymetric gauge theories. More
generally, these theories can be considered as effective limits of special brane systems from
string theory [45], [46].

7

Dependent on the number of supercharges under consideration, the content of the theory
dictated by a quiver changes. Prototypical theories most closely related to our universe
involve D3 branes, matching our (1,3)-dimensional space-time1. Systems of these branes
for N = 2, with 8 supercharges, are constructed as gauge theories with gauge groups and
matter; where the matter content is split into: vector multiplets (forming the supersymmetric
equivalent of gauge groups), and hypermultiplets (forming the core matter), in the simplest
cases. The quiver representation of this information denotes the gauge groups by circular
nodes, labelled with the respective gauge group (if unlabeled often assumed to be U(1), or
U(N) if N is given); to each node an implicit vector multiplet in the adjoint representation
of the respective gauge group is also assumed (analogous to the gauging process for non-
supersymetric theories to give adjoint gauge vector bosons). Then undirected edges between
nodes represent the hypermultiplets in a bifundamental representation of the two connecting
nodes’ gauge groups. Finally quivers may also show square nodes, which are related to global
flavour symmetries, which the hypermultiplet edges may also be connected to. It is worth
emphasising this restriction of quivers to theories with hypermultiplets only in bifundamental
representations limits the types of theories they can represent.

4-dimensional theories with N = 1, and hence 4 supercharges, have a slightly different
notation due to their differing matter content. As there are less supercharges the multiplets
are smaller, with gauge group vector multiplets now half the size (but still represented
implicitly). The main change for 4 supercharges is the core matter is now portrayed by
chiral multiplets instead of hypermultiplets. These chiral multiplets are now depicted with
directed arrows between the two gauge groups they are in fundamental and anti-fundamental
representations of respectively (direction dependent on convention). In fact N = 2 quivers
can be decomposed to N = 1 quivers by adding to each node a directed loop (representing
the chiral multiplet broken off of the N = 2 vector multiplet), and replacing any undirected
line with two directed lines in opposite directions (representing the two opposite chirality
chiral multiplets the hypermultiplet breaks into) [40]. An example of this is given in Figure
2.1.1.

Quivers represent supersymmetric gauge theories directly, independent of their string
interpretation, and through ideas of renormalisation [47], [48] in the low-energy infra-red
(IR) limit some theories become equivalent. A combinatoric process on N = 1 quivers
connects theories with this same IR behaviour in a process known as Seiberg duality [49].
Under this process, also called mutation, a specific node and hence gauge group is first

(a) A N = 2 quiver (b) The equivalent N = 1 quiver

Figure 2.1.1: A quiver gauge theory with gauge group U(N1) × U(N2) in the (a) N = 2 and (b) N = 1
notation.

1Note that both the general dynamical p-branes and the string endpoint branes (D and NS) are labelled
by the number of space dimensions they are extended in, therefore with time their worldvolume is (p + 1)-
dimensional.

8

(a) Seiberg duality of a quiver (b) The equivalent cluster mutation process on the quiver.

Figure 2.1.2: Both processes show mutation on a node j of an A3 quiver, mutation denoted µj . In (a)
the physics interpretation shows the chiral fields Xij and Xjk flipping to the conjugate representations, a
meson field XijXjk being introduced, and the gauge group rank updating Nj 7−→ N∗

j =
∑

ℓ7→j aℓjNℓ for
quiver adjacency matrix aij . No hypermultiplets are introduced (as 2-cycles) to be integrated out. In (b)
the equivalent cluster algebra mutation drops the field and gauge group interpretations but has the same
combinatorics, whilst the initial cluster {xi, xj , xk} 7−→ {xi,

xi+xk

xj
, xk} under the mutation µj .

chosen, its rank is updated under the duality, then chiral multiplets connected to the group
have their representation conjugated, additional meson fields are introduced to preserve any
anomaly (or lack of), and finally any massive hypermultiplets are integrated out. This
process is demonstrated for a different quiver in Figure 2.1.2a, since the quiver in Figure
2.1.1b is too symmetric for interesting mutation. Repeated application of mutation on all
the nodes leads to a duality tree (note not a graph-theoretic tree) of connected theories [50],
[51], whose combinatorics is probed with ML techniques in §3.2.

Cluster algebras are special algebras whose set of generators are built from a finite
subset under an equivalent mutation process [52], [53]. A cluster algebra of rank r has r
cluster variables in its initial cluster, which along with an initial quiver form the initial
seed. As algebras they may be considered as vector spaces with the extra operation of
multiplication between elements, and are generally defined through generators (alike vector
space basis elements) and relations. Those of rank r are subalgebras of the field of rational
functions in r variables.

Under mutation of the cluster at a chosen variable, the quiver structure dictates how
that variable updates to a new variable producing a new cluster. After the cluster mutation
the quiver is then also mutated on the equivalent node in a parallel manner to the Seiberg
duality process, overall producing a new cluster and quiver and hence a new seed. For a rank
r cluster algebra with initial seed {{x1, x2, ..., xr},Q} where the quiver Q has antisymmetric
adjacency matrix2 bik, the cluster mutation µj on the jth variable/node updates the cluster
according to

xi 7−→ x′
i =

{(∏
bσi>0 x

bσi
σ +

∏
bνi<0 x

−bνi
ν

)
/xi

∣∣ i = j

xi

∣∣ i ̸= j
(2.1.1)

2For cluster algebras these antisymmetric quiver adjacency matrices are called exchange matrices.

9

whilst the quiver updates according to

bik 7−→ b′ik =

−bik

∣∣ j = i or k

bik + bijbjk
∣∣ bij > 0 and bjk > 0

bik − bijbjk
∣∣ bij < 0 and bjk < 0

bik
∣∣ otherwise

(2.1.2)

An example of mutation of an initial seed for the rank 3 A3 cluster algebra is given in
Figure 2.1.2b. Repeated mutation at all variables produces a tree of seeds, alike the Seiberg
duality trees, whose nodes represent seeds and edges indicate that mutation can transform
either seed into the other3. These cluster algebra trees are called exchange graphs, and these
algebras form a richer structure for mutation which can reduce to quiver mutation under
removal of the clusters from the seeds. The depth of an exchange graph is the number of
mutations computed from an initial seed, a term particularly useful when considering infinite
exchange graphs truncated to a finite size.

Cluster algebras can be classified into 3 distinct types, which can be characterised by the
quiver exchange graphs (i.e. duality trees) and seed exchange graphs being either finite or
infinite in size. These types are:

1) Finite type: These are defined by having a finite number of seeds and thus finitely
many clusters, exchange matrices (quivers), and also cluster variables. All cluster algebras
of this type are formed from quivers which take the form of oriented4 ADE Dynkin diagrams
[53], [54]. Or where generalisation to allow skew-symmetrisable exchange matrices in place of
quivers (skew-symmetric adjacency) is performed, this extends the finite type classification to
all Dynkin types (i.e. with Bn, Cn, F4, G2). Since there are finitely many seeds and exchange
matrices both the seed exchange graph and the quiver exchange graph form finite compact
polytopes. These polytopes are called generalised associahedra (for this finite case). This
algebra type may also be identified by the condition that |bijbji| ≤ 3 ∀ i, j in all exchange
matrices in all cluster algebra seeds.

2) Finite-mutation type: Since the quiver exchange graph is strictly smaller than the
seed exchange graph5, it can be finite even if the seed exchange graph is infinite. Therefore
finite-mutation type cluster algebras are defined by having finitely many exchange matrices
(quivers) but may have infinitely many cluster variables, and hence also infinitely many
clusters/seeds. Therefore whilst the seed exchange graph may be infinite, the quiver exchange
graph is finite. These cluster algebras thus naturally include finite type but also others; in
particular, the classification consists of cluster algebras formed from rank 2 quivers, from
triangulations of marked surfaces, and a set of exceptional cases including: oriented versions
of affine ADE types (Ãn, D̃n, Ẽn), oriented elliptic types (E

(1,1)
n), and two additional cases

(X6, X7) [55], [56]. Extending the finite type condition, finite-mutation type may also be
identified by |bijbji| ≤ 4 ∀ i, j in all exchange matrices in all the seeds [57].

3) Infinite type: These encompass the remaining cases, with infinitely many clusters
and exchange matrices leading to infinitely many cluster variables. Therefore both the seed

3Note that as the mutation process is an involution the edges are hence undirected.
4An orientation is introduced by adding arrows to the graph edges to make them directed.
5This is because multiple seeds may have the same quiver (perhaps infinitely many), therefore different

nodes in the seed exchange graph become the same node in the quiver exchange graph.

10

(a) A N = 1 quiver and superpotential W , with their respective dimer. (b) An example dessin d’enfant

Figure 2.1.3: Dessin examples from the (a) dimer construction, and (b) congruence subgroup construction. In
(a) a new toric N = 1 quiver is given along with a superpotential W ; and the equivalent dimer model is drawn
on the torus T 2 (note genus 1). The fields become dimer edges, and the gauge group the enclosed hexagonal
face after tiling of the dimer. The superpotential then comes from a positive term going anticlockwise around
the black node added to a negative term going clockwise around the white node. In (b) a genus 0 dessin of
the type machine-learnt is given, this has 8 white nodes from β−1(0) and 12 black nodes from β−1(1), all
with valencies given by the map degeneracy’s of β−1([0, 1]). The 6 faces come from β−1(∞) and include the
external face from drawing the dessin on a genus 0 closed surface.

exchange graph and quiver exchange graph are infinite and non-compact.
The algebra type and the respective combinatorics of the exchange graphs are examined

through the lens of ML and general network analysis in §3.8.

Dessins d’enfants are bipartite graphs originally devised to represent the degeneracy
of Bely̌ı maps on Riemann surfaces [58], [59]. These covering maps β : V → P1

C from a
Riemann surface V , to the Riemann sphere P1

C, are many-one. Specifically they have ex-
actly three ramification points, which can be mapped to {0, 1,∞}. This degeneracy for
{β−1(0), β−1(1)}, β−1([0, 1]), and β−1(∞) are mapped to the bipartite graph nodes, edges,
and faces respectively, allowing a combinatoric representation of the Riemann surface struc-
ture.

Further to this dessins are important objects in Galois theory as they are acted on
faithfully by the elusive absolute Galois group over the rationals Gal

(
Q /Q

)
. This group

looks at extensions of the rational base field Q by adding in non-rational numbers. The
absolute Galois group then includes all non-rational numbers that can be formed as roots
of rational polynomials in the extension. The dessin Bely̌ı maps may include non-rational
numbers as their coefficients, and where they do these numbers will be roots of some ‘minimal’
polynomial6. Swapping this non-rational numbers for other roots of its minimal polynomial
changes the Bely̌ı map and hence the respective dessin – taking the dessin through its Galois
orbit. How the size of these Galois orbits can be machine-learnt is the topic of §3.1.

Dessins d’enfants have also seen physical use in relation to supersymmetric gauge the-
ories as novel methods of factorising Seiberg-Witten curves [60], [61], and also as dimer
models/brane-tilings [62]–[64]. These dimer models are realised as toric quiver gauge the-
ories describing N = 1 superconformal theories from D3-brane stacks at the tip of a toric
CY cone [65], [66]. They are built from the quiver and superpotential by taking the dual

6The lowest degree polynomial with coefficients in the base field (here Q) that has this number (here
some non-rational) as a root.

11

graph to the quiver and drawing it on a torus, such that combining the fields associated to
each edge incident to a chosen node (in a clock/anti-clockwise manner dependent on node
colour) gives the terms in the superpotential. This construction is exemplified in Figure
2.1.3a, along with an example dessin of the type machine-learnt in Figure 2.1.3b.

Hilbert series are a tool from algebraic geometry with appealing application in physics.
In general, they provide information about the grading of the coordinate ring used to define
a complex variety embedded in a complex projective space. The series act as a generating
function for the dimensions of these graded pieces, effectively enumerating the number of
independent polynomials of each degree that can be defined on the variety.

On the physics side, these series give a way to count the number of single and multi
trace BPS operators in gauge theories formed from brane stacks probing CY singularities,
alike dimer models [67], [68]. In the closed forms of the Hilbert series, the parameters of
the rational polynomials give information about the variety and its embedding, and hence
information about the theory’s moduli space. Via the Hilbert-Serre theorem [69], the series
can be written in 2 further closed forms equivalent to the defining form:

H(t;V) =
∞∑
i=0

(dimC Ri)t
i , (2.1.3)

H(t;V) =
P (t)

s∏
i=0

(1 − tpi)qi
, (2.1.4)

H(t;V) =
P̃ (t)

(1 − tJ)dim+1
, (2.1.5)

where (2.1.3) shows the defining form in terms of dimensions of the graded pieces of the co-
ordinate ring R =

⊕
i≥0 Ri; (2.1.4) is in terms of a numerator polynomial P (t) over a denom-

inator with parameters which define the ambient weighted projective space PC(pq00 , . . . , p
qs
s);

and finally (2.1.5) shows an alternative form where J is the Gorenstein index, dim the va-
riety’s dimension, and if the numerator P̃ (t) is palindromic the variety is also Gorenstein
in nature. All Hilbert series for the variety V are written in terms of a dummy ‘fugacity’
variable t and they may be Taylor expanded to give the full series used for the equivalent
enumerations. If the expansion of the plethystic logarithm [68] of the series terminates at a
finite order the variety is a special type of variety known as a complete intersection7.

An additional point worth noting is that the moduli space variety in the physics is actually
the cone over the variety V of the series. Learning the properties of the full variety from just
the first terms in the series is the focus of the work in §3.3.

To exemplify the use of Hilbert series in physics the first few counts for the number of
single trace BPS operators at each order for the quiver gauge theory in Figure 2.1.3a are
shown below:

7Complete intersections are defined to be generated by as many independent polynomials as their codi-
mension in the ambient projective space.

12

Order | # | Operators

0 | 1 | 1

1 | 3 | Tr(X), Tr(Y), Tr(Z)

2 | 6 | Tr(X2), Tr(Y 2), Tr(Z2), Tr(XY), Tr(XZ), Tr(Y Z)

where higher order generators are found using the F-terms of the superpotential 0 = ∂XW =
∂YW = ∂ZW , which here just states all the 3 generators are freely commuting so can be
combined in all ways. In the simplest case where N = 1 for the gauge group, the field
representations are just complex numbers, giving a Hilbert series

H(t;X) =
1

(1 − t)3
, (2.1.6)

H(t1, t2, t3;X) =
1

(1 − t1)(1 − t2)(1 − t3)
, (2.1.7)

where the second form shows the ‘refined’ case for toric varieties, used when one wishes to
use multiple fugacities to distinguish the generators as opposed to combining them in the
unrefined case discussed before. Since the Hilbert series shows 3 generators with no relations
(seen via the trivial numerator) the moduli space here is simply C3, which may be considered
as the cone over the P2

C variety. Additionally, the numerator is trivially palindromic so the
variety is Gorenstein, and taking the plethystic logarithm produces a terminating expansion
(again somewhat trivially as there are no relations), indicating this variety is a complete
intersection.

2.2 String Theories

String theories are more general theories of branes of varying dimension, of which strings
become the most important in more commonly studied weak string coupling scenarios. These
5 consistent anomaly-free string theories mentioned in §1, along with theories of supergravity,
are connected via dualities into the larger M-theory. One of the main dualities relates
amplitudes calculated in one string theory at weak string coupling gS, with amplitudes in
another string theory now calculated at strong string coupling 1/gS, called S-duality. The
other main duality is T-duality and relates sets of winding and momenta string states at
a small compactification radius of R in one string theory with the conjugate momenta and
winding states in another string theory at large compactification radius 1/R.

Developing from these more fundamental dualities of M-theory: the effects of S- and T-
dualities can be combined into U-duality [18], connections have been made from T-duality to
mirror symmetry between CY manifolds [70], and the AdS/CFT correspondence has opened
the door to holographic dualities that relate gravitational theories to non-gravitational the-
ories in lower dimensions [71].

Modern day string theory has provided a wealth of new ideas for exploration in algebraic
geometry. Not least from the physical importance put on CY manifolds from compactification
of the theory [20], as well as the later discovered mirror symmetry of these manifolds [72]–

13

[74], pairing CY manifolds which lead to the same physical theories when compactified on.
Many of the objects surveyed in the ensuing projects have strong links to CYs, of which we
introduced more thoroughly now.

Calabi-Yau manifolds are traditionally defined to be compact Kähler manifolds with
holonomy group ⊂ SU(N), vanishing first Chern class, having a trivial canonical bundle, and
are by nature Ricci-flat [38], [75]–[77]. However, there are definition generalisations where
one looks at: non-compact constructions, perhaps as more general varieties (i.e. manifolds
with singular points), or where the canonical bundle is not trivial. Sometimes reducible
manifolds are also included, such as complex tori and other locally product spaces. Some of
the conditions are sufficient in certain subsets, but importantly the Kähler property ensures
the manifold has compatible Riemannian, complex, and symplectic structures by requiring a
positive semi-definite metric gab (to allow definition of a Hodge star, Laplacian, and harmonic
forms) which is Hermitian and hence preserves the complex structure J b

a via g(Ja
c u

c, J b
dv

d) =

g(ua, vb) and allows definition of a Kähler form ω = igabdz
a ∧ dzb with dω = 0 and Kähler

potential K(z, z) from gab = ∂∂K for coordinates za. For further details of the algebraic
geometry surrounding their construction reference is made to appendix A of [78].

Elliptic curves make up the irreducible complex dimension 1 CYs, and K3 surfaces those
of dimension 2, in both cases there is only one topological type (excluding products of tori).
Those of complex dimension 3 are the most interesting for string theory compactification
of the additional 6 real extra dimensions. For complex dimension 1 the topological type is
parameterised by the genus (always 1) or Euler number χ (always 0), for complex dimension 2
the topological type is related to the Poincaré conjecture on real 4-manifolds so is notoriously
difficult to determine. Importantly though for complex dimension 3, these CY 3-folds8 are
topologically classified by their non-trivial Hodge numbers, second Chern class, and triple
intersection numbers: {(h1,1, h2,1), [c2]α, dα,β,γ}. There are three core methods of constructing
CY manifolds: as complete intersections, as toric hypersurfaces, and as elliptic fibrations,
each briefly detailed in the following.

Before jumping into each of these constructions, generally when defining CYs as com-
plex manifolds through the language of algebraic geometry they are considered as the zero
locus of polynomials in complex coordinates. However to ensure compactness (non-compact
equivalents are examined later) these complex coordinates instead parameterise a complex
projective space Pn

C, as homogeneous coordinates from the n+ 1 coordinates zi of Cn+1 \ {0}
under the identification

(z0, z1, ..., zn) ∼ (λz0, λz1, ..., λzn) ∀λ ∈ C \ {0} . (2.2.1)

The simplest CYs are hence hypersurfaces in some ambient Pn
C, and to ensure vanishing of

the first Chern class the hypersurface polynomial must have degree n + 1 in the projective
space homogeneous coordinates [74].

This leads to the first set of CYs being the complete intersection CYs, which generalises
the above construction to instead consider hypersurfaces in some product of projective spaces
Pn1
C × Pn2

C × ... × Pnm
C defined through the zero locus of a set of homogeneous polynomials

in all the spaces’ coordinates. To be complete intersection these polynomials must intersect

8In general an n-dimensional CY is called a CY n-fold.

14

minimally such that the variety they define as the zero locus has codimension equal to
the number of polynomials in the set (i.e. each new polynomial slices out one additional
dimension of the ambient space). In the simplest cases m = 1 and the ambient space is only
one Pn

C giving the cyclic CYs. More generally though the complete intersection CYs can
then be parameterised as

q11 q21 · · · qk1
q12 q22 · · · qk2
...

...
. . .

...
q1m q2m · · · qkm

 (2.2.2)

under conditions
k∑

j=1

qji = ni + 1 ∀i ∈ {1, 2, ...,m} , (2.2.3)

such that each row represents a projective space Pni
C in the ambient product space (where

(2.2.3) ensures the Calabi-Yau property), and each column is a polynomial which is homo-
geneous in all the projective space coordinates for each projective space but with integer
degree qji in the ni + 1 coordinates of the Pni

C space. As a complete intersection, the resulting
CY is of dimension

∑m
i=1(ni) − k, as the k polynomials each slice out a dimension of the

full ambient space. For the case of the physically interesting CY 3-folds, there are 7890
configuration matrices [79], [80] from which all the topological data can be extracted except
explicit Hodge numbers later calculated in [81].

The second set of CY constructions generalises the hypersurfaces in projective space in
a different way to the complete intersections. An initial alternative generalisation would be
to alter the identification relation in (2.2.1) by introducing weights, wi ∈ Z+, such that the
identification becomes

(z0, z1, ..., zn) ∼ (λw0z0, λ
w1z1, ..., λ

wnzn) ∀λ ∈ C \ {0} , (2.2.4)

creating weighted projective spaces, where now in an analogous way to the complete inter-
section CY condition in (2.2.3) a CY hypersurface is a homogeneous polynomial with degree∑

i wi in this weighted projective space. For the CY 3-folds, there are 7555 weighted projec-
tive space hypersurfaces [74], which is the database of focus in §3.6. Beyond this first step
of generalisation one may then consider taking products of these weighted projective spaces
[82] as for complete intersections, however a more popular generalisation has been to extend
these weighted projective spaces to toric varieties.

Toric varieties are most generally defined with lattice cones, however a nicer (and per-
haps slightly more restricted) definition looks similar to our definition of projective spaces.
Whereas for projective spaces the original Cn+1 space has only the origin removed and is
quotiented by a single relation, for toric varieties a larger subset of the original Cn+1 space
may be removed (at least the origin) and it is then quotiented by a set of relations (also
called an algebraic torus). This is denoted

(z0, z1, ..., zn) ∼ (λwa
0z0, λ

wa
1z1, ..., λ

wa
nzn) ∀λ ∈ C \ {0} , ∀a , (2.2.5)

15

for each of the a sets of weights wa
i . The weights wa

i form a matrix9, and interestingly this
weight matrix may be thought of as the kernel of the vertex matrix of a reflexive polytope
[83], [84].

A reflexive polytope is a lattice polytope whose dual polytope is also reflexive. A lattice
polytope, ∆, is a polytope whose vertices10 pi all take position on the integer lattice pi ∈ Zn,
and most often we are interested in convex polytopes where the polytope is the convex hull
of the vertex points. A polytope’s dual, ∆, is the set of all points pi ∈ Rn which satisfy:
p · p ≥ −1. Reflexive polytopes are thus extremely important in the classification and
construction of toric varieties, and the reflexivity condition at the polytope level becomes
equivalent to mirror symmetry of the CY hypersurface at the toric variety level [83]. In
dimension 1 there is a single reflexive polytope (the point), in dimension 2 there are 16
reflexive polygons, in dimension 3 there are 4319 reflexive polyhedra [85], and in dimension
4 there are 473800776 [86]. The ML of polytopes, their properties, and some properties of
their respective toric varieties is the topic of the work summarised in §3.5.

The toric varieties built from reflexive polytopes in this way are Fano (i.e. with positive
curvature), have complex dimension equal to the polytope’s real dimension, and may have
singularities which are at worst Gorenstein in nature. The CY hypersurfaces within these
Gorenstein toric Fano ambient space varieties are the anticanonical divisors (a specific type of
codimension 1 hypersurface) [83]. Hence reflexive polygons give elliptic curves (CY 1-folds),
reflexive polyhedra give K3 surfaces (CY 2-folds), and 4-dimensional reflexive polytopes give
CY 3-folds, with the connection continuing for higher dimensional polytopes. Importantly for
the topological data that classifies the CY 3-folds, the Hodge data can be extracted directly
from the polytope [83], [87] but the second Chern class and triple intersection number cannot
be. In their computation the ambient space is required to be smooth which is only the case
where the polytope is also ‘regular’, which happens rarely. Therefore to resolve singularities
(related to the lattice points on the polytope facets which are not vertices) the polytope
must first be triangulated, which introduces a huge redundancy in the number of resolved
toric varieties and hence CY hypersurfaces that can be constructed from each polytope.
Polytope triangulation is a popular topic of research for this reason [88], [89]. In a similar
vein to the complete intersection CY construction with products of projective spaces, there
is further work to use products of toric varieties [90], or to generalise the ambient space used
further beyond toric varieties. However these constructions produce relatively few CYs in
comparison at this present time.

Beyond this polytope construction for compact Fano toric varieties, the same construction
can be used for non-compact varieties also, and in the non-compact case these can be CY
directly. The condition for a toric variety to be CY is that the polytope vertices must exist
in a codimension 1 hyperplane of the lattice. This can artificially be done by embedding
an n-dimensional polytope in an (n + 1)-dimensional lattice with the last coordinate 1 for
all the vertices. Then the fan over this polytope defines a toric variety which is CY, but
also explicitly non-compact, as the vertices need to form cones which cover the full lattice
for the variety to be compact, here prevented by the cohyperplanar condition [91], [92].

9Toric varieties reduce to weighted projective spaces when this matrix has only one row, and reduce
again to unweighted projective spaces when it is a row where all entries are 1.

10In this notation pi represents a single vertex, with the i index running over the dimensions.

16

The polytopes used in this non-compact construction are called toric diagrams, and for CY
3-folds they are 2-dimensional lattice polygons [93], [94].

The third and final method of constructing CYs is through elliptic fibration. Here the
Weierstraß form of the dimC = 1 CY elliptic curve: z2z

2
1 = 4z30 − g2z0z

2
2 − g3z

3
2 in P2

C, is
lifted such that it becomes a fibre over an appropriate base. This is done by making the
g2, g3 functions of this base space. For the popular CY 3-folds, the base spaces can only be
of a specific types: del Pezzo, Hirzebruch and their blowups, or Enriques surface [95]. It is
believed that in many cases this formulation can be mapped by changing coordinates such
that the 3-fold is considered again as some hypersurface within a Fano variety, and there
are programs of work to perform this for CY 3-folds [96], [97]. Although this construction
has some relevance to the dessins d’enfants considered in §3.1 via elliptically fibred K3s,
the work in §3.6 and other objects examined in this research is more relevant to the other
constructions.

Beyond these 3 constructions for compact CYs, more general non-compact CYs can
also be constructed as the representation varieties of quiver gauge theories [98], where this
construction can produce any non-compact CY variety. The simplest non-compact CY is
Cn as it is trivially flat (and hence Ricci flat) and has trivial holonomy (hence ⊂ SU(n)).
Stepping beyond this case one can create orbifolds which are CY by taking certain quotients
of Cn, such that the quotient is by a discrete finite subgroup of SU(n) and noting to resolve
the variety singularities appropriately [99]–[101].

Brane webs are a diagrammatic tool used to represent certain classes of supersymmetric
quantum field theories coming from string theory [102], [103]. Whilst compactification of
M-theories on CY spaces can lead to physically interesting superconformal field theories in
5 dimensions, brane webs provide an alternative route for their consideration as low energy
descriptions of systems of Type IIB 5-branes. The 5-branes can be set-up to each end on
a 7-brane, and the whole system of intersection is drawn in a 2-dimensional plane [104].
This 2-dimensional plane is parameterised by two integers (p, q) which represent the branes
magnetic charges under the RR and NSNS 2-forms respectively.

Supersymmetry in the theory requires the 5-branes to have 4 common dimensions of
extension, such that the (p, q) plane contains the only non-trivial information about the
branes’ set-up. The (1, 0)-direction indicates D5-branes, and the (0, 1) direction NS5-branes,
with general 5-branes taking any integer (p, q) values, such that the gcd(pi, qi) = ni gives
the multiplicity of the brane (gcd ⇒ greatest common divisor). The full brane web set-up
is then a collection of 5-branes ending on 7-branes which intersect at a point in the (p, q)
plane, such that this intersection junction conserves both the p and q charges. An example
of a brane web, as well as the two types of equivalence move (SL(2,Z) and Hanany-Witten)
is shown in Figure 2.2.1; whilst Table 2.2.1 demonstrates the incident dimensions each of the
possible branes are extended in.

However there is redundancy in this representation of the theories. In particular, the
SL(2,Z) duality of Type IIB string theory transfers to the brane web in the 2-dimensional
plane, as well as another redundancy known as a Hanany-Witten move, where a 5-brane leg
can be shortened along its direction of extension in the 2-dimensional plane until it crosses
the intersection point of the web and moves onto the other side. After the transition to the
other side of the intersection, the 7-brane at the end of the 5-brane is left with an axiodilaton

17

Brane
Dimension

0 1 2 3 4 5 6 7 8 9
D5 x x x x x x
NS5 x x x x x x
(p, q) x x x x x x

7 x x x x x x x x

Table 2.2.1: A table demonstrating the dimensions each brane type is extended in for the 5-dimensional
brane web construction of Type IIB string theory. An ‘x’ indicates a brane is incident and hence extended
in that respective dimension, where dimensions 5 and 6 are the D5 and NS5 directions in the 2-dimensional
plane the web is drawn in; the 7-branes are point-like in this plane.

Figure 2.2.1: An example 3-leg brane web. The centre image shows 3 intersecting 5-branes each ending
on a respective 7-brane in the (p, q) plane, with the junction of intersection at the origin (0,0) in each
case. Each brane has multiplicity 1 labelled on the leg, and axiodilaton branch cuts oriented away from
the intersection. The leftmost web is a brane web equivalent to the original under an example SL(2,Z)
transformation, rotating and shearing all the legs together. The rightmost web is another equivalent brane
web reached via a Hanany-Witten move on the ‘(∗)’ labelled leg which has its (p, q) values flipped to (−p,−q)
and then respective branch cut swept clockwise through the (-1,1) leg causing a monodromy action of:

M(p,q) =

(
1 + pq −p2

q2 1− pq

)
=

(
3 −1
4 −1

)
, on this leg; finally the moved leg’s multiplicity updates to conserve

charge at the intersection.

branch cut which passes through the web, to correct this it must be swept around half the
web, and appropriate monodromy applied to any other legs that it sweeps through [105].

The classification of 5d superconformal field theories that can be constructed from 3-leg
brane webs was the topic of the work in §3.7, and the relative success of the ML techniques
employed identified a gap in the current understanding of their invariants.

Amoebae are central objects in the study of tropical geometry, a field of geometry based
on the tropical semiring (R ∪ {−∞},⊕,⊙), i.e. a field with no additive inverse [106]. The
semiring’s operations of tropical addition, x ⊕ y := max(x, y), and tropical multiplication,
x ⊙ y := x + y, become manifest under the amoeba projection on complex polynomials,
making them natural objects of study in this field. In this projection one first considers
a multi-variable polynomial determining a Riemann surface, which we define from a toric
diagram.

18

Figure 2.2.2: The relations between an example genus 1 amoeba, its respective Riemann surface (the 0th
Hirzebruch surface F0

∼= P1×P1), the brane web the surface is a thickening of, and the toric diagram used to
generate them. The toric diagram has one internal vertex (leading to a maximum genus of 1 in the Riemann
surface), and 4 external vertices, creating a Newton polynomial: P (z1, z2) = c0 + c1z1 + c2z2 +

c3
z1

+ c4
z2

for
coefficients {ci}, which the amoeba is the Log projection of. The brane web is also the dual graph to the
toric diagram and vice versa.

Starting with a convex lattice polytope, ∆, as a toric diagram in n dimensions (dimensions
indexed by i) with points indexed by j such that each point pi ∈ ∆, the polytope’s Newton
polynomial is defined as P (z) :=

∑
j cjz

pi such that the cj are arbitrary C coefficients, and
the z represents a Cn vector space for the n-dimensional polytope ∆. Each lattice point
hence produces a monomial term which is a product of each zi raised to the power pi for the
n dimensions indexed by i (taking pi as the i-th entry of the lattice point pi). Each of these
monomial terms is then summed to produce the surface’s equation P = 0. Representing
points on the surface as

z = (z1, z2, . . . , zn) = (e(s1+iθ1), e(s2+iθ2), . . . , e(sn+iθn)) , (2.2.6)

a Log projection can be taken to the s coordinates to provide a Rn representation of the
surface known as the amoebae, A:

Log : (z1, z2, . . . , zn) 7−→ (s1, s2, . . . , sn) = (log|z1|, log|z2|, . . . , log|zn|) . (2.2.7)

Equivalently one may consider the projection to θ, known as the algae map [107].
Lopsided-amoebae provide a good approximation to amoebae, and are easier to calculate

genus from due to the condition of lopsidedness. The Lopsided amoeba, LA, is the set of
all points a ∈ Rn such that P (a) is not lopsided. To not be lopsided the requirement on

19

the Newton polynomial coefficients {cj} is that ∄ j s.t. |cj| >
∑

k ̸=j |ck|. Physically this
corresponds to there not existing a set of complex phases θ such that the point in the real
space can be lifted via Log−1 into the complex space to a set of points that satisfy the
equation P = 0. This follows naturally from the triangle inequality. To further calculate
membership for the true amoebae requires considering all coefficient lists for lopsidedness in
the amoeba’s generating ideal, computed using cyclic resultants [108].

The connection to physical theories is through the toric diagram’s dual being the (p, q)-
brane web, with the Riemann surface being the thickening of this brane web. This Riemann
surface may then be considered as the mirror geometry to the CY 3-fold probed by D3 branes
in string theories [107], [109]. Beyond this the Mahler measure may be used for physical
interpretation of tropical limits of toric quiver gauge theories depicted with amoebae [110],
[111]. The number of interior points of the toric diagram gives the maximum genus of the
Riemann surface, and the conditions that lead to these holes and their projection onto the
amoeba is the topic of §3.4. An example of an amoeba examined thoroughly in §3.4, along
with its toric diagram, brane web, Newton polynomial and Riemann surface is given in
Figure 2.2.2.

2.3 Data Science

Data science is an enormously broad field that concerns itself with the generation, processing,
analysis, and inference of data. In modern times, this field relies almost exclusively on
computational resources for each of these data management techniques.

As discussed in §1, computational work in the research projects included largely relied on
the use of python, and regularly used HPC resources with parallelisation for big data tasks.
As also referenced in the introduction, string theory and its related gauge theories are now
at the point large datasets can readily be generated, as has already been done in the case
of the Calabi-Yau landscape. These large datasets call for analysis methods that can handle
large amounts of data, in particular methods of a statistical nature are needed for research
inquiries seeking feasible extraction of big data structure.

Machine learning is the subfield of data science that centres itself on application of tech-
niques from computational statistics. In many forms the models used seek to learn under-
lying, usually inconspicuous, structure in the data leading to inference on the properties of
the objects that make up the dataset. An insightful comparison can be made here to the
mathematical process of conjecture formulation. In traditional mathematics one examines
a selection of simpler examples, extracts a pattern in their behaviour, and uses this to con-
struct a conjecture which applies beyond the examples considered. This process is a nice
parallel to the typical workflow of machine learning. A sample dataset is taken, a technique
is applied to learn some structure in the data, this structure is assessed on data outside
of the original sample. Therefore, in times where academia has a wealth of resources for
large scale data generation it has become especially appropriate to employ techniques from
machine learning to extend the limits of pattern recognition and conjecture formulation.

In the following subsections of §2.3.1 machine learning as a vast field in itself is broadly
introduced, putting focus on the methods most relevant to the succeeding research work.
Then in §2.3.2 some relevant techniques from network science are introduced, as many of
the mathematical objects worked with take the form of graphs and networks.

20

2.3.1 Machine Learning

ML problems generally categorise themselves into: supervised, unsupervised, and reinforce-
ment. Each category has a number of different architectures that can be employed to address
the problem at hand; in most cases the input data is formatted as a set of tensors and the
architecture seeks to learn some data structure.

In the first case of supervised learning, the style most commonly used and often the
focus of the following projects, the ML architecture is given data in a pair-like format, one
part being the input tensor, and the other the output tensor. The architecture then runs
through the training data attempting to reproduce the output tensor from the input tensor
for each pair in the full training dataset. Within supervised learning there’re two main
subcategories:
1) Classification – the outputs take value in a finite set, such that the output tensor is
a vector with each entry corresponding to a potential class that the input tensor is in,
usually normalised to a probability. The highest valued entry of the vector is taken as the
classification.
2) Regression – the outputs take value in a continuous range, such that the output tensor
can take any form, populated with floating point numbers, which the architecture is aiming
to make as close to the true output tensor (according to some chosen loss function).

The second case of unsupervised learning inputs data as a single input tensor, with no
output tensor. The architecture then aims to find patterns in the data, simplifying its
representation (feature extraction) or sorting it into sets (clustering).

The final case of reinforcement learning uses data which is selected from an environment
to input into the architecture according to some Markovian process. The goal is to train an
agent to know how to sensibly navigate this environment, selecting from the list of available
actions in such a way as to maximise cumulative reward. When the agent is at a certain
state in the environment, the state data the architecture processes is used to calculated a
corresponding reward/punishment according to some function, which educates the architec-
ture about its next selection of an action from those which are available. This style aims to
find near-optimum sequences of actions that meet some desired conditions [112].

Each of these categories of ML has seen a variety of applications to high-energy theory.
In particular the applications for string theory started with [113]–[117] and since then there
has been an explosion of areas of applicability for this wealth of techniques. Beyond a strong
program of work using ML methods to numerically find CY metrics [118]–[132] and other CY
properties central to examining the string landscape [133]–[162], there has been substantial
use of ML in other string theory and mathematics related areas including but not limited to:
elliptic curves [163], [164], space-time classification [165], conformal field theories [166]–[169],
quantum chromodynamics [170], [171], integrability [172], group theory [173]–[175], number
theory [176]–[179], knot theory [180]–[184], graph theory [185], and general mathematics
[186], [187]. There is even a program of work to describe neural network evolution with con-
cepts from quantum field theory [188]–[195]. The machine-learning work completed for this
thesis has focused on techniques from supervised and unsupervised learning, the techniques,
or architectures, used are detailed in the following subsections.

21

2.3.1.1 Supervised Architectures
The most common architecture used in supervised learning is a neural network (NN) [196].
These NNs are code structures for non-linear function fitting. Their design was generally
inspired by that of a biological brain, being built out of components known as neurons, and
they have seen significant success in recent years where computation speed can now com-
pensate for the computational inefficiency of using these networks compared to traditional
algorithms. Of particular importance are the theorems of universal approximation, which
state that a NN of sufficiently large width [197], or of sufficiently large depth [198]–[200] can
approximate any continuous function, with non-polynomial activation [201]. These theorems
support the use of NNs in the wide selection of problems they are applied to. A majority of
networks used in the subsequent projects were dense and deep, in that they had all neurons
fully connected between layers, and there were multiple hidden layers in the network. This
NN structure is represented diagrammatically in Figure 2.3.1.

Figure 2.3.1: A diagrammatic representation of a dense feed-forward NN. An input tensor is inputted into
all nodes in the first layer, the single number output of each neuron is then sent to all nodes (dense) in the
next layer only (feed-forward). Each layer may have a different number of neurons, and the whole NN any
number of layers. The final layer’s output gives the output tensor.

These NNs are formally ‘Multi-Layer Perceptrons’, in that they are a combination of
perceptron neurons into sets of layers. Each perceptron neuron acts linearly, and then non-
linearly on its input tensor (usually just a vector for dense NNs), to give a single number
output. The formal representation for this is that for an input vector into any neuron, x,
made-up of the number outputs of the previous layer collected together (or just the input
vector), the neuron applies the function:

x 7−→ act(w · x + b) , (2.3.1)

acting with a dot-product on the weight vector, w, and then adding the bias number, b.
After this linear action, the neuron acts with a non-linear function called the activation
function, here denoted act(...).

Although NNs are the most commonly used architecture for supervised learning, they are
not the simplest. Perhaps the most simple of these architectures, designed for the simplest
supervised learning problem of binary classification is the logistic regressor (LR) [202]. The
logistic regressor function takes the form

p(xi) =
1

1 + e−(β0+
∑n

i=1 βixi)
, (2.3.2)

22

for a vector of n inputs xi and i + 1 trainable parameters {β0, βi} to give the probability
of class 1 (i.e. a positive case) over class 0 (i.e. negative non-case). The functional form
is shown for one input in Figure 2.3.2a. Since there are so few trainable parameters the
complexity of the classification it can perform is low, however conversely this means often
very little data is needed to train it.

The next step in architecture complexity for supervised binary classification is the support
vector machine (SVM) [203]. Support vector machines consider the input n-dimensional
data as points in Rn, and over training they optimise the position of an (n− 1)-dimensional
hyperplane that best separates the datapoints into the two binary classes (optimised by
having the largest distance to the nearest point).

They are designed to draw linear hyperplanes in the space, but can be generalised to pro-
duce non-linear hyperplanes by using the kernel trick. The kernel trick effectively introduces
non-linearity to the data’s feature space by trading the non-linear degrees of freedom for
linear degrees of freedom in a higher-dimensional embedding of the original feature space.
In ensuing computations for optimisation of the linear hyperplane in this higher-dimensional
space only the kernel is used, which is the inner product between these higher-dimensional
features. Since this kernel is naturally symmetric and positive semi-definite, the kernel ma-
trix in the higher-dimensional space can be written as just a function of the original features
via Mercer’s theorem – no computation of each of the higher-dimensional embeddings of
the original features or explicitly their inner product is needed, the kernel can be computed
directly.

The linear hyperplane (effectively in the higher-dimensional functional space if using the
kernel trick) can be defined with the equation: 0 =

∑
i(wixi) − b for datapoint vectors xi

and trainable hyperplane parameters of weights wi and a bias b. The optimum hyperplane
is then found by minimising

1

N

∑
x

(
max

(
1 − yi

(∑
i

(wixi) − b
)))

+ λ

√∑
i

w2
i . (2.3.3)

The idea is that two hyperplanes with equations
∑

i(wixi)−b = 1 or −1 respectively can be
drawn to separate the data, and the algorithm desires to make these as far apart as possible
(and hence as close as possible to the respective classes). The final hyperplane is then halfway
between these and has distance 1/||w|| to either bounding hyperplane, which explains the
||w|| =

√∑
i w

2
i term to be minimised. If the data’s classes are labelled yi ∈ {1,−1} then

the bounding hyperplanes can be written 1− yi(
∑

i(wixi)− b) ≥ 0, and to ignore datapoints
which are already in the correct class (the correct side of the hyperplane) the max function is
introduced. Finally the parameter λ indicates the trade-off between how well the hyperplane
separates the classes and how wide the separation to those correctly classified is. An example
of a SVM separating two datasets in 2-dimensions is given in Figure 2.3.2b.

For the projects summarised in this thesis, some projects used logistic regressors and
support vector machine as starting grounds for classification, however a majority of the
results are centred on application of NNs for the learning. The NNs used were sequential
in form, meaning they satisfied the simple conditions of single input and output tensors,
and sequential layer to layer information flow (feed-forward NNs). All NNs used were deep,

23

(a) Logistic regression function (b) Support vector machine classification

Figure 2.3.2: The two simple binary classification architectures considered. In (a) the logistic regression
function for one input x shows the output probability p(x). In (b) a support vector machine classifies the
two classes (blue and red respectively) into their classes using a 1-dimensional hyperplane (the solid black
line) in the 2-dimensional space.

this means they contained hidden layers – any layers which are not either the input or
output layers. The number of layers indicates the NN depth, and may be correlated to the
problems complexity, as it represents the number of times non-linearity acts on the data
flowing through the network. The NNs tended to be dense, where the outputs of all neurons
in one layer become the input for all neurons in the next layer, also called fully-connected.
Where the alternative to this is sparse, where some neurons are not connected between layers
– this idea is utilised in the introduction of dropout layers to avoid overfitting.

NN layer types dictate the style of NN one is using, and should be chosen to match the
style of the problem. Keeping focus on the most frequently used architecture (even outside of
supervised learning) of the NN, we brefly discuss a few of the common layer structures used
to build and delineate them. The most standard NN layer is a dense layer, here all nodes
in the layer are connected to all nodes in the previous layer. The structure is simple, where
each node of the layer has a weight vector applied, and bias number added, to the vector
input from the previous layer. Activation is then applied at each node to give the input
vector for the next layer’s nodes. Dense layers strictly take the inputs as vectors, however
since they are fully connected any multi-dimensional organisation of the input is irrelevant.

Dropout layers are commonly added between regular layers. They take one probabilistic
argument (a float in [0,1]), which determines the proportion of vector entries to randomly
ignore from the previous layer’s output vector. This process reduces the likelihood of overfit-
ting to data, as some connections are ignored and then retrained differently as the training
data passes through the network. It is possible to seed the random selection to repeat
training processes if desired.

Convolutional layers are used in convolutional neural networks (CNNs). They maintain
any multi-dimensional tensor structure of an input, and explicitly limit the connectivity to
put a focus on local connections between the input data’s coordinates. The input into each
neuron is based on a kernel tensor11, which selects only values of the layer’s input tensor
which surround the neuron aligned with the current neuron (in the specified kernel shape)

11Note the use of ‘kernel’ here is independent of the use for the kernel trick for non-linear SVMs.

24

to use in calculation at that neuron, enforcing the local structure used for learning. The
same weight, bias, and activation process is applied to the used inputs at each neuron. The
stride of the kernel can be specified which dictates how the kernel is moved across the input
tensor, it is how many sites across/down the kernel is moved for calculation at the next
neuron; ideally this should match the change in the layer sizes. Pooling layers may also be
applied between the convolution layers. These are either ‘max’ or ‘mean’ in type, such that
another kernel this time is taken over the tensor and instead the maximum, or mean, value
is taken of all entries in the kernel. This introduces more non-linearity and focuses the NN
on the most important local features. In both uses of the kernel, a padding is required. This
adds values on the boundary of the tensor such that the image size can be maintained as
the kernel runs over it. For max pool the padding is with −∞ values, and for mean pool it
is with 0s. If padding is ‘valid’, then no boundary is added and the layers then decrease in
size according to the kernel size and stride. If the padding is ’same’ then boundary values
are added such that the output tensor is of the same size as the input.

Finally in designing a CNN, a Flatten layer is required after the convolutional layers. This
removes the multi-dimensional tensor structure of the input, and outputs a vector which can
then be processed by the final dense layers used to output the classification probabilities (or
another output format). CNNs were trialled in some the following projects’ investigations,
but final results showed simpler dense NNs as more suitable, as locality of the data structure
was less relevant and the CNN local structure can be learnt from the more general dense
NNs if more optimal.

The layer-to-layer connectivity can have a strong impact on the learning performance,
and can even change the problem structure. An important example is that of Siamese NNs
(SNN), which train multiple identical NN architectures simultaneously such that they learn
to map similar data inputs to similar embeddings in the output vector space, a particularly
useful NN structure for classification [204].

Activation functions importantly introduce the non-linearity into the NN. After each
standard layer the activation function acts on each node’s output to give a non-linearly
modified output. Importantly the activation function is chosen to be easily differentiable
so that it is computationally inexpensive when used in the NN optimiser’s gradient descent
method of some form.

The most common functions are: ReLU, sigmoid, tanh, softmax. ReLU is the simplest,
defined

ReLU(x) =

{
x x > 0

α · x otherwise
, (2.3.4)

for α = 0 in the simplest case, however setting α ∈ [0, 1] (usually ∼ 0.05) creates the ’leaky-
ReLU’ function. This function simply adds priority to more significant parts of the layer’s
input tensor, whilst being computationally quick to calculate with. There are generalisations
of the ReLU function, such as ELU which is smooth at the origin, and may be preferable for
gradient calculations. However the simplicity of ReLU means it is often used in preference
to the other options. Softmax as an activation, used in classification problems, importantly
normalises its output into a probability distribution. It is hence used in the final output
layer, where there should be as many neurons as data classes.

25

Data formatting is important for controlling the training process. During supervised
learning, the machine is optimising the matching of inputs and outputs, outputs being floats
in regression problems or simple class numbers in classification problems. The data hence
has two equal size lists. One is the data form the machine is learning (inputs), and the other
the values used in verification of predictions for the architecture parameter updating process
(outputs). In contrast in unsupervised learning there is only one list, and the machine is set
to determine its own patterns without another list for verifying its success.

Traditionally during supervised learning the full dataset is split into three smaller datasets.
The important two are training and testing. Training data is given to the machine during
its learning, it uses the data in this input list to optimise its loss function via updating the
parameters of the architecture function (i.e. for NNs its neurons’ weights w and biases b).
Test data is, importantly, unseen to the architecture, it is used after training to calculate
the metric measure of the architecture’s success. The final dataset split is the validation
dataset, this is a subset of the training dataset, still used in training, but is also used for giv-
ing intermediary measures of the performance. Often validation data is not used, as training
loss can provide a sufficient measure of performance during the training process. Usually
the dataset is split such that 80% of the data is used for training (with 0% of that used for
validation), and the final 20% used for testing. Varying these ratios to reduce the training
proportion can show how easily the architecture is learning the underlying trend (since less
data is being used).

A common additional procedure for evaluating confidence in an architecture’s ability to
learn, is using k -fold cross-validation. Here the full dataset is split into k equal subsets (or as
close to equal as discretely possible). Then in turn k independent architectures (of exactly
the same specifications) are trained and tested with two datasets formed from this split. One
dataset is

(
k−1
k

)
-th of data, and is formed from concatenating (k -1) of the subsets, whilst

the other makes up
(
1
k

)
-th of data being the final subset. The first of these new datasets is

used for training, and the latter for testing. Hence k independent architectures have been
trained and tested in k different ways on the full dataset (each with a different test set
from the k-partition). Therefore the final metric outputs can be averaged and corresponding
confidence calculated. A common choice of k is 5 [205].

The training dataset is usually split into batches, often with default of 32 inputs at a time.
This determines how many input tensors to run through the architecture before the next
iteration of the optimiser is run to update the function’s parameters (i.e. NN weights/biases).
A large batch size leads to more accurate updating of the values, however as the architecture
needs to account for more data in the parameter updating the optimisation process then
takes longer, and requires more memory. More frequent passes of the optimiser with smaller
batches may then be preferable to speed up computation, but will be more stochastic and
less accurate. However there is a trade-off, as the stochastic nature of smaller batches also
helps the optimiser avoid local minima in the loss function.

Beyond this the iterations variable for the training will dictate how many times to run a
batch through the architecture and then apply the optimiser before moving onto consider the
next batch. Then in a similar vain, the number of epochs is the number of times the entire
learning process is repeated on the architecture, running all the data batches through and
then starting again. More iterations and epochs will lead to a better trained architecture,

26

but may lead to overfitting. Usually no iterations are used (value of 1), whilst the number
of epochs is larger than 1 (∼ 20).

Overfitting is a typical problem in ML, it occurs when the architecture learns how to
predict the output from the input by learning all the inputs as opposed to the true underlying
data structure. Where overfitting occurs the accuracy and losses during training show very
promising values, whilst those on the test data are poor. Overfitting is typically avoided by
ensuring the number of iterations and epochs of the training data is not too high such that
the architecture is not over-trained. Alternatively regularisation methods are introduced. In
the case of NNs these include introduction of dropout layers which obstruct the information
flow, or adding loss function terms (for chosen layers) which’re proportional to either the
absolute value of a layers weights (L1), or the square of weights (L2), to penalise complicated
connections.

Problems associated to overfitting are well established in the context of bias vs variance.
This standard problem in ML addresses the importance of selecting the appropriate complex-
ity of architecture to describe the dataset. Where a model is too simple such that it cannot
well represent the true distribution of the data, the model is described to have high bias,
however over-simple models typically have low variance such that they perform consistently
on a variety of samples of the dataset. However, over-complex models in contrast tend to
overfit to the data’s true distribution and are hence described to have low model bias whilst
being prone to high variance as they have overfit the trained sample.

Another typical issue of ML, associated primarily to classification problems is bias of
the data. For example, where a classification problem dataset is naturally biased, having
more occurrences of a particular class, an architecture can shortcut to a good accuracy by
never predicting other classes. Although this gives promising learning measures, it is not
truly learning the structure of the data, so must be avoided. This bias can be deterred
by introducing class weights in the training process, such that the architecture used is told
to pay proportionately more attention to smaller classes. Certain learning measures are
less susceptible to bias in the architecture, giving a better measure of the architecture’s
performance.

In general the more data available for an architecture to train and test on, the better the
model will be. In particular, higher dimensional data requires exponentially more datapoints
for an equivalently effective model to be learnt; this conflict between wanting more technical
data to work with (with more features / dimensions) whilst then needing exponentially more
data to train well is known as the ‘curse of dimensionality’.

Architecture hyperparameters dictate the style of training and ultimately impact
the final trained model performance. They are the variables used to define the specific
architecture and fitting algorithm used, such as the number of NN layers, layer sizes, training
tolerances, etc. In selecting these hyperparameters it is important to also select a relevant
loss function, appropriate optimiser, and representative metric.

The optimiser of a NN defines the method of optimising the non-linear fitting. It is
defined during architecture compilation, and often uses some form of gradient descent in
the architecture’s parameter space. During the optimisation process (after seeing each data
batch during training), the optimiser updates the architecture’s parameters (i.e. weights and
biases at each of the network’s neurons) to better fit the data it has just seen, often with

27

some statistical variation included. The standard optimiser is stochastic gradient descent
(SGD), however the most common is an extension of SGD known as Adam. Adam is an
alteration of SGD which allows for variation of the learning rate according to the first and
second moments of the parameter upgrading gradients [206].

The loss function is also specified during compilation of the chosen architecture. This is
the function which the training process is seeking to optimise, there is no necessary range
for the evaluation, but it is often a function which the machine is minimising by following
the method specified by the network’s optimiser choice. The choice of loss function depends
on the problem type. For regression problems, a simple mean-squared error (MSE) or mean-
absolute error (MAE) function may be used, fitting the architecture’s approximate non-linear
curve to the data in the standard statistical way. These functions, as well as other common
choices, take the form

MAE =
1

N

∑
x

|ytrue − ypredicted| ,

MSE =
1

N

∑
x

(ytrue − ypredicted)
2 ,

MAPE =
1

N

∑
x

∣∣∣∣ytrue − ypredicted
ytrue

∣∣∣∣ ,
log(cosh) =

1

N

∑
x

log(cosh(ytrue − ypredicted)) ,

cross-entropy = −
∑
x

∑
c

ytrue,c log(ppredicted,c) ,

(2.3.5)

for N datapoints in the dataset {x} each paired with an output ytrue whose value is pre-
dicted by the architecture to be ypredicted, such that perfect prediction makes these equal
and minimises each loss. Mean-absolute-percentage error (MAPE) is defined in an analo-
gous way to MAE with each datapoints contribution being relative to its value (note this
can cause blow-ups for data evaluating to 0). Log(cosh) is a smooth generalisation of MAE
which approaches MAE in the limit of the output values being large but is smooth at the
discontinuity of ytrue = 0. so is better for gradient computations. For classification problems
categorical cross-entropy is used, this is based on Kullback-Liebler divergence, and aims to
introduce independence between the classes by considering their information entropy. It is
defined as in (2.3.5), by summing over all datapoints x and classes c where ytrue,c now is
the binary label ({0, 1}) of whether the current datapoint is in class c and ppredicted,c is the
predicted probability that this datapoint is in class c. A common variant used to avoid data
output formatting is sparse categorical cross-entropy, this provides the same functionality
but doesn’t require the data labels in the form of a vector space, instead it can handle simpler
integer class labels.

Measures of the performance, or equivalently metrics, are essential for justifying the use of
ML in supervised problems (where there is output data to evaluate with). These functions
are often of the same form as loss functions, providing similar functionality, however the
metric is usually chosen to be of a simpler form. For regression problems the metrics are
exactly the loss functions, however there is no restriction to use the same function as the

28

loss and of course they are now evaluated exclusively on the test data. In addition, there is
a further traditional regression performance measure known as R2. This evaluates how well
a regressor is performing by comparing the proximity of the predicted output to the mean
(which would be the prediction for a null regressor model). For this measure 1 is optimal, 0
means that prediction is not better than just predicting the true mean each time, and < 0
means worse than just predicting the mean. It is defined

R2 = 1 −
∑

(ytrue − ypred)
2∑

(ytrue − ytruemean)2
, (2.3.6)

summing over all predicted, ypred, and true, ytrue, outputs in the test data. In addition for
R2 the mean of the true values over the test data outputs, ytruemean, is also used.

The most standard metric for a classifier is accuracy. This is the proportion of correct
classifications performed by the classifier on the validation or testing datasets. To ensure
the measure is unbiased, it is important these datasets are not used for training whilst still
being representative. More technical measures of performance used include precision, recall,
specificity, F1 score, and Mathew’s correlation coefficient (MCC). These measures take into
account Type I and II errors from misclassification. A Type I error being a ‘false positive’
(FP), where an object not in the considered class is classified into the considered class, and
conversely a Type II error is a ‘false negative’ (FN), where an object is classified as not in its
true class by the NN. The F1 score measure gives equal weight to Type I and II errors, it is
the harmonic mean of precision and recall, whereas the MCC measure uses variable weights
based on the occurrence of true positives and negatives (TP/TN). These factors make MCC
a more favourable measure [207].

All metric measures can be summarised as functions over the confusion matrix, defined
for binary classification:

CM =

(
TP FN
FP TN

)
, (2.3.7)

and which can be generalised to the multiclassification case with:

CM =

TP1 E12 E13 · · · E1n

E21 TP2 E23 · · · E2n

E31 E32 TP3 · · · E3n

...
...

...
. . .

...
En1 En2 En3 · · · TPn

 , (2.3.8)

for n classes, where the entry CMij is the number of objects truly in class i which the
classification architecture classifies into class j. Therefore for class k, the TP value is given
by the diagonal entry (denoted TPk), the FN value by

∑
i ̸=k Eki, FP by

∑
i ̸=k Eik and finally

TN by
∑

i,j ̸=k Eij. Such that for each class, or directly in the binary classification case, these

29

metrics which evaluate performance can be defined via

accuracy :=
TP + TN

TP + TN + FP + FN
,

precision :=
TP

TP + FP
,

recall :=
TP

TP + FN
,

specificity :=
TN

TN + FP
,

F1 score :=
2 · TP

2 · TP + FP + FN
,

MCC :=
TP · TN − FP · FN√

(TP + FP) · (TP + FN) · (TN + FP) · (TN + FN)
.

(2.3.9)

In addition, all of these measures have generalised forms for the multiclassification case,
however due to their common use both broadly and in these studies the formulas for accuracy
and MCC are given by

accuracy :=

∑
i CMii∑
ij CMij

, (2.3.10)

MCC :=

∑
ijk

(
CMiiCMjk − CMijCMki

)√(∑
i

(∑
j CMij

)(∑
k ̸=i,l CMkl

))(∑
i

(∑
j CMji

)(∑
k ̸=i,l CMlk

)) .
All measures excluding MCC evaluate in the range [0, 1], whilst the MCC measure takes
values in [−1, 1]. A value of 1 for any measure indicates perfect prediction of the model. All
these metrics provide useful statistical insight, however accuracy is the industry standard
measure, and MCC is typically considered to be the most representative measure of the
learning (since it better accounts for varying class sizes, and is less susceptible to bias).

2.3.1.2 Unsupervised Architectures
What characterises data for unsupervised learning is the lack of output data to train with.
Given a dataset unsupervised architectures seek to extract structure from this data, and this
can be done in two distinct ways. Feature extraction identifies the most dominant parts of
the data which best describe it in a simplified representation. Whereas clustering seeks to
sort the data in its current form into sets with common behaviour or features.

In the research work carried out techniques from both of these branches were used, as
described in the following.

Principal component analysis (PCA) is a method of feature extraction which looks
for independent linear combinations of the inputs which have the most variance and hence
best describe the distribution of the data [208]. This is practically computed by starting
with the the covariance matrix, which for a dataset of n-dimensional vectors xi takes the
form

K(xi, xj) = E((xi − E(xi))(xj − E(xj))) , (2.3.11)

30

Figure 2.3.3: A PCA decomposition of a 2-dimensional dataset, showing the two principal components. The
larger component blue arrow is the first principal component, representing the linear combination of the xi

coordinates which has the most variance across the dataset. The other component is orthogonal to this.

for expected values E(xi), the mean of that coordinates values. This matrix is positive semi-
definite such that its eigenvalues are non-negative, and symmetric such that its eigenvectors
are orthogonal. Therefore the eigendecomposition of this matrix produces an eigenbasis of
‘principal components’ which give the most natural directions to describe the data’s variance.
These eigenvectors are usually sorted in decreasing order of eigenvalue, and the first k < n are
selected as the dimensionally reduced basis to describe the data. This is done by projecting
each data vector onto these k principal components using the k × n matrix built from
these normalised eigenvalues. The choice of k can be made by examining the normalised
distribution of the eigenvalues, say one wants to represent 80% of the data structure one
could choose the first k eigenvectors such that

∑k
i=1 λ > 0.8 for normalised eigenvectors λ

sorted in decreasing order of size. An example of PCA in 2-dimensions is shown in Figure
2.3.3.

PCA can be extended to non-linear combinations of the inputs by use of the kernel
trick (as described in §2.3.1.1 for SVMs) in kernel PCA (KPCA). The higher-dimensional
embeddings of the feature vectors have an equivalent covariance matrix whose explicit diag-
onalisation is bypassed by use of the kernel to give a method of projecting the features onto
these non-linear variational principal components. The kernel function is defined through
the outer product operation on the higher-dimensional features (expanded into a function),
in a parallel manner to the linear covariance case which is the average of the outer product
of the centred feature vectors (as can be seen in (2.3.11) where the internal E(xi), E(xj)
terms remove the means in centring).

As hinted to in the KPCA interpretation, PCA methods tend to perform better on
centred data where all the feature vector components are shifted by their mean value across
the data. The correlation matrix is a naturally centred object, but if one were to diagonalise
the average outer product of the feature vectors directly the resulting eigenvectors would
be shifted by a factor proportional to the mean vector. Therefore in this work centring is
always performed implicitly to avoid this biasing. In addition to centring, scaling is another
common practise prior to PCA. When scaling the components are divided by their variance
such that each feature vector component has unit variance. This practise is important when
each of the feature vectors have different units of measure and hence a direct comparison
has less physical meaning so scaling is used to make the entries dimensionless and sensibly
comparable. However in this work all the datasets were directly vectors (with common units)
so this practise was not used.

31

Topological Data Analysis (TDA) is a class of methods used to extract topological
features of a dataset. These methods are not always categorised under the machine learning
umbrella, however due to their clear use for topological feature extraction we have listed
them here.

The most prominent technique within TDA is persistent homology [209]. Homology
and cohomology within algebraic geometry are concerned with equivalence classes of forms
on manifolds, they create the groups which lead to computation of Hodge numbers for
complex manifolds, and Betti numbers for real manifolds (although are also defined for
complex manifolds via their real interpretation). Betti numbers bk are the ranks of the
respective homology groups Hk, and effectively bk counts the number of k-dimensional curves
which can be removed from a manifold keeping it connected. Betti numbers however also
have a simpler interpretation in terms of complexes, which may be considered the discrete
equivalents of manifolds, which make them particularly useful for data analysis through
persistent homology.

For the n-dimensional datapoints in the dataset, considered as points in Rn, a Vietoris-
Rips (VR) complex can be created for all distance scales δ ∈ [0,∞). For a set distance
scale δ the VR complex ∆δ is constructed by considering all subsets of points which are
mutually separated by at most the Euclidean distance δ, then for each set of size (κ+ 1) the
∆δ contains a respective κ-complex (for κ ≤ n, as a s-simplex needs at least s dimensions).
A filtration of these complexes is then made as the δ value increases from 0, recording
the next step in the filtration at each δ value the complex changes. This filtration can be
imagined to be built by starting with δ = 0 and the ∆0 complex being the start of the
filtration consisting of 0-simplices (points) for every datapoint. Then as δ is increased one
could image n-balls being drawn centred on each datapoint in the Rn space of radius δ, and
the balls’ radii being simultaneously continuously increased. As soon as the first two balls
touch a 1-simplex (line) is drawn between the equivalent two 0-simplices whose datapoints
produced those balls. This changes the complex and gives the next step in the filtration. This
steady increase in δ continues, adding κ-simplices every time κ balls intersect (for κ ≤ n),
and producing the next step in the filtration for each δ a change is made to the complex.
Eventually δ will reach a value where all possible simplices exist between all datapoints,
this is where the filtration terminates. Some VR complexes from the persistent homology
filtration for an example 2-dimensional dataset are given in Figure 2.3.4.

The persistent homology is then built on this filtration of VR complexes. The role of
persistent homology in the analysis of this filtration is to examine how long cycles of k-
simplices last throughout the filtration before they become filled by the (k + 1)-simplices
they bound. Specifically Hk examines how long cycles of k-simplices exist until becoming
filled by (k + 1)-simplices. For n-dimensional space up to Hn−1 can be considered, however
as k increases Hk becomes much more computationally intensive to compute. Therefore in
the projects TDA was applied, in §3.6 and §3.7, only H0 and H1 were considered and used
the ripser library for computation [26].

Each class in H0 is a connected component in ∆δ. Since there is a homology group
for each complex in the filtration, b0 counts the number of connected components in the
VR complex at each stage in the filtration. The persistence of persistent homology then
concerns itself with how persistent these features are throughout the filtration, i.e. how

32

Figure 2.3.4: Selected VR complexes from the persistent homology filtration of an example 2-dimensional
dataset. The first image shows the data with a small δ and hence none of the blue 2-dimensional balls (i.e.
circles) overlap. All these points are H0 features and hence β0 = 8, whilst β1 = 0. Then for larger δ where
two balls overlap a 1-simplex (i.e. edge) is drawn between the points, and where three balls mutually overlap
a 2-simplex (triangle) is also drawn. Here β0 = 5 for the 5 connected components, whilst β1 = 0 still. For
the final even larger δ value even more balls overlap leading to many more 1-simplices, and an additional
2-simplex. Here there is only one connected component so β0 = 1, and importantly there is now a H1 feature
from the ring of 1-simplices not filled by a set of 2-simplices, such that β1 = 1.

many stages through the filtration until each H0 feature b0 counts disappears. Each Hk

feature has its (birth,death) recorded, as the δ values where the feature was created and then
destroyed respectively. For the H0 features this means that the birth is always δ = 0 where
each datapoint is a component, whilst the death δ value is each time a 1-simplex is added
connecting two different features into one (killing the shorter lived feature by convention).
Equivalently the H1 features are cycles of 1-simplices which are not the boundary of a set of
2-simplices (triangles). These are born at δ values where a sequence of points are distance
≤ δ away from each other, but they are not mutually all within distance δ of each other.
They then die when at the δ value within which all the points are mutually ≤ δ away from
each other.

Persistence diagrams plot these (birth,death) pairs for each of the Hk features. H0 fea-
tures naturally lie on a vertical line (since all the births are 0), and H1 features indicate a
lot of noise usually close to the birth = death diagonal where cycles are quickly filled. The
interesting structure persistent homology seeks to find is large gaps in the H0 persistence
diagram line – where there are largely separated clusters of data which persist as connected
components for a large δ range without change. While the interesting H1 features are those
far from the diagonal – which are ring-like structures requiring a big step in δ to be filled.

K-Means clustering is a clustering method which partitions the dataset into a specified
number of clusters based on squared Euclidean distance [210], [211]. During clustering the
K-Means optimiser takes an input pre-decided number of clusters, initialises cluster centre
values for each cluster, and then iteratively updates these cluster centres such that the final
sum of squared distances from each datapoint to its nearest cluster centre is minimised.
The concept is related to that of Voroni cells, and during the iterative process firstly the
datapoints are collected into clusters associated to the initialised cluster centre value they are
closest to. Then within each cluster the mean is calculated and the cluster centre is updated
to that value, then all the datapoints are reclustered with respect to the new cluster centres,
with the process repeating until the cluster assignments of the datapoints don’t change.

33

Figure 2.3.5: The iterative process of K-Means clustering is exemplified for this example 2-dimensional
dataset. The data (black dots) is plotted in the 2-dimensional plane, and for the input of 3 clusters the
cluster centres (red crosses) are randomly initialised. The next step shows the datapoints being sorted into
clusters dependent on which centre they are closest to, shown by the red circles enclosing the clusters. For
each cluster the centres are then updated according to the mean of the cluster members, moving the red
crosses. Then the data is reclustered according to the new means, and the process repeated until convergence
where the cluster membership of the datapoints does not change.

The most common measure of clustering performance is inertia, defined

I =
∑
C

∑
x∈C

(∑
i

(µC ,i − xi)
2
)
, (2.3.12)

for clusters C , with respective means µC ,i, and all datapoints xi exclusively in their nearest
cluster. The innermost bracket is the standard sum of squares of the difference vector com-
ponents. Inertia is minimised when the clustering process has converged, but not necessarily
to a global minimum as different initialisations can affect the performance. An example K-
Means clustering process for a 2-dimensional dataset with 3 clusters specified on initialisation
is given in Figure 2.3.5.

As described in the iteration process, the K-Means algorithm requires the number of
clusters to use to be specified. This however is often the goal of a clustering task, to identify
the optimum number of clusters. To find this optimum number a method known as the elbow
method is used. Here the clustering is performed to convergence for a range of integers as
the input numbers of clusters, and final inertia recorded. The inertia values, relative to the
inertial value for clustering with one cluster (i.e. the total squared distance to the dataset
mean for all the data), are plotted against number of clusters, with a weighting factor to
penalise the use of too many clusters12.

12The penalisation is needed since more clusters means trivially better clustering, for N datapoints N
clusters has optimum inertia 0.

34

For the work in §3.6, a more novel measure we called ‘scaled-max-inertia’ was used in
the elbow method. This measure identifies the maximum squared-distance any point is from
its closest cluster centre, normalises it according to that maximum squared-distance from
using only one cluster, and adds this weight factor to penalise using an excessive number of
clusters. We define this to be:

Imax =
Maxx

(∑
i(µC ,i − xi)

2
)

Maxx

(∑
i(µ1 − xi)2

) +
(k − 1)

100
, (2.3.13)

where Maxx determines the maximum over all datapoints xi, examining the squared distance
to either the closest cluster’s mean µC ,i or the single cluster’s mean µ1; then weighting by
the number of clusters k.

As well as the inertial values for the full dataset, normalised equivalents were also used
to measure the final clustering performance, based on a normalisation by the number of
datapoints and also by the range of the datapoints’ values. These are detailed further with
the results in §3.6.

2.3.2 Network Science

Many of the mathematical objects considered in these studies take the form of graphs, such
as quivers, dessins, and cluster algebra exchange graphs. Graphs are defined with two sets,
a set of vertices/nodes V = {νi}, and a set of edges E = {εα} which are pairs of vertices
εα = (νi, νj) and define the connectivity amongst them [212]. Graphs can be undirected
such that the presence of (νi, νj) implies the presence of (νj, νi) and a single edge is drawn to
represent them, or directed where an arrow labels the direction from first to second vertex
in the edge pair. If the vertex set can be split into two subsets such that all the edges are
only between these sets then the graph is ‘bipartite’, the vertices are usually then drawn
with black or white colouring respectively. Graph vertices and edges can have labels, and in
particular if the edges are assigned numerical labels, known as weights, the graph becomes
a weighted graph and is called a network.

The embedding of the graph is not important to its structure, all that matters is its
content and the combinatorics of its connectivity. The connectivity can be represented by an
adjacency matrix Aij, whose entries indicate either the number (graphs) or weight (networks)
of the edges connecting vertices νi and νj. In the undirected case these matrices are naturally
symmetric, and for directed graphs without multiple edges between the same vertices they
will be antisymmetric. Another important type of edge is a loop, where both vertices in the
edge pair are the same (νi, νi). Many graphs under our consideration are ‘simple’ such that
they have no loops and don’t have multiple edges between the same vertex pairs, and also
built from only one connected component. An example graph, with a variety of the features
discussed is shown in Figure 2.3.6.

When analysing a graph the first property one considers is usually the degree distribution.
The degree of a vertex is the number of edges incident to it, in the directed case this splits
into an in-degree and out-degree for edges ending or starting on the vertex respectively. Next
a style of analysis known as clustering examines how the distribution of this connectivity
leads to clustering of the nodes. The measures for clustering used in this work are global in
nature (i.e. functions of the full graph); they were the average triangle and square clustering

35

Figure 2.3.6: An example graph with vertices (black circles) and edges (black lines). There is an example
of multiple edges in the top left, directed edge in the top right, a loop on the right, a weighted edge on the
bottom right, and a cycle between the three bottom vertices. An example shortest path is drawn between
the nodes labelled α and β, with the route traced out in green.

coefficients [213]. These measures return the proportion of sets of three/four vertices which
are connected in a triangle/square respectively.

Beyond degrees, and related to clustering, another important property of the connectivity
is the existence of cycles. Firstly a path around a graph is a sequence of edges where each
subsequent edge starts at the vertex the previous edge finished at; from there a cycle is a
path with the first and last vertices the same. Existence of cycles shows some degeneracy in
connectivity as there are multiple different paths which link the same start and end vertices.
Trees are graphs without cycles, and spanning trees are subgraphs which are trees including
all the vertices in the original graph – these are useful for building a minimum cycle basis.

Considering the cycles in a graph, they can be added via symmetric difference. The
symmetric difference of two cycles is the set of all edges that belong to only one of the two
cycles (i.e. any edge in both cycles is removed and the cycles are joined into one on the
other edges), and all the vertices of both cycles. With this addition rule, and multiplication
by 0 to give the null graph of the cycle (just the vertices) or by 1 to give the same cycle, a
cycle space can be defined over the finite field {0, 1} [212]. In this cycle space each vector
entry is one of the possible cycles in a basis, where 1 indicates presence of the cycle and 0
indicates the cycle is not present. Since there are many possible bases for the cycle space,
the minimum cycle basis is often chosen (the basis with the smallest total number of edges,
or weight if networks) [214]. Interestingly there is a dual to this cycle space, the cut space.
The cuts which make up this space are the edges that when removed separate the graph into
two connected components.

Further to analysis of degrees and cycles, in graphs one is also often interested in the
shortest paths between any two vertices. The Wiener index provides a global measure of this
shortest path, as the total length of all shortest paths between all distinct pairs of vertices
across the vertex set [215]. This measure can then be suitable normalised by the number of
pairs (nC2). The final common avenue of network analysis is centrality analysis. Centrality
measures how relatively influential vertices in the graph are. The method focused on in this
thesis was eigenvector centrality [216]. This is computed by diagonalisation of the adjacency
matrix, and taking the unique vector with the largest eigenvalue. The respective eigenvector
then gives the relative centralities of all the vertices in the graph, note if they are all equal

36

then there is no obvious centre to the graph (it is symmetric).
Therefore when examining a graph or network, as in the work of §3.8, a full analysis

considers the degree distribution and techniques from each of: clustering analysis, cycle
analysis, shortest path analysis, centrality analysis. Although the exchange graphs in §3.8
are the graphs seeing the most analysis through these methods, the quivers themselves, as
multi-digraphs, are valid graphs in their own right (as in §3.2) which are directed and allow
multiple edges between vertices. The python library networkx was used for handling of the
graph objects and computation of these network analysis measures [27].

3 Research Work

Throughout the period of my doctoral studies I have been very fortunate to work on a large
variety of projects, studying a range of different mathematical objects through the lens of
machine learning and data science.

In this section the research work performed by myself in contribution to the respective
papers is summarised. The sections are listed by the arxiv numbers of the respective papers
and the mathematical objects which were the centre of each ML investigation.

3.1 Dessins d’Enfants (2004.05218)

Dessins d’enfants, as introduced in §2.1, are bipartite graphs that describe the structure of
Riemann surfaces through the combinatorics of their Bely̌ı maps, expressing them as covers
over the Riemann sphere, β : V 7−→ P1

C.
Dessins first saw academic interest for determining combinatorial invariants associated

with the action of the absolute Galois group of the rational numbers, Gal
(
Q /Q

)
, which

has no direct description [59]. In defining the Galois group, Galois extensions of a base field
are considered. These are algebraic field extensions which are both normal and separable13

[217]. A Galois group is then the group of all automorphisms of a Galois extension which fix
the base field. Beyond these the absolute Galois group of a field, requires a specific extension
of the base field known as the separable closure of the field. Note that here since the base
field considered, Q, is perfect, the separable closure is equal to its algebraic closure denoted
Q.

The important relation which the theory of dessins capitalises on is an equivalence be-
tween several categories. The equivalence relates the category of embedded dessin graphs
with: finite sets under permutation; field extensions; and certain types of algebraic curves.
Since field extensions are directly related to the definition of the absolute Galois group, it is
through this categorical equivalence that representations of the Galois group act faithfully on
dessins d’enfants; which is what makes dessins so useful in studying the elusive Gal

(
Q /Q

)
group [218], [219].

Much of the inspiration for dessins came from Bely̌ı’s theorem. This states that any
non-singular algebraic curve represents a 3-point ramified covering of the Riemann sphere.
Therefore the Bely̌ı function used to define a dessin is ramified at exactly three points, from

13A field extension E/F is normal if every minimal polynomial with roots in E has all its roots in E and
separable if it has no repeated roots.

37

here the three points can be mapped to {0, 1,∞} under a Möbius transformation of the
form:

z 7−→ az + b

cz + d
, for a, b, c, d ∈ Z , z ∈ C . (3.1.1)

The white and black nodes are associated with the preimages of the points 0 and 1 respec-
tively under the action of the Bely̌ı function. In addition the edges are associated to the
preimage of the unit interval [0,1]. Finally, the ramification of the ∞ points are then inferred
from the graph structure. Since the ramification points represent degeneracy in the Bely̌ı
function, the graph-theoretic degree of the vertices hence corresponds to the ramification
degree of the general Riemann surface cover, as well as the first non-zero order in the map’s
Taylor expansion.

Dessins in the database considered in this study are ‘clean’, such that the degree of all
vertices in one of the sets is 2. This allows simplification of the representation by removing
all of the degree 2 vertices and connecting the edges which were incident to each – producing
a standard graph with one type of vertex. Alternatively introducing vertices at the edge
midpoints of standard graphs forms clean dessins. Additionally, any dessin can be ascribed
a genus associated with the lowest genus surface it can be drawn on. In particular, these
dessins are ‘planar’, as they can be embedded on a genus 0 sphere, or the R2 plane.

This specific dataset of dessins examined relate to certain subgroups of the modular group,
PSL(2,Z). The focus was on those dessins corresponding to specific forms of elliptically
fibred K3 surfaces as examined in [220], whose corresponding Seiberg-Witten curves were also
computed in this work following [60], and further examined in [221]. To classify these dessins
according to the degree of the field extension they are defined over, and hence equivalently
the size of their Galois orbits, NNs were used working with tensorial representations of the
dessins.

The first of the representation methods takes the adjacency matrix of the dessin as input,
whilst the second a list of cycles around each node inspired by the set permutation category
equivalence (which we call cyclic edge lists); both are classified according to the degree
of the field extension as output. High accuracy for the cyclic edge list learning suggests
the possibility of a way to directly understand the Galois orbits of dessins, and thence the
absolute Galois group via tensor representations of the dessins’ graph information, at least
stochastically.

Action of elements of the absolute Galois group may change the subfields of the algebraic
completion which the Bely̌ı functions are defined over, this maps Bely̌ı maps to each other,
and hence corresponds to moving around orbits of dessins. The orbit of a dessin is all
dessins that the absolute Galois group can transform the original dessin into. The largest
orbit in the dataset considered corresponds to a quartic extension of the rationals. The
minimal polynomial associated with the quartic root used in the extension hence has four
distinct roots (since the extension is also separable). Therefore each dessin in this Galois
orbit corresponds to an extension of the rationals by one of these four roots. The root
corresponding to each of these dessins is used in defining the coefficients of its Bely̌ı map.
Importantly the size of the orbit of a dessin corresponds to the degree of the field extension.
This degree of field extension is also an invariant under Seiberg duality of the equivalent
dimer model, and hence acts as a useful test for QFT duality, the physical interpretation of
this degree is further examined in [222].

38

3.1.1 Modular K3 Surfaces and Dessins

As stated previously, the dessins considered in this paper, arise through analysis of the
modular group, PSL(2,Z). It is the group of 2 × 2 matrices with integer entries and unit
determinant. The projective quality of the group arises through the identification of elements
A ∼ −A through the standard quotient method in the group’s definition: SL(2,Z)/{±1}.
This group represents fractional linear transformations on the upper half complex plane, H ,
acting alike Möbius transformations in (3.1.1).

A principle congruence subgroup is the kernel of a reduction modulo n morphism on
the field the matrix elements are defined over, i.e. it is what maps to the identity under
πn : SL(2,Z) 7−→ SL(2,Z/nZ). Note the actual matrices aren’t necessarily finite order
modulo n, just their elements are either 1 (if on-diagonal) or 0 (off-diagonal) modulo n. A
congruence subgroup is then any subgroup which contains a principle congruence subgroup
for some n ≥ 1; the smallest n such that the nth principle congruence subgroup is contained
is known as the level of the subgroup [223].

More specifically we are interested in torsion-free subgroups, where all elements of the
subgroup (except the identity) are of infinite order. Additionally the subgroups considered
must be genus zero. The genus of the subgroup is the topological genus of the modular curve
formed from the quotient of H by the subgroup’s action (such that parts of H which map
to each other under elements of the subgroup are identified). This is equivalent to saying
the modular curve formed from the subgroup is topologically the Riemann sphere [224].

Importantly there are only 33 torsion-free genus zero congruence subgroups of the mod-
ular group. The conjugacy class decomposition of the modular group using these subgroups
leads to indexes: {6, 12, 24, 36, 48, 60}, where the restriction to a multiple of 6 can be shown
through use of the Riemann-Hurwitz formula [220]. The action of the subgroups in question
can be extended from H to H × C such that:

(τ, z) 7−→
(
γτ,

z + mτ + n

cτ + d

)
, for γ =

(
a b
c d

)
, m, n ∈ Z , (3.1.2)

where γ denotes action of an element of one of the subgroups with the Möbius action of
(3.1.1). Now taking the quotient of H ×C by this extended automorphism gives the modular
curve (from before the extension) with an elliptic fibration to form the unique ‘modular
surface’ for that subgroup. The index of the subgroup used gives the Euler number of the
corresponding modular surface [220].

The modular surfaces formed from the index 24 torsion-free genus zero congruence sub-
groups are K3 surfaces. These modular surfaces hence take the form of a Weierstraß equation:

z21 = 4z30 − g2(z)z0 − g3(z) , (3.1.3)

where the coefficients g2 and g3 are functions of the base Riemann sphere’s complex coordi-
nate z, alike in §2.2 for construction of elliptically fibred CYs but using z2 = 1 to give the
non-compact version in C2[z0, z1] (not P2

C), and fibred with the new coordinate z.
Weierstraß elliptic equations may be thought of as the relation between the Weierstraß

elliptic function, P, and its derivative P′ (respectively denoted by z0 and z1 in (3.1.3)).
These Weierstraß elliptic functions are two-periodic, and hence are functions of some abstract
complex plane coordinate, z, and two periods (which define a lattice structure for the complex

39

plane in z). The two periods of this lattice define the ‘fundamental parallelogram’ in the
complex plane, and due to the periodic structure, this parallelogram hence has the topology
of a 2-torus; an important property in the definition of this fibration as an elliptic curve
[225].

Taking the Laurent expansion of the Weierstraß function about the origin gives a series
in increasing powers of two. The coefficients for the z2 and z4 terms are directly proportional
to the g2 and g3 coefficients (used in (3.1.3)) respectively. These coefficients are known as
invariants of the function. Taking a polynomial equation of these invariants one can form
the ‘modular discriminant’, a modular form of weight 12. This is defined

∆ := g2(z)3 − 27g3(z)2 , (3.1.4)

and as a discriminant it indicates the degeneracy of roots of the cubic part of the Weierstraß
elliptic equation. Modular forms are particularly useful in creating Galois representations,
as well as appearing in many other useful areas of mathematics also. In general they are
holomorphic functions on H , and satisfy the condition

f

(
az + b

cz + d

)
= (cz + d)kf(z) , (3.1.5)

for weight k. This condition shows the response of a modular form to action of the modular
group on its input. Using the modular discriminant, a weight zero modular form can be
defined, this is known as the j -invariant,

j(z) :=
g2(z)3

∆
=

(
g2(z)3

g2(z)3 − 27g3(z)2

)
, (3.1.6)

which is a modular function (in fact the unique one that generates the field of modular-
invariants). Since the form is weight zero it is hence invariant under action of the modular
group. These j -invariants for the K3 modular surfaces in consideration can be considered
as endomorphisms of the Riemann sphere, which are ramified at {0, 1,∞}. Note that some
definitions of j(z) may include an additional factor of 1728, requiring a further Möbius
transformations to convert the second ramified point from 1728 7→ 1.

The key observation is that due to the ramification structure of (3.1.6), these j -invariants
are Bely̌ı! This striking property is discussed and proved in [226]. To get a sense for this
structure consider j(z) = 0, this requires g2(z) = 0, and the cubic dependence on it in the
invariant function makes each root into a three-fold ramification point; these are the white
nodes of the dessin. Equivalently j(z) = 1 requires g3(z) = 0, and the square dependence here
makes each root into a two-fold ramification point; the black nodes. Finally the j(z) = ∞
singularities require the modular discriminant ∆ = 0 (or z 7→ ∞). Thus, each modular
surface gives a dessin via its j-invariant.

In particular, the degree of the j -invariant’s numerator equals the surface’s index (here
24). So that the z 7→ ∞ limit remains a singularity we require the denominator to have a
lower leading order, hence the g32 and g23 factors must be of the same degree (both being 24),
so the leading power of g32 can be negated. This makes the invariants g2 and g3 of degree 8
and 12 respectively, leading to 8 trivalent white nodes, and 12 bivalent black nodes in these
dessins.

40

Henceforth, we will focus on these ‘extremal’ K3 surfaces where all singular fibres are of
Kodaira type In and there are exactly 6 of these fibres (further discussed in [226] and [220]).
These 6 Kodaira singularities act as a 6-part partition of the mapping’s degree (which is
24), giving the passport information. These 6 ramifications induce the 6 faces of the dessins
(including the outside face, since the dessin is truly drawn on a sphere). There are 112
elliptic modular K3 surfaces which are extremal (indeed, there are 199 6-partitions of 24 but
[226] showed only 112 produce K3s) and we will focus on these in this study14.

3.1.2 The Dessin Data

In summary, we study 112 extremal K3 elliptic fibrations, where the modular K3 surfaces
have index 24. The j-invariant of each is a Bely̌ı map with passport

3W

2B

na1
1 , na2

2 , ..., nak
k

 ,
W = number of preimages of 0 = 8
B = number of preimages of 1 = 12

{nai
i } = cusp widths of elliptic modular K3 surface

(3.1.7)
such that ∑

i

ai = 6 ,
∑
i

ai · ni = 24 . (3.1.8)

Each dessin is planar, trivalent, and clean and corresponds to a particular subgroup of the
modular group PSL(2;Z). Of these, 9 are congruence subgroups, including the principal
ones Γ(m), m = 3, 4, 5; whilst the remainder correspond to more general ones.

All such K3 surfaces and associated dessins were classified in [226] and [227], with re-
spective subgroups computed in [220]. All these dessins, along with their field extensions,
adjacency matrices, and cyclic edge lists are available as a database in the appendices of
[30].

As can be seen in this database, there are actually more than 112 dessins in the dataset,
in fact there are 191. Whilst there are 112 distinct passports in this dataset, the dessins
sort themselves into 125 orbits of varying degree extension, where the degree of extension is
equal to the size of the orbit (leading to 191 dessins). In some cases there are multiple orbits
per passport, and this accounts for the extra 13 orbits on top of the 112 passports.

Dessin isomorphisms occur when a Galois orbit contains complex conjugate pairs, such
that the Galois action between these conjugate roots leads to a chirality flip of the dessin
embedding. Additionally, they may also occur in rare cases between dessins in different
orbits. Both these subtleties associated to graph isomorphism are rectified with the cyclic
representation method, which is sensitive to the embedding. Removing repeated matrices
due to these isomorphisms leads to 152 distinct matrices in the dataset, corresponding to the
152 dessins unique up to this isomorphism within their own orbit (where isomorphisms occur
out of orbit both matrices are removed). Whereas for the cyclic edge list representation all
191 lists are independent and can all be used.

Since these dessin objects are drawn as graphs, it is logical to first try learning from
the adjacency matrix representation method (the graph-theory standard method of tensorial

14Note that if dessins are in the same Galois orbit they necessarily have the same passport (but not vice
versa).

41

representation). Therefore under this representation method, since our dessins are clean, it
suffices to only draw the white vertices and the graph is, at least combinatorically, completely
captured by adjacency matrices of shape 8×8. The second data input style represents dessins
by cyclic lists of the edges surrounding each node to give a white node list set of 3 edges per
8 nodes, and black node list set of 2 edges per 12 nodes such that the full representation has
48 entries. This is a faithful representation method, and hence all 191 dessins are included
in this dataset whereas the adjacency matrix representation can only use 152 distinct dessin
matrices.

Importantly, for our dataset, the dessin Bely̌ı maps are defined over Q, or some extension
of Q involving a square, cubic, or quartic root. This means that the extension degree of all
our dessins are 1, 2, 3, or 4 (where 1 means Q itself). Where the field is an extension of Q,
the Galois action maps between the roots of the minimal polynomial defining the extension
and in each case this corresponds to a different dessin.

1

34

5 6

78

2
1 2

3

4

56

7

8

9 10

1112

13 14

1516

17 18

19

20

2122

23

24

Example: This example dessin, as given in Figure
2.1.3b, is shown again to the right with vertices and edges
arbitrarily numbered. This dessin corresponds to ramifi-
cation passport:

38

212

46

 , (3.1.9)

which can be read off from the dessin due to the 8 valence
3 white vertices, 12 valence 2 black vertices, and 6 faces (including outer face) which are
each bordered by 4 white vertices (and 4 black vertices). Using the respective Bely̌ı map
provided in [228]:

β(z) =
(z8 − 144 + 1)3

(−108z4(z4 + 1)4)
, (3.1.10)

since the map contains no roots of rational numbers the field is simply Q with no extension
and hence an orbit size of 1 containing only this dessin. Equating the map to (3.1.6), the
functions g2 and g3 can be extracted:

g2(z) = z8 − 14z4 + 1 ,

g3(z) =
1

3
√

3

(
z12 + 33z8 − 33z4 − 1

)
.

(3.1.11)

Using these functions in (3.1.3), the Weierstraß equation for the modular surface is:

z21 = 4z30 − z0
(
z8 − 14z4 + 1

)
− 1

3
√

3

(
z12 + 33z8 − 33z4 − 1

)
. (3.1.12)

This is the modular surface which corresponds to the extended quotient action of the con-
gruence modular subgroup Γ(4) on H , as described in §3.1.1.

Conversely calculating the preimages of {0, 1,∞}, the dessin can be reproduced. The
preimages of 0 correspond to roots of the Bely̌ı map numerator. The preimages of 1 cor-
respond to roots of the polynomial formed from the difference of the Bely̌ı map numerator

42

Images
β(z)

Preimages
z

Number of
Preimages

Ramification
Multiplicity

0
√
2±

√
3 ,−

√
2±

√
3 , i

√
2±

√
3 ,−i

√
2±

√
3 8 3

1

±1 ,±i ,

±
(
1 + 1√

2
+ i

√
1
2(3 + 2

√
2

)
,±

(
1 + 1√

2
− i

√
1
2(3 + 2

√
2

)
,

±
(
1− 1√

2
+ i

√
1
2(3− 2

√
2

)
,±

(
1− 1√

2
+ i

√
1
2(3− 2

√
2

) 12 2

∞ 0 ,± 1√
2

(
1 + i) ,± 1√

2

(
1− i) ,∞ 6 4

Table 3.1.1: The preimages of {0, 1,∞}, along with their multiplicities, for a Bely̌ı map corresponding to
congruence modular subgroup Γ(4).

and denominator. Finally the preimages of ∞ are given by the limit z 7→ ∞, or the roots of
the Bely̌ı map denominator.

These preimages, along with their ramification multiplicities are listed in Table 3.1.1,
calculated using mathematica [29]. In each case the number of preimages and the multiplic-
ities agree with this example dessin’s passport. Therefore producing the 8 trivalent white
vertices, 12 bivalent black vertices, and 6 faces (including the outer face) of the dessin in
this example.

This example dessin can be represented in both of the two tensorial forms used in this
study. The first through its adjacency matrix, as given in (3.1.13), by absorbing the redun-
dant information of the black vertices (all valence 2 as the dessins are clean) into the edges
and only considering the white vertices. Noting also that this representation is only unique
up to permutation of the rows/columns corresponding to the relabelling of the vertices. The
second representation was as a cyclic edge list, listing the edges surrounding each white/black
vertex in a clock/anticlockwise manner, shown in (3.1.14). For this representation there is
redundancy associated to cyclic permutation of the edge lists, reordering of the edge lists,
and relabelling of the edges.

M8×8 =

0 1 0 1 1 0 0 0
1 0 1 0 0 1 0 0
0 1 0 1 0 0 1 0
1 0 1 0 0 0 0 1
1 0 0 0 0 1 0 1
0 1 0 0 1 0 1 0
0 0 1 0 0 1 0 1
0 0 0 1 1 0 1 0

, (3.1.13)

V48 = {{{8, 1, 9}, {2, 3, 10}, {4, 5, 11}, {12, 6, 7}, {18, 14, 19}, (3.1.14)
{22, 16, 23}, {13, 24, 17}, {21, 20, 15}},
{{1, 2}, {9, 13}, {10, 14}, {3, 4}, {15, 11}, {24, 23}, {17, 18},
{8, 7}, {5, 6}, {12, 16}, {21, 22}, {20, 19}}} .

Therefore in each of the ML investigations the NN architecture is seeking to learn the
relationship

{M8×8, V48} −→ Extension Degree over Q , (3.1.15)

43

Data Input Type
Averaged Measures
Accuracy MCC

M8×8

(matrix)
0.54

± 0.00
0.18

± 0.01

V48

(edge list)

1000:0:0
0.92

± 0.03
0.88

± 0.04

0:1000:0
0.38

± 0.02
nan

± nan

0:0:1000
0.55

± 0.01
0.28

± 0.02

10:10:10
0.42

± 0.02
nan

± nan

Table 3.1.2: ML results showing the learning measures of Accuracy and MCC, each averaged with standard
error over the 5 NNs trained in each investigation for the 5-fold cross-validation performed. The 5 inves-
tigations constitute 2 data formats, the first the adjacency matrix format, the second the cyclic edge list
format. For the cyclic edge list format the number of permutations generated under each redundancy are
also given in the form {Edge Cycles : Node Reordering : Edge Relabelling}. The nan return value (not a
number) constitutes where the MCC could not be computed as one class was never predicted in one of the
cross-validation runs.

via multiclassification across the possible extension degrees {1, 2, 3, 4}.
Each respective dataset of tensorial representations was augmented to increase its size

using the respective redundancies. For the matrix representation, the 152 distinct adjacency
matrices were permuted through vertex relabelling to produce ∼ 200, 000 matrices, ignoring
any repeated matrices (i.e. that were invariant under the chosen permutation). For the
edge list representation, the 192 dessin lists were permuted in each of the 3 redundancy re-
ordering/relabelling methods (both individually and together) to produce again ∼ 200, 000
vectors (flattened versions of the lists). The proportions of the datasets with extension de-
gree {1, 2, 3, 4} were {0.49, 0.31, 0.19, 0.01} and {0.40, 0.35, 0.24, 0.02} respectively for matrix
and edge list representations. These proportions were approximately the same after data
augmentation, and were used as class weights in training the NNs to avoid biasing.

3.1.3 ML Results

NNs built from 4 layers of 512 Leaky-ReLU neurons (with 0.25 dropout) and an output
softmax layer of 4 neurons, were trained with an Adam optimiser on cross-entropy loss for
20 epochs with batches of size 32. The 5-fold cross-validation results are shown in Table
3.1.2.

The results show mediocre success for learning the adjacency matrix representations,
since an accuracy of 0.25, and MCC of 0, denotes true random guessing amongst the 4
categories. This lesser performance here may be perhaps attributed to the subtleties in using
this representation method for dessins associated to isomorphisms occasionally occurring
outside of Galois orbits. For the cyclic edge list representation, the latter 3 experiments
were not especially successful, for some NNs classes were completely ignored in classification,
leading to MCC being incalculable (shown by the value ‘nan’). However the cyclic edge list

44

representation with dataset augmented using the cyclic reordering of edges within each node
list was highly successful, exceeding 0.9 accuracy and with MCC 0.88 (indicating non-bias
learning across the classes). This result is exceptionally strong, and shows the importance
of the cyclic property in this representation, and suggests a promisingly strong link between
this cyclic edge representation of dessins and their Galois orbit size / extension degree.

Conclusion
This study showed the success of ML methods in predicting the degree of the field extension
over the rationals which a dessin d’enfant graph’s Bely̌ı map is defined over. The simplicity
of the networks used indicates that perhaps there is a simpler description undermining the
dessin structure which allows the extension degree to be extracted. Since the field extension
is closely related to the orbit structure of the dessins, perhaps this indicates a direction for
further research, and supports the use of dessins in examining the Galois group structure of
Gal

(
Q /Q

)
.

3.2 Quiver Mutation (2006.10783)

Quivers, as introduced in §2.1, diagrammatically represent supersymmetric gauge theories
using graphs from graph theory. Within these general supersymmetric gauge theories, those
from quivers which represent 4-dimensional N = 1 theories exhibit an electric-magnetic
duality known as Seiberg duality [49] which connects theories with the same low-energy
IR description under renormalisation group flow. The quivers describing these theories are
connected through a graph mutation process, as depicted in Figure 2.1.2a.

In this process the node mutated has its gauge group swapped to the dual group (by
changing the rank as described in the figure), and incident fields to the node are swapped to
their conjugate representations in this dual group. A meson field is then introduced as an
edge connecting any 2-path through the node into a 3-cycle, and finally where introduced
edges lead to a 2-cycle both edges are removed, as these correspond to two chiral-multiplets in
opposite bifundamental representations combining to form a massive N = 2 hypermultiplet
which can be integrated out of the theory as focus is on the low-energy effective theory
where these massive fields are not present. The dualising process for the gauge group rank
update is defined in the figure using incoming arrows, however could also be equally well
defined with outgoing arrows and thus leads to ambiguity for anomalous quivers where∑

ℓ7→j aℓjNℓ ̸=
∑

j 7→ℓ ajℓNℓ for mutated node j. Hence in this study, the rank information is
only considered in the anomaly-free cases. In a sense, one can think of anomaly-free theories
as existing in the kernel of a quiver’s adjacency matrix, for their gauge group rank selection.

In conjunction to the quiver, when considering a quiver gauge theory it is also important
to consider the theory’s superpotential, which determines the theory’s interactions through
its Lagrangian description. The fields corresponding to the quiver arrows arise in the su-
perpotential as gauge invariant operators, which are combinations of traces and products of
fields corresponding to selected cycles in the quiver [229]. Under Seiberg duality, the dual
theory’s superpotential is equivalent to the original with products of fields relating to 2-paths
through the dualised node replaced with meson fields (i.e. XijXjk 7→ Mik); and then meson
fields replaced by cubic interaction terms between the meson and the two new dual fields
relating to the new reversed arrows of the 2-path (i.e. Mik 7→ MikX̃kjX̃ji).

45

As also discussed in §2.1, the Seiberg duality process is mathematically equivalent to
the process of cluster algebra mutation [230]–[232]. Cluster algebras are built from a subset
of generators under the cluster mutation process, dictated by quivers (specifically N = 1
quivers with no loops or 2-cycles). Dropping the cluster information from each seed gives
only the mutating quivers, and respectively the Seiberg duality process. Cluster algebras
are further discussed in §3.8, where this work [31] is extended to analysis and ML of cluster
algebras directly in [37].

Repeated application of the duality process on all the quiver’s nodes produces a duality
tree (or quiver exchange graph in the cluster algebra language). Where interestingly the
node ranks are constrained to always obey a classifying Diophantine equation [51], [233].
The structure of these duality trees is dictated by the equivalent cluster algebra type, as
described in §2.1, being finite or infinite.

3.2.1 The Quiver Data

Beyond the desire for both finite and infinite types, the selection of the quivers used in this
investigation was somewhat arbitrary. However, those with fewer numbers of nodes were
preferable to make computation of the mutation more feasible.

The quivers were represented as adjacency matrices, highlighting here that since the quiv-
ers were oriented the matrices were anti-symmetric. Hence an edge i 7→ j means the quiver
adjacency matrix has entries aij = 1 = −aji. Choosing this antisymmetric representation
for adjacency matrices simplified processing of the ranks. Whereby the quiver node ranks
were represented by an n-vector, N , whose entries were the corresponding ranks of the nodes
listed in the same order as the matrix rows, Ni for node with gauge group U(Ni). With this
representation, the vector produced by a · N ≡ A, which we call the ‘anomaly vector’ is
preserved under the Seiberg duality operation. In particular, if the quiver gauge theory in
consideration was anomaly-free, the anomaly vector was the zero vector, and the dual rank
vector remained in the dual adjacency matrix’s kernel under Seiberg duality. This we relate
to the fact that anomaly-free theories remain anomaly-free under Seiberg duality, as does
the style of anomaly in anomalous theories.

These quivers, and their adjacency matrices were generated and manipulated using the
sagemath package [234]. The rank vectors were inserted manually, and dualised externally
to the package. Since no quiver nodes had loops, in all cases the matrix diagonal entries
were all zeros. Since this is as many entries as the rank vector, when the rank information
was included it was placed in the adjacency matrix as the diagonal entries (efficiently storing
the matrix and rank information together in a tensor for the ML architecture to process).

The specific quivers used in generation of the duality-trees / mutation classes for use in
the ML investigations discussed here are shown in Figure 3.2.1. These give a range of types,
with consistent sizes within the types (so adjacency matrices are the same shape), which
produce a sizeable amount of data for the architecture to learn from when generating each
duality tree to depth 5.

Six investigations were carried out, classifying: 3 finite type classes, 3 infinite type classes,
2 finite and 1 infinite type classes; each for the case of classification with and without rank
information.

In the finite type investigation 3 initial quivers based on the respective A8, D8, and

46

(a) A8 quiver
(finite)

(b) D8 quiver
(finite)

(c) E8 quiver
(finite)

(d) I1 quiver
(infinite)

(e) I2 quiver
(infinite)

(f) I3 quiver
(infinite)

(g) A6 quiver
(finite)

(h) D6 quiver
(finite)

(i) I6 quiver
(infinite)

Figure 3.2.1: Quivers used to generate the duality trees via repeated exhaustive application of quiver mutation
to all nodes up to depth 5. Each row corresponds to an investigation amongst: (a)-(c) finite types, (d)-(f)
infinite types, (g)-(i) mixed types. Quivers are shown with labelled nodes and randomly oriented red directed
edges, where blue edges then indicate more than one edge (with the number given by the edge label).

E8 Dynkin diagrams were used to generate the 3 mutation classes for learning. In the
infinite type investigation the 3 initial quivers were anomaly-free and chosen to be those
denoted I1, I2, & I3. Finally, the mixed mutation type investigation used a mix of the
two types, notably 2 finite type quivers based on the A6 and D6 Dynkin diagrams, and
another anomaly-free infinite type denoted I6. Each of these quivers were used to generate a
respective mutation class, mutating up to a depth of 5, to contribute to that investigation’s
dataset. Where rank information was included the 1-vector (a vector with all entries 1) of
size equal to the quiver’s number of nodes was used as the rank of the initial quiver.

Additional quivers, and hence duality trees, were also considered for further investigations
as discussed in [31]. However, focus in this thesis is placed on my contributing work as
summarised in the subsequent investigation results.

Example: The NN input was the flattened adjacency matrix of the quiver in question,
outputting a 3 vector which dictated the relative probabilities the input quiver was in each
of the classes being multiclassified, with the largest / most probable entry taken as the
predicted classification. To exemplify the input data for the quiver we consider the adjacency

47

matrix for the quiver I1 given in Figure 3.2.1d. This has adjacency

a =

0 1 0 −1
−1 0 3 −2
0 −3 0 3
1 2 −3 0

 , (3.2.1)

flattened to give the 16 entry input vector, which when an example rank vector N = [1, 1, 1, 1]
is used gives the vector input as

[1, 1, 0,−1,−1, 1, 3,−2, 0,−3, 1, 3, 1, 2,−3, 1] , (3.2.2)

with anomaly vector A = a · N = [0, 0, 0, 0], indicating the I1 theory with these ranks is
anomaly-free as N is in the kernel of the I1 adjacency matrix.

3.2.2 ML Results

The primary scope of the application of ML in this study was to see if the architectures can
learn the mutation process, by identifying the duality tree class structure.

The ML problem considered hence mapped a randomly ordered dataset of quiver matrices
(either all with or all without rank information) to one of 3 mutation classes which the data
was generated from. Each NN’s goal was to correctly classify these quiver matrices into their
correct mutation class, with learning measures averaged over the 5-fold cross-validation. Each
NN consisted of 4 64-neuron layers, with Leaky-ReLU (α = 0.01) activation, and dropout
(0.2 dropout factor) between them. These layers were followed by a final dense layer with
as many neurons as classes (3), and softmax activation. The softmax activation normalises
the outputs to probabilities such that the most probable class can be selected as the NN’s
predicted class for an input quiver matrix. The NNs were trained in batches of 16 over the
dataset for 20 epochs, using Adam optimiser to minimise the sparse-categorical cross-entropy
loss function.

The results are shown in Table 3.2.1. They show the NNs average accuracy, macro-F1
(mean of the 5 cross-validation F1 scores), and MCC scores for each investigation, with the
standard deviation across the 5 NNs trained. These results show strong success for these
simple NNs in differentiating between finite type quivers, and between finite and infinite
types also. Rank information had negligible impact, but did slightly improve learning in the
finite vs infinite type investigation, where information on the anomaly is more important and
as expected aided the classification. The NNs did not perform well in the case of classifying
infinite types, since these represent anomaly-free physical theories this was disappointing.
Results could perhaps be improved with a larger dataset, but overall indicate that finite type
quivers have more characteristic mutation under the Seiberg duality process.

Further results in the paper saw accuracies and MCC values reaching 1 for binary clas-
sification between and amongst types. Enhancement of the data by including the rank
information, or variables inspired by the Diophantine equations associated to the duality
trees did not improve learning. There was however reasonable success in identifying the cor-
rect duality tree on data at depths beyond that trained on, and the architectures performed
very well when classifying against random antisymmetric matrices.

48

Investigation
Learning Measures

Accuracy Macro-F1 MCC
A8 & D8 & E8
(4801 matrices)

No Rank 0.956 ± 0.004 0.956 ± 0.011 0.935 ± 0.006
Rank 0.952 ± 0.004 0.951 ± 0.011 0.928 ± 0.006

I1 & I2 & I3
(1357 matrices)

No Rank 0.426 ± 0.016 0.419 ± 0.044 0.145 ± 0.028
Rank 0.425 ± 0.017 0.420 ± 0.054 0.143 ± 0.026

A6 & D6 & I6
(2660 matrices)

No Rank 0.915 ± 0.004 0.860 ± 0.020 0.850 ± 0.007
Rank 0.920 ± 0.002 0.870 ± 0.011 0.860 ± 0.003

Table 3.2.1: Results of classification of quiver matrices into their mutation classes. Number of matrices
in each investigation’s full dataset listed, each chosen such that it is approximately balanced between the
classes. Results show the 3 averaged learning measures with standard error for learning on the given quivers
with and without rank information included in the matrices.

In these additional investigations (whose results are not listed here) the data was set
up such that inputs were concatenated pairs of matrices, with binary label of whether the
quiver matrices belonged to the same duality tree or not. This data set-up allowed mul-
ticlassification problems to be rephrased as binary classification, and the combinatorics of
selecting pairs hugely inflated the dataset for learning. Along with NN architectures, many
of the good results used a Naive Bayes architecture. This architecture is built out of Bayes
theorem, looking at conditional probabilities of the binary outcomes given the training data
information [235], since this reflects the independence between the pairwise data structure it
is expedient that this architecture did so well. More information about these investigations
can be found in [31].

Conclusion
This study showed success when using NNs to differentiate quivers according to their mu-
tation classes / duality trees. It supports the idea of simple invariants under the mutation
process being extractable from the adjacency matrix representation and motivates the fur-
ther use of ML in the field of quiver and cluster mutation, as performed and summarised in
§3.8.

3.3 Hilbert Series (2103.13436)

Hilbert series, as introduced in §2.1, provide a means of counting regular functions on vari-
eties. Physically, they are used in a range of scenarios, including to count BPS operators [67],
[68], [236]–[239], determine moduli spaces [240]–[243], find standard model invariants [244]–
[246], deal with string compactifications [247], as well as for a range of other quiver-related
computations [65], [248]–[254].

In our use we consider them as encoding complex varieties embedded in Pn
C, more specif-

ically encoding the dimensions of the graded pieces of the coordinate ring which defines the
variety. In the closed forms the Hilbert series are functions of geometric properties of the
variety and the embedding space, as detailed in (2.1.3), (2.1.4), (2.1.5). The cones over these
varieties physically correspond to moduli spaces of supersymmetric gauge theories from a

49

string interpretation. Often one wishes to compute the moduli space from the matter and
superpotential information, and in certain (particularly non-toric) scenarios this must be
done by counting gauge invariant operators order by order. An example of this process is
given for the quiver gauge theory of Figure 2.1.3a at the end of §2.1.

To bypass this lengthy computation we examine the performance of ML techniques in
learning the properties of the variety and its embedding, defining the moduli space, directly
from the Hilbert series Taylor expansion coefficients.

3.3.1 The Hilbert Series Data

Hilbert series data used for this work was retrieved from the Graded Ring Database (GRDB)
[255]–[257], consisting of Hilbert series associated to three-dimensional Q-Fano varieties with
Fano index one [258], [259]. Investigations also used generated ‘fake’ data, created through
sampling the parameters of the equations (2.1.4) and (2.1.5) from distributions fitted to
the ‘real’ GRDB data. The distributions are available in the appendices of [32]. The sam-
pling discarded parameter combinations which did not satisfy certain physical conditions15,
encouraging the data to be more representative; and also discarded any repeats of GRDB
data.

For both Hilbert series styles of input data mentioned, which we call ‘real’ and ‘fake’
respectively, the Hilbert series closed forms were Taylor expanded and expansion coefficients
saved. These lists of coefficients form vectors of integers, and make up the ML input for the
investigations carried out. Two types of coefficient vector were used as inputs, one from the
start of the series (coefficients 0-100) and one from deeper into it (coefficients 1000-1009).
The reason to also learn with coefficients sampled from deeper in the series was to provide
intuition on the importance of the variety’s orbifold points, which have a greater relative
significance than the initial part at higher orders.

Output data depended on the investigation. For the regression of embedding weights
(each pi repeated qi times), these were sorted 3-vectors of integers (sampled in the range
[1,10]). For the multi-classification the outputs were single integers in the range [1,5], which
were the values of either the variety’s Gorenstein index (J) or its dimension (dim) respec-
tively. The final binary classifications just outputted 0 or 1 dependent on whether the
Gorenstein (palindromic numerator) or complete intersection properties were respectively
satisfied, or whether the data came from the GRDB or was generated by us. Whereas the
plethystic logarithm can be used to confirm the complete intersection property, in this work
a specific factorisation of the numerator was used in generating complete intersection Hilbert
series, as detailed in [32].

15Hilbert series closed forms which lead to Taylor expansions with negative coefficients were discarded, as
the respective graded pieces cannot have negative dimension. Additionally series with a denominator degree
less that or equal to the numerator degree were discarded, since Hilbert series are required to have an infinite
expansion.

50

Example: Considering an example Fano variety (number 11122 in the GRDB) embedded
in PC(13, 22, 32), it has Hilbert series

H(t;V) =
1 − 2t4 − 2t5 + 2t7 + 2t8 − t12

(1 − t)3(1 − t2)2(1 − t3)2
(3.3.1)

=
P̃ (t)

(1 − t6)4
, (3.3.2)

... for P̃ (t) = 1 + 3t + 8t2 + 18t3 + 34t4 + 58t5 + 89t6 + 127t7 + 167t8 + 203t9 + 232t10

+ 248t11 + 248t12 + 232t13 + 203t14 + 167t15 + 127t16 + 89t17 + 58t18 + 34t19

+ 18t20 + 8t21 + 3t22 + t23 ,

in both respective forms of (2.1.4) and (2.1.5). The vector of weights is simply [1,1,1,2,2,3,3]
from (3.3.1)’s denominator powers, then from (3.3.2)’s denominator the Gorenstein index is
J = 6 and the dimension dim = 3. This variety is a ‘real’ example since it comes from
the GRDB, it is Gorenstein as the numerator of (3.3.2) is palindromic, and it is not of the
complete intersection form used in this work (described further in [32]). The input vector
(in the 0-100 coefficients case shown here) is computed from its Taylor expansion as:

[1, 3, 8, 18, 34, 58, 93, 139, 199, 275, 368, 480, 614, 770, 951, 1159, 1395, 1661, 1960, 2292, 2660,

3066, 3511, 3997, 4527, 5101, 5722, 6392, 7112, 7884, 8711, 9593, 10533, 11533, 12594, 13718,

14908, 16164, 17489, 18885, 20353, 21895, 23514, 25210, 26986, 28844, 30785, 32811, 34925,

37127, 39420, 41806, 44286, 46862, 49537, 52311, 55187, 58167, 61252, 64444, 67746, 71158,

74683, 78323, 82079, 85953, 89948, 94064, 98304, 102670, 107163, 111785, 116539, 121425,

126446, 131604, 136900, 142336, 147915, 153637, 159505, 165521, 171686, 178002, 184472,

191096, 197877, 204817, 211917, 219179, 226606, 234198, 241958, 249888, 257989, 266263,

274713, 283339, 292144, 301130, 310298] .

3.3.2 ML Results

In performing the learning, NN architecture was used for the binary classification of the
Gorenstein, complete intersection, and real/fake properties, as well as for multiclassification
of the varieties’ Gorenstein index and dimension, and for regression of the embedding weights.

The NNs used were built of 4 dense layers of 1024 neurons, all with ReLU activation
and 0.05 dropout factor, and final layer reflecting the output tensor size16. Training was
in batches of 32 for 20 epochs using the Adam optimiser to minimise either the regression
log(cosh) loss function or the classification cross-entropy loss function. 5-fold cross-validation
provided confidence on the metrics used to evaluate the learning via averaging and standard
error.

To analyse the binary classification ML results, the unsupervised technique of PCA (with
linear kernel) was also implemented to examine whether there was simple linear structure

16For binary classification the final layer had 2 neurons with softmax activation, for multiclassification
there were 5 neurons also with softmax for each possible J / dim value, for regression there were 3 neurons
with no activation for the 3 weights.

51

Investigation
Embedding
weights

Gorenstein
index

Dimension
Gorenstein
property

Complete
Intersection

GRDB

Output Ranges 3 x [1,10] [1, 5] [1, 5] Binary Binary Binary
Measure MAE MCC MCC MCC MCC MCC

Orders
0 - 100

1.94
± 0.11

0.916
± 0.010

0.993
± 0.006

0.717
± 0.155

0.910
± 0.022

0.717
± 0.155

1000 - 1009
1.04

± 0.12
0.727

± 0.022
0.822

± 0.031
0.919

± 0.073
-

0.919
± 0.073

Table 3.3.1: ML results for each of the Hilbert series investigations. NNs learnt geometric properties asso-
ciated to an algebraic variety from coefficients in their Hilbert series expansions. Regression was assessed
with mean absolute error (MAE) and classification with Matthew’s correlation coefficient (MCC), training
using 5-fold cross-validation to provide a standard error on the averaged measures.

in the coefficient vectors which the NNs could take advantage of in the learning. The 0-
100 coefficient vectors produced PCA eigenvectors of size 101, hence to enable visualisation
of these components only the two most significant principal components were plotted (i.e.
projections of the coefficient vectors onto the first two eigenvectors) to provide a means for
examining the data’s clustering.

NN Results
In the regression investigation, MAE evaluated learning by computing the average absolute
difference between each true embedding weight and the NN predicted embedding weight.
This measure evaluates in the range [0,∞) with 0 indicating perfect learning, where the
embedding weights are always correctly predicted. In the classification investigations, MCC
evaluated the learning. This measure evaluates in the range [−1, 1] with 1 indicating perfect
learning.

ML results are provided in Table 3.3.1 for each of these 5 investigations. Learning of the
varieties’ ambient space embedding weights predicted each weight within an average range
of 1 from the correct values when using higher order coefficients. Additionally the geometric
parameters of equation (2.1.5) were learnt exceptionally well, but now better from the lower
order coefficients.

Each of the binary classifications also evaluated with MCC values exceeding 0.9, demon-
strating strong learning. Both the Gorenstein and ‘fake’ (non-GRDB) properties were better
identified with higher order coefficients, whilst the complete intersection property was only
learnt from lower orders but performed equally well.

PCA Results
Whilst the learning so far uses NNs from supervised ML, PCA provides another avenue for
analysis of this data from the conjugate field of unsupervised ML. These PCA plots can be
seen for the three binary classification investigations in Figure 3.3.1.

Here, 2-dimensional PCA was performed for each of the binary classification investiga-
tions, and the datapoints in each class plotted separately in different colours. The largest
2 components respectively represented proportions ∼ 0.6, 0.98, 0.94 of the variances for
the Gorenstein, complete intersection, and real/fake investigations, generally motivating
2-dimensional plotting. Whilst there is no clear separation for the Gorenstein data, the com-
plete intersection and ‘real’/‘fake’ data do show some separation, indicating there is some

52

15 10 5 0 5 10 15

15

10

5

0

5

10

15
Gorenstein
Non-Gorenstein

(a) Gorenstein

10 0 10 20 30
1

0

1

2

3

4
CI
non-CI

(b) Complete Intersection

0 200 400 600 800 1000 1200
50

0

50

100

150

200

250

300 Fake
Real

(c) ‘real’ / ‘fake’

Figure 3.3.1: 2d principal component analysis plots of the Hilbert series 0-100 coefficient data, labelled by
each of the binary classification investigations respectively.

linear structure that the NNs can take advantage of for classification. In particular the oc-
currence of this for the ‘fake’ data demonstrates the difficulty of generating representative
Hilbert series.

Conclusion
The learning results demonstrate the success of NNs in learning geometric properties of
a variety from Hilbert series. Their application allows extraction of information about a
supersymmetric gauge theory’s moduli space (for analysis of the theory) from counts of the
numbers of single-trace BPS operators at lower orders, effectively allowing extrapolation to
the counts for higher orders without direct computation.

The PCA results indicate that the complete intersection property can be somewhat iden-
tified from linear structure in the coefficient data, however the Gorenstein property is much
harder to extract and hence learn. Finally the generation of representative ‘fake’ data is
particularly difficult, and techniques beyond direct modelling and sampling of the GRDB
data are motivated for further investigation.

3.4 Amoebae (2106.03695)

Amoebae, as introduced in §2.2 find their primary uses in tropical geometry, with a fortu-
itous connection to brane webs as duals of toric diagrams through their Newton polynomial
Riemann surfaces. The central focus of the work in [33], examined methods for ML amoebae
genus from the abstract space of amoebae coefficients; sampling the vectors of n coefficients
from varying bounds within the lattices: (Z+)n, (R+)n, Rn. Balanced datasets were created
for NNs to multiclassify amongst all the possible genus values for each of the amoeba consid-
ered. These amoeba included the prototypical F0, but also L3,3,2, C/(Z2 × Z4), and K4,5,3,2

which had many more interior and boundary points respectively. Accuracies often exceeded
0.9, performing better on the more restricted lattices, and also on the smaller toric diagrams
(and hence smaller coefficient vectors). Different nonlinear projection methods (such as mul-
tidimensional scaling and isomap from the yellowbrick library [260]) could reproduce the
boundary conditions in the coefficient space where the genus changed, agreeing with derived
boundaries from lopsidedness arguments.

However, my contribution focused on assessing the success of ML on the amoebae images
directly. For these investigations the F0 Riemann surface was used to generate amoebae,

53

as the prototypical example shown in Figure 2.2.2, with the database consisting of point-
sampling generated images of n = 1 lopsided amoebae.

CNNs find their most common uses in image related tasks, due to their convolutional
action over the local structure of the images. Since this is the behaviour used in collecting
sampled points into a full amoeba, this ML architecture was the most natural choice. To fully
investigate their success in identifying genus from these images, varying image resolutions
were used for the CNN input. Determining how the learning measures varied as the amoebae
images varied in quality was the main focus of this investigation.

3.4.1 The Amoeba Image Data

In this work, the database consisted of point-sampling generated images of the F0 amoebae
for varying coefficients such that the full database consisted of 1000 genus 0 amoebae, and
1000 genus 1 amoebae. The amoebae genus, g, labelling used the n = 1 lopsided amoeba
approximation

g =

{
0, |c5| ≤ 2|c1c3|1/2 + 2|c2c4|1/2

1, |c5| > 2|c1c3|1/2 + 2|c2c4|1/2
, (3.4.1)

for the F0 amoebae with Newton Polynomial: P (z1, z2) = c1z1+c2z2+c3z
−1
1 +c4z

−1
2 +c5. Here

the genus condition is analytically derived, using the asymptotic behaviour of the amoebae
spines to identify their intersection point – the amoeba centre. Since the F0 case has at
most one hole, due to the toric diagram polygon’s singular interior point, identifying the
lopsidedness behaviour at the centre dictates whether the centre is contained within the
amoebae, thus giving the amoebae genus.

Point-sampling image generation is commonly used for more complicated amoebae where
analytical expressions are hard to compute and then plot. In this process the analytic bounds
between an amoeba and its complement in the R2 space are had to determine through pro-
jection of the Riemann surface equation. Instead the point-sampling method is implemented
whereby points are randomly sampled from the complex surface and each point projected
down onto the amoeba. This sample of amoeba points in R2 can then be used to stochas-
tically infer the amoeba bounds, and in particular the existence of hole to determine the
amoeba genus. Therefore examining the success of a CNN in identifying genus from these
plots is a particularly relevant task. We now undertake this task of the CNN ML of the
labelled dataset

Image(AP (F0)) −→ genus {0 or 1} .

The amoebae images in the dataset are of varying shape, to create consistency across the
dataset (as needed for the CNN tensor inputs), the images are resized such that there is
always an equal number of pixels in each dimension. The images contained the real plane
axes since the identification of a plot’s origin is useful in determining genus for F0 amoebae
by eye, hence giving the CNN realistic information for its learning. Images are reformatted
to greyscale such that inclusion in the amoeba is the only relevant data at each resolution.
The resolutions learnt on varied logarithmically with base 2, choosing this base such that
the computational learning algorithms worked most efficiently.

54

(a) 2× 2 (b) 4× 4 (c) 8× 8

(d) 16× 16 (e) 32× 32 (f) 64× 64

(g) 128× 128 (h) 256× 256
(i) 750× 572
(original)

Figure 3.4.1: An example F0 amoeba image of genus 1 at varying resolutions. Each subcaption denotes the
respective number of pixels in the resizing, the original image is reformatted to a square shape for consistency
across all amoebae.

Example: An example of a genus 1 amoeba from the dataset is given in Figure 3.4.1, this
amoebae had randomly generated R+ coefficients:

(c1, c2, c3, c4, c5) ∼ {0.6104, 1.8940, 0.4989, 2.9777, 6.9871} . (3.4.2)

In the figure the image at the varying resolutions considered is shown, the reshaping to
square from the original is clear, and the binary nature of the data is emphasised by the
greyscaling (here plotted with a blue-yellow colour scheme).

3.4.2 ML Results

The CNNs trained had a consistent layer structure: 3 2-dimensional convolutional layers of
size matching the image input size, each followed by a 2-dimensional max-pooling layer and
a dropout layer (factor 0.01); following these is a flattening layer, then a dense layer of size

55

Learning
Measures

Image Resolution
2×2 4×4 8×8 16×16 32×32 64×64 128×128 256×256

Accuracy
0.484 0.485 0.746 0.972 0.987 0.986 0.803 0.754
0.005 0.006 0.064 0.008 0.005 0.004 0.116 0.055

MCC
nan nan 0.620* 0.944 0.974 0.971 0.639 0.646*
nan nan 0.012* 0.017 0.010 0.008 0.212 0.032*

Table 3.4.1: Learning results for CNN binary classification of F0 n = 1 lopsided amoebae images, determining
genus 0 or 1 over balanced dataset of 2000 images at varying image resolutions. Resolution is given in terms
of the number of pixels. Measures are averaged accuracies and MCCs over the 5-fold cross-validations runs,
with standard errors. MCCs calculated over less than 5 of the cross-validations are denoted with a ‘∗’, for
those completely incalculable ‘nan’ is given.

2 4 8 16 32 64 128 256
Image Resolution (pixels)

0.0

0.2

0.4

0.6

0.8

1.0

M
ea

su
re

 V
al

ue

CNN Learning Measures

Accuracy
MCC

Figure 3.4.2: Averaged accuracy and MCC learning measures for the CNNs trained over F0 amoebae images
at varying resolutions (denoted by number of pixels in one dimension of the square images). MCC values
were incalculable at certain resolutions, and may be artificially high at resolutions {8, 256}.

equal to the number of pixels in one dimension of the input image, and then a final output
dense layer with 1 neuron. All layers used a LeakyReLU activation (with α = 0.01), except
the final output Dense layer which used sigmoid activation to better map to the required
binary classification. The convolutional and max-pooling layers used the ‘same’ padding
regime, and the convolutional layers used a 3 × 3 kernel size.

The CNN architecture used for the investigation at each image resolution is trained over
20 epochs of the data on batches of 32, in a 5-fold cross-validation scheme. The Adam
optimiser is used to minimise the binary cross-entropy loss function for predicting genus 0
or genus 1 respectively. The learning is measured using the metrics: accuracy and MCC,
which are averaged over the 5 runs in the 5-fold cross-validation.

CNN Results
Results for the CNN ML over varying image resolutions are given in Table 3.4.1. The

56

accuracies increase as image resolution improves up to some optimal value, around 32 × 32
pixels where it then falls off; this behaviour is further shown in Figure 3.4.2. The high
accuracies at optimal resolution (> 0.98) show the success of CNNs in identifying genus
from point-sampling generated amoebae images.

The change in accuracy as image resolution decreases from the largest size considered
may be explained by initial resolution loss causing averaging over the generated points to
produce a connected amoeba component with a clearer hole structure in genus 1 amoebae
(Figure 3.4.1e). Then further decrease in resolution loses more of the image information
combining any holes into the amoebae themselves until there is no sensible information in
the image remaining (Figure 3.4.1a).

Similar behaviour can be seen over the MCC values where calculable. Although MCC as
a measure is less susceptible to bias in the data making it generally preferential, there are
issues of incalculability where learning fails and the same class is predicted for all test data.
Where this happened for some of the 5 runs in the 5-fold cross-validation, the MCC average
and standard error is calculated over the calculable values, and are denoted with a ‘∗’ (note
this inflates the measures’ value as the cases of no learning are ignored). Where the MCC
is incalculable for all runs an averaged MCC is then incalculable also, these scenarios are
denoted with ‘nan’ in the results in Table 3.4.1.

CNN Misclassifications
Examining the image resolution 32×32 which led to the most successful CNN classification,
the misclassifications where the CNN disagreed with the images labelled genus provide in-
teresting further insight into the learning. In one of the 5-fold cross-validation runs 3 of the
400 images in the testing dataset were misclassified such that the predicted amoeba genus
differed from the labelled genus. These images are shown at full resolution as well as the
32 × 32 resolution in Figure 3.4.3.

The first image misclassified, shown in full and lowered resolutions in Figures 3.4.3a &
3.4.3d respectively, is labelled as genus 0, but misclassified to genus 1. The original image
shows the true genus 0 amoeba, however the sampling of amoeba points shows a particularly
low density in the amoeba’s centre, this leads to a poorer collation of points as the resolution
drops, shown by fainter parts of the amoebas centre in the lower resolution image perhaps
misleading the CNN to predict a non-zero genus.

The second misclassified image, shown in full and lowered resolutions in Figures 3.4.3b &
3.4.3e respectively, is labelled as genus 1, but misclassified to genus 0. In the original image
in particular, the issues with the point-sampling image generation become clear, the amoeba
looks disconnected into two parts, where the hole in the centre dominates the amoeba. This
leads to part of the hole’s boundary being lost in the lower resolution image, making the
amoeba appear to be genus 0, misleading the CNN.

The third and final misclassified image in this run, shown in full and lowered resolutions
in Figures 3.4.3c & 3.4.3f respectively, is also labelled as genus 1, but misclassified to genus
0. Here the original image shows a genus 0 amoeba, interestingly this scenario is a rare
occurrence where the n = 1 lopsided amoeba (used to produce the genus labels for the
dataset as in 3.4.1) has a different genus to the true amoeba. Therefore although this is
considered by the CNN as a misclassification, the CNN has actually managed to predict

57

(a) Case 1: 840× 720 (b) Case 2: 864× 426 (c) Case 3: 864× 716

(d) Case 1: 32× 32 (e) Case 2: 32× 32 (f) Case 3: 32× 32

Figure 3.4.3: Example CNN misclassifications during model testing, images show the original image and the
image at the 32 × 32 resolution considered. Case 1, (images a & d) were labelled as genus 0 with the CNN
predicting genus 1; cases 2 & 3 (images b,e & c,f) were labelled genus 1 with CNN predictions of genus 0.

the true amoeba genus from the image, whilst at the same time highlight a case where the
match-up to lopsided amoebae fails.

TDA Genus Identification
TDA provides an alternative technique for describing the topology of data manifolds. Within
this field, identifying genus of surfaces is often well performed by the technique of persistent
homology as described in §2.3.1.2.

In the persistent homology computation of this image classification problem, the 2-
dimensional sampled amoeba points would have 2-dimensional discs of radius δ drawn about
each of them, with δ varied to build a filtration of VR complexes from the disc intersections.
Emphasising here that TDA is performed on the point-sampling generated amoebae directly
and not on the varying resolution images used by the CNNs.

To identify the genus, one must analyse the occurrence of 2-dimensional holes; the H1

homology should then have persistent features for each hole contributing to the genus count.
For these examples where genus is 1 there should hence be a single persistent feature which

58

0.0 0.1 0.2 0.3
Birth

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

De
at

h

H0
H1

(a) Case 1

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Birth

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

De
at

h

H0
H1

(b) Case 2

0.00 0.05 0.10 0.15 0.20 0.25 0.30
Birth

0.00

0.05

0.10

0.15

0.20

0.25

0.30

De
at

h

H0
H1

(c) Case 3

Figure 3.4.4: Persistence diagrams for the 3 misclassification cases considered, showing the H0 and H1

persistent homology of the point-sampled amoebae points.

is far from the persistence diagram diagonal, corresponding to a hole whose boundary is
connected quickly and fills in much later. Conversely for 0 genus there should be no such
feature.

Additionally, the H0 homology keeps track of the number of connected components in
the complex, for well sampled amoeba points all the features should hence ‘die’ quickly
as all the amoeba points become connected to nearby points and form the amoeba as a
single component. The persistence diagrams for each of these three misclassification cases
considered are plotted in Figure 3.4.4.

The H0 homology of cases 1 and 3 show the amoeba is connected quickly, with no gaps in
the H0 feature line. However for case 2 there are gaps in the line, indicating the sampling is
poor and the amoeba appears as disconnected components, agreeing with previous analysis.

For the H1 homology all cases have no significant features far from the diagonal, indicative
of a 0 genus amoebae. Any significant features should be a distance from the diagonal
comparable to the scale of the amoeba. Since the amoeba centres have size ∼ 2 and all H1

features die for r ≲ 0.3, despite there being some points slightly further from the diagonal
they are not persistent enough to indicate a significant hole and genus 1. For case 1 the
persistent homology now correctly predicts the genus 0, outperforming the CNN. However
for case 2 where the genus is truly 1 the homology prediction is incorrect, likely due to the
same reasons as the CNN, that poor sampling means the case 2 boundary isn’t connected
properly. Finally for case 3 the true amoeba genus of 1 is correctly identified (as for the
CNN) where the lopsided approximation breaks down giving an incorrect label of genus 1.

Conclusion
The CNN learning of the amoeba genus directly from point-sampling generated amoeba
images performed better as image resolution was dropped to average over the points. The
exceptionally high classification performance supports the use of ML in determining genera of
amoeba in an automated fashion. Applying persistent homology to the 3 misclassified images
produces H0 and H1 data which corroborated these CNN results. However, the persistent
homology technique did perform better with case 1, correctly identifying the genus of 0.

These three misclassification examples from the run analysed demonstrate the subtleties
of this point-sampling image generation for amoeba, as well as the issues with relying on the
lopsided amoeba approximation for genus prediction.

59

3.5 Polytopes (2109.09602)

As discussed in §2.2, lattice polytopes can be used to construct toric varieties, within which
CY hypersurfaces can be taken. In particular if the lattice polytope, ∆, contains the origin
in its strict interior and all the vertices, pi, of the polytope are primitive such that gcd(pi) =
±1 ∀ vertices, then the toric variety is Fano. They are further called canonical Fano if the
origin is the only interior point. Note here that the Fano condition is slightly more general
than the reflexive condition which also requires the bounding facets to be a distance 1 from
the origin17 [257], [261]–[264].

In the work [34] summarised here, properties of lattice polytopes and their respective
toric varieties in dimensions 2 and 3 were learnt. In dimension 3 the polyhedra considered
generated canonical Fano 3-folds and NN regressors learnt the polytope volume, dual poly-
tope volume, and reflexivity. The volume was learnt to an MAE of 1.68, dual volume to
2.59, and reflexivity to accuracy 0.81. However the focus of the my contribution was the ML
of polygons in dimension 2.

3.5.1 The Polygon Data

In general there is a large redundancy in the matrix representation of lattice polytopes. Any
polytope is traditionally represented by a matrix of its vertices Mij = (pi)j, where i indexes
the lattice dimension and j indexes the vertices. However any rotation or reflection of the
polytope which keeps it on the integer lattice clearly preserves the polytope structure. In
fact, this generalises further, and any GL(n,Z) preserves the combinatorics such that it
generates the same n-dimensional toric variety [265].

However the redundancy of this GL(n,Z) action can be avoided by instead representing
the polytopes by their Plücker coordinates. Plücker coordinates are the maximal minors of
the integer kernel of the vertex matrix, and are naturally GL(n,Z) invariant. They hence
vastly reduce the redundancy in representation, except for the ordering of these Plücker
coordinates in the NN vector inputs due to the reordering of the vertices in the matrix, a
redundancy taken advantage of for data augmentation. Further to this, to ensure the Plücker
coordinates uniquely determine the polytope, only polytopes whose vertices generate the
integer lattice Zn are considered (avoiding the need to consider quotient gradings) [266],
[267].

The properties machine learnt in this work included the polytope volume, defined in a
dimensionally covariant way for an n-simplex as V ol(∆n) = 1

n!

∏n
i=1 hi [268], such that the

polytope volume V ol(∆) is then the sum over the volumes of the simplices that make up
any triangulation of ∆ multiplied by n! to normalise it. The hi values are defined for any
ordering of the (n + 1) n-dimensional n-simplex vertices ((pi)1, (pi)2, ..., (pi)n+1) such that
h1 is the distance between (pi)1 and (pi)2, h2 is the height of (pi)3 above the line connecting
(pi)1 and (pi)2, h3 is the height of (pi)4 above the plane containing (pi)1, (pi)2, and (pi)3,
etc. Defined equivalently for dual volume as the volume of the polytope’s dual ∆.

17This distance 1 idea comes from the intersecting hyperplane definition of a lattice polytope ∆ = {pi | A·
p ≥ c}, for integer matrix A made up of primitive elements of the dual integer lattice, and integer vector c.
For interior point p̃i the reflexivity condition is then A · p̃ − c = 1, i.e. translating the polytope such that
the interior point is the origin (setting p̃ = 0) then simply means c = −1.

60

Whilst these two properties are for the specific polytope under consideration, two prop-
erties of the respective toric variety were also learnt. The first was the Gorenstein index J ,
as studied in §3.3, which in the polytope context is the smallest positive integer J such that
the J -dilation of the polytope’s dual is lattice. Note this is trivially 1 where the polytope
is reflexive (such that the dual is automatically lattice), and is more useful for non-reflexive
polytopes whose duals have vertices in Qn. Codimension, C, was also considered as the
dimensional difference between the toric variety and the weighted projective space it is em-
bedded in. This is technically computed from the size of the Hilbert basis (HB) over the
lattice points in the cone of the dual polytope when embedded in the zn = 1 hyperplane in
Rn+1, which is equivalent to the number of points in and on the dual polytope. To get the
codimension C = |HB| − dim(∆) − 1.

The specific database of polytopes considered were of dimension 2, these polygons con-
sisted of m ∈ {3, 4, 5, 6} vertices with {277, 7041, 16637, 3003} respectively generated, such
that there was a total of 26958 polygons. For each polygon the properties: {V ol(∆), V ol

(
∆
)
,

J , C} were computed, with distributions in the respective ranges [3, 514], (0.21, 15.37), [1, 30],
[2, 42]. Note that the properties were all integer-valued except for dual volume which was
rational, and since there are only 16 reflexive polygons reflexivity wasn’t learnt.

For each polygon with m vertices there are
(

m
m−2

)
Plücker coordinates with a redundant

ordering. Therefore each investigation focused on a specific m and used 3 distinct permuta-
tions of the Plücker coordinates to augment the data. This led to 80874 input-output pairs
for the NN architectures to learn: Plücker(∆) 7−→ Property(∆).

Example: An example of a lattice polygon and its dual is given in Figure 3.5.1. The dual
polytope is also lattice, such that both polytopes are reflexive with Gorenstein index 1. Since
both also only have the origin in their strict interior they are both also canonical Fano. Also
since the original polygon (a) has no lattice points on its facets (i.e. edges in 2-dimensions),
the variety is smooth, however the dual (b) has many boundary lattice points so is not, these
singularities would need resolution for use in physics.

To exemplify computation of the learnt parameters in the ML investigations, we compute
each of {V ol(∆), V ol

(
∆
)
, J , C} for the original lattice polytope in (a).

• V ol(∆) : To compute volume the polytope must be first triangulated into simplices,
as shown also in (c). Each of the triangles (2-simplices) in this triangulation can have the
origin and one of the top right two points selected as (pi)1 and (pi)2 to make h1 = 1,
then the final point (pi)3 is a perpendicular distance of h2 = 1 away in each case. There-
fore each simplex volume is 1

2!

∏2
i=1 hi = 1

2
(1 · 1) = 1

2
. The total polytope volume is then

(2!)
∑

simplices V ol(∆n) = 2 · (1
2

+ 1
2

+ 1
2
) = 3.

• V ol
(
∆
)

: The computation of the dual volume is the equivalent process on the dual
polytope, triangulated in (d). Within this triangulation the two lower-left-most triangles can
have the longest (external) side selected to be h1 = 3, and the origin point is then (pi)3 in
both cases and a perpendicular distance of h2 = 1 away. Therefore for these two simplices the
volume is 1

2!

∏2
i=1 hi = 1

2
(3 · 1) = 3

2
. For the final upper-right triangle, taking the longest side

as h1 =
√

32 + 32 = 3
√

2, then the origin as (pi)3 is a perpendicular distance of h2 =
√

12

2
=

1√
2

as half the diagonal of a lattice grid. This final simplex hence has volume 1
2!

∏2
i=1 hi =

61

(a) (b)

(c) (d)

Figure 3.5.1: An example of a lattice polygon (a) with vertices {(1, 0), (0, 1), (−1,−1)}, corresponding to the
compact del Pezzo surface dP0 = C3/Z3 where identification is with weights (1,1,1) for the Z3 such that it
is the familiar P2

C; and its dual polytope (b) with vertices {(2,−1), (−1, 2), (−1,−1)}, corresponding to the
surface C3/Z3×Z3 where identification is with weights (1,0,2), (0,1,2) for each Z3 respectively. Below shows
the triangulations of these polygons ((c), (d) respectively) using the single interior point, into 2-simplices for
volume computation.

1
2
(3
√

2 · 1√
2
) = 3

2
. The overall polytope volume is therefore (2!)

∑
simplices V ol(∆n) = 2 · (3

2
+

3
2

+ 3
2
) = 9.

• J : As stated before since the polytope is reflexive the dual polytope is already lattice
and hence needs no dilation, making J = 1.

• C : To compute the codimension the cardinality of the Hilbert basis is first needed,
which can be found from the number of lattice points on and in the dual polytope, for the
polytope (a) the dual (b) has 10 points (1 interior, 6 on the edges, and 3 vertices) making this
Hilbert basis size 10. The codimension is then equal to: |HB|−dim(∆)−1 = 10−2−1 = 7.

For completeness, the dual polytope in (b) has parameters: {V ol(∆), V ol
(
∆
)
, J , C} =

{9, 3, 1, 1}. Since it is the dual the volume and dual volume are switched. As it is still reflexive
the dual is lattice so the Gorenstein index is 1. Finally the codimension is computed using
the size of the Hilbert basis as the number of points on and in (a) = 4 (1 interior, 0 boundary,
and 3 vertices), such that C = 4 − 2 − 1 = 1.

For the original polygon in (a) its Plücker coordinates can be computed from its vertex
matrix

V(a) =

(
1 0 −1
0 1 −1

)
=⇒ ker(V(a)) =

1
1
1

 , (3.5.1)

giving a 1-dimensional kernel, geometrically indicating the proportions to add the vertex
coordinates in to produce the origin. Since this polygon has 3 vertices there are

(
3
1

)
= 3

Plücker coordinates, which are each of the 3 1 × 1 minors of the kernel, trivially just the
entries. Therefore the example polytope in (a) has Plücker coordinates (1,1,1).

62

The dual polytope in (b), can also have it Plücker coordinates computed from the vertex
matrix as

V(b) =

(
1 −2 1
1 1 −2

)
=⇒ ker(V(b)) =

1
1
1

 . (3.5.2)

Again there are
(
3
1

)
= 3 Plücker coordinates, which are trivially again just (1,1,1). Here

both the polytope and its dual have the same kernel, and for (a) the kernel is the same as
the weights used in the identification to define the variety [93], [269]. However since the
polygon’s vertices in (b) do not span the Z2 lattice, additional quotient gradings are needed
to define the variety, explaining the different weights [266].

3.5.2 ML Results

NN regressors with 4 layers of 64 neurons and Leaky-ReLU activation (α = 0.01) and then
a single output neuron were trained with Adam optimiser in batches of 32 for 20 epochs to
minimise a log(cosh) loss function. Performance was measured with MAE as a regression
measure, and also accuracy bins were used to determine what proportion of the test data
was predicted to be within a specific range of the true value. These bin sizes were either 1
(i.e. can it predict the true value correctly to the nearest integer), or a proportion of the
range of the output parameter learnt across the dataset (proportions being 0.025 or 0.05 to
be within 5% or 10% of the true value).

As a first test volume was learnt for the polygons (stratified by number of vertices)
from the vertex matrix input (flattened) and the Plücker coordinates input. As shown from
the results in Table 3.5.1, the Plücker coordinate representation outperformed the vertex
representation every time. This motivates the use of Plücker coordinates in the following
investigations, with superior success thought to be attributed to both the Plücker represen-
tation and parameter values being preserved under the rotational/reflectional invariance of
the polytope. Additionally, both volume and Plücker coordinates come from determinant
calculations on the vertex matrix, so it is not surprising they are intimately linked.

ML results for the parameter properties considered are given in Table 3.5.2, where the
volume learning results from Plücker coordinates are repeated from Table 3.5.1 . The ranges
used in calculating the accuracy bin widths are: 511, 15.16, 29, 40; for volume, dual volume,
Gorenstein index, and codimension respectively. The results show that volume can be learnt
especially well for all number of vertices. In addition dual volume can be learnt well, and
codimension with some success. Conversely Gorenstein index could not be learnt with this
NN architecture.

Whereas volume is a determinant and likely a simpler function of Plücker coordinates to
learn, hence the good performance. Dual volume is less simple to compute and surprisingly
still is learnt well, hinting at some simpler function that connects these inputs and outputs
that shortcuts computation of the dual polytope. The lesser performance for codimension
and Gorenstein index indicate they are likely incredibly complex, if not even non-existent,
functions of the Plücker coordinates (and all performed even worse when using the vertices
as input). In general, learning is more successful for lower numbers of vertices, perhaps due
to the smaller Plücker vector inputs, and the larger datasets available for these polygons.

63

Number
of Vertices

Representation MAE
Accuracy

±0.5 ±0.025 × range ±0.05 × range

3
Vertices 4.941 0.302 0.891 0.945
Plücker 0.209 0.827 1.000 1.000

4
Vertices 10.012 0.072 0.891 0.945
Plücker 0.625 1.000 1.000 1.000

5
Vertices 8.640 0.060 0.777 0.926
Plücker 1.051 0.451 1.000 1.000

6
Vertices 14.947 0.036 0.603 0.826
Plücker 3.359 0.139 0.969 0.997

Table 3.5.1: ML polygon volume from polygon representations: flattened list of vertices, or Plücker coor-
dinates. Investigations carried out for each subset of polygons with each number of vertices. Learning is
measured using MAEs, and accuracies (to 3d.p.) of test set predicted volumes being within some bin cen-
tred on the true value. The first bin has width 1, the second and third have widths of 5% or 10% × range
respectively, where “range” is the difference between the maximum and minimum volumes in the full dataset
(for volume the range is 511).

Property
Number

of Vertices
MAE

Accuracy
±0.5 ±0.025 × range ±0.05 × range

Volume
V ol(∆)

3 0.209 0.826 1.000 1.000
4 0.615 0.625 1.000 1.000
5 1.051 0.452 1.000 1.000
6 3.359 0.139 0.969 0.997

Dual Volume
V ol

(
∆
) 3 1.181 0.370 0.370 0.501

4 0.642 0.634 0.634 0.754
5 0.818 0.496 0.496 0.638
6 0.941 0.405 0.405 0.557

Gorenstein
index
J

3 5.710 0.039 0.064 0.132
4 5.002 0.069 0.101 0.196
5 4.632 0.071 0.102 0.202
6 5.343 0.056 0.080 0.150

Codimension
C

3 1.897 0.192 0.361 0.615
4 2.726 0.140 0.268 0.496
5 3.182 0.103 0.210 0.404
6 2.884 0.126 0.251 0.468

Table 3.5.2: ML results for each of the properties considered, using input Plücker coordinates representing
the polygons in each subset of the full dataset based on the number of polygon vertices. Learning is measured
with MAE and accuracies based on test set predictions being within some bin centred on the true value.
The bin widths are based on the range of values each property can take in the full dataset. Results show
volume and dual volume learnt well, codimension learnt to some extent, and Gorenstein index could not be
learnt. For reference the respective ranges are: 511, 15, 29, 40 for volume, dual volume, Gorenstein index,
and codimension respectively.

Presumably differing dataset sizes also explains the occasional lower performances learning
with triangles compared to quadrilaterals and pentagons.

64

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Train Proportion

0

2

4

6

8

10

12

14

Lo
ss

MAE
LogCosh
MAPE
MSE

Figure 3.5.2: NN regressor measures for learning pentagon volume from Plücker coordinates, at varying
proportions of the dataset used for the training data. The results show strong learning for the standard
MAE measure used such that good predictions can be achieved quickly; whilst the improvement for MSE
shows that more training data does lead to better learning.

Augmenting the input Plücker coordinates by also concatenating the gcds between their
values did not improve learning as may be anticipated from the potential function form.

Finally to investigate the extent to which the architectures need large amounts of data
to fit the well performing NN functions when learning volume, learning performance was
plotted for varying train:test proportions on the pentagon data (the largest subdataset).
The test data results are plotted for the MAE, log(cosh), MSE, and MAPE measures (when
trained consistently with log(cosh)) in Figure 3.5.2. Learning is still consistently good for
the linear measures at lower train proportions, emphasising that the function fitted for the
volume from Plücker coordinates is likely of a simple form such that not much data is needed
to approximate it well. However the MSE value does blow-up for low amounts of training
data, indicating that the function becomes worse at fitting to all the data and focuses on
the bulk, such that outliers whose difference is averaged out in the linear measures have
significantly larger contributions for this squared measure.

Conclusion
This study advocated for the use of Plücker coordinates as a GL(n,Z)-invariant representa-
tion of polytopes over the standard vertex matrices. This was strongly supported by the ML
learning results for a variety of polytope properties. Focus was on lattice polygons which
generate toric Fano varieties, and NN regressors managed to learn volume and dual volume
with surprising success, indicative of a simple relation which can be extracted from this rep-
resentation. There was some learning for codimension, and negligible learning for Gorenstein
index. As more complicated parameters this was less surprising, and motivates development
of the study to tackle this again with more technical architecture.

Beyond this study, investigation into Plücker representation, and general ML, of higher-

65

dimensional polytopes is also prudent, in particular the KS dataset of 4-dimensional reflexive
polytopes useful for constructing CY 3-folds [86], [156].

3.6 Calabi-Yaus (2112.06350)

As discussed in §2.2, there are many different ways to construct compact Calabi-Yau man-
ifolds. The most abundant source being as codimension 1 hypersurfaces in a toric variety
created from a reflexive polytope. The prototypical subset of these are the CYs coming
from hypersurfaces in weighted projective spaces. For CY 3-folds there are exactly 7555
weighted projective spaces which admit these CY 3-folds as hypersurfaces, as found in [74].
These 4-dimensional projective spaces are defined with a set of 5 positive coprime integer
weights as in (2.2.4), which along with the non-trivial CY Hodge numbers make up the data
used in this study. The vanishing first Chern class for these hypersurfaces reduces nicely to
the condition that the polynomial homogeneous degree d =

∑
i wi in the case of weighted

projective spaces. However only in the special 7555 cases are these hypersurfaces CY.
The Hodge numbers for any complex variety count the number of classes of forms with

both holomorphic and anti-holomorphic indices at each level. The restriction on the form
levels due to the manifold dimension inspires a symmetrical layout in a Hodge diamond, as
can be seen in

h0,0

h1,0 h0,1

h2,0 h1,1 h0,2

. .
.

. .
. . . .

. . .

hn,0 · · · · · · · · · h0,n

. . .
.

.
. .
.

hn,n−2 hn−1,n−1 hn−2,n

hn,n−1 hn−1,n

hn,n

(3.6.1)

for a complex n-fold. In the Hodge diamond of the CY 3-folds, only the h1,1, h2,1 entries
are non-trivial positive integers. The other entries are 0 or 1, due to a series of relations.
These relations include use of complex conjugation implying hα,β = hβ,α and Serre duality
implying hα,β = hn−α,n−β. Generally, the relations rely on there being a unique (n, 0)-form
from the CY n-fold definitions such that hn,0 = h0,n = 1 (hence also a unique (0, n)-form
by conjugation), and this (n, 0)-form can be contracted with any (0, α)-form to produce a
(n, α)-form which by Serre duality gives a (0, n − α)-form, and means h0,α = h0,n−α. Also
as the CYs are simply connected then the first fundamental group is zero and so too is the
first homology group trivial implying h1,0 = h0,1 = 0.

For the CY 3-fold Hodge diamond the corners are hence 1 = h3,0 = h0,3 = h0,0 = h3,3,
with the latter two coming from h0,α = h0,n−α and the conjugate relation. The sides are
0 = h1,0 = h0,1 = h2,3 = h3,2 = h2,0 = h0,2 = h1,3 = h3,1, with the second two coming from
Serre duality of the first two, the third two from h0,α = h0,n−α and the conjugate relation,
and the final two from both these relations applied together. This just leaves the final two

66

non-trivial Hodge numbers h1,1 (which equals h2,2 from Serre duality), and h2,1 (which equals
h1,2 under complex conjugation or Serre duality). The final Hodge diamond for these CY
3-folds is hence

1

0 0

0 h1,1 0

1 h2,1 h2,1 1

0 h1,1 0

0 0

1

(3.6.2)

where h1,1 are dubbed the Kähler parameters, and h2,1 are the complex parameters.
Since CY manifolds are Kähler, there is a relation that the sum of each row in the

Hodge diamond is the respective Betti number as bi =
∑

α+β=i h
α,β. Which then leads

to computation of the Euler number χ =
∑

i(−1)ibi. In this CY 3-fold case, hence χ =
2(h1,1 − h2,1).

These topological parameters can be extracted from the weights of the ambient projective
space from formulas in [270]–[273]. Specifically these are

Q(u, v) =
1

uv

∑
i(wi)∑
l=0

[∏
θ̃i(l)∈Z

(uv)qi − uv

1 − (uv)qi

]
int

(
vsize(l)

(
u

v

)age(l))
, (3.6.3)

χ =
1∑
i(wi)

∑
i(wi)−1∑
l,r=0

[∏
i|lqi&rqi∈Z

(
1 − 1

qi

)]
, (3.6.4)

for weights wi, normalised weights qi = wi/
∑

i(wi), and u, v are the dummy variables of the
Poincaré polynomial. Q(u, v) :=

∑
p,q h

p,qupvq is the Poincaré polynomial as the generating

function of the Hodge numbers. Further notation includes θ̃i(l) as the canonical representa-
tive of lqi in (R/Z)5, age(l) =

∑4
i=0 θ̃i(l) and size(l) = age(l) + age(

∑
i(wi) − l). Note also

for χ, where ∀ i (lqi or rqi /∈ Z) then the product takes value 1 [273].
Both formulas require significant computation, involving many non-trivial steps. Even

if we realize this dataset in the language of the toric geometry of [86], [274], the formulae
involve non-trivial sums over faces of various dimension. Therefore as well as learning the CY
property directly, it is consequently also interesting to examine the performance of supervised
NN methods (as in [114]) in learning these topological parameters from the weights, guided
by insight from unsupervised analysis.

3.6.1 The Calabi-Yau Data

The projective space weights make up a list of 7555 5-vectors of positive integers (w1, w2, w3,
w4, w5). In parallel to this the non-trivial Hodge data18 for the CY 3-fold hypersurface is
also given (h1,1, h2,1).

18These CY topological parameters can be computed directly from the ambient toric variety (and are not
dependent on triangulation) so are the same for all CY hypersurfaces from the same polytope, here defined

67

In defining a weighted projective space, the weights must be positive integers. Beyond
this there is a desire to remove redundancy where multiple weight systems produce the
same space by requiring the set of integers to also be coprime. The identifications that are
used in constructing the projective space lead to singular sets, which the hypersurfaces can
intersect with suitable resolution. To be consistently defined over these singular sets another
property of the polynomial is required: transversity. The transversity property implies that
the polynomial equation and its derivative share no common solutions, and this condition
translates into a condition on the projective space weights:

∀wi ∃wj s.t.

∑
k(wk) − wj

wi

∈ Z+. (3.6.5)

However as described in [74], this condition is necessary but not sufficient for the surface to
be CY. It is therefore of interest to consider the extent to which each of these 5-vector weights
properties contribute to determine the very special CY property; and it is this question we
look to probe with new tools from data analysis, and ML.

Therefore, in addition to the CY dataset which forms the central focus of this study, some
auxiliary datasets that help in assessing the learning of the CY property were constructed.
These are equivalent datasets of 5-vectors that possess fewer of the necessary properties
required to meet the Calabi-Yau property.

The 4 datasets (including the original CY dataset) are:

(a) 7555 5-vectors of positive random integers,

(b) 7555 5-vectors of positive random coprime integers,

(c) 7555 transverse 5-vectors of positive random coprime integers,

(d) 7555 Calabi-Yau 5-vectors.

These datasets were specifically constructed so as not to form a filtration, therefore at each
stage the dataset generated was ensured to not include data which satisfies the additional
conditions at the next level. To clarify, each 5-vector in set (a) had weights which shared a
common factor, in set (b) all 5-vectors did not satisfy condition (3.6.1), and those in set (c)
where not in the CY list of (d).

To introduce a consistency across the datasets, all the 5-vectors entries are sorted in
increasing order. Initially the weights for each of the datasets (a-c) were sampled using
a discretised uniform distribution, U(1, 2000), bound above by 2000 to mimic the highest
value in the CY dataset of 1743. However as shown in Figure 3.6.1 the weights follow a
distribution far from that of a uniform distribution. Therefore to make the generated data
more representative, an exponential distribution was fitted to the histogram of all weights
in the CY dataset, as shown in Figure 3.6.2, using the scipy library. This exponential
distribution was then used to sample weights in each case, causing the frequency distributions
of the weights for each of the artificial datasets to align much closer to that of the CY data.

just by one set of weights. Whereas the other CY topological parameters, [c2]α, dα,β,γ , are specific to the
surface.

68

0 250 500 750 1000 1250 1500 1750
Weight Values

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200
Fr

eq
ue

nc
y

De
ns

ity
1
2
3
4
5

(a)

0 20 40 60 80 100
Weight Values

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

Fr
eq

ue
nc

y
De

ns
ity

1
2
3
4
5

(b)

Figure 3.6.1: Frequency distribution of each of the CY 5-vector weights, wi (labelled by i : 1 − 5). Figure
(b) shows the same data as (a), but restricted to lower entries so as to highlight the low value behaviour,
due to the entry sorting.

0 250 500 750 1000 1250 1500 1750
Weight Values

0.00

0.01

0.02

0.03

0.04

Fr
eq

ue
nc

y
De

ns
ity

CY data
exp

Figure 3.6.2: Frequency distribution for all weights occurring across all 5-vectors in the CY dataset. Plot
also shows the fitted exponential distribution, with scale parameter 49.536 (to 3 decimal places).

Coprimality: It is interesting to note that the probability of k randomly chosen integers
being coprime is: 1/ζ(k); via the Riemann zeta function. Hence the probability of a random
5-vector of integers being coprime is ∼ 0.964, and therefore the dataset (b) is relatively more
common than the dataset (a). Effectively it is easy to randomly generate consistently defined
weighted projective spaces.

Example: The archetypal example of a Calabi-Yau 3-fold in weighted projective space
is the quintic, embedded in P4

C such that the weights are simply (1, 1, 1, 1, 1). The CY
hypersurface drawn inside the projective space is formed from degree 5 monomials in the
projective space coordinates, and since all these are weight 1 then this is all combinations of
5 coordinates. The most general hypersurface hence has equation:

0 =
∑

ν0,ν1,ν2,ν3,ν4
s.t. ν0+ν1+ν2+ν3+ν4=5

cν0ν1ν2ν3ν4z
ν0
0 zν11 zν22 zν33 zν44 , (3.6.6)

69

for any cν0ν1ν2ν3ν4 ∈ C. For all these choices the Hodge numbers are the same as h1,1 = 1,
h2,1 = 101, leading to Euler number χ = 2(h1,1 − h2,1) = −200.

In the learning the inputs were the weight 5-vector, here (1, 1, 1, 1, 1), and the output a
topological parameter (say 1, 101, or -200), or binary classification to say whether this set
of weights admits a CY hypersurface.

3.6.2 ML Results

In order to identify structure in the weight dataset that enabled the respective projective
space to admit a CY hypersurface (the ‘CY property’), techniques from unsupervised and
supervised ML were used. On these 4 datasets PCA was applied to the weight vectors to
visualise dominant variation and how this changed as extra necessary properties were added.
TDA was applied to look for higher-dimensional structure in these 5-dimensional datasets.
Then K-Means clustering was used to analyse the unanticipated linear structure found.
In vain of [114], NN regressors were used to learn the hypersurface topological properties
from the weights, however the more interesting supervised ML investigation looked at NN
classification between the CY dataset of weights and the other 3 artificial datasets; further
using the Hodge information to analyse the performance.

The regressor NNs had layer sizes of 32, 64, 32 with ReLU activation, and a final layer
with as many neurons as the output, training on batches of 200 for up to 200 epochs (or until
a tolerance update of the loss less than 0.0001 was reached) to minimise a MSE loss with an
Adam optimiser. The classifier NNs had the same hyperparameters (but with cross-entropy
loss) to perform either multiclassification between the datasets, or binary classification be-
tween each artificial dataset and the CY dataset. Further to NNs, LRs and SVMs were
also trialled as simpler classifying architectures with comparable performance on this data.
The LRs had a tolerance of 1 for learning the weight behaviour, a C-value of 100 such that
there was a low amount of regularisation, and used Newtons method for solving, such that
multiclassification could also be performed. The SVMs used a simple linear kernel, and here
a higher regularisation due to a C-value of 1. All architectures were trained and tested over
5-fold cross-validation runs to provide standard errors on the performance measures.

PCA
Each of the 4 datasets of weights consists of weight vectors in (Z+)5 which can be considered
to be in R5. Performing PCA with a linear kernel on each of these datasets produced variance
eigenvalues which in each case were at least 5 times larger for the first principal component
compared to the others. In particular for the CY dataset the first principal component was
2 orders of magnitude larger than the others. This indicates that much of the variation, and
hence data structure, is dominated by a single dimension.

Noting that in this process scaling of the data was not used as the entries are all di-
mensionless and their relative difference is important. As the data is not scaled one may
think that the latter weights of each vector would dominate the behaviour (since the weights
are ordered). This would lead the covariance matrix to be near-diagonal, and the principal
components would align closely to the original vector entries. However, as shown by the co-
variance matrix for the CY dataset in (3.6.7), the matrix is not diagonal and the eigenvectors
have significant contribution from multiple components.

70

KCY =

41 43 109 250 404
43 119 278 642 1017
109 278 1795 3626 5562
250 642 3626 8588 12941
404 1017 5562 12941 20018

 ,

εCY =

0.016 0.041 0.229 0.531 0.815
0.021 0.036 −0.973 0.100 0.205
0.120 0.206 0.034 −0.823 0.514
0.417 0.875 0.023 0.173 −0.172
0.900 −0.435 0.003 0.018 −0.008

 , λCY =

30071
233
161
74
21

 ,

(3.6.7)

for eigenvectors as rows of εCY with respective eigenvalues in λCY ; where covariance and
eigenvalue entries are given to the nearest integer, and eigenvector entries to 3 decimal
places. This implies that the PCA structure is more subtle than a trivial projection.

To relatively compare the datasets’ PCAs, the normalised vectors of eigenvalues are given
in (3.6.8), for the random ’R’, coprime ’C’, transverse ’T’, and Calabi-Yau ’CY’ datasets re-
spectively. They show that the first component significantly dominates, and hence lower
dimensional representation of the data through PCA will usefully depict the data’s under-
lying linear structure.

λR =

0.75534
0.16297
0.05274
0.02059
0.00837

 , λC =

0.74845
0.16856
0.05417
0.01997
0.00885

 , λT =

0.91388
0.04211
0.02578
0.01334
0.00489

 , λCY =

0.98399
0.00764
0.00525
0.00242
0.00070

 . (3.6.8)

Hence for the sake of visualisation, the first 2 components of each datapoint’s principal
component projection are plotted as a 2-dimensional scatter diagram for each dataset. These
components show the directions with the most variation, and hence display the underlying
structure most clearly. The 2-dimensional PCA plots are given in Figure 3.6.3, for each of
the 4 datasets considered; the PCA information (additional to that in (3.6.7)) is available in
§A.1.

The cone-like bounding structure of all plots shows the effects of the weight ordering.
This is simply that as the first component’s value increases (most correlated to the largest,
and hence last, weight in the 5-vector) the range of values the second component (roughly
correlated to the second-largest / second-last weight) can take increases. Or put more simply,
the second-last weight takes values up to the size of the last weight and so this places cone-
like bounds on the plots. All plots also show higher densities at lower values of the principal
components which is also related to this effect.

The PCA plots show that as more of the necessary conditions are added to the datasets,
more structure is apparent in the projected outputs. First note the coprime condition causes
a negligible change to the distribution of weights. The transverse condition however has a
significant effect. The second components become much more limited and the data begins
to separate into approximately two forks. Most exciting, is the jump to the full CY data.
Now the PCA shows a clear clustering of the 5-vectors at higher values of the first princi-
pal component. This distinct separation into clear lines of datapoints shows an intriguing
structure to the weights of Calabi-Yau projective spaces, which is not present for spaces
with just the transverse condition. The reasons for this separation are unclear, however we

71

100 0 100 200 300 400
PCA component 1

150

100

50

0

50

100

150

200

PC
A

co
m

po
ne

nt
 2

(a) Random Integers

100 0 100 200 300
PCA component 1

100

50

0

50

100

150

200

PC
A

co
m

po
ne

nt
 2

(b) Random Coprime Integers

50 0 50 100 150 200
PCA component 1

0

20

40

60

80

PC
A

co
m

po
ne

nt
 2

(c) Random Transverse Coprime Integers

0 500 1000 1500 2000
PCA component 1

150

100

50

0

50

100

150

PC
A

co
m

po
ne

nt
 2

(d) CY Weights

Figure 3.6.3: 2-dimensional PCA plots for the 4 considered datasets. As more of the conditions are added,
more structure appears, in particular there is some form of distinct class separation for the CY weights.

make conjectural statements about a potential relation to the spaces’ Hodge numbers due
to a similar structural separation when performing the clustering analysis.

A final note is that the PCA used here was explicitly linear, and hence probes the simplest
kind of implicit structure. Kernel PCA methods were also used to analyse these datasets,
for a variety of traditional kernels (including Gaussian, sigmoid, and an array of polynomial
kernels); however, none of these methods produced as distinct a clustering separation as that
for the linear kernel, indicating, that surprisingly, the most prominent implicit structure of
the Calabi-Yau weights takes a linear form.

TDA
To examine if this linear separation in the CY data is an artefact of the projection of a higher-
dimensional structure, topological data analysis was used through persistent homology in the
R5 space.

This persistent homology for the CY data was computed for H0 and H1 (higher Hn up to
n = 4 can be computed in 5-dimensional space but are incredibly computationally expensive
in terms of memory for n ≥ 2). The persistence diagram for this analysis is shown in Figure
3.6.4, where the diagram plots all members of H0 and H1 as points with their respective δ
values of birth (cycle creation) and death (cycle filling).

As can be seen from the diagram all the members of H0 are blue points born at δ = 0,

72

0 25 50 75 100 125 150 175
Birth

0

25

50

75

100

125

150

175

De
at

h
H0
H1

Figure 3.6.4: Persistent diagram for the H0 and H1 homology groups of the CY data’s Vietoris-Rips complex
filtration.

these are each of the 0-cycles (i.e. 0-simplices / datapoints) that exist until they are connected
by an edge (1-simplex) to any other datapoint. The behaviour shows that there are some
datapoints that are significantly further away from the rest of the data and hence join/die
much later in the filtration. These points are those with large weight values such that they
are far from the origin in the R5 embedding.

Conversely all members of H1 are points in orange, and as expected all these cycles of 1-
simplices/edges which are not boundaries of 2-simplices/triangles lie close to the diagonal line
in the persistence diagram. This behaviour indicates a short life of each cycle, a behaviour
typical of noise in the dataset. Since traditionally it is only points far from the diagonal
that indicate significant persistent structure, there is hence not higher dimensional structure
formation or non-trivial topology in the data which would deter from the linear clustering
behaviour seen through the PCA.

K-Means
Following intuition from the success of NNs predicting the topological data from the weight
vectors (as studied in [114] and repeated below), plots are made to examine the correla-
tions between the sorted weight entries and the Hodge numbers. The observed correlation
behaviour is best exemplified plotting against the largest weight, as shown in Figure 3.6.5.

The behaviour in Figure 3.6.5a shows a similar form of fork-like splitting of the datapoints
as in the PCA of Figure 3.6.3d, even with a central fork particularly more dominant than the
others. This seemingly linear behaviour between final weight and h1,1 is quite surprising, and
here again the CY hypersurfaces appear to be separating themselves into classes, according
to the ratio of h1,1 to the final weight, w5. On the contrary, the behaviour in Figure 3.6.5b,
follows the familiar mirror symmetry plot [74], complimenting the linear behaviour with h1,1

such that their combination will preserve this structure. Similar behaviour also occurs for
the other weights in the 5-vectors, as can be seen in §A.2, despite less obvious clustering.

To further examine this clustering phenomena we plot a histogram of the ratio h1,1/w5

in Figure 3.6.6. Note for this plot only datapoints with w5 > 250 were used since this was
where the class separation was more prominent such that the cluster identification would be

73

0 250 500 750 1000 1250 1500 1750
weight 5

0

100

200

300

400

500

h1,
1

(a)

0 250 500 750 1000 1250 1500 1750
weight 5

0

100

200

300

400

500

h2,
1

(b)

Figure 3.6.5: Distribution of Calabi-Yau weighted projective spaces, according to their final (and largest)
weight and (a) h1,1 or (b) h2,1 respectively.

0.0 0.2 0.4 0.6 0.8 1.0 1.2
h1, 1/w5

0

20

40

60

80

100

120

Fr
eq

ue
nc

y

Figure 3.6.6: Frequency of the ratio between h1,1 and the largest weight, w5, for the CY data with w5 > 250
(where structure more prominent). Peaks indicate a natural clustering.

improved. As can be seen from the peaks in the figure, there is a clear clustering behaviour.
Therefore we reexamine this data of ratios with the use of K-Means clustering.

As motivated by the formation of a set of linear relationships between w5 and h1,1 shown
in Figure 3.6.5a, and the peak occurrence in the histogram of ratios in Figure 3.6.6, unsu-
pervised clustering methods were used to examine this behaviour.

The ‘outer’ ratio data used to produce the histogram plot, where clustering was more
prominent, provides a very suitable database for 1-dimensional K-Means clustering using
‘scaled-max-inertia’ as in (2.3.13). An elbow plot of scaled-max-inertia against number of
clusters identifies an optimum of 10 clusters, as shown in Figure 3.6.7.

Using the optimal number of 10 clusters, the separation matches up exceptionally for the
outer data, as shown by plots of the cluster bounds in Figure 3.6.8. The clusters sizes for
the clusters moving anticlockwise about the plot, for increasing ratio, are:
[103, 354, 454, 734, 626, 623, 643, 895, 1419, 1704], highlighting that there is a greater density
of points at low w5 as expected, since this was why ‘outer’ data was focused on for clustering.

To measure the clustering performance we use the standard inertia measure over the
full dataset, however normalised by the number of ratios across the dataset, Î , and an

74

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Number of Clusters

0.0

0.2

0.4

0.6

0.8

1.0

Sc
al

ed
 M

ax
-In

er
tia

Figure 3.6.7: Plot of scaled-max-inertia as the number of clusters used for K-Means clustering varies. The
minimum identifies an optimum number of clusters: 10.

0 200 400 600 800 1000 1200 1400 1600 1800
weight 5

0

100

200

300

400

500

h1,
1

Figure 3.6.8: Plot of the bounds of the 10 clusters produced on the outer data (w5 > 250) via K-Means
clustering.

equivalent measure also normalised by the range of the ratios:

Î = 0.0266 ,
Î

max(h1,1/w5) −min(h1,1/w5)
= 0.00084 , (3.6.9)

These values show that clustering performed exceptionally well, as each ratio in the full
CY dataset was less than 0.1% of the ratio-range away from its nearest cluster. Therefore
confirming the distinct linear behaviour observed, as well as the class separation. The class
partitioned data is made available with the other datasets on the papers respective Github.

NN Regression
The topological parameters can be extracted for the weight information following the highly
non-trivial formulas of (3.6.3) and (3.6.4).

Both of these formulas require gcd computations throughout their evaluation. ML meth-
ods famously perform badly when approximating these styles of equations and so one would
expect the simple NN architecture used here to not be particularly successful. These results

75

Measure
Property

h1,1 h2,1 [h1,1, h2,1] χ

R2 0.9630
± 0.0015

0.9450
± 0.0133

0.9470
± 0.0041

0.9510
± 0.0023

MAPE
0.1493

± 0.0027
0.2519

± 0.0152
0.2375
± 0.018

-

MSE
166.9
± 10.0

147.0
± 35.6

186.9
±13.9

1746.1
± 82.4

Table 3.6.1: Learning each of the CY topological parameters from the 5-vectors of weights (dataset (d)).
Note the final column is Euler number χ = 2(h1,1 − h2,1), and since it can evaluate to 0 its MAPE value
is not defined. Measurement of learning performance uses 5-fold cross-validation to provide an average and
standard error on each measure’s value.

for learning the CY topological parameters from the weights which admit CY hypersurfaces,
with the previously described NN regressor architecture are given in Table 3.6.1.

The results show a surprisingly successful predictive ability for the Hodge numbers and
Euler number, particularly with R2 values exceeding 0.9. The MAPE values show the Hodge
numbers are consistently predicted to be only around a proportion of 0.2 off from their true
values, whilst the MSE values provide a less physical measure of learning but are included
for reference since they were used as the regressor loss.

Considering the complexity of the equation forms in (3.6.3) and (3.6.4), it is impressive
the NNs can learn any correlating behaviour for computation of Hodge numbers or Euler
number from the weights alone. Therefore the relatively better performance in learning h1,1

is likely due to the apparent linear relationship to the weights as exemplified by the K-Means
clustering.

NN Classification
The conditions for a 5-vector of weights to represent a weighted projective space which can
admit a CY hypersurface are particularly special. To probe the necessary conditions of
coprimality and transversity equivalent datasets were generated as discussed in §3.6.1, with
which the CY dataset was compared.

Due to the exponentially-fitted generation distribution making these weights more repre-
sentative, differentiating which dataset a 5-vector belongs to is not possible by eye. Therefore
it is natural to wish to consider the effectiveness of ML to this classification problem: learning
the Calabi-Yau nature.

Three classification architectures (with hyperparameters as previously described) were
used to learn to differentiate the CY weights from each of the other datasets: random
integers, coprime random integers, and transverse coprime random integers in binary clas-
sification problems. Furthermore they were also used to differentiate all 4 datasets in a
multiclassification problem.

Results for this learning are given in Table 3.6.2. Measures show that NNs can well
differentiate the CY weights from each of the other datasets. As expected there is min-
imal difference due to introduction of coprimality, since the nature of primes is famously
elusive. However, once transversity was included into the dataset the binary classification

76

Architecture Measure
Dataset

Random Coprime Transverse All

Logistic
Regressor

Accuracy
0.7152

± 0.0035
0.7199

± 0.0037
0.7430

± 0.0065
0.4825

± 0.0035

MCC
0.4352

± 0.0065
0.4467

± 0.0073
0.5003

± 0.0121
0.3141

± 0.0043

Support
Vector

Machine

Accuracy
0.7253

± 0.0029
0.7116

± 0.0029
0.7464

± 0.0014
0.4732

± 0.0070

MCC
0.4605

± 0.0054
0.4374

± 0.0054
0.5174

± 0.0029
0.3060

± 0.0078

Neural
Network

Accuracy
0.9189

± 0.0037
0.9178

± 0.0030
0.7575

± 0.0024
0.5881

± 0.0048

MCC
0.8380

± 0.0073
0.8377

± 0.0056
0.5306

± 0.0059
0.4615

± 0.0072

Table 3.6.2: ML results for three different architectures performing binary classification between the CY data
and each specified dataset; and in addition multiclassification across all 4 datasets (labelled ’All’). Learning
is measured using Accuracy and MCC with 5-fold cross-validation to provide an average and standard error
on each measure’s value.

performance dropped, but was still surprisingly good.
A further surprise was the equally good performance of the LRs and SVMs. These simple

architectures could accurately classify approximately three-quarters of the data even without
using transversity (where this condition was in both CY and compared dataset).

Multiclassification of all datasets was not as strong. However within these measures the
identification of the CY data was considerably better, with most of the performance reduction
due to misclassifying between random, coprimality, and transversity. To exemplify this we
give a sample normalised confusion matrix for the multiclassification with a LR:

CMLR =

0.116 0.013 0.029 0.091
0.076 0.083 0.074 0.020
0.074 0.078 0.062 0.019
0.026 0.004 0.008 0.228

 , (3.6.10)

where row indicates true class and column predicted class for each of: random, coprime,
transverse, CY respectively. The final entry shows nearly all the CY data is correctly clas-
sified (0.25 indicates the full quarter of the accumulated datasets). Therefore measures
will indicate lower performance where the other conditions cannot be differentiated, and it
is likely that these conditions are not the most prominent conditions to indicate the CY
property.

To further examine the learning performance we next look explicitly at the misclassifica-
tions of the CY data, using again links to the Hodge numbers to identify areas of difficulty.
Since the LR performed comparably to the other architectures, and is a significantly simpler
architecture than the NN, its use for misclassification analysis seemed the most appropriate.

Due to the simple structure, only 50 5-vectors in each non-CY dataset were used to train
the regressor with another 50 CY 5-vectors. The regressor was then used to predict the class
of all the CY data (i.e. that it was CY), producing accuracies of: 0.78, 0.81, 0.61 when

77

0 100 200 300 400 500
h1, 1

0

100

200

300

400

500

h2,
1

classified
misclassified

(a) Random Integers
(1899 misclassified)

0 100 200 300 400 500
h1, 1

0

100

200

300

400

500

h2,
1

classified
misclassified

(b) Random Coprime Integers
(1847 misclassified)

0 100 200 300 400 500
h1, 1

0

100

200

300

400

500
h2,

1

classified
misclassified

(c) Random Transverse Coprime Integers
(2739 misclassified)

Figure 3.6.9: A LR, trained on 50 CY 5-vectors and 50 non-CY 5-vectors, predicts whether all of the CY
5-vectors are CY or not. The plot shows the distribution of the CY surfaces according to their Hodge
numbers. Those in blue are misclassified as non-CY, those in orange are correctly classified to be CY. The
non-CY vectors come from datasets of Random, Coprime, or Transverse 5-vectors respectively.

trained with each of the random, coprime and transverse datasets respectively.
Perhaps more curious is the distribution of these CY misclassifications with respect to

their Hodge numbers, plotted in Figure 3.6.9. Training random and coprime datasets in
both cases leads to perfect classification of CY spaces with high h2,1, whereas training with
transverse data leads to perfect classification with high h1,1. Note also that investigations
showed both other architectures had similar performance with respect to Hodge numbers,
as shown by figures in §A.3.

To further investigate the dependence of the learning performance on the Hodge numbers,
the CY dataset was binned in two independent ways. The first was according to h2,1, and
the second according to h1,1. The bin bounds were optimised such that an approximately
consistent number of CYs had Hodge numbers within each bin’s bounds, with a preset
number of 50 bins used (selected to have a suitable bin size > 100). Plots of these bin
frequencies are given in Figures 3.6.10a and 3.6.10b.

This produced a CY dataset associated to each bin, with which a non-CY 5-vector dataset
was randomly sampled. For the h2,1 partition the random dataset was used to sample an
equal number of non-CY 5-vectors for each bin, such that the datasets were balanced. As
training behaviour for the random and coprime datasets was so similar, only the random

78

dataset was used in this investigation. Conversely, for the h1,1 partition the transverse dataset
was used. These choices of non-CY datasets used for training were selected such that they
aligned with the predicted behaviour demonstrated in Figure 3.6.9, where random-training
improves high-h2,1 performance, and transverse-training improves high-h1,1 performance.

For each bin’s now balanced dataset an independent LR (with architecture as before) was
initialised, trained and tested. A random 80% sample of the bin data was used for training,
with testing on the remaining 20% complement. For each bin, the initialisation, training,
and testing was repeated 20 times, such that variances on the measures could be calculated.
Accuracies were recorded for each bin regressor, as well as the final 5 weights used to define
the trained LR.

Accuracies across the bins for both partitions are given in Figures 3.6.10c and 3.6.10d,
with their respective accuracy variances in 3.6.10e and 3.6.10f. There are near-perfect pre-
dictions at the upper ends of these partitions, with relatively very small variances. Deter-
mination of the CY property is hence considerably easier for surfaces whose Hodge numbers
take extreme values, and pre-training against data with or without the transverse condition
can significantly aid learning depending on what values the Hodge numbers take.

Finally, the 5 averaged LR weights are plotted for each bin (with respective variances
surrounding them) in Figures 3.6.10g and 3.6.10h. As can be seen by comparing the relative
weight sizes, in both cases at the higher ends of the partitions the first two weights par-
ticularly dominate the regression19. Since each LR weight aligns with the projective space
weight, this indicates at these extremes where learning is particular strong, only the first two
(i.e. lowest) weights are needed to identify whether the weighted projective space admits a
CY hypersurface. Where only the CY dataset has the transversity property (i.e. training
against random) the first weight is the most significant, whilst where transversity is in both
datasets (i.e. training against transverse) the second weight is the most significant.

0 100 200 300 400 500
h2, 1

0

50

100

150

200

250

Fr
eq

ue
nc

y

(a) Bin frequencies for h2,1 partition

0 100 200 300 400 500
h1, 1

0

25

50

75

100

125

150

175

200

Fr
eq

ue
nc

y

(b) Bin frequencies for h1,1 partition

19Note that in the LR architecture the intercept is set to 0 such that optimisation must focus on the
relative sizes of the inputs.

79

0 100 200 300 400 500
h2, 1

0.0

0.2

0.4

0.6

0.8

1.0
Ac

cu
ra

cy

(c) LR (Random-trained) Accuracies for h2,1 partition

0 100 200 300 400 500
h1, 1

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

(d) LR (Transverse-trained) Accuracies for h1,1 partition

0 100 200 300 400 500
h2, 1

0.000

0.001

0.002

0.003

0.004

0.005

Ac
cu

ra
cy

 V
ar

ia
nc

e

(e) Variances of the LR (Random-trained) accuracies for h2,1

partition

0 100 200 300 400 500
h1, 1

0.000

0.001

0.002

0.003

0.004

0.005

0.006

Ac
cu

ra
cy

 V
ar

ia
nc

e

(f) Variances of the LR (Transverse-trained) accuracies for
h1,1 partition

0 100 200 300 400 500
h2, 1

5

4

3

2

1

0

LR
 W

ei
gh

t V
al

ue

1
2
3
4
5

(g) LR (Random-trained) weights for h2,1 partition, plotted
with variance bars

0 100 200 300 400 500
h1, 1

1.0

0.8

0.6

0.4

0.2

0.0

0.2

LR
 W

ei
gh

t V
al

ue

1
2
3
4
5

(h) LR (Transverse-trained) weights for h1,1 partition, plot-
ted with variance bars

Figure 3.6.10: Relevant plots for LR learning of the 5-vectors being CY or non-CY. Where the non-CY data
was the Random data then binning was according to h2,1, where it was Transverse data then according to
h1,1. The CY data was binned according to either h1,1 or h2,1 Figures (a) & (b) show the number of CYs in
each Hodge partition bin (half the dataset used in each case as non-CYs cannot be plotted without known
Hodge numbers). Figures (c) & (d) show the average accuracies for the LR learning in each case, with (e) &
(f) the respective variances (very small comparatively). Finally, figures (g) & (h) show the averaged trained
LR weights, plotted with their variances as bands about the average values.

80

Conclusion
Through the use of unsupervised ML methods a linear clustering structure of the weighted
projective spaces that admit CY hypersurfaces was identified. This structure was first ob-
served through PCA, corroborated with TDA, and then observed again due to relations with
the hypersurface’s Hodge numbers confirmed with strong clustering measures.

Supervised ML methods then learnt to predict the CY topological parameters from the
weights directly to a surprisingly exceptional accuracy, perhaps making use of this simple
structure. In addition, simple classifier architecture could detect whether a generic weighted-
P4 admitted a CY hypersurface from the weights alone, and with specific pre-training could
reach perfect performance at certain extremes of Hodge numbers.

Further analysis into this CY clustering behaviour for weighted-P4s would hope to uncover
its source, simultaneously explaining the success of ML techniques on this dataset.

3.7 Brane Webs (2202.05845)

As introduced in §2.2, and exemplified in Figure 2.2.1, brane webs are a diagrammatic
tool to represent 5-dimensional superconformal field theories coming from Type IIB string
theory [102], [275]. The (p, q) plane gives the 5-brane charges dictating their orientation and
subsequent intersection in these intermediate dimensions.

A brane web (with a single intersection/junction taken to be the origin) can be repre-
sented using a web matrix

WL =

(
n1p1 n2p2 · · · nLpL
n1q1 n2q2 · · · nLqL

)
, (3.7.1)

for a web with L legs. To standardise the convention all brane charges are taken to be in-
going, the legs are sorted anticlockwise from the negative p axis, and the 5-brane multiplicity
of a leg can be taken to be gcd(pi, qi) = ni when the ni factors are absorbed into the pi, qi
terms.

Brane webs provide a method to classify 5-dimensional superconformal field theories
which arise form this construction according to the SL(2,Z) and Hanany-Witten (HW)
equivalences [276]–[279]. In this study the focus of the classification is restricted to webs of
3 legs connected at a single junction, where each of the legs ends on a 7-brane (as described
in Table 2.2.1). This choice simplifies considerations avoiding the need deal with irreducible
junctions or multiple webs existing for each 7-brane set.

In string theory, the introduced 7-branes are a source of the axiodilaton ∝ log(x5 + ix6),
leading to a branch cut traditionally oriented away from the junction but can have any
orientation provided the appropriate monodromy action is applied to any other leg when the
branch cut sweeps through it. For the 7-branes to preserve supersymmetry there is an extra
condition on the self-intersection, defined

I =

∣∣∣∣∑
i<j

det

(
pi pj
qi qj

) ∣∣∣∣− L∑
i=1

gcd(pi, qi)
2 , (3.7.2)

over the L legs of the brane web, requiring I ≥ −2 since it is equivalent to the Coulomb
branch dimension dCB = I+2

2
≥ 0. Beyond the self-intersection condition for the 7-branes,

81

the brane web must also satisfy charge conservation at the junction such that 0 =
∑

i pi =∑
i qi, and also a consistency in removing the 5-brane multiplicity ni for all legs such that

gcd(pi, qi) = 1 when removed.
Consistent webs (satisfying these requirements) can be classified into equivalence classes

where they describe the same superconformal field theory. The classes consist of webs con-
nected by any number/combination of SL(2,Z) and HW transitions, as depicted in Figure
2.2.1 for 3 example webs in the same class. For the web matrices the SL(2,Z) action,
transforms all legs as (

pi
qi

)
7→

(
a b
c d

)(
pi
qi

)
, (3.7.3)

with a, b, c, d ∈ Z and ad − cb = 1. Whilst the HW transition acts firstly on a chosen leg
(pj, qj) by moving it to the other side of the junction to (−pj,−qj) (since leg length is not
a parameter of the theory), leaving a branch cut which now passes through the junction.
Sweeping this branch cut clockwise induces a monodromy action on the leg the branch cut
is swept through (pi, qi) via(

pi
qi

)
7→ M(pj ,qj)

(
pi
qi

)
=

(
1 + pjqj −p2j

q2j 1 − pjqj

)(
pi
qi

)
, (3.7.4)

or alternatively using M−1
(pj ,qj)

for an anticlockwise sweep. Finally the moved leg’s multiplicity

is updated to preserve charge at the junction nj = 1
pj

∑
i ̸=j pi = 1

qj

∑
i ̸=j qi.

Since the focus is on 3-leg brane webs, the classification is equivalent to that of 7-brane
sets (since each set of 3 7-branes has a unique 5-brane web). These sets of 3 7-branes have
been conjectured to be partitioned into classes according to the three parameters: total
monodromy Mtotal, asymptotic charge invariant ℓ, and rank (i.e. dimension of the Coulomb
branch) dCB [280], as defined for W3 webs

Mtotal = M(p1,q1)M(p2,q2)M(p3,q3) ,

ℓ = gcd

(
det

(
p1 p2
q1 q2

)
, det

(
p1 p3
q1 q3

)
, det

(
p2 p3
q2 q3

))
,

dCB =
I + 2

2
.

(3.7.5)

To probe the validity of this classification with techniques from ML a notion of strong, and
weak equivalence was defined:
∼ Strong equivalence =⇒ webs have been explicitly transformed into each other through a
series of SL(2,Z) and HW moves.
∼ Weak equivalence =⇒ webs have the same invariants as in (3.7.5), and number of legs.

With these definitions, strong equivalence naturally implies weak equivalence but not
vice versa, as the equality of these 3 invariants between two webs is a necessary but not
sufficient condition for strong equivalence. ML results then indicate the incompleteness of
this classification via weak equivalence, as demonstrated by explicit examples in [36], [281].

3.7.1 The Brane Web Data

The brane web data was set up as web matrices, and since focus was on 3-leg webs the W3

matrices were 2 × 3, which were flattened for NN input.

82

Balanced datasets were generated for both strong and weak equivalences. Initially for the
weak equivalent data, denoted X, all consistent webs with p, q ∈ [−3, 3] and n ∈ [1, 3] were
exhaustively generated, for each web their 3 invariants of (3.7.5) computed, the webs were
then collected into their 14 weak equivalence classes and 48 randomly selected from each
such that the dataset of 672 webs was balanced. For the strong equivalent data, denoted
Y, a single web was taken from each weak equivalence class (these are naturally strong
inequivalent) and a series of SL(2,Z), HW, and shuffle20 moves were performed on the web
to produce 48 webs, and again a balanced dataset of 672.

This process was also expanded to perform an exhaustive web data generation. Made
available on the respective GitHub is a database of all consistent webs (with entries ≤ 100)
which can be generated from initial webs with p, q ≤ 5 via 2 iterations of an SL(2,Z) and HW
move (considering all SL(2,Z) matrices with entries ≤ 5, and HW moves on all legs). This
database is partitioned into the respective strong equivalence classes, and each of these classes
partitioned into the subsequent weak equivalence classes, for ease of searching. There is a
complementary notebook with functionality to compute invariants, compare equivalences,
and generate random equivalent webs from this data.

Example: A candidate brane web considered in the learning had web matrix(
−4 3 1
−2 −1 3

)
, (3.7.6)

such that the gcd multiplicities were 2,1,1 respectively for each leg (column). Following the
computations in (3.7.5), this web has invariants

Mtotal =

(
−67 76
−149 169

)
,

ℓ = 5 ,

dCB = 3 .

(3.7.7)

Therefore the flattened web matrix as a 6-vector (-4,3,1,-2,-1,3) made up the input for the
SNN embedding, or TDA directly.

3.7.2 ML Results

The primary goal of this paper was to use ML architectures to aid in the partitioning of
webs into their true equivalence classes. To perform this a SNN architecture was used. The
aim of SNNs is to train a NN that can effectively embed input vectors into some abstract
space such that those which are similar are close in Euclidean distance in the embedding
space, and those which are not similar are far away. In this context this equates to webs in
the same class being close in the SNN embedding space.

The SNN set-up used trained 3 identical NNs (with the same hyperparameters and pa-
rameters) in an identical manner according to a triplet loss. This triplet loss was minimised

20Note that shuffle moves are an additional redundancy in the representation according to the leg ordering
in the web matrix, acting with the permutation group on the matrix columns shuffles this representation
trivially giving the same web.

83

for each triplet set, which contained an ‘anchor’ web, along with a ‘positive’ web which it
was equivalent to and a ‘negative’ web it was not equivalent to. Minimisation of the loss
would map the anchor and positive webs to the same point in the embedding space, and the
negative web to a point at least the threshold distance away. Once trained, the embedding of
any two input webs should exceed the threshold value if they are not equivalent, and this can
be used for classification. In this work, despite there only being 672 webs per dataset, the
grouping into triplet sets for training, and pairs for testing significantly inflates the amount
of data for learning.

SNNs embedded the 6-dimensional web matrix data (W3 flattened and imagined in R6)
into R10, and could well identify whether a pair of webs was in the same weak equivalence
class or not: (accuracy, MCC) of (1, 1) for two weak classes, and (0.77, 0.55) between all
14. However the SNNs had negligible success for the strong equivalence classes: (accuracy,
MCC) of (0.5, 0) between two classes or all 14 (i.e. no learning). This motivated analytic
work to check the compatibility between strong and weak equivalences and ultimately lead
to explicit examples which highlighted the gaps in the classification via invariants.

Visualisation of the web data and SNN embedding was performed using non-linear t −
SNE methods to reduce both the R6 and R10 spaces to R2 for plotting. However, my
predominant contribution was the higher-dimensional direct analysis of these raw and SNN
embedded datasets through TDA’s persistent homology.

Raw Web Data: Each web in the raw web datasets X and Y amounts to the contents
of the web matrices W3. These 6 integers were plotted in R6 for the persistent homology
analysis. Noting that, since datapoints are restricted to the integer lattice this translates to
a grid-like distribution of features in the persistence diagrams, as only at specific radii can
balls intersect and change the VR complex21.

The analysis was performed for both datasets of 672 web datapoints, X in Figure 3.7.1a,
and Y in Figure 3.7.1b. The HW moves in the generation process for Y lead to much larger
web matrix entries, as reflected in the larger scales and finer grid structure in 3.7.1b. For
the X data the roughly uniform distribution of H0 features indicates points are uniformly
distributed in the space, as expected from the exhaustive generation procedure over the
search space. Conversely the Y data has a slightly larger gap in the line (∼125-145, note the
much larger scale here) indicating there are clusters of points further from the main cluster,
likely a result of some HW moves jumping datapoints away from the bulk.

Both datasets have H1 features close to the diagonal, behaviour typical of noise; since
there are no features far from the diagonal there is not a significant loop structure in the data
which would otherwise indicate regions either omitted from the sampling or not physically
plausible.

SNN Embedded Web Data: The embedded web data is the result of the SNN’s base
model NN mapping all the 6-parameter web matrix data into the R10 embedding space,
where the aim of the SNN is to create an embedding model which separates inequivalent
webs into their respective clusters.

21Note also that this grid-like behaviour occurs for the projective space weight data in §3.6.2 as well, but
there the larger range of integers in the data make the grid effect negligible.

84

0 2 4 6 8 10
Birth

0

2

4

6

8

10

De
at

h

H0
H1

(a) (nipi, niqi) weak X data

0 25 50 75 100 125 150 175
Birth

0

25

50

75

100

125

150

175

De
at

h

H0
H1

(b) (nipi, niqi) strong Y data

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Birth

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

De
at

h

H0
H1

(c) SNN embedded weak X data

0 2 4 6 8 10 12 14
Birth

0

2

4

6

8

10

12

14

De
at

h

H0
H1

(d) SNN embedded strong Y data

Figure 3.7.1: Persistence diagrams for H0 and H1 on the web (nipi, niqi) data and SNN embedded data, for
datasets X and Y respectively.

The H0 analysis for the embedded X data in Figure 3.7.1c shows a continuous stream
of features indicating points merging together to form independent simplices, then the gap
(∼1.10-1.20) followed by a collection of features closer together indicates the separate clusters
for each of the web classes combining together to finish the filtration. Since the features are
relatively close they represent more symmetrically distributed clusters, nice behaviour since
a priori no equivalence classes should be especially more related than others. This behaviour
supports the success of the SNN embedding to separate the webs into clusters based on the
equivalence used for training. The H0 features for the embedded Y data, in Figure 3.7.1d,
has similar behaviour, however the cluster separation is less uniform, indicated by the less
consistent line where clusters aren’t combining smoothly and then only a couple of features
are separated from the main line (> 8), therefore some of the classes’ clusters merge earlier,
and are not as well separated as in the embedded X data, making this classification worse,
and hence supporting the poorer learning results observed.

For both embedded datasets the H1 features lie close to the diagonal, again indicating
a lack of significant loop structures in the data clouds such that the clustering performs

85

as expected. The embedded X data has many more higher birth features (relative to the
respective H0 scales), likely a consequence of the better separated clusters combining later
in the filtration.

Conclusion
The relative performance of supervised ML methods indicated the need to refine the clas-
sification of 3-leg brane webs (and equivalently sets of 3 7-branes) using the invariants of
(3.7.5). SNNs learnt to well separate the web data according to the invariants, but could
not well separate the classes of webs connected by explicit SL(2,Z) and HW moves.

Persistent homology of the datasets highlighted the success of the embedding for the weak
equivalent data, as well as the significance of the HW moves in more substantially changing
the range of consideration for the leg sizes.

3.8 Cluster Algebras (2203.13847)

As introduced in §2.1, cluster algebras are a mathematical framework with intriguing com-
binatorial structure. Central to this is their generation process built from a single seed,
containing a cluster of r cluster variables and an r × r exchange matrix (interpretable as
a quiver adjacency matrix). Mutation on any of the r cluster variables (and the respective
quiver node) updates that cluster variable to produce a new cluster (with one variable dif-
ferent) and also a new quiver; as dictated in (2.1.1) and (2.1.2), and exemplified in Figure
2.1.2b.

Exhaustive application of this mutation action on all variables in a seed’s cluster, and then
on all variables in the new seeds’ clusters, and repeating exhaustively produces a (potentially
infinite) set of seeds. The union of all the clusters from this set gives the full list of unique
cluster variables, as generators of the underlying algebra. In a sense, the variables in the
initial seed (with the quiver) generate the full list of generators for the algebra, and this
condensed representation for the algebra, which can effectively be represented exclusively by
an initial quiver (as the initial cluster is often just {x1, x2, ..., xr}), is a defining feature of
these algebras. The subsequent cluster variables produced from repeated mutation all obey
a Laurent phenomenon, in that they can each be expressed as a Laurent polynomial in the
initial cluster’s variables (i.e. a rational function with a single monomial denominator). In
particular since the mutation process in (2.1.2b) only involves addition there is a preserved
positivity such that all monomial coefficients are positive integers [52].

The algebra types are classified into 3 categories: finite, finite-mutation, infinite. The
finite type algebras (built using initial quivers as directed Dynkin diagrams) have a finite
number of cluster variables which generate them, and hence a finite number of seeds that can
be produced via mutation. The finite-mutation algebras have a finite number of exchange
matrices (i.e. quivers) that can be produced via mutation, but may have infinitely many
clusters and cluster variables; such that they expand the finite type to include more examples
(as described in §2.1). The infinite types then are the complement to finite-mutation with
infinitely many exchange matrices, and hence also infinitely many clusters, cluster variables,
and seeds.

For any cluster algebra the combinatorics of its generation via mutation can be repre-
sented by an exchange graph. Each seed is represented by a vertex of the graph and an

86

edge connects two seeds’ vertices if the seeds can mutate into each other22. Starting from an
initial seed (at depth 0), all of the r variables can be mutated to give up to r new seeds (at
depth 1), then each of these new seeds can be mutated on each of their r−1 variables to give
up to r(r−1) new seeds (depth 2), etc. In the limiting case all mutations give new seeds and
the exchange graph is a tree, however mutations may produce seeds already seen and when
this occurs the introduced edges start to form cycles in the graph. For these exchange graphs
it may be possible to always generate new seeds via mutation (infinite and finite-mutation
types) such that the graph is infinite, or there may be a maximum depth where no new seeds
are generated (finite type) leading to a closed graph.

One may also construct another graph representing connectivity under mutation by con-
sidering only the quiver part of the seeds, i.e. the exchange matrix. This exchange graph
represents how all the possible exchange matrices23 are connected via mutation action. This
in turn is called the quiver exchange graph, and is often significantly smaller than the ex-
change graph with cluster information at any depth. This is because many seeds may have
the same exchange matrix but different clusters, making them the same vertex in the quiver
exchange graph but different vertices in the exchange graph. To make clear the differentia-
tion between these types of exchange graph we will call the graph where the seeds include the
cluster information the seed exchange graph. These quiver exchange graphs may be infinite
as more quivers can also be mutated to (infinite type) or closed where only finitely many
quivers can be generated (finite-mutation and finite type).

The finiteness of these seed and quiver exchange graphs is exactly what specifies the
algebra type. Analysing the combinatorics of these graphs and the frequency of repeated
seed generation leading to cycles, techniques from network analysis and ML can start to
probe the structure of how finite or infinite certain algebras are. In this respect, the finite-
mutation types which are not finite act as an interesting bounding case between the finite
and infinite types, where their quiver exchange graph is finite but their seed exchange graph
is infinite.

Cluster algebras have a range of applications in physics: from an interpretation of the
exchange graph mutation as quiver Seiberg duality [49], [282]–[284] (as examined in §3.2), to
duality extensions to incorporate more general symmetries [285], to Toda field theories [286],
[287], to wall crossing [288], [289], and to scattering amplitudes [290]–[293]. Additionally,
finite-mutation type cluster algebras can be related to complete quantum field theories [294].
Therefore the analysis of cluster algebras opens doors to new theories and computational
efficiencies alike, providing some physical motivation for this study.

Cluster Algebra Example: The prototypical example for cluster algebras is the finite
type rank 2 algebra: A2. This has quiver given by the directed A2 Dynkin diagram shown
in Figure 3.8.1a.

Starting with the initial seed {x1, x2} and the A2 quiver, one can mutate about either of
the quiver vertices. With each mutation, since the rank is too small for the quiver to include

22Note that as mutation is an involution the edges are all undirected.
23Note the repetition of ‘exchange’ in the nomenclature: exchange matrices define the mutation of a

specific seed, and their graph is the seed’s quiver; whereas the exchange graph dictates the entire generation
process of all seeds of the cluster algebra.

87

0

1

(a) A2 quiver

[0]

[1]

[1
]

[0]

[0]

[1]

[1]

[0
]

[0]

[1]

0

1

2

3

4

5

6

7

8

9

(b) A2 seed exchange graph

Figure 3.8.1: The quiver for the A2 example cluster algebra (a), as well as its exchange graph (b) where
permutation equivalence is not applied. The respective clusters for each vertex in the exchange graph are:
{0 : [x1, x2], 1 : [(x2 +1)/x1, x2], 2 : [x1, (x1 +1)/x2], 3 : [(x2 +1)/x1, (x1 + x2 +1)/(x1x2)], 4 : [(x1 + x2 +
1)/(x1x2), (x1 + 1)/x2], 5 : [(x1 + 1)/x2, (x1 + x2 + 1)/(x1x2)], 6 : [(x1 + x2 + 1)/(x1x2), (x2 + 1)/x1], 7 :
[(x1 + 1)/x2, x1], 8 : [x2, (x2 + 1)/x1, 9 : [x2, x1]}, and the quiver node mutated on to connect each seed is
given as the respective edge feature.

2-paths, the only change to the quiver is a reversal of the single edge’s orientation. Therefore
in this simple A2 case the quiver exchange graph is just 2 vertices connected by an undirected
edge to represent both these quivers (which we consider not equivalent via permutation24),
the second quiver exchange matrix being just the transpose of the first. Furthermore in the
seed exchange graph, Figure 3.8.1b, the quiver alternates between these two forms around
the exchange graph’s loop.

To exemplify the mutation process, consider for this A2 algebra the mutation of the seed
associated to vertex 4 in the exchange graph on the quiver vertex labelled 1 (associated to the
second variable), which mutates the seed to the seed labelled 6 in the seed exchange graph.
The quiver associated to this seed is the same as for the initial seed, as shown in Figure

3.8.1a. Therefore the exchange matrix is
(

0 1
−1 0

)
, which updates to its transpose under the

process in (2.1.2). The cluster [(x1+x2+1)/(x1x2), (x1+1)/x2] is respectively mutated on its
second variable following the process in (2.1.1) with k = 2. The process hence keeps the first
variable unchanged and updates the second variable where the first numerator term in (2.1.1)
is just the first variable (as EM12 = 1) and second numerator term is just 1 (since there are

no negative entries in the second column). Therefore (x1+1)
x2

7−→ (x1+x2+1)/(x1x2)+1
(x1+1)/x2

= (x2+1)
x1

,
matching the expected cluster for seed 6.

3.8.1 The Cluster Algebra Data

In this study, focus was on the exchange graphs of cluster algebras, considering a selection
that spans the three possible types. How these graphs take shape as they are generated
was analysed and application of ML techniques to study their respective cluster algebras
introduced. In spirit this extends the work in [31] summarised in §3.2 where ML was applied

24It is common in cluster algebra studies to consider clusters which are permutations of each other to be
the same, we however consider them to be independent as is later motivated.

88

to quiver exchange graphs to learn the underlying Seiberg duality. The sagemath ‘Cluster
Algebra and Quiver’ package [234] was used to perform mutation and handle cluster algebra
seeds.

The cluster algebras considered in these investigations were denoted by the respective
initial seeds used to generate them. These were hence defined by a choice of exchange
matrix, each paired with the initial cluster {x1, x2, ..., xr}. For the purposes of considering a
consistent rank with enough interesting structure, but not too large so as to require excessive
computational resources, all these algebras were of rank r = 4. Across the 3 types, 7 specific
algebras were selected. These included 3 finite type algebras, generated from orientations of
the A4, D4, and F4 Dynkin diagrams (denoted A4, D4, F4 respectively). Note the F4 algebra
does not lie in the skew-symmetric classification, but is a skew-symmetrisable finite type25.
Next, 2 orientations of the affine Ã3 type were used as finite-mutation type algebras which are
specifically not finite type; such that one had 1 anticlockwise 3-path and 1 clockwise arrow
(denoted A13), whilst the other had a 2-path in each direction (denoted A22)26. Lastly, 2
infinite type algebras (denoted I1 and I2 respectively) were generated from the exchange
matrices

EMI1 =

0 2 0 0
−2 0 1 0
0 −1 0 1
0 0 −1 0

 , EMI2 =

0 2 0 −2
−2 0 2 0
0 −2 0 1
2 0 −1 0

 . (3.8.1)

The quivers for each of these initial seed exchange matrices are shown in Figure B.1.1,
available in §B.1.

Beyond the choice of Dynkin or affine Dynkin type, an orientation to each quiver must be
prescribed. The sagemath package initiates the finite type quivers with bipartite orientations,
such that each node is either a source or a sink. Whilst the ambiguity to select an orientation
may appear to lose generality, where the quiver’s underlying graph is a tree (as for our finite
types) any orientation is mutation equivalent to any other orientation [53]. Therefore for
finite types, a choice of orientation is effectively a choice of initial point to expand around
in the same exchange graph. Note this does not apply for the other mutation types, hence
choosing any 2 different orientations produces 2 different cluster algebras and 2 different
exchange graphs (as exemplified by the 2 chosen orientations of Ã3 giving the 2 different
A13 & A22 algebras). These cluster algebras were chosen such that under mutation similar
Laurent polynomial styles (in particular monomial coefficients) were occurring so it was
non-trivial to differentiate the seed representations by eye ahead of ML.

Due to the significant growth of complexity in the infinite type Laurent polynomials with
depth, especially I2 where depth 5 could not be computed in a feasible time, the core focus
of the exchange graph analysis and subsequent ML was chosen to be up to and including
depth 4. In building the seed exchange graphs, clusters were not considered equivalent if
their variables were the same but in a different order. As we see in later analysis identifying

25The skew-symmetrisable (but not skew-symmetric) exchange matrices can be represented by quivers
still but require a double weighting on the respective edge to denote the exchange matrix non-symmetric
entries. In the skew-symmetric case these entries are the same in magnitude, giving the edge weighting.

26We emphasise here the notation A22 (A13) does not relate to A22 (A13), but an orientation of affine
Ã3.

89

0 1 2 3 4
Depth

0

20

40

60

80

100

120

Nu
m

be
r o

f S
ee

ds

A4
D4
F4
A13
A22
I1
I2

Figure 3.8.2: The number of seeds in the seed exchange graphs as depth varies for each of the considered
cluster algebras, labelled by their respective initial seeds. Each type is depicted with a different linestyle.

by this permutation equivalence loses some elegant symmetric structure in the exchange
graphs. We account for the possibility of this causing some degeneracy in cycles on a case
by case basis and mention where that happens explicitly. Also to further motivate this
choice, when defining an algebra only the cluster variables are important and hence taking
the union of all clusters still produces the same generating set with or without application of
this equivalence. Exchange graphs up to depth 4 are given for each of the considered cluster
algebras in Figure B.2.1, available in §B.2.

Prior to any thorough data analysis of these exchange graphs, the types can begin to be
distinguished by the number of seeds at each depth, as shown in Figure 3.8.2. Although it
can be seen already that this information is not sufficient for classification, as more seeds
are generated the finite type algebras are more likely to be reproducing previous seeds. We
believe that there is a similar behaviour where finite-mutation types (that are not finite) are
also more likely to reproduce seeds than infinite types, as they are on the boundary between
finite and infinite.

Example: To give an example of typical seed information we arbitrarily select seed 30
from the A4 seed exchange graph in Figure B.2.1a, whose exchange matrix and cluster take
the form:

EMA4:30 =

0 −1 1 0
1 0 −1 1
−1 1 0 0
0 −1 0 0

 , (3.8.2)

{
x1,

(x1x
2
3 + x1x3 + x2x4 + x3 + 1)

x2x3x4

,
(x2x4 + x3 + 1)

x3x4

,
(x3 + 1)

x4

}
. (3.8.3)

90

Cluster
Algebra

Seed Exchange Graph Analysis (depth 4)
Number

of Vertices
Density

Clustering
(tri, squ)

Wiener Index
(full, norm)

Centrality
(centre, diff)

Min cycle basis
([length, freq])

A4 72 0.034 (0, 0.058) (13968, 5.46) (0, 0.029) [4,17]
D4 80 0.029 (0, 0.037) (17941, 5.68) (0, 0.037) [4,13]
F4 65 0.040 (0, 0.064) (10700, 5.14) (0, 0.031) [4,17], [6,3]
A13 109 0.020 (0, 0.034) (35284, 5.99) (0, 0.054) [4,12]
A22 105 0.021 (0, 0.016) (32664, 5.98) (0, 0.061) [4,8]
I1 79 0.031 (0, 0.065) (17174, 5.57) (0, 0.015) [4,18]
I2 117 0.019 (0, 0.037) (41160, 6.07) (0, 0.063) [4,12]

Table 3.8.1: Network analysis of the seed exchange graphs (EGs) generated to depth 4 for the 7 cluster
algebras considered. The first 3 algebras are finite type, the latter 2 are infinite type, and the remaining 2
are finite-mutation type but not finite type (hence having infinite seed EGs). The analysis lists: the number
of vertices in the EG; the density of the EG; the triangle and square average clustering coefficients; the
Wiener index (both full form and normalised form); the eigenvector centrality analysis listing the central
vertex and then the size of the smallest difference in centrality from the initial seed “0” to the clusters at
depth 1; and finally the information on the minimum cycle basis showing the length of the basis cycles and
the frequency of those lengths in the basis.

3.8.2 Network Science Results

The intricate graph structure of the exchange graphs exemplified by Fig. B.2.1 is suggestive
for an examination with network science. For each of the cluster algebras considered the
seed exchange graphs generated to depth 4 were thus compared with a variety of network
analysis techniques. The results of the analysis are provided in Table 3.8.1, and use a range
of assessment techniques across the core themes of network analysis, including: clustering
analysis, shortest path analysis, centrality analysis, and cycle basis analysis.

For each seed exchange graph (sometimes denoted EG) the number of distinct seeds (i.e.
vertices in the exchange graph) up to depth 4 is given. As expected the infinite cluster
algebras (including A13 and A22 which are distinctly not finite) have more total vertices,
except for I1 which is surprisingly low. This is due to the finite type algebras usually
reproducing more previously generated seeds as mutation continues to higher depths.

Further vertex analysis usually considers the degree distribution, but due to the construc-
tion process for seed exchange graphs all vertices will have degree 4, except those truncated
from further mutation by the depth limit. Therefore this would provide little insightful
analysis for this graph style.

The exchange graph density then considers the number of edges, as opposed to the
number of vertices. Here, the total number of edges in the graph is divided by the total
number of possible edges (i.e. the number of edges in a complete graph with the same
number of vertices). Due to there being 4 edges per vertex in the depths up to 3, as each
cluster has 4 variables to mutate, these density scores correlate with the number of vertices.
The finite types have higher densities as they are more tightly-knit graphs and are further
from the more tree-like structure of the infinite types, as can be seen in the graphs of Figure
B.2.1. In addition, the finite-mutation types with infinite exchange graphs have a slightly
higher density than most infinite types (better represented by I2), supporting that they are
on this border of the seed exchange graphs closing up from infinite to finite. Although I1 has
a higher density, closer to the finite types at this depth, as can be seen in its seed exchange

91

graph, it does show the typical tree-like substructure of infinite types, with an unusual star-
pattern of lines of 4-cycles forming a net-like structure between the tree subgraphs coming
off them.

Clustering Analysis: Clustering coefficients give information about how vertices cluster
within graphs. The two styles of coefficient considered here are both global in nature, and
consider the number of triangles (3-cycles) or squares (4-cycles) that exist in the graph
relative to the total number of possible triangles or squares that could exist.

For all the algebras there were no triangles in the seed exchange graphs. This is expected
since it would require seeds to either jump mutation depths or connect the same depth.
Both these scenarios are not possible since any 2-path of connected vertices either spans 3
depths so closing this 2-path into a 3-cycle would require the mutation that this closing edge
represents to jump a depth (i.e. mutating two variables simultaneously), or the 2-path has
the initial seed as its centre vertex and hence the vertices which need to connect would both
be depth 1 and unable to mutate to each other, as they are both a different mutated-variable
from the initial seed, hence again requiring a double mutation.

This idea generalises to all odd size cycles. Since each mutation changes the depth of
seed under consideration, for any sequence of mutations to close into a cycle the number of
mutations increasing depth must equal the number reducing the depth. Therefore all cycles
must be of even length for these seed exchange graphs.

However all the algebras have a non-zero square clustering coefficient. Squares, or 4-
cycles, in a seed exchange graph indicate the scenario where two mutation actions commute;
i.e. a seed can have two variables mutated in either order to produce the same seed. The
frequency of this commutative action interestingly does not appear to correlate with the
algebra type, exemplified by D4 having the same coefficient as I2 and A13 having over
double the coefficient value of A22.

Shortest Path Analysis: The shortest path analysis carried out comes in the form of
the Wiener index. This index computes the sum of the shortest paths between all pairs of
vertices (the full form), which we also normalise by the number of pairs of vertices, nC2,
to give an average shortest path between vertices. The normalised form is more useful for
comparison and indicates that infinite types (excluding I1) have vertices further separated
on average. This measure provides an indication of the frequency of cycles, and also the
placement of them. If they are more spread over the graph (as for F4) they are more useful
in shortening the shortest paths between outer vertices.

Centrality Analysis: Centrality of a network determines the natural centre vertex. Due
to the generation process being from an initial seed to some depth, this would make the initial
seed (labelled 0) the logical choice. However, experimentation with some lower rank algebras
showed this was not always the case so it is good to confirm for these algebras considered.
The centrality measure used was eigenvector centrality, which performs eigendecomposition
of the graph’s adjacency matrix, then taking the eigenvector with the largest eigenvalue,
whose entries indicate the relative importance of each vertex in the network. In addition to
the computed centre vertex (highest respective entry), the difference in centrality between

92

the centre initial seed and the most central seed at depth 1 is given. Where this difference
is large, as for most of the infinite types, the initial seed is a more obvious centre. However,
the difference is remarkably small for I1, which we believe to be attributed to the symmetry
of 4-cycles surrounding the centre cycle with vertices labelled from [0,4,7,1].

Cycle Basis Analysis: Where the exchange graphs diverge from the limiting case of an
infinite tree, cycles are introduced to the graph as seeds are reproduced through mutation.
As more cycles are added the graph begins to close, becoming ‘more finite’ in the process
with less new seeds produced per mutation. It is hence this cycle structure we believe to
be key to what dictates the cluster algebra behaviour, correlating loosely with the algebra
type. Not only the frequency of cycles, but their distribution of sizes is an area of particular
interest.

To analyse the cycle structure of each seed exchange graph, the minimum cycle basis
for each was computed. The minimum cycle basis puts emphasis on selecting basis cycles
with the lowest lengths, which can then be summed by symmetric difference in the cycle
vector space to produce any cycle in the graph. Since the symmetric difference of any 2 even
cycles is also even (s-cycle + t-cycle with u overlapping edges = (s + t − 2u)-cycle), this
corroborates the idea that all cycles being even is self-consistent. A corollary of this is that
all cycles in any seed exchange graph basis will be even also. In Table 3.8.1, the structure
of the minimum cycle bases for each algebra is given. Since each cycle space can have many
legitimate bases, the actual basis content was not of focus; instead the number of cycles
required (‘freq’) and of what sizes (‘length’) provide the interesting information for analysis.

It turns out for most of these algebras, that the cycle spaces at this depth can be con-
structed from exclusively 4-cycles (this does not hold in general at higher depths). 4-cycles
are the natural lower bound of cycle sizes in seed exchange graphs. This is because any
mutation sequence (longer than the trivial involution 2-cycle for all edges) has to mutate
on any vertex at least twice to change it back, hence 4-cycles being the minimum where
two mutations on different vertices commute. However, F4 requires 3 6-cycles to define the
cycle space up to depth 4, implying that its exchange graph structure is distinct from the
others with a more subtle design. This may be related to the skew-symmetrisable vs skew-
symmetric style of the exchange matrices, but more investigation into this would be required
for a range of skew-symmetrisable matrices before concluding any particular pattern.

Interestingly the finite-mutation types A13 and A22 have the smallest frequency of 4-
cycles in their basis, expectedly less than the finite types whose graphs are compact, however
also less than the infinite types. This may be due to a more systematic occurrence of cycles,
which are further apart and hence fewer are visible at this depth; whereas the infinite graphs
have a skewed distribution of cycles where there is some iterative commutativity via 4-cycles.

How the lengths of the cycle bases vary with depth (up to the computable depth 4 for
infinite type, and beyond for the finite types) is given in Figure 3.8.3. Since all basis cycles
were of length 4 except for 3 6-cycles in the F4 case, the total number of cycles in the basis
is plotted instead of differentiating these cycle lengths. It shows that there is some noise as
basis size grows at these lower depths for the algebras, and thus particularly for the infinite
types it would be useful to find more efficient ways of computing the seed exchange graphs
to probe higher depths. The basis size with respect to the number of seeds is also shown;

93

0 1 2 3 4
Depth

0

5

10

15

20

Cy
cle

 B
as

is
Le

ng
th

A4
D4
F4
A13
A22
I1
I2

(a) Cycle basis size

0 1 2 3 4
Depth

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Cy
cle

 B
as

is
Le

ng
th

 /
Nu

m
be

r o
f S

ee
ds

A4
D4
F4
A13
A22
I1
I2

(b) Relative cycle basis size

2 4 6 8 10 12
Depth

0

200

400

600

800

1000

1200
Cy

cle
 F

re
qu

en
cy

A4 total
A4 - 4
A4 - 10
D4 total
D4 - 4
D4 - 10
D4 - 14

(c) A4 & D4 cycle bases sizes

Figure 3.8.3: The size of the minimum cycle basis for each of the considered cluster algebra’s seed exchange
graphs as depth varies is plotted directly in (a), and the cycle basis size relative to the number of seeds
is plotted in (b). Moreover, (c) focuses on the finite type A4 and D4 algebras with seed exchange graphs
generated to their maximum depths; beyond depth 4 10-cycles are introduced so each cycle length frequency
is denoted separately, as well as the total frequencies.

since behaviour seems to show a plateau in the ratio growths, this indicates there is likely
a limiting fixed proportion of new seed introduction versus new cycle introduction as more
depths are generated.

Interestingly, the A4 and D4 finite type algebras have similar behaviour up to depth 5.
This is the depth at which 10-cycles are permitted, and beyond this depth the behaviour
diverges with D4 having consistently more total cycles due to the considerably larger number
of 10-cycles. This indicates that these algebras have fundamentally different construction;
A4’s more significant structural reliance on 4-cycles may be due to more mutation operations
commuting which in turn is likely due to the lower connectivity of the original A4 quiver,
translating to subsequent quivers also. We note there is an anomalous 15 14-cycles occurring
for D4 at depth 7: an artefact of the depth truncation that immediately splits into 4- and
10-cycles at the next depth.

Additionally, dual to the cycle vector space is the cut vector space; and although an
interesting alternative method of network analysis, its application to exchange graphs is left
to future work.

3.8.2.1 Generalised Associahedra
The cluster variables for the infinite type algebras quickly become highly complex with
mutation – this prevents generation of the seed exchange graphs to large depths. However

94

Cluster
Algebra

Generalised Associahedra Analysis
Number

of Vertices
Density

Clustering
(tri, squ)

Wiener Index
(full, norm)

Centrality
(centre vertex)

Min cycle basis
([length, freq])

A4 1008 (13) 0.0040 (0, 0.080) (3881976, 7.65) *no centre* [4,672], [10,337]
B4 420 (10) 0.0095 (0, 0.077) (542400, 6.16) *no centre* [4,270], [6,60], [10,91]
C4 420 (10) 0.0095 (0, 0.077) (542400, 6.16) *no centre* [4,270], [6,60], [10,91]
D4 1200 (12) 0.0033 (0, 0.072) (5150592, 7.16) *no centre* [4,624], [10,577]
F4 420 (10) 0.0095 (0, 0.072) (536816, 6.10) *no centre* [4,252], [6,111], [10,58]

Table 3.8.2: Network analysis of the generalised associahedra for the finite type cluster algebras, labelled
by their respective initial seeds. The analysis lists: the number of vertices in the exchange graph (EG) –
with depth to generate these in brackets; the density of the EG; the triangle and square average clustering
coefficients; the Wiener index (both full form and normalised form); the eigenvector centrality analysis listing
the central vertex (or lack of); and finally the information on the minimum cycle basis showing the length
of the basis cycles and the frequency of those lengths in the basis.

the finite type algebras do not suffer as severely from this behaviour, and due to their
finite-ness their entire seed exchange graphs (‘generalised associahedra’) of all seeds can be
completely generated.

Therefore for the rank 4 finite type cases we generate their generalised associahedra,
and perform similar network analysis on them all. Beyond the A4, D4, F4 cases considered
previously, we also introduce the B4 and C4 cluster algebras. These are also finite type, and
as they arise from non-simply laced Dynkin orientations, they are not skew-symmetric but
skew-symmetrisable. This Dynkin terminology means simply-laced edges have weight one,
whilst the non-simply laced edges have a double weighting given by the non-skew-symmetric
exchange matrix components. Their respective quivers are shown in Figure B.1.2 in §B.1,
and their network analysis along with A4, D4, & F4 in Table 3.8.2.

Interestingly, all the skew-symmetrisable quivers generated algebras with the same num-
ber of seeds and density at the same depth. Further to this, B4 and C4 have identical analysis
values for all measures, indicating the swap of quiver edge weighting separating them has no
effect on the seed exchange graph. F4 has some differences, with slightly fewer squares but
a better connectivity (via Wiener index), supported by more 6-cycles and fewer 4-cycles in
the basis. The B4 and C4 algebras actually have the same seed exchange graph; however
the Laurent polynomials of the variables take different values and hence the seeds at each
vertex are very different [234], [295].

Conversely, the A4 and D4 algebras have similar numbers of clusters and densities, despite
D4 having far fewer 4-cycles and many more 10-cycles in its basis. Since D4’s fundamental
structure relies more on 10-cycles, these provide quicker paths between components of the
generalised associahedra leading to a smaller normalised Wiener index.

Gratifyingly, all these generalised associahedra have no discernible centre via eigenvector
centrality, such that the dominant eigenvector has all its entries equal for each algebra.
This supports that any seed may be used to generate each algebra symmetrically, as these
generalised associahedra form complicated polytopes built from 4- and 10-cycles; and in the
skew-symmetrisable cases 6-cycles become a necessity too.

Seed Equivalence: Since only the cluster variables are required to define a cluster algebra,
once all variables have been generated the quivers and clusters themselves become superfluous

95

Cluster Algebra A4 B4 C4 D4 F4
N 42 70 70 50 105
N ′ 1008 420 420 1200 420

N ′/N 24 6 6 24 4

Table 3.8.3: The rank 4 finite type cluster algebras considered whose generalised associahedra are generated
in full. N is the number of seeds up to identification by the permutation equivalence, N ′ the number of
seeds generated without the permutation equivalence, and the final row the factor between them.

information. Therefore usually when one considers clusters they consider them equivalent
up to permutation of the variables within the cluster, where the exchange matrix (and
hence quiver) must be permuted in the same way. However, we find from some testing that
different numbers (i.e. ≤ r!) of permutations of clusters are produced within each algebra.
Therefore by identifying under the full permutation group some combinatorial structure of
the generation process is lost.

For example, for the generalised associahedra considered here, which the entire seed
exchange graphs can be generated for, one expects the number of clusters (up to permutation
equivalence), N , to follow the relation

N =
n∏

i=1

ei + h + 1

ei + 1
=

n∏
i=1

di + h

di
, (3.8.4)

for ei the exponents and di the degrees (of polynomial invariants) of the considered Dynkin
type’s root system (of which there are n), and h the Coxeter number [296]–[298]. For each of
the rank 4 finite type algebras considered, the number of clusters up to permutation equiva-
lence, N , is given in Table 3.8.3. One may then naively expect all permutations of the seeds
to occur in the exchange graphs generated when this permutation equivalence is not identi-
fied by. However, although the A4 and D4 algebras do have all 4! = 24 permutations, the
non-simply laced types do not. The number of seeds without identification by permutation
equivalence that we generate in the full generalised associahedra, denoted N ′, are repeated
in Table 3.8.3 also for reference.

As exemplified by the rank 4 cases, the non-simply laced cluster algebras (B4, C4, F4) do
not generate all permutations of seeds from mutation about an initial seed. In fact all per-
mutations are allowed amongst the simply-laced components, where components are defined
to be the sets of quiver nodes (and hence cluster positions) only connected by simply-laced
edges, i.e. different components are connected by non-simply laced edges. Therefore any clus-
ter {x1, x2, x3, x4} will be mutation equivalent to {x1, x3, x2, x4}, {x2, x1, x3, x4}, {x2, x3, x1, x4},
{x3, x1, x2, x4}, {x3, x2, x1, x4} for the B4 and C4 algebras; whilst mutation equivalent to
{x1, x2, x4, x3}, {x2, x1, x3, x4}, {x2, x1, x4, x3} for the F4 algebra. We emphasise here that
this behaviour holds for all clusters of any variables (i.e. including those which are Laurent
polynomials of the initial variables), hence occurring with permutation frequencies given by
the relevant factor.

Beyond the rank 4 cases considered we find through experimentation up to rank 5 that
the factor N ′/N is r! for the Ar and Dr types, (r− 1)! for the Br and Cr types (anticipating
these to also hold ∀ r), and 1 for G2 (where all 8 clusters are different combinations of cluster

96

variables). We therefore predict due to the lack of non-simply laced edges that the Er types
have an r! factor too (for r ∈ {6, 7, 8}), despite them being too large to computationally
generate in full.

This factor for the non-simply laced types is related to their skew-symmetrisable exchange
matrices. Since the skew-symmetriser diagonal matrix in the skew-symmetrisation process
will have a non-unit factor associated to the non-simply laced edge, and since the skew-
symmetriser matrix is preserved under mutation [299], any mutation involving a non-simply
laced edge will cause the variables crossing it to pick up some non-trivial power that cannot
be cancelled in this other component. Therefore any cluster variable is restricted in its
current form to only appear in its current component (separated by a non-simply laced edge
to other components). We also note that whilst mutation may introduce more non-simply
laced edges, these will only ever connect nodes across the different components, and hence
the above reasoning still applies for permutations of clusters within the components, which
are dictated by the initial seed.

This subtle combinatorial structure of cluster mutation and the algebra generation process
is lost under the identification by permutation equivalence. Since our primary focus here is
the exchange graphs built from these clusters, we think it best to consider the full structure
for each algebra without the permutation equivalence applied, with the idea that once this
full exchange graph is generated one can then still take all independent variables from all
clusters (which already have a lot of overlap) to retrieve the algebra’s generators. This
viewpoint also reveals other unanticipated structure in the exchange graphs as detailed in
the following section.

3.8.2.2 Quiver Exchange Graphs
Whilst the previous subsection analysed the seed exchange graphs, this subsection shifts
focus to the smaller quiver exchange graphs. For these graphs the combinatorics of the
generation is less limited by the cluster mutation rule. For comparison the same network
analysis methods were applied to the considered algebras’ quiver exchange graphs up to
depth 4, as shown in Table 3.8.4.

We can see that for all algebras there are fewer vertices and a higher density (despite
I2 being very similar) in these quiver exchange graphs relative to the seed exchange graphs
of Table 3.8.1; this represents the expected behaviour from multiple seeds with different
clusters having the same quivers. Importantly, whereas where clusters are present no triangle
3-cycles can occur, when considering only quivers these triangles are possible, shown by a
non-zero triangle clustering coefficient for A22. Additionally there are more 4-cycles shown by
consistently higher square clustering coefficients, which are likely used to provide alternative
routes and cause the consistently smaller Wiener indices. It is worth emphasising also that
D4 has a considerably higher square clustering coefficient.

Most interestingly about the centrality analysis is that for the I1 algebra, the centre is no
longer the initial seed! This indicates that the extra quiver identification when the cluster
information is omitted is not symmetric about the centre, and this behaviour is reflected
in some of the other algebras too where the smallest difference to depth 1 is usually lower
without the cluster information in the quiver exchange graphs.

Finally, the minimum cycle bases have quite non-trivial changes. Most notably, the cycles

97

Cluster
Algebra

Quiver Exchange Graph Analysis (depth 4)
Number

of Vertices
Density

Clustering
(tri, squ)

Wiener Index
(full, norm)

Centrality
(centre, diff)

Min cycle basis
([length, freq])

A4 52 0.048 (0, 0.066) (6870, 5.18) (0, 0.036) [4,13]
D4 41 0.071 (0, 0.251) (3463, 4.22) (0, 0.001) [4,15], [7,3]
F4 40 0.072 (0, 0.098) (3334, 4.27) (0, 0.030) [4,14], [6,2], [8,1]
A13 70 0.036 (0, 0.041) (12826, 5.31) (0, 0.020) [4,9], [6,8]
A22 50 0.067 (0.080, 0.108) (4780, 3.90) (0, 0.029) [3,8], [4,15], [7,2], [8,8]
I1 61 0.044 (0, 0.134) (9456, 5.17) (1, -) [4,18], [6,2]
I2 107 0.020 (0, 0.040) (33900, 5.98) (0, 0.061) [4,10]

Table 3.8.4: Network analysis of the quiver exchange graphs generated to depth 4 for the 7 cluster algebras
considered, labelled by their respective initial seeds. The analysis lists: the number of vertices in the EG;
the density of the EG; the triangle and square average clustering coefficients; the Wiener index (both full
form and normalised form); the eigenvector centrality analysis listing the central vertex and then the size of
the smallest difference in centrality from the initial quiver “0” to the quivers at depth 1 (when the initial
seed is the centre); and finally the information on the quiver exchange graph minimum cycle basis showing
the length of the basis cycles and the frequency of those lengths in the basis.

are no longer always even, as there is extra redundancy where quivers can mutate to other
quivers in the same depth. In some cases the cycle bases have more cycles (D4, A13, A22, I1),
and sometimes fewer (A4, F4, I2). This behaviour is curious and highlights the subtleties
of the quiver exchange graph’s embedding in the seed exchange graph. Something we now
analyse more explicitly.

3.8.2.3 Exchange Graph Embedding
To truly probe the relationship between quiver mutation as used in Seiberg duality and
cluster algebras, one needs to know the behaviour of how the mutation process reduces
for each algebra as the cluster information is dropped from the seed. This is therefore
intrinsically linked to how each algebra’s quiver exchange graph embeds in its respective
seed exchange graph.

Any embedding fundamentally depends on the number of vertices in each graph. There-
fore, a first look at this embedding considers the vertex embedding of the quiver exchange
graphs into the seed exchange graphs for all the types, generated up to depth 4. To exam-
ine this, the number of vertices in the quiver exchange graph relative to the number in the
respective seed exchange graph is plotted for each considered algebra in Figure 3.8.4. The
figure shows that up to depth one there is an isomorphism between each considered algebra’s
quiver/seed exchange graphs, since all initial mutations will change a different variable in
the cluster; they hence here also always change a different node for the exchange matrix such
that there are 5 distinct seeds (with distinct quivers) up to depth 1 in each case. To qualify
this, since all vertices are connected, the mutated vertex will always have an orientation flip
of its connected arrows, hence always changing the exchange matrix by this at least.

Beyond depth 1 the ratios drop off below 1, with the pure infinite cases dropping off the
least. These infinite cases therefore have far more distinct quivers, as may be expected since
different quivers lead to different mutation processes and are hence more likely to produce
new cluster variables, a defining feature of infinite types.

To probe this further we wish to lose the limiting behaviour of the depth truncation, and

98

0 1 2 3 4
Depth

0.0

0.2

0.4

0.6

0.8

1.0

Qu

iv
er

s /
 #

 C
lu

st
er

s
A4
D4
F4
A13
A22
I1
I2

Figure 3.8.4: The relative number of quivers to clusters in the respective exchange graphs as depth varies up
to depth 4 for each of the considered cluster algebras, labelled by their respective initial seeds. Each type is
depicted with a different linestyle.

for that we return to the finite type generalised associahedra where both seed and quiver
exchange graphs are finite and can hence be generated in their entirety. Therefore after
the quiver generalised associahedra were generated completely for all the rank 4 finite type
algebras (as in §3.8.2.1), the connection to the seed exchange graphs was analysed through
the embedding of vertices and cycles.

Generalised Associahedra Vertex Embedding: To examine the embedding of the
vertices we look at all the seeds in the seed exchange graph (each a vertex) which have the
same quiver, hence matching to a single vertex in the quiver exchange graph. This is initially
considered through the ratio of number of vertices between each algebra’s seed and quiver
generalised associahedra. For these ratios, when identifying by the permutation equivalence
there is no consistent pattern, however when instead one does not identify in this way, some
beautiful structure emerges. To illustrate this we show the number of vertices in the seed
and quiver generalised associahedra, as well as the ratios between these numbers, for the
rank 4 finite type algebras in Table 3.8.5.

A priori, one may not expect all these ratios to be integer. When each seed in the seed
generalised associahedra has its cluster information removed to leave just the quiver, there
are additional identifications to be made amongst vertices where seeds with different clusters
have the same quiver. However, there is no obvious requirement for all the quivers to occur
the same number of times (which is what we see and leads to the concurrent identification
of each set of the ‘ratio’ number of quivers and hence an integer ratio overall).

These ratios take somewhat surprising and perhaps unintuitive numbers, with no clear
foundation in the Dynkin construction. To further probe this behaviour, these ratios were
also computed for the finite type algebras (arising from the 4 Dynkin series) for all ranks up
to rank 5 in Table 3.8.6, and show signs of further alluring structure. Conjectured natural
continuations of these observed ratios are provided for higher ranks also, noting that D4

appears to be anomalous in its series, likely related to triality of its initial quiver.

99

Cluster Algebra A4 B4 C4 D4 F4
Number of Quivers 144 84 84 50 60
Number of Seeds 1008 420 420 1200 420

Ratio 7 5 5 24 7

Table 3.8.5: The number of vertices in the quiver exchange graph and seed exchange graph for each of the
rank 4 finite type algebras considered. Their ratios are also listed, all taking integer values.

Cluster
Algebra

Rank
1 2 3 4 5 r ≥ 6

Ar 2 5 6 7 8 r + 3
Br - 3 4 5 6 r + 1
Cr - 3 4 5 6 r + 1
Dr - 4 6 24 10 2r

Table 3.8.6: The ratios between number of seeds in the seed exchange graph and number of quivers in the
quiver exchange graph for the finite type cluster algebras, not applying permutation equivalence between
seeds/quivers. Conjectured relationships are shown for higher ranks, r, beyond current feasible computation.

For completeness, we provide the G2 ratio: 4, reiterate that the F4 ratio is 7, and note
that the remaining E6, E7, E8 exceptional cases are too high a rank to be feasibly computed
with current resources (leaving this to future work).

We finally reemphasise that if one identifies via the permutation equivalence some of this
intriguing behaviour is lost. If one does identify in this way, some integer ratios do occur
sporadically for the Ar and Dr series (A4 : 7, D5 : 7) beyond the trivial rank 2 cases where
there is only one quiver. We believe this to be a probabilistic artefact occasionally carried
over through the permutation identification, where there are few factors to choose from when
dividing the number of seeds in these smaller rank algebras under permutation equivalence
identification, so maintaining the integer ratio is more likely. The F4 and G2 ratios remain
7 and 4 respectively after the permutation equivalence identification; and for the Br and Cr

series all the ratios stay the same!

3.8.2.4 Generalised Associahedra Cycle Embedding: Already the vertex embed-
ding of the quiver exchange graph into the seed exchange graph reveals an extraordinary
structure. As motivated when examining all algebra types at depths up to 4, the cycle space
also acts as a foundation of the graph structure and an important tool for analysing these
embeddings.

Let us consider an s-cycle of quivers in a quiver exchange graph, i.e. there is a sequence
of s mutations connecting each quiver exchange graph vertex to the next, eventually repro-
ducing the quiver started with. Then considering the same algebra’s seed exchange graph
and taking the subgraph of seeds which have the same quivers as in the s-cycle produces a
subgraph built out of q t-cycles, where t = ps and p, q, s, t ∈ Z+. We call p the scale factor,
as it describes how the size of the cycle scales, and q the copy factor, as it dictates how many
copies of the cycle are produced.

Looking at all the algebras we consider, the values of p and q change depending on the

100

Cluster Algebra
QEG MCB
[[len,freq]]

Cycle scale factor p
[[value,freq]]

Cycle copy factor q
[[value,freq]]

A4 [[4,108],[6,8],[10,29]] [[1,90],[7,55]] [[1,55],[7,90]]
B4=C4 [[4,60],[6,15],[8,6],[10,4]] [[1,49],[5,36]] [[1,36],[5,49]]
D4 [[4,33],[7,12],[8,6]] [[1,15],[2,2],[4,25],[6,6],[12,3]] [[2,3],[4,6],[6,25],[12,2],[24,15]]
F4 [[4,42],[6,14],[8,4],[10,1]] [[1,31],[7,30]] [[1,30],[7,31]]

A3=D3 [[3,6],[8,2]] [[3,2],[6,6]] [[1,6],[2,2]]
B3=C3 [[3,4],[5,2]] [[4,6]] [[1,6]]

Table 3.8.7: The embedding of the quiver exchange graph minimum cycle basis (QEG MCB) into the
respective seed exchange graph for the rank 3 & 4 finite type cluster algebras. The embedding information
is listed as the p & q values and frequencies that dictate how each cycle scales in size and copies respectively.

cycle in the quiver exchange graph considered. To best illustrate this we again focus on
the generalised associahedra of the finite type rank 4 algebras, where the entire subgraph
corresponding to the chosen cycle can be computed, and the value of pq remains constant,
equalling the respective ‘ratio’ values calculated previously.

The embedding of each quiver exchange graph cycle can be considered by taking the
subgraph of all seeds in the seed exchange graph that have a quiver from the cycle under
consideration. For all the rank 3 and 4 finite type cluster algebras the distribution of p and
q values for the cycles in each algebra’s minimum cycle basis are given in Table 3.8.7. The
minimum cycle basis was used here as it is a sensible set of independent cycles of different
sizes to probe the embedding behaviour.

As can be seen, the p and q values are not the same for all cycles in each algebra, but
matching up the frequencies (and computationally confirmed explicitly) shows that the pq
ratio is always constant at the value listed in Table 3.8.6. Due to the requirement that
all cycles in the seed exchange graph are even, if the quiver exchange graph cycle being
embedded is odd then p has to be even, which is well exemplified with the rank 3 cases
where for A3 the 6 3-cycles have p = 6, and all the B3 cycles have p = 4 (i.e. p = 1 cannot
occur). Note this breaks the symmetry of the ratio being split into its factors where p and
q can take either factor’s value, as seen for the even cycles in the table.

To provide some explicit examples of the cycle embedding we focus on the D4 algebra.
The embedding of 3 different quiver exchange graph cycles in the seed exchange graph are
given in Figure 3.8.5. As can be seen, the two 4-cycles have different (p, q) values, and the
larger 7-cycle has an even p value.

Of particular note is the 4-cycle with seed exchange graph embedding shown in Figure
3.8.5a. This quiver exchange graph 4-cycle comes from commuting action of mutation on
two different vertices, which in the quiver happens when the vertices mutated about are
not connected. When any 4-cycle (in any cluster algebra) is built from commuting action
on disconnected vertices, the respective embedding in the seed exchange graph always has
p = 1, such that the mutation remains a commuting relation with the cluster information
added for all clusters with those quivers. Since the two mutated quiver vertices are not
connected, then no edge connecting them is introduced, and in the cluster each new variable
from a mutation will not include the variable from the unconnected vertex. This does not
hold for all generic 4-cycles, as exemplified in Figure 3.8.5b where the quiver 4-cycle comes
from mutation on different vertices and has p > 1; therefore only when the cycle is from

101

[0]

[2]

[2]

[2]
[0][0]

[0]

[2]

[0]

[2]

[0]

[2]

[2]

[0]

[0][2]

[2]
[0] [2]

[0]

[0]

[2]

[0][2]

[2]
[0] [2]

[0]

[2]

[0]

[0]

[2]

[2]

[0]

[2]

[0]

[2]

[2]

[0][2]

[2]
[0]

[0][2]

[2]

[0]

[2]

[2]

[0]

[2]
[0]

[0]

[2]

[0]

[0][2]

[2]
[0]

[2]

[0]

[0]

[2]

[2]

[0]

[2]

[2]

[0]

[0]

[2]

[0]

[2]

[2][0]

[0]

[2]

[0]

[2]

[2]

[2]

[0]

[0]

[2]

[0]
[2]

[0]

[2]

[0]

[2]

[0]

[0]

[0] [0]

[2]

[0]

[0]

[2]

(a) QEG 4-cycle (p = 1, q = 24)

[3
]

[1]

[0]

[1
]

[3
]

[1
]

[1]

[0]

[2][3]
[0]

[1
]

[0][2]

[0]

[1
]

[0][2]

[0]
[2]

[1] [3]

[2]

[3
]

[0][1]

[2
]

[0]
[1]

[3]

[0]

[2
]

[3][2]

[0]

[2
]

[1]

[3]

[2]

[3]

[2
]

[0]
[1]

[3]

[3
]

[0] [1]

[0]

[2]

[2]

[2]

[3]
[2][0]

[3]

[1]
[0][2]

[3]

[3]

[1]

[2
]

[0]

[3]
[2]

[1]

[3
][1]

[1]

[3
]

[1]

[3
]

[1]

[0]

[1
]

[1
]

[3
]

[0]

[3
]

[2]

[0]

[2
]

[2]

[3
]

[0]
[1]

[0]

[3
]

[1]

[1]

[0]
[2]

[3
]

[0] [2]

[2]

(b) QEG 4-cycle (p = 4, q = 6)

[3] [0]

[0][1]

[0] [2]

[1][3]

[0]
[3]

[0] [3]
[3][1]

[0]
[1]

[0][2]

[1] [2]

[1][3]

[1]
[0]

[2]
[0]

[0][1]

[1] [2]

[1] [3]

[3][0]

[0][2]
[1]

[3]

[1] [3]

[1][2]

[0] [2]

[3] [1]

[1]

[3]

[0][3]

[0][2]

[3][1]

[3]
[0]

[3]

[0][0]

[0]
[3]

[0] [1]

[2][1]

[2] [1]

[0]

[3]

[0][2]
[3] [1]

[1]

[3]

[0]

[0]

[3]

[0]

[0] [1]

[0]
[0]

[0][3]

[3][0]

[0]

[3]

[0] [3][3][1]

[2]

[1]

[3]

[1][3]

[1]
[3]

[0] [1]

[0]

[0]

[0] [2]

[0] [1]

[3]

[3]

[0]

[2]

[1]

[3]

[3] [0]

[2]

[1][3]

[2]
[0]

[0]
[3]

[0] [2]

[1]

[3]

[1]

[2]

[2]

[0][3]

[3]

[0][1]

[0] [3]

[1]

[1]

[1][3]

[3]

[0]

[1]

[2]

[1]

[3]

[2]

[0]

[3]

[1]

[1]

[3]
[1][2]

[1]

[1]

[3]

[3]

[3]

[1]

[1]

[1]

[1]

[2]

[3]

[1]

[0]

(c) QEG 7-cycle (p = 4, q = 6)

Figure 3.8.5: The seed exchange graph embedding of 3 selected cycles from the quiver exchange graph (QEG)
for the D4 cluster algebra. (a) & (b) are 4-cycles, which when embedded become 24 4-cycles and 6 16-cycles
respectively; whilst (c) is a 7-cycle which becomes 6 28-cycles. Each embedded cycle subgraph is shown with
edge labels indicating the respective mutating quiver vertex, which connects the seeds, forming multiples of
the quiver 4 and 7-cycles respectively.

commuting action will p = 1.
In addition, whilst the finite type cases have constant pq, putting an upper-bound on

the p and q values for all cycles in the quiver exchange graph, in the finite-mutation but
not finite, and infinite types, there is no such upper bound. In fact, particularly for the
finite-mutation but not finite cases, since there are finitely many quivers but infinitely many
seeds, for some cycles either (or both) of the p or q values must be infinite.

From examining these finite type cluster algebras we have seen that the pq value remains
constant for all cycles; where the quiver cycle is odd then p must be even, and where a
quiver exchange graph 4-cycle is from commuting action of mutation then p = 1. How the
p and q values are determined more generally for each cycle in each algebra, particularly
finite-mutation and infinite types, is left open for future exploratory work.

3.8.3 ML Results

Given two random seeds it is unclear as to whether a sequence of mutations exists which
connects them, i.e. whether they belong to the same cluster algebra. Beyond simple checks
for the mutation type (a necessary but not sufficient condition), brute force computation of all
mutations is the usual method for checking this equivalence. However, brute force mutation
is extremely computationally expensive, as particularly emphasised by the infeasibility of

102

computing the exchange graph for I2 beyond depth 4.
To speed up this process of checking mutation equivalence, here ML methods are ap-

plied to this problem, with the idea they may be able to find invariants in the variables’
Laurent polynomial structure under mutation and use it for this speeding up of equivalence
evaluation.

In this work, the NNs used had 3 layers of 256 neurons with ReLU activation and a single
sigmoid output neuron, learning the binary cross-entropy loss with the Adam optimiser on
these binary classification problems. Learning performance was measured with the accuracy
and MCC metrics, and 5-fold cross-validation was performed such that the metrics could be
averaged and standard error calculated to provide confidence in the results.

Each cluster must be represented with a tensor for NN input, and within that each cluster
variable Laurent polynomial must be represented. A ‘coo’ inspired style of representation was
enacted for each monomial in the numerator and denominator of the variable’s polynomial,
represented as a 5-vector of entries [c, α, β, γ, δ] for each monomial cxα

1x
β
2x

γ
3x

δ
4. The 5-vectors

are then concatenated, with the denominator single monomial 5-vector at the end. This
representation style had improved sparsity compared to other more physical representation
styles tried.

After all tensors were generated for each variable in a cluster, they were flattened and
concatenated across the cluster with the flattened exchange matrix also, to produce a single
data vector per seed. Note that sometimes the exchange matrix was omitted from the
representation in order to examine the ML performance based on only the clusters, i.e. can
the NNs distinguish the cluster algebra from just sets of generators (or is the exchange matrix
needed as well in order to learn the full generator set structure). Importantly though, the
initial seed’s cluster is the same for all the algebras, along with further repetition of variables
in other clusters between algebras; this leads to some redundancy in information where the
same tensor may be affiliated to multiple algebras. This should make the learning noticeably
harder without the exchange matrix information, as some data will mislead the learning.

Since different variables have different numbers of monomial terms, the length of the
seeds’ vectors varies substantially. To create a consistent input length for all vectors in
an investigation the tensors were post-padded with zeros such that all vectors were the
same length as the longest in that investigation. As the infinite type mutations lead to
more complex Laurent polynomials with far higher degrees, the respective vectors for these
higher-depth outer seeds are much longer than all others across all the algebras. Therefore
in order to stop this dilution of the information for ML comparison between non-infinite
algebras, the investigations were designed to be binary classifications.

For all ML investigations, seeds in the same algebra were not considered identical if they
were related via a permutation of variables in the cluster. Due to the systematic vector
generation procedure this led to different vectors for different permutations, and one may
consider this process as the common practice of data augmentation on the permutation in-
variant algebra seeds if preference is to consider these over those where different permutations
are unique.

103

Example: The example A4 cluster considered in (3.8.3) would hence have vectors corre-
sponding to each cluster variable as

x1 7−→ [1, 1, 0, 0, 0|1, 0, 0, 0, 0] ,
(x1x

2
3 + x1x3 + x2x4 + x3 + 1)

x2x3x4
7−→ [1, 1, 0, 2, 0|1, 1, 0, 1, 0|1, 0, 1, 0, 1|1, 0, 0, 1, 0|1, 0, 0, 0, 0|1, 0, 1, 1, 1] ,

(x2x4 + x3 + 1)

x3x4
7−→ [1, 0, 1, 0, 1|1, 0, 0, 1, 0|1, 0, 0, 0, 0|1, 0, 0, 1, 1] , (3.8.5)

(x3 + 1)

x4
7−→ [1, 0, 0, 1, 0|1, 0, 0, 0, 0|1, 0, 0, 0, 1] ,

noting the final set of 5 in each vector is the denominator. These would all be concatenated,
perhaps with the flattened exchange matrix in (3.8.2), and padded to form the vector input
for the NN.

3.8.3.1 Distinguishing Cluster Algebra Types
The first investigation uses the above described NN architecture to classify seeds coming
from different cluster algebras. The selected algebras considered throughout were 3 finite
type, 2 finite-mutation but not finite type, and 2 infinite type. Where these numbers were
selected for the purpose of ML, such that binary classifications could be performed for all
combinations of types, and in particular the additional F4 finite type was introduced, as its
tensor data is closer in form to the infinite types (with more larger-than-unit entries, due
to the initial quiver’s non-simply laced edge double multiplicity). Furthermore, as there are
many infinite type initial seeds, I1 was also specifically chosen due to its lower quiver edge
multiplicities, making it more similar to the finite type cases.

These selections of the algebras considered were all made such that the tensor represen-
tations of each algebra could not be distinguished by eye; one may look at this data directly
in the respective GitHub. Therefore any learning results would be non-trivial and constitute
some true learning of the algebra structure.

For all pairs selected for binary classification, both algebras were generated to depth 4,
their seeds converted to vectors, both sets of vectors shuffled together, and the 5-fold cross-
validation ML performed. Learning results for each of these investigations are provided in
Table 3.8.8, where each investigation is repeated both with and without the exchange matrix
information (removal reducing the vector length by 16 each time).

For each investigation the algebras considered are labelled by their initial seeds; the
respective class sizes are given, with the full tensor length into which all the seeds are em-
bedded (based on the largest seed in that investigation). In order to compare investigations
the average tensor sparsity is also given. As can be seen from this meta-data, the dataset
sizes for training are very small relative to usual ML investigations, and especially with the
low proportion of non-zero terms there is little information for a NN to learn any relationship
between seeds from the same cluster algebra.

It is therefore evermore surprising that the architecture learns so well in all investigations,
with accuracies and MCC scores > 0.9 in some investigations. It can therefore be confidently
concluded that ML can identify structure inherent to each algebra, and learn the cluster
mutation process.

Interestingly, the inclusion of the exchange matrix information only improves learning for
classifications between algebras of different type. This may be due to the quivers for algebras

104

Investigation Class Sizes
Tensor
Length

Tensor
Sparsity

ML Performance
with EM no EM

Accuracy MCC Accuracy MCC

A4 vs D4 (72, 80) 180 0.120
0.867

± 0.021
0.741

± 0.036
0.893

± 0.026
0.788

± 0.053

A4 vs A13 (72, 109) 280 0.088
0.944

± 0.011
0.886

± 0.023
0.878

± 0.022
0.743

± 0.047

F4 vs I1 (65, 79) 2320 0.015
0.950

± 0.013
0.903

± 0.024
0.936

± 0.012
0.875

± 0.024

A13 vs A22 (109, 105) 280 0.091
0.810

± 0.028
0.630
0.050

0.810
± 0.024

0.633
± 0.049

A13 vs I1 (109, 79) 2320 0.015
0.930

± 0.021
0.855

± 0.048
0.914

± 0.021
0.801

± 0.059

I1 vs I2 (79, 117) 94280 0.008
0.918

± 0.023
0.830

± 0.047
0.923

± 0.021
0.840

± 0.043

Table 3.8.8: ML results for NN binary classification between clusters generated by the respective initial
seeds. The sizes of each class are listed, along with the tensor length used to represent them, and the average
sparsity of those tensors (proportion of non-zero entries). The investigations are carried out with and without
the exchange matrix (EM) information for each cluster. The performance is measured by accuracy and MCC
with 5-fold cross-validation to provide standard error confidence on the measures.

of the same type looking more similar and therefore diluting the already sparse information in
the tensors, hindering the learning performance. This is also surprising since removal of the
exchange matrix information makes some seeds in different algebras identical (for example
the initial seeds); hence one would expect performance to always be worse without it. It is
therefore likely the case that the dilution of relevant information is a more substantial factor
than occasional misleading of the learning for classifications between algebras of the same
type.

3.8.3.2 Distinguishing Generalised Associahedra Whereas the previous investiga-
tions focused on all types with data generated to depth 4, here we learn only the finite types
– but generated to their maximum depth to include all seeds in the algebras.

Since these all have similar complexity cluster variables we embed them all in the same
size tensors of length 1576 (with the exchange matrix information), and perform multiclas-
sification between all of them (including B4 and C4 also). The NN architecture is the same
except now cross-entropy loss must be used instead of binary cross-entropy, and the output
layer is 5 neurons with softmax activation.

The 5-fold cross-validation results give averaged performance measures:

Accuracy = 0.989 ± 0.003 , (3.8.6)

MCC = 0.985 ± 0.004 , (3.8.7)

CM =

0.289 0.003 0.000 0.001 0.000
0.001 0.120 0.000 0.000 0.000
0.002 0.000 0.119 0.000 0.000
0.002 0.000 0.000 0.344 0.000
0.004 0.001 0.000 0.000 0.117

 . (3.8.8)

105

Depth 1 2 3 4 5 6 7 8 9 10 11 12 13

Class Sizes
5
5

14
14

32
33

72
80

151
180

283
372

462
658

653
928

815
1091

927
1167

988
1195

1007
1200

1008
1200

Lengths 76 96 136 196 196 196 196 196 196 196 196 196 196

Table 3.8.9: Data information for the binary classification between A4 clusters and D4 clusters generated
for depths 1-13 (such that all clusters were generated). The class sizes for A4 are shown above those for D4
respectively, as well as the lengths of the flattened tensors that the clusters are embedded in.

0 2 4 6 8 10 12 14
Depth

0.8

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

Le
ar

ni
ng

 P
er

fo
rm

an
ce

Accuracy
MCC

Figure 3.8.6: ML results for binary classification between A4 and D4 clusters with data generated from the
respective initial seeds up to the given depths. Performance is measured with accuracy and MCC, and over
the 5-fold cross-validation the measures are averaged and standard error calculated giving the shown error
bounds.

This learning performance is exceptionally strong, despite now demanding multiclassification
from the architecture.

The averaged confusion matrix, CM , shows the proportion of truly class A4:B4:C4:D4:F4
(given by the row) classified into class A4:B4:C4:D4:F4 (given by the column). Perfect learn-
ing produces a diagonal matrix, and here the learning is very close to that, with off-diagonal
components two orders of magnitude smaller than the diagonal components. The larger
diagonal entries of A4 and D4 reflect their larger frequencies in the dataset. The most fre-
quent non-zero off-diagonals occur where the other algebras are more likely to misclassify as
A4 (larger first column entries), potentially due to lower depth seeds all being exceptionally
similar across the algebras which the NNs then arbitrarily assume to all be A4. Surpris-
ingly, the matrix shows that the architecture can distinguish well between the B4 and C4
architectures, despite the analysis showing that they have identical generalised associahedra
structure (despite different cluster variables).

3.8.3.3 Learning at Varying Depths

In order to connect these results of learning at depth 4 and at the maximum depth for the
finite type full algebras, we examine the A4:D4 binary classification performance as depth
increases from the minimum possible depth 1 (such that there is enough data to train &

106

test) up to depth 13 (where both algebras have all their seeds generated). Here we consider
the ML investigation without the exchange matrix information, as the results in the §3.8.3.1
suggested it was in some sense superfluous for the learning.

As the depth increases not only do the cluster variables become more complex and hence
represented by longer and sparser vectors, there are more variables to train with too. This
investigation aims to probe these competing effects of longer, more complicated vectors to
learn from, against the benefit of more data to learn with. The information regarding the
tensor length needed for embedding, and the respective A4 and D4 class sizes at each depth
are given in Table 3.8.9.

The cross-validation learning results are this time plotted as depth varies in Figure 3.8.6,
with the performance measures’ standard errors given as error bounds. It can be clearly seen
that as depth increases the architectures perform better in the classification, even at lower
depths where the tensor length has not yet stabilised.

3.8.3.4 Identifying Cluster Algebras
Whereas preceding investigations used ML to differentiate which cluster algebra a specific
seed generates, it is also interesting to see if NNs can identify tensor representations which
represent sensible seeds altogether. An easy example would be representations whose ex-
change matrices are not skew-symmetrizable, or have diagonal elements; but beyond these
there are many ways the encoding could define nonsensical seeds (especially if adding non-
zeroes deep into the padding).

In order to explore this learning we first generate suitable fake data. To ensure the fake
data is representative, and not trivially distinguishable by eye, the true seed data for each
cluster algebra is analysed. Each algebra is generated on its own to depth 4, reformulated
as a vector, and padded to the maximum vector length for that algebra. The set of vectors
for each algebra is then assessed to give a discrete distribution of frequencies of all integer
entries that occur in all seed vectors across the algebra.

Then as many fake vectors are generated as there are true vectors, generated to be
the same lengths as the true, with each entry’s value drawn from the respective discrete
distribution of possible values. All the fake vectors were checked to not overlap with the true
vectors, despite a highly improbable chance of this occurring. For each algebra considered
the datasets of true and fake vectors were shuffled and binary classification performed, with
results shown in Table 3.8.10.

The results show perfect classification for all except the infinite types. This indicates that
the NNs can learn some non-trivial structure in the finite and finite-mutation types which it
can use to effectively differentiate from fake data. However, for the infinite types the poorer
performance suggests that the tensor structure is perhaps more erratic and hence harder to
differentiate from the simple random uniform model for its fake data. This infinite data may
be expected to span a larger proportion of the possible tensors generated since there are
infinitely many of them in the algebra, and hence it may also be the case that these fake
tensors are related to seeds at higher depths.

107

Performance
Measure

Cluster Algebra
A4 D4 F4 A13 A22 I1 I2

(196) (136) (336) (296) (176) (2336) (94296)

Accuracy
1.000

± 0.000
1.000

± 0.000
1.000

± 0.000
1.000

± 0.000
1.000

± 0.000
0.819

± 0.0488
0.800

± 0.028

MCC
1.000

± 0.000
1.000

± 0.000
1.000

± 0.000
1.000

± 0.000
1.000

± 0.000
0.671

± 0.078
0.640

± 0.044

Table 3.8.10: Binary classification results for differentiating tensors representing cluster algebras generated to
depth 4 from the respective listed initial seeds, against fake tensors generated to mimic them. The respective
tensor lengths are listed beneath the initial seeds in brackets. Performance is measured with accuracy and
MCC across the 5-fold cross-validation runs.

Conclusion

Network analysis methods uncovered patterns in the cluster algebra exchange graphs unique
to each type. In particular, a symmetric behaviour for quiver exchange graph embedding in
the seed exchange graph showed constant integer ratios between respective numbers of graph
vertices, which we conjecture for Dynkin types of any rank. This behaviour is made manifest
by omitting the permutation equivalence identification in the exchange graphs, since certain
established sets of permutations are not mutation equivalent to the initial seed.

Simple ML architectures could successfully learn to differentiate cluster algebras from
their seeds. Interestingly performing better within types when the exchange matrix informa-
tion was omitted, and better between types when it was included (especially for generalised
associahedra).

4 Outlook

String and gauge theories attempt to describe and explain our natural world through the
language of mathematics and symmetry. In the process of designing and refining these
theories the desire to align them with physical phenomena continually inspires the creation
of new mathematical objects, often with uses far beyond their initial intention.

To truly explore the potential of these objects their bulk generation is required, producing
datasets for analytic and computational analysis. Then where processing of these databases
becomes computationally infeasible statistical methods become essential to this workflow. In
the work for this thesis, data science, network science, and machine learning methods have
been implemented to create, study, and infer from databases of a variety of objects relevant
to high-energy theory.

In 2004.05218 dessins d’enfants, as objects central to Galois theory, were generated from
modular subgroups and the size of their respective Galois orbits learnt. Results highlighted
the importance of faithful representation of data and indicated combinatoric Galois invariants
likely exist in the dessin structure that the architecture could learn. Developments should
consider larger datasets of dessins d’enfants with a greater range of orbit sizes, and classify
dessins into orbits directly.

In 2006.10783 the quiver mutation process dictated by Seiberg duality between gauge
theories was learnt. Success in identifying IR equivalence between theories varied depen-

108

dent on theory mutation type, however the performance did suggest some combinatoric
consistency under mutation which could be learnt. Further steps would aim to expand this
consideration to triality in 2-dimensional N = (2, 0) theories [300], [301] and quadrality in
0-dimensional N = 1 theories [302], as well as to more general quivers with superpotential
information.

In 2103.13436 Hilbert series were used to learn information about the variety they
represent from the first coefficients in their Taylor expansions. The learning efficacy supports
the use of these statistical methods to predict geometric properties from simpler operator
counts performed by hand. There are many more geometric properties that can be learnt in
future work, particularly for more complicated varieties, as well as further investigation into
the Ehrhart series interpretation [303].

In 2106.03695 the genus of amoebae were learnt from point-sampling generated images,
as well as the Newton polynomial coefficients. The success of supervised and unsupervised
methods encourage exploration into further use cases of these techniques within tropical
geometry. Current work in progress extends this investigation to consider higher-dimensional
amoebae, as well as their connection to the Mahler measure [304].

In 2109.09602 lattice polytopes had both their own geometric properties as well as
properties of their respective toric variety learnt from a Plücker representation of their ver-
tices. The relative success compared to the vertex input motivates the use of this GL(n,Z)-
invariant representation in further study, as well as work to identify explicit formulas to
directly compute polytope volume. The ubiquitous use of lattice polytopes in toric geome-
try encourages work into examining the efficacy of the Plücker representation in streamlining
and interpreting variety construction.

In 2112.06350 Calabi-Yau manifolds constructed as hypersurfaces in weighted projective
spaces were analysed to uncover new structure connecting their embedding directly to their
topological features via an unforeseen partitioning. Subsequent work may consider how this
partitioning correlates with other topological parameters, and how it is manifest in the more
general toric variety construction.

In 2202.05845 equivalence classes of brane webs were learnt to uncover subtle gaps in
the current classification of 3-leg webs and sets of 3 7-branes. The relative ease of clustered
NN embedding for different levels of equivalence revealed an inconsistency using the current
invariants to establish equivalence without direct computation. Developing this conjectured
classification to incorporate further necessary invariants or relations are sensible next steps,
as well as examination of webs with more legs, particularly in reducible scenarios.

In 2203.13847 cluster algebra exchange graphs were analysed with network science and
ML methods across the classification of possible mutation types. Embedding analysis moti-
vated omitting permutation equivalence during the generation process, where an unexpected
symmetry emerged. Further examination of this extracted behaviour at higher ranks and in
different algebras is necessary to test the conjectures made, and ML in these more general
scenarios will hopefully help guide this investigation. Current work takes advantage of these
techniques in building cluster algebra databases for Grassmannians [305].

Across the projects discussed in this thesis, as well as the countless others referenced,
methods from computational statistics have proved themselves as a new means to perform
theoretical research. How this interconnection between computational science with theoret-
ical physics and mathematics develops I look forward to witnessing and participating in.

109

Extrapolating the current trajectory of their application I would not be surprised if similar
computational statistical techniques eventually became a common feature in the workflow of
mathematical physicists, offering high-degree-of-freedom level insights into theory behaviour
that academics can use to guide their paths to discovery.

Appendices

A Calabi-Yau Analysis

This appendix contains further learning information for architectures beyond the prototypical
LR focused on in §3.6.2, as well as Hodge number correlations for smaller weights.

A.1 Additional PCA Information

Further to the PCA information provided for the CY dataset in (3.6.7) in §3.6.2, the co-
variance matrices, eigenvectors, and eigenvalues are given for the other three datasets here.
They are respectively labelled ’R’ for the random dataset, ’C’ for coprime dataset, and ’T’
for transverse dataset. The covariance matrices, K, and eigenvalues, λ, are given to the
nearest integer, whilst eigenvectors (as rows of ε) are given to 3 decimal places.

KR =

97 98 98 96 107
98 251 250 245 255
98 250 530 514 542
96 245 514 1122 1157
107 255 542 1157 3614

 , εR =

0.039 0.094 0.191 0.375 0.902
−0.121 −0.298 −0.519 −0.669 0.424
−0.253 −0.517 −0.520 0.626 −0.085
−0.469 −0.591 0.640 −0.145 0.006
−0.837 0.535 −0.117 0.006 0.003

 , λR =

4241
915
296
116
47

 , (A.1.1)

KC =

100 100 101 91 89
100 254 255 254 249
101 255 527 534 527
91 254 534 1166 1163
89 249 527 1163 3418

 , εC =

0.036 0.098 0.199 0.400 0.889
−0.124 −0.297 −0.514 −0.657 0.448
−0.284 −0.532 −0.497 0.617 −0.095
−0.457 −0.570 0.662 −0.168 0.009
−0.833 0.543 −0.109 −0.003 0.000

 , λC =

4091
921
296
109
48

 , (A.1.2)

KT =

6 7 8 12 19
7 20 25 35 55
8 25 62 85 125
12 35 85 173 246
19 55 125 246 417

 , εT =

0.040 0.114 0.264 0.507 0.812
0.102 0.332 0.712 0.349 −0.501
0.198 0.467 0.321 −0.746 0.286
−0.428 −0.660 0.556 −0.253 0.091
−0.875 0.473 −0.105 0.018 −0.001

 , λT =

620
29
17
9
3

 . (A.1.3)

A.2 Additional Hodge Plots

Further to the plots of the two non-trivial Hodge numbers of the CY surfaces, {h1,1, h2,1},
against the largest of the 5-vector weights (w5) in Figure 3.6.5 in §3.6.2, additional plots of
these Hodge numbers against the other weights are given here in Figure A.2.1 for reference.

110

0 20 40 60 80
weight 1

0

100

200

300

400

500
h1,

1

(a)

0 20 40 60 80
weight 1

0

100

200

300

400

500

h2,
1

(b)

0 20 40 60 80 100
weight 2

0

100

200

300

400

500

h1,
1

(c)

0 20 40 60 80 100
weight 2

0

100

200

300

400

500

h2,
1

(d)

0 100 200 300 400 500
weight 3

0

100

200

300

400

500

h1,
1

(e)

0 100 200 300 400 500
weight 3

0

100

200

300

400

500

h2,
1

(f)

111

0 200 400 600 800 1000 1200
weight 4

0

100

200

300

400

500
h1,

1

(g)

0 200 400 600 800 1000 1200
weight 4

0

100

200

300

400

500

h2,
1

(h)

Figure A.2.1: Plots of the non-trivial Hodge numbers {h1,1, h2,1} against each of the first 4 weights in the
CY 5-vectors. Behaviour is similar to that with the final weight, showing a linear relationship to h1,1 and a
relationship preserving the mirror symmetry structure for h2,1.

A.3 Additional Misclassification Analysis

Distributions of correctly and incorrectly classified CY 5-vectors for each of the other archi-
tectures (SVM and NN), trained on 50 CY and 50 non-CY 5-vectors, are given in Figure
A.3.1; complementary to the plots in Figure 3.6.9. Note the architectures had the same
hyperparameters as in previous investigations of §3.6.2.

The behaviour is similar to that for the LR, where training with Random 5-vectors
improves determination for high h2,1, whilst training with Transverse 5-vectors improves
determination for high h1,1.

0 100 200 300 400 500
h1, 1

0

100

200

300

400

500

h2,
1

classified
misclassified

(a) SVM trained with Random

0 100 200 300 400 500
h1, 1

0

100

200

300

400

500

h2,
1

classified
misclassified

(b) NN trained with Random

112

0 100 200 300 400 500
h1, 1

0

100

200

300

400

500

h2,
1

classified
misclassified

(c) SVM trained with Coprime

0 100 200 300 400 500
h1, 1

0

100

200

300

400

500

h2,
1

classified
misclassified

(d) NN trained with Coprime

0 100 200 300 400 500
h1, 1

0

100

200

300

400

500

h2,
1

classified
misclassified

(e) SVM trained with Transverse

0 100 200 300 400 500
h1, 1

0

100

200

300

400

500

h2,
1

classified
misclassified

(f) NN trained with Transverse

Figure A.3.1: Classified and misclassified CY 5-vectors plotted with respect to Hodge numbers, where
prediction was performed by either of the architectures: Support Vector Machine (SVM), or Neural Network
(NN); trained with each of the non-CY datasets respectively.

B Cluster Algebra Data

This appendix contains relevant diagrams of quivers and exchange graphs for the cluster
algebras considered in the work of §3.8 [37].

B.1 Oriented Quivers

The quivers used to generate the considered rank 4 cluster algebras used in the general
network analysis are shown in Figure B.1.1. Then, the additional finite type non-simply
laced oriented quivers, used for an exhaustive analysis of the rank 4 finite type generalised
associahedra, in Figure B.1.2. The blue boxes bounding the quivers are an artefact of the
drawing and may be ignored.

113

0
1

2 3

(a) A4 (finite)

0

1

2

3

(b) D4 (finite)

(2, -1)

0

1

2 3

(c) F4 (finite)

0

1

2

3

(d) A13 (finite-mutation)

0

1

2

3

(e) A22 (finite-mutation)

2

0

1

2

3

(f) I1 (infinite)

2

2

2

0

1

2

3

(g) I2 (infinite)

Figure B.1.1: Quivers defining the exchange matrices for the initial seeds. They are all rank 4, and generate
cluster algebras of finite type (a), (b), (c); finite-mutation type that are not finite type (d), (e); and infinite
type (f), (g). Vertices are labelled with respect to the row/column number in the exchange matrix; the
double edge multiplicity in F4 indicates it is not skew-symmetric.

114

(1, -2)

0

1

2

3

(a) B4

(2, -1)

0

1

2

3

(b) C4

Figure B.1.2: Quivers defining the exchange matrices for the remaining rank 4 finite type cluster algebra
initial seeds. Both (a) B4 and (b) C4 are skew-symmetrisable, shown by the non-simply laced, double
weighted, edges of opposite weighting.

B.2 Seed Exchange Graphs

The seed exchange graphs for the considered cluster algebras, analysed in §3.8.2, computed
up to depth 4.

0

1

2 3

4

5

6

7

8

9

10

11

12

13

14

15
16

17

18

19

20

21

22

23 24

25

26 27

28

29

30
31

32
33 34

35
36

37

38

39
40

41
42

43 44

45

46

47

48
49

50

51
52 53 54 55

56
57

58 59

60

61
62

63

64

65

66

67
68

69
70

71

(a) A4 (finite)

0

1

2 3

4

5

6

7

8

9
10 11

12

13

14
15

16

17
18

19

20

21
22

23 24

25 26 27
28

29

30

31

32

33343536
37

3839

40

41
42

43

44

45
4647

48
49
50

51

5253
54

55
56 57

58 59 60 61 62

63

64 65
66

67
68

69
70

71
72

73
74

75
76

77
7879

(b) D4 (finite)

0

1

2
3

4

5

6

7

8

9

10

11

12

13

14

15

16

17
18

19

20

21

22

23
24

25

26

27

28

29

30

31
32

33

34

35
36

37

38

39
40

41 42

43

44

45

46
47

48

49 50
51 52

53

54

55
56

57
58

59

60

61
62

63
64

(c) F4 (finite)

115

0

1

2
3

4

5

6

7

8

9

10

11
12

13

14

1516
17

18
19

20
21

22

23

24

25
26

27
28

29
30 31 32

33
34

35

36

37

38
3940

41
4243444546

4748

49
5051

52
53

54

55

56
57

58
59

60
61
62

63
64

65
66
67

68
69 70

71 72

73 74
75

76
77

78

79
80 8182 83

84
85

86 87

88

89
90

91
92

93

94
95
96
97
98

99
100

101
102

103104
105

106107
108

(d) A13 (finite-mutation)

0

1

2
3

4

5

6

7

8

9

10

11
12

13

14

1516
17

18
19

20

21

22

23

24

25
26

27 28

29 30

31 32

33

34

35
36

37
38

39
4041424344

4546

47
48

49
50

51

52
53

54
55

56
57

58
59
60

61
62

63
64
65

66
67

6869
70 71

72 73
74

75

76

77
78 7980 81 82

83 84 85
86

87
88

89
90

91
92
93

94
95

96
97

98

99
100

101102
103104

(e) A22 (finite-mutation)

0

1

2
3

4

5

6

7

8

9

10

11

12

13

14
15

16

17

18

19

20

21

22

23 24 25

26

27
28

29

30

31

32
33

34

35 36
37

38

39

4041
42

43
44

45 46

47

48

49

50
51

52

53

54
55

56
57

58
59

60

61
62
63

64
65

66
67

68 69

70

71

72
73

74

75
7677

78

(f) I1 (infinite)

0

1

2 3

4

5

6

7

8

9

10

11

12

13

14

151617

18

19

20

21
22

23

24

25

26
27 28

29 30

31 32 33

34
35
36

37
38

39

40
4142

4344
4546474849

50

51

5253

54
55

56

57

58
59

60
61
62

63

64

65
66

67

68
69

70

71
72

73
74

75
76

77
78
79 80

81
82 83 84

85

86

87 88
89 90 9192 93

9495

96

97
98

99

100
101

102
103

104
105
106

107
108

109
110

111112
113

114115
116

(g) I2 (infinite)

Figure B.2.1: The seed exchange graphs generated to depth 4 for each of the considered cluster algebras.
Types are labelled, where finite-mutation are specifically not finite type so are infinite for these seed exchange
graphs but finite for the respective quiver exchange graphs (not shown). Vertices are labelled in the order
they are generated starting from the initial seed ‘0’.

References

[1] A. Einstein, “The Foundation of the General Theory of Relativity,” Annalen Phys.,
vol. 49, no. 7, J.-P. Hsu and D. Fine, Eds., pp. 769–822, 1916. doi: 10.1002/andp.
200590044.

[2] H. Weyl, “Elektron und gravitation. I,” Zeitschrift für Physik, vol. 56, no. 5, pp. 330–
352, May 1929, issn: 0044-3328. doi: 10.1007/BF01339504.

[3] C.-N. Yang and R. L. Mills, “Conservation of Isotopic Spin and Isotopic Gauge In-
variance,” Phys. Rev., vol. 96, J.-P. Hsu and D. Fine, Eds., pp. 191–195, 1954. doi:
10.1103/PhysRev.96.191.

[4] P. W. Higgs, “Broken Symmetries and the Masses of Gauge Bosons,” Phys. Rev. Lett.,
vol. 13, J. C. Taylor, Ed., pp. 508–509, 1964. doi: 10.1103/PhysRevLett.13.508.

[5] T. W. B. Kibble, “Symmetry breaking in nonAbelian gauge theories,” Phys. Rev.,
vol. 155, J. C. Taylor, Ed., pp. 1554–1561, 1967. doi: 10.1103/PhysRev.155.1554.

[6] R. P. Feynman, “Space-time approach to nonrelativistic quantum mechanics,” Rev.
Mod. Phys., vol. 20, pp. 367–387, 1948. doi: 10.1103/RevModPhys.20.367.

116

https://doi.org/10.1002/andp.200590044
https://doi.org/10.1002/andp.200590044
https://doi.org/10.1007/BF01339504
https://doi.org/10.1103/PhysRev.96.191
https://doi.org/10.1103/PhysRevLett.13.508
https://doi.org/10.1103/PhysRev.155.1554
https://doi.org/10.1103/RevModPhys.20.367

[7] J. Dai, R. G. Leigh, and J. Polchinski, “New Connections Between String Theories,”
Mod. Phys. Lett. A, vol. 4, pp. 2073–2083, 1989. doi: 10.1142/S0217732389002331.

[8] L. Susskind, “Harmonic-oscillator analogy for the Veneziano model,” Phys. Rev. Lett.,
vol. 23, pp. 545–547, 1969. doi: 10.1103/PhysRevLett.23.545.

[9] L. Susskind, “Structure of hadrons implied by duality,” Phys. Rev. D, vol. 1, pp. 1182–
1186, 1970. doi: 10.1103/PhysRevD.1.1182.

[10] P. Ramond, “Dual theory for free fermions,” Phys. Rev. D, vol. 3, pp. 2415–2418, 10
May 1971. doi: 10.1103/PhysRevD.3.2415.

[11] A. Neveu and J. H. Schwarz, “Tachyon-free dual model with a positive-intercept
trajectory,” Phys. Lett. B, vol. 34, pp. 517–518, 1971. doi: 10.1016/0370-2693(71)
90669-1.

[12] J. Scherk and J. H. Schwarz, “Dual models for non-hadrons,” Nuclear Physics B,
vol. 81, no. 1, pp. 118–144, 1974, issn: 0550-3213. doi: 10.1016/0550-3213(74)
90010-8.

[13] T. Yoneya, “Connection of Dual Models to Electrodynamics and Gravidynamics,”
Prog. Theor. Phys., vol. 51, pp. 1907–1920, 1974. doi: 10.1143/PTP.51.1907.

[14] F. Gliozzi, J. Scherk, and D. Olive, “Supersymmetry, supergravity theories and the
dual spinor model,” Nuclear Physics B, vol. 122, no. 2, pp. 253–290, 1977, issn:
0550-3213. doi: 10.1016/0550-3213(77)90206-1.

[15] M. B. Green and J. H. Schwarz, “Anomaly Cancellation in Supersymmetric D=10
Gauge Theory and Superstring Theory,” Phys. Lett. B, vol. 149, pp. 117–122, 1984.
doi: 10.1016/0370-2693(84)91565-X.

[16] M. B. Green and J. H. Schwarz, “Supersymmetrical string theories,” Physics Letters
B, vol. 109, no. 6, pp. 444–448, 1982, issn: 0370-2693. doi: 10.1016/0370-2693(82)
91110-8.

[17] D. J. Gross, J. A. Harvey, E. Martinec, and R. Rohm, “Heterotic string,” Phys. Rev.
Lett., vol. 54, pp. 502–505, 6 Feb. 1985. doi: 10.1103/PhysRevLett.54.502.

[18] C. M. Hull and P. K. Townsend, “Unity of superstring dualities,” Nucl. Phys. B,
vol. 438, pp. 109–137, 1995. doi: 10.1016/0550-3213(94)00559-W. arXiv: hep-
th/9410167.

[19] E. Witten, “String theory dynamics in various dimensions,” Nucl. Phys. B, vol. 443,
pp. 85–126, 1995. doi: 10.1016/0550-3213(95)00158-O. arXiv: hep-th/9503124.

[20] P. Candelas, G. T. Horowitz, A. Strominger, and E. Witten, “Vacuum Configurations
for Superstrings,” Nucl. Phys. B, vol. 258, pp. 46–74, 1985. doi: 10.1016/0550-
3213(85)90602-9.

[21] M. R. Douglas, “The Statistics of string / M theory vacua,” JHEP, vol. 05, p. 046,
2003. doi: 10.1088/1126-6708/2003/05/046. arXiv: hep-th/0303194.

[22] A. Bayucan, R. L. Henderson, C. Lesiak, B. Mann, T. Proett, and D. Tweten,
“Portable batch system,” MRJ Technology Solutions., 1999.

117

https://doi.org/10.1142/S0217732389002331
https://doi.org/10.1103/PhysRevLett.23.545
https://doi.org/10.1103/PhysRevD.1.1182
https://doi.org/10.1103/PhysRevD.3.2415
https://doi.org/10.1016/0370-2693(71)90669-1
https://doi.org/10.1016/0370-2693(71)90669-1
https://doi.org/10.1016/0550-3213(74)90010-8
https://doi.org/10.1016/0550-3213(74)90010-8
https://doi.org/10.1143/PTP.51.1907
https://doi.org/10.1016/0550-3213(77)90206-1
https://doi.org/10.1016/0370-2693(84)91565-X
https://doi.org/10.1016/0370-2693(82)91110-8
https://doi.org/10.1016/0370-2693(82)91110-8
https://doi.org/10.1103/PhysRevLett.54.502
https://doi.org/10.1016/0550-3213(94)00559-W
https://arxiv.org/abs/hep-th/9410167
https://arxiv.org/abs/hep-th/9410167
https://doi.org/10.1016/0550-3213(95)00158-O
https://arxiv.org/abs/hep-th/9503124
https://doi.org/10.1016/0550-3213(85)90602-9
https://doi.org/10.1016/0550-3213(85)90602-9
https://doi.org/10.1088/1126-6708/2003/05/046
https://arxiv.org/abs/hep-th/0303194

[23] A. B. Yoo, M. A. Jette, and M. Grondona, “Slurm: Simple linux utility for resource
management,” in Job Scheduling Strategies for Parallel Processing, D. Feitelson, L.
Rudolph, and U. Schwiegelshohn, Eds., Berlin, Heidelberg: Springer Berlin Heidel-
berg, 2003, pp. 44–60, isbn: 978-3-540-39727-4.

[24] M. Abadi, A. Agarwal, P. Barham, et al., TensorFlow: Large-scale machine learn-
ing on heterogeneous systems, Software available from tensorflow.org, 2015. [Online].
Available: https://www.tensorflow.org/.

[25] F. Pedregosa, G. Varoquaux, A. Gramfort, et al., “Scikit-learn: Machine learning in
Python,” Journal of Machine Learning Research, vol. 12, pp. 2825–2830, 2011.

[26] C. Tralie, N. Saul, and R. Bar-On, “Ripser.py: A lean persistent homology library for
python,” The Journal of Open Source Software, vol. 3, no. 29, p. 925, Sep. 2018. doi:
10.21105/joss.00925.

[27] A. A. Hagberg, D. A. Schult, and P. Swart, “Exploring network structure, dynamics,
and function using networkx,” 2008.

[28] The Sage Developers, Sagemath, the Sage Mathematics Software System (Version
9.4), 2020. [Online]. Available: https://www.sagemath.org.

[29] W. R. Inc., Mathematica, Version 13.1, Champaign, IL, 2022. [Online]. Available:
https://www.wolfram.com/mathematica.

[30] Y.-H. He, E. Hirst, and T. Peterken, “Machine-learning dessins d’enfants: explorations
via modular and Seiberg-Witten curves,” J. Phys. A, vol. 54, no. 7, p. 075 401, 2021.
doi: 10.1088/1751-8121/abbc4f. arXiv: 2004.05218 [hep-th].

[31] J. Bao, S. Franco, Y.-H. He, E. Hirst, G. Musiker, and Y. Xiao, “Quiver Mutations,
Seiberg Duality and Machine Learning,” Phys. Rev. D, vol. 102, no. 8, p. 086 013,
2020. doi: 10.1103/PhysRevD.102.086013. arXiv: 2006.10783 [hep-th].

[32] J. Bao, Y.-H. He, E. Hirst, J. Hofscheier, A. Kasprzyk, and S. Majumder, “Hilbert se-
ries, machine learning, and applications to physics,” Phys. Lett. B, vol. 827, p. 136 966,
2022. doi: 10.1016/j.physletb.2022.136966. arXiv: 2103.13436 [hep-th].

[33] J. Bao, Y.-H. He, and E. Hirst, “Neurons on Amoebae,” Jun. 2021. arXiv: 2106.03695
[math.AG].

[34] J. Bao, Y.-H. He, E. Hirst, J. Hofscheier, A. Kasprzyk, and S. Majumder, “Polytopes
and Machine Learning,” Sep. 2021. arXiv: 2109.09602 [math.CO].

[35] D. S. Berman, Y.-H. He, and E. Hirst, “Machine learning Calabi-Yau hypersurfaces,”
Phys. Rev. D, vol. 105, no. 6, p. 066 002, 2022. doi: 10.1103/PhysRevD.105.066002.
arXiv: 2112.06350 [hep-th].

[36] G. Arias-Tamargo, Y.-H. He, E. Heyes, E. Hirst, and D. Rodriguez-Gomez, “Brain
webs for brane webs,” Phys. Lett. B, vol. 833, p. 137 376, 2022. doi: 10.1016/j.
physletb.2022.137376. arXiv: 2202.05845 [hep-th].

[37] P.-P. Dechant, Y.-H. He, E. Heyes, and E. Hirst, “Cluster Algebras: Network Science
and Machine Learning,” Mar. 2022. arXiv: 2203.13847 [math.CO].

118

https://www.tensorflow.org/
https://doi.org/10.21105/joss.00925
https://www.sagemath.org
https://www.wolfram.com/mathematica
https://doi.org/10.1088/1751-8121/abbc4f
https://arxiv.org/abs/2004.05218
https://doi.org/10.1103/PhysRevD.102.086013
https://arxiv.org/abs/2006.10783
https://doi.org/10.1016/j.physletb.2022.136966
https://arxiv.org/abs/2103.13436
https://arxiv.org/abs/2106.03695
https://arxiv.org/abs/2106.03695
https://arxiv.org/abs/2109.09602
https://doi.org/10.1103/PhysRevD.105.066002
https://arxiv.org/abs/2112.06350
https://doi.org/10.1016/j.physletb.2022.137376
https://doi.org/10.1016/j.physletb.2022.137376
https://arxiv.org/abs/2202.05845
https://arxiv.org/abs/2203.13847

[38] J. Bao, Y.-H. He, E. Hirst, and S. Pietromonaco, “Lectures on the Calabi-Yau Land-
scape,” Jan. 2020. arXiv: 2001.01212 [hep-th].

[39] J. Bao, O. Foda, Y.-H. He, et al., “Dessins d’enfants, Seiberg-Witten curves and
conformal blocks,” JHEP, vol. 05, p. 065, 2021. doi: 10.1007/JHEP05(2021)065.
arXiv: 2101.08843 [hep-th].

[40] J. Bao, A. Hanany, Y.-H. He, and E. Hirst, “Some Open Questions in Quiver Gauge
Theory,” Aug. 2021. doi: 10.22199/issn.0717-6279-5274. arXiv: 2108.05167
[hep-th].

[41] E. Hirst, “Machine Learning for Hilbert Series,” in Nankai Symposium on Mathe-
matical Dialogues: In celebration of S.S.Chern’s 110th anniversary, Mar. 2022. arXiv:
2203.06073 [hep-th].

[42] J. Bao, Y.-H. He, E. Heyes, and E. Hirst, “Machine Learning Algebraic Geometry for
Physics,” Apr. 2022. arXiv: 2204.10334 [hep-th].

[43] S. Lie, “Theorie der transformationsgruppen I,” Mathematische Annalen, vol. 16,
no. 4, pp. 441–528, Dec. 1880, issn: 1432-1807. doi: 10.1007/BF01446218.

[44] E. B. Dynkin, “The structure of semi-simple algebras,” Uspekhi Mat. Nauk, vol. 2,
pp. 59–127, 4(20) 1947.

[45] H. Nakajima, “Instantons on ALE spaces, quiver varieties, and Kac-Moody algebras,”
Duke Math. J., vol. 76, no. 2, pp. 365–416, 1994. doi: 10.1215/S0012-7094-94-
07613-8.

[46] M. R. Douglas and G. W. Moore, “D-branes, quivers, and ALE instantons,” Mar.
1996. arXiv: hep-th/9603167.

[47] F. J. Dyson, “The Radiation theories of Tomonaga, Schwinger, and Feynman,” Phys.
Rev., vol. 75, pp. 486–502, 1949. doi: 10.1103/PhysRev.75.486.

[48] K. G. Wilson, “The Renormalization Group: Critical Phenomena and the Kondo
Problem,” Rev. Mod. Phys., vol. 47, p. 773, 1975. doi: 10.1103/RevModPhys.47.773.

[49] N. Seiberg, “Electric - magnetic duality in supersymmetric Non-Abelian gauge theo-
ries,” Nucl. Phys., vol. B435, pp. 129–146, 1995. doi: 10.1016/0550-3213(94)00023-
8. arXiv: hep-th/9411149 [hep-th].

[50] I. R. Klebanov and M. J. Strassler, “Supergravity and a confining gauge theory:
Duality cascades and chi SB resolution of naked singularities,” JHEP, vol. 08, p. 052,
2000. doi: 10.1088/1126-6708/2000/08/052. arXiv: hep-th/0007191.

[51] S. Franco, A. Hanany, Y.-H. He, and P. Kazakopoulos, “Duality walls, duality trees
and fractional branes,” 2003. arXiv: hep-th/0306092 [hep-th].

[52] S. Fomin and A. Zelevinsky, “Cluster algebras I: Foundations,” Journal of the Ameri-
can Mathematical Society, vol. 15, no. 2, pp. 497–529, 2002, issn: 08940347, 10886834.

[53] S. Fomin and A. Zelevinsky, “Cluster algebras II: Finite type classification,” Inven-
tiones mathematicae, vol. 154, pp. 63–121, Jan. 2003. doi: 10.1007/s00222-003-
0302-y.

119

https://arxiv.org/abs/2001.01212
https://doi.org/10.1007/JHEP05(2021)065
https://arxiv.org/abs/2101.08843
https://doi.org/10.22199/issn.0717-6279-5274
https://arxiv.org/abs/2108.05167
https://arxiv.org/abs/2108.05167
https://arxiv.org/abs/2203.06073
https://arxiv.org/abs/2204.10334
https://doi.org/10.1007/BF01446218
https://doi.org/10.1215/S0012-7094-94-07613-8
https://doi.org/10.1215/S0012-7094-94-07613-8
https://arxiv.org/abs/hep-th/9603167
https://doi.org/10.1103/PhysRev.75.486
https://doi.org/10.1103/RevModPhys.47.773
https://doi.org/10.1016/0550-3213(94)00023-8
https://doi.org/10.1016/0550-3213(94)00023-8
https://arxiv.org/abs/hep-th/9411149
https://doi.org/10.1088/1126-6708/2000/08/052
https://arxiv.org/abs/hep-th/0007191
https://arxiv.org/abs/hep-th/0306092
https://doi.org/10.1007/s00222-003-0302-y
https://doi.org/10.1007/s00222-003-0302-y

[54] P. Gabriel, “Unzerlegbare Darstellungen. I,” Manuscripta Math., vol. 6, 71–103; cor-
rection, ibid. 6 (1972), 309, 1972, issn: 0025-2611. doi: 10.1007/BF01298413.

[55] A. Felikson, M. Shapiro, and P. Tumarkin, “Skew-symmetric cluster algebras of finite
mutation type,” Journal of the European Mathematical Society, 1135–1180, 2012,
issn: 1435-9855. doi: 10.4171/jems/329.

[56] H. Derksen and T. Owen, “New graphs of finite mutation type,” Electron. J. Combin.,
vol. 15, no. 1, Research Paper 139, 15, 2008.

[57] A. Felikson, M. Shapiro, and P. Tumarkin, “Cluster algebras of finite mutation type
via unfoldings,” International Mathematics Research Notices, vol. 2012, Jun. 2010.
doi: 10.1093/imrn/rnr072.

[58] G. V. Bely̆ı, “On Galois extensions of a maximal cyclotomic field,” Mathematics of the
USSR-Izvestiya, vol. 14, no. 2, pp. 247–256, Apr. 1980. doi: 10.1070/im1980v014n02abeh001096.

[59] A. Grothendieck, “Esquisse d’un programme,” 1984. [Online]. Available: https://
webusers.imj-prg.fr/~leila.schneps/grothendieckcircle/EsquisseFr.pdf.

[60] S. Ashok, F. Cachazo, and E. Dell’Aquila, “Children’s drawings from Seiberg-Witten
curves,” Communications in Number Theory and Physics, vol. 1, Dec. 2006. doi:
10.4310/CNTP.2007.v1.n2.a1.

[61] N. Seiberg and E. Witten, “Electric - magnetic duality, monopole condensation, and
confinement in N=2 supersymmetric Yang-Mills theory,” Nucl. Phys. B, vol. 426,
pp. 19–52, 1994, [Erratum: Nucl.Phys.B 430, 485–486 (1994)]. doi: 10.1016/0550-
3213(94)90124-4. arXiv: hep-th/9407087.

[62] V. Jejjala, S. Ramgoolam, and D. Rodriguez-Gomez, “Toric CFTs, Permutation
Triples and Belyi Pairs,” JHEP, vol. 03, p. 065, 2011. doi: 10.1007/JHEP03(2011)
065. arXiv: 1012.2351 [hep-th].

[63] A. Hanany, Y.-H. He, V. Jejjala, J. Pasukonis, S. Ramgoolam, and D. Rodriguez-
Gomez, “The Beta Ansatz: A Tale of Two Complex Structures,” JHEP, vol. 06,
p. 056, 2011. doi: 10.1007/JHEP06(2011)056. arXiv: 1104.5490 [hep-th].

[64] Y.-H. He, “Bipartita: Physics, Geometry & Number Theory,” in 29th International
Colloquium on Group-Theoretical Methods in Physics, Oct. 2012. arXiv: 1210.4388
[hep-th].

[65] S. Franco, A. Hanany, D. Martelli, J. Sparks, D. Vegh, and B. Wecht, “Gauge theories
from toric geometry and brane tilings,” JHEP, vol. 01, p. 128, 2006. doi: 10.1088/
1126-6708/2006/01/128. arXiv: hep-th/0505211.

[66] S. Franco, A. Hanany, K. D. Kennaway, D. Vegh, and B. Wecht, “Brane dimers and
quiver gauge theories,” JHEP, vol. 01, p. 096, 2006. doi: 10.1088/1126-6708/2006/
01/096. arXiv: hep-th/0504110.

[67] S. Benvenuti, B. Feng, A. Hanany, and Y.-H. He, “Counting BPS Operators in Gauge
Theories: Quivers, Syzygies and Plethystics,” JHEP, vol. 11, p. 050, 2007. doi: 10.
1088/1126-6708/2007/11/050. arXiv: hep-th/0608050.

120

https://doi.org/10.1007/BF01298413
https://doi.org/10.4171/jems/329
https://doi.org/10.1093/imrn/rnr072
https://doi.org/10.1070/im1980v014n02abeh001096
https://webusers.imj-prg.fr/~leila.schneps/grothendieckcircle/EsquisseFr.pdf
https://webusers.imj-prg.fr/~leila.schneps/grothendieckcircle/EsquisseFr.pdf
https://doi.org/10.4310/CNTP.2007.v1.n2.a1
https://doi.org/10.1016/0550-3213(94)90124-4
https://doi.org/10.1016/0550-3213(94)90124-4
https://arxiv.org/abs/hep-th/9407087
https://doi.org/10.1007/JHEP03(2011)065
https://doi.org/10.1007/JHEP03(2011)065
https://arxiv.org/abs/1012.2351
https://doi.org/10.1007/JHEP06(2011)056
https://arxiv.org/abs/1104.5490
https://arxiv.org/abs/1210.4388
https://arxiv.org/abs/1210.4388
https://doi.org/10.1088/1126-6708/2006/01/128
https://doi.org/10.1088/1126-6708/2006/01/128
https://arxiv.org/abs/hep-th/0505211
https://doi.org/10.1088/1126-6708/2006/01/096
https://doi.org/10.1088/1126-6708/2006/01/096
https://arxiv.org/abs/hep-th/0504110
https://doi.org/10.1088/1126-6708/2007/11/050
https://doi.org/10.1088/1126-6708/2007/11/050
https://arxiv.org/abs/hep-th/0608050

[68] B. Feng, A. Hanany, and Y.-H. He, “Counting gauge invariants: The Plethystic pro-
gram,” JHEP, vol. 03, p. 090, 2007. doi: 10.1088/1126-6708/2007/03/090. arXiv:
hep-th/0701063.

[69] M. F. Atiyah and I. G. Macdonald, Introduction to commutative algebra. Addison-
Wesley Publishing Co., Reading, Mass.-London-Don Mills Ont., 1969, pp. ix+128.

[70] A. Strominger, S.-T. Yau, and E. Zaslow, “Mirror symmetry is T duality,” Nucl.
Phys. B, vol. 479, pp. 243–259, 1996. doi: 10.1016/0550-3213(96)00434-8. arXiv:
hep-th/9606040.

[71] J. M. Maldacena, “The Large N limit of superconformal field theories and super-
gravity,” Adv. Theor. Math. Phys., vol. 2, pp. 231–252, 1998. doi: 10 . 1023 / A :

1026654312961. arXiv: hep-th/9711200.

[72] L. J. Dixon, “Some world sheet properties of Superstring compactifications, on Orb-
ifolds and otherwise,” in Summer Workshop in High-energy Physics and Cosmology,
Oct. 1987.

[73] W. Lerche, C. Vafa, and N. P. Warner, “Chiral Rings in N=2 Superconformal The-
ories,” Nucl. Phys. B, vol. 324, pp. 427–474, 1989. doi: 10.1016/0550-3213(89)
90474-4.

[74] P. Candelas, M. Lynker, and R. Schimmrigk, “Calabi-Yau Manifolds in Weighted
P(4),” Nucl. Phys. B, vol. 341, pp. 383–402, 1990. doi: 10.1016/0550-3213(90)
90185-G.

[75] E. Calabi, “On Kähler manifolds with vanishing canonical class,” 1957.

[76] S.-T. Yau, “Calabi’s Conjecture and some new results in algebraic geometry,” Proc.
Nat. Acad. Sci., vol. 74, pp. 1798–1799, 1977. doi: 10.1073/pnas.74.5.1798.

[77] S.-T. Yau, “On the ricci curvature of a compact kahler manifold and the complex
monge-ampere equation, I*,” Communications on Pure and Applied Mathematics,
vol. 31, pp. 339–411, 1978.

[78] Y.-H. He, The Calabi-Yau Landscape: From Geometry, to Physics, to Machine Learn-
ing (Lecture Notes in Mathematics). May 2021, isbn: 978-3-030-77561-2, 978-3-030-
77562-9. doi: 10.1007/978-3-030-77562-9. arXiv: 1812.02893 [hep-th].

[79] P. Candelas, A. M. Dale, C. A. Lutken, and R. Schimmrigk, “Complete Intersection
Calabi-Yau Manifolds,” Nucl. Phys. B, vol. 298, p. 493, 1988. doi: 10.1016/0550-
3213(88)90352-5.

[80] M. Gagnon and Q. Ho-Kim, “An Exhaustive list of complete intersection Calabi-
Yau manifolds,” Mod. Phys. Lett. A, vol. 9, pp. 2235–2243, 1994. doi: 10.1142/

S0217732394002094.

[81] P. S. Green, T. Hubsch, and C. A. Lutken, “All Hodge Numbers of All Complete
Intersection Calabi-Yau Manifolds,” Class. Quant. Grav., vol. 6, pp. 105–124, 1989.
doi: 10.1088/0264-9381/6/2/006.

[82] J. K. Kim, C. J. Park, and Y. Yoon, “Calabi-Yau Manifolds From Complete Intersec-
tions in Products of Weighted Complex Projective Spaces,” Phys. Lett. B, vol. 224,
pp. 108–114, 1989. doi: 10.1016/0370-2693(89)91058-7.

121

https://doi.org/10.1088/1126-6708/2007/03/090
https://arxiv.org/abs/hep-th/0701063
https://doi.org/10.1016/0550-3213(96)00434-8
https://arxiv.org/abs/hep-th/9606040
https://doi.org/10.1023/A:1026654312961
https://doi.org/10.1023/A:1026654312961
https://arxiv.org/abs/hep-th/9711200
https://doi.org/10.1016/0550-3213(89)90474-4
https://doi.org/10.1016/0550-3213(89)90474-4
https://doi.org/10.1016/0550-3213(90)90185-G
https://doi.org/10.1016/0550-3213(90)90185-G
https://doi.org/10.1073/pnas.74.5.1798
https://doi.org/10.1007/978-3-030-77562-9
https://arxiv.org/abs/1812.02893
https://doi.org/10.1016/0550-3213(88)90352-5
https://doi.org/10.1016/0550-3213(88)90352-5
https://doi.org/10.1142/S0217732394002094
https://doi.org/10.1142/S0217732394002094
https://doi.org/10.1088/0264-9381/6/2/006
https://doi.org/10.1016/0370-2693(89)91058-7

[83] V. V. Batyrev, “Dual polyhedra and mirror symmetry for Calabi-Yau hypersurfaces in
toric varieties,” J. Alg. Geom., vol. 3, pp. 493–545, 1994. arXiv: alg-geom/9310003.

[84] M. Kreuzer and H. Skarke, “Reflexive polyhedra, weights and toric Calabi-Yau fibra-
tions,” Rev. Math. Phys., vol. 14, pp. 343–374, 2002. doi: 10.1142/S0129055X0200120X.
arXiv: math/0001106.

[85] M. Kreuzer and H. Skarke, “Classification of reflexive polyhedra in three-dimensions,”
Adv. Theor. Math. Phys., vol. 2, pp. 853–871, 1998. doi: 10.4310/ATMP.1998.v2.
n4.a5. arXiv: hep-th/9805190.

[86] M. Kreuzer and H. Skarke, “Complete classification of reflexive polyhedra in four-
dimensions,” Adv. Theor. Math. Phys., vol. 4, pp. 1209–1230, 2000. doi: 10.4310/
ATMP.2000.v4.n6.a2. arXiv: hep-th/0002240.

[87] R. Altman, J. Gray, Y.-H. He, V. Jejjala, and B. D. Nelson, “A Calabi-Yau Database:
Threefolds Constructed from the Kreuzer-Skarke List,” JHEP, vol. 02, p. 158, 2015.
doi: 10.1007/JHEP02(2015)158. arXiv: 1411.1418 [hep-th].

[88] R. Altman, J. Carifio, J. Halverson, and B. D. Nelson, “Estimating Calabi-Yau Hy-
persurface and Triangulation Counts with Equation Learners,” JHEP, vol. 03, p. 186,
2019. doi: 10.1007/JHEP03(2019)186. arXiv: 1811.06490 [hep-th].

[89] M. Demirtas, L. McAllister, and A. Rios-Tascon, “Bounding the Kreuzer-Skarke Land-
scape,” Fortsch. Phys., vol. 68, p. 2 000 086, 2020. doi: 10.1002/prop.202000086.
arXiv: 2008.01730 [hep-th].

[90] V. V. Batyrev and L. A. Borisov, “On Calabi-Yau complete intersections in toric
varieties,” Dec. 1994. arXiv: alg-geom/9412017.

[91] W. Fulton, Introduction to Toric Varieties. (AM-131). Princeton University Press,
1993, isbn: 9780691000497.

[92] J. Hausen, D. A. Cox, J. B. Little, and S. H. K., “Toric varieties,” Jahresbericht der
Deutschen Mathematiker-Vereinigung, vol. 114, no. 3, pp. 171–175, Sep. 2012, issn:
1869-7135. doi: 10.1365/s13291-012-0048-9.

[93] Y.-H. He, R.-K. Seong, and S.-T. Yau, “Calabi–Yau Volumes and Reflexive Poly-
topes,” Commun. Math. Phys., vol. 361, no. 1, pp. 155–204, 2018. doi: 10.1007/
s00220-018-3128-6. arXiv: 1704.03462 [hep-th].

[94] J. Bao, G. B. Colverd, and Y.-H. He, “Quiver Gauge Theories: Beyond Reflexivity,”
JHEP, vol. 20, p. 161, 2020. doi: 10.1007/JHEP06(2020)161. arXiv: 2004.05295
[hep-th].

[95] D. R. Morrison and C. Vafa, “Compactifications of F theory on Calabi-Yau threefolds.
2.,” Nucl. Phys. B, vol. 476, pp. 437–469, 1996. doi: 10.1016/0550-3213(96)00369-
0. arXiv: hep-th/9603161.

[96] L. B. Anderson, X. Gao, J. Gray, and S.-J. Lee, “Fibrations in CICY Threefolds,”
JHEP, vol. 10, p. 077, 2017. doi: 10.1007/JHEP10(2017)077. arXiv: 1708.07907
[hep-th].

122

https://arxiv.org/abs/alg-geom/9310003
https://doi.org/10.1142/S0129055X0200120X
https://arxiv.org/abs/math/0001106
https://doi.org/10.4310/ATMP.1998.v2.n4.a5
https://doi.org/10.4310/ATMP.1998.v2.n4.a5
https://arxiv.org/abs/hep-th/9805190
https://doi.org/10.4310/ATMP.2000.v4.n6.a2
https://doi.org/10.4310/ATMP.2000.v4.n6.a2
https://arxiv.org/abs/hep-th/0002240
https://doi.org/10.1007/JHEP02(2015)158
https://arxiv.org/abs/1411.1418
https://doi.org/10.1007/JHEP03(2019)186
https://arxiv.org/abs/1811.06490
https://doi.org/10.1002/prop.202000086
https://arxiv.org/abs/2008.01730
https://arxiv.org/abs/alg-geom/9412017
https://doi.org/10.1365/s13291-012-0048-9
https://doi.org/10.1007/s00220-018-3128-6
https://doi.org/10.1007/s00220-018-3128-6
https://arxiv.org/abs/1704.03462
https://doi.org/10.1007/JHEP06(2020)161
https://arxiv.org/abs/2004.05295
https://arxiv.org/abs/2004.05295
https://doi.org/10.1016/0550-3213(96)00369-0
https://doi.org/10.1016/0550-3213(96)00369-0
https://arxiv.org/abs/hep-th/9603161
https://doi.org/10.1007/JHEP10(2017)077
https://arxiv.org/abs/1708.07907
https://arxiv.org/abs/1708.07907

[97] Y.-C. Huang and W. Taylor, “On the prevalence of elliptic and genus one fibrations
among toric hypersurface Calabi-Yau threefolds,” JHEP, vol. 03, p. 014, 2019. doi:
10.1007/JHEP03(2019)014. arXiv: 1809.05160 [hep-th].

[98] A. D. King, “Moduli of Representations of Finite Dimensional Algebras,” The Quar-
terly Journal of Mathematics, vol. 45, no. 4, pp. 515–530, Dec. 1994, issn: 0033-5606.
doi: 10.1093/qmath/45.4.515.

[99] P. Du Val, “On isolated singularities of surfaces which do not affect the conditions of
adjunction (part I, II, III),” Mathematical Proceedings of the Cambridge Philosophical
Society, vol. 30, no. 4, 453–459, 1934. doi: 10.1017/S030500410001269X.

[100] T. Bridgeland, A. King, and M. Reid, “The McKay correspondence as an equivalence
of derived categories,” J. Am. Math. Soc., vol. 14, pp. 535–554, 2001. doi: 10.1090/
S0894-0347-01-00368-X.

[101] Y.-H. He, “On algebraic singularities, finite graphs and D-brane gauge theories: A
String theoretic perspective,” Other thesis, Sep. 2002. arXiv: hep-th/0209230.

[102] O. Aharony and A. Hanany, “Branes, superpotentials and superconformal fixed points,”
Nucl. Phys. B, vol. 504, pp. 239–271, 1997. doi: 10.1016/S0550-3213(97)00472-0.
arXiv: hep-th/9704170.

[103] O. Aharony, A. Hanany, and B. Kol, “Webs of (p,q) five-branes, five-dimensional
field theories and grid diagrams,” JHEP, vol. 01, p. 002, 1998. doi: 10.1088/1126-
6708/1998/01/002. arXiv: hep-th/9710116.

[104] O. DeWolfe, A. Hanany, A. Iqbal, and E. Katz, “Five-branes, seven-branes and five-
dimensional E(n) field theories,” JHEP, vol. 03, p. 006, 1999. doi: 10.1088/1126-
6708/1999/03/006. arXiv: hep-th/9902179.

[105] A. Hanany and E. Witten, “Type IIB superstrings, BPS monopoles, and three-
dimensional gauge dynamics,” Nucl. Phys. B, vol. 492, pp. 152–190, 1997. doi: 10.
1016/S0550-3213(97)00157-0. arXiv: hep-th/9611230.

[106] V. P. Maslov, “On a new principle of superposition for optimization problems,” Rus-
sian Mathematical Surveys, vol. 42, no. 3, pp. 43–54, Jun. 1987. doi: 10.1070/

rm1987v042n03abeh001439.

[107] B. Feng, Y.-H. He, K. D. Kennaway, and C. Vafa, “Dimer models from mirror sym-
metry and quivering amoebae,” Adv. Theor. Math. Phys., vol. 12, no. 3, pp. 489–545,
2008. doi: 10.4310/ATMP.2008.v12.n3.a2. arXiv: hep-th/0511287.

[108] K. Purbhoo, “A nullstellensatz for amoebas,” 2006. arXiv: math/0603201.

[109] A. Zahabi, “Quiver asymptotics and amoeba: Instantons on toric Calabi-Yau divi-
sors,” Phys. Rev. D, vol. 103, no. 8, p. 086 024, 2021. doi: 10.1103/PhysRevD.103.
086024. arXiv: 2006.14041 [hep-th].

[110] J. Bao, Y.-H. He, and A. Zahabi, “Mahler Measure for a Quiver Symphony,” Commun.
Math. Phys., vol. 394, no. 2, pp. 573–624, 2022. doi: 10.1007/s00220-022-04404-y.
arXiv: 2108.13903 [hep-th].

123

https://doi.org/10.1007/JHEP03(2019)014
https://arxiv.org/abs/1809.05160
https://doi.org/10.1093/qmath/45.4.515
https://doi.org/10.1017/S030500410001269X
https://doi.org/10.1090/S0894-0347-01-00368-X
https://doi.org/10.1090/S0894-0347-01-00368-X
https://arxiv.org/abs/hep-th/0209230
https://doi.org/10.1016/S0550-3213(97)00472-0
https://arxiv.org/abs/hep-th/9704170
https://doi.org/10.1088/1126-6708/1998/01/002
https://doi.org/10.1088/1126-6708/1998/01/002
https://arxiv.org/abs/hep-th/9710116
https://doi.org/10.1088/1126-6708/1999/03/006
https://doi.org/10.1088/1126-6708/1999/03/006
https://arxiv.org/abs/hep-th/9902179
https://doi.org/10.1016/S0550-3213(97)00157-0
https://doi.org/10.1016/S0550-3213(97)00157-0
https://arxiv.org/abs/hep-th/9611230
https://doi.org/10.1070/rm1987v042n03abeh001439
https://doi.org/10.1070/rm1987v042n03abeh001439
https://doi.org/10.4310/ATMP.2008.v12.n3.a2
https://arxiv.org/abs/hep-th/0511287
https://arxiv.org/abs/math/0603201
https://doi.org/10.1103/PhysRevD.103.086024
https://doi.org/10.1103/PhysRevD.103.086024
https://arxiv.org/abs/2006.14041
https://doi.org/10.1007/s00220-022-04404-y
https://arxiv.org/abs/2108.13903

[111] J. Bao, Y.-H. He, and A. Zahabi, “Reflexions on Mahler: Dessins, Modularity and
Gauge Theories,” Nov. 2021. arXiv: 2111.03655 [hep-th].

[112] S. Raschka and V. Mirjalili, Python machine learning. Packt Publishing Ltd, 2017.

[113] S. Abel and J. Rizos, “Genetic Algorithms and the Search for Viable String Vacua,”
JHEP, vol. 08, p. 010, 2014. doi: 10.1007/JHEP08(2014)010. arXiv: 1404.7359
[hep-th].

[114] Y.-H. He, “Deep-Learning the Landscape,” Jun. 2017. arXiv: 1706.02714 [hep-th].

[115] J. Carifio, J. Halverson, D. Krioukov, and B. D. Nelson, “Machine Learning in the
String Landscape,” JHEP, vol. 09, p. 157, 2017. doi: 10.1007/JHEP09(2017)157.
arXiv: 1707.00655 [hep-th].

[116] D. Krefl and R.-K. Seong, “Machine Learning of Calabi-Yau Volumes,” Phys. Rev.
D, vol. 96, no. 6, p. 066 014, 2017. arXiv: 1706.03346 [hep-th].

[117] F. Ruehle, “Evolving neural networks with genetic algorithms to study the String
Landscape,” JHEP, vol. 08, p. 038, 2017. arXiv: 1706.07024 [hep-th].

[118] S. Donaldson, “Scalar Curvature and Projective Embeddings, I,” Journal of Differ-
ential Geometry, vol. 59, no. 3, pp. 479 –522, 2001. doi: 10.4310/jdg/1090349449.

[119] S. Donaldson, Scalar curvature and projective embeddings, II, 2004. doi: 10.48550/
ARXIV.MATH/0407534.

[120] S. K. Donaldson, Some numerical results in complex differential geometry, 2005. doi:
10.48550/ARXIV.MATH/0512625.

[121] M. Headrick and T. Wiseman, “Numerical Ricci-flat metrics on K3,” Class. Quant.
Grav., vol. 22, pp. 4931–4960, 2005. doi: 10.1088/0264-9381/22/23/002. arXiv:
hep-th/0506129.

[122] M. R. Douglas, R. L. Karp, S. Lukic, and R. Reinbacher, “Numerical Calabi-Yau
metrics,” J. Math. Phys., vol. 49, p. 032 302, 2008. doi: 10.1063/1.2888403. arXiv:
hep-th/0612075.

[123] V. Braun, T. Brelidze, M. R. Douglas, and B. A. Ovrut, “Calabi-Yau Metrics for
Quotients and Complete Intersections,” JHEP, vol. 05, p. 080, 2008. doi: 10.1088/
1126-6708/2008/05/080. arXiv: 0712.3563 [hep-th].

[124] A. Ashmore, Y.-H. He, and B. A. Ovrut, “Machine Learning Calabi–Yau Metrics,”
Fortsch. Phys., vol. 68, no. 9, p. 2 000 068, 2020. doi: 10.1002/prop.202000068.
arXiv: 1910.08605 [hep-th].

[125] W. Cui and J. Gray, “Numerical Metrics, Curvature Expansions and Calabi-Yau
Manifolds,” JHEP, vol. 05, p. 044, 2020. doi: 10.1007/JHEP05(2020)044. arXiv:
1912.11068 [hep-th].

[126] J. Halverson and C. Long, “Statistical Predictions in String Theory and Deep Gener-
ative Models,” Fortsch. Phys., vol. 68, no. 5, p. 2 000 005, 2020. doi: 10.1002/prop.
202000005. arXiv: 2001.00555 [hep-th].

124

https://arxiv.org/abs/2111.03655
https://doi.org/10.1007/JHEP08(2014)010
https://arxiv.org/abs/1404.7359
https://arxiv.org/abs/1404.7359
https://arxiv.org/abs/1706.02714
https://doi.org/10.1007/JHEP09(2017)157
https://arxiv.org/abs/1707.00655
https://arxiv.org/abs/1706.03346
https://arxiv.org/abs/1706.07024
https://doi.org/10.4310/jdg/1090349449
https://doi.org/10.48550/ARXIV.MATH/0407534
https://doi.org/10.48550/ARXIV.MATH/0407534
https://doi.org/10.48550/ARXIV.MATH/0512625
https://doi.org/10.1088/0264-9381/22/23/002
https://arxiv.org/abs/hep-th/0506129
https://doi.org/10.1063/1.2888403
https://arxiv.org/abs/hep-th/0612075
https://doi.org/10.1088/1126-6708/2008/05/080
https://doi.org/10.1088/1126-6708/2008/05/080
https://arxiv.org/abs/0712.3563
https://doi.org/10.1002/prop.202000068
https://arxiv.org/abs/1910.08605
https://doi.org/10.1007/JHEP05(2020)044
https://arxiv.org/abs/1912.11068
https://doi.org/10.1002/prop.202000005
https://doi.org/10.1002/prop.202000005
https://arxiv.org/abs/2001.00555

[127] L. B. Anderson, M. Gerdes, J. Gray, S. Krippendorf, N. Raghuram, and F. Ruehle,
“Moduli-dependent Calabi-Yau and SU(3)-structure metrics from Machine Learning,”
JHEP, vol. 05, p. 013, 2021. doi: 10.1007/JHEP05(2021)013. arXiv: 2012.04656
[hep-th].

[128] M. R. Douglas, S. Lakshminarasimhan, and Y. Qi, “Numerical Calabi-Yau metrics
from holomorphic networks,” Dec. 2020. arXiv: 2012.04797 [hep-th].

[129] V. Jejjala, D. K. Mayorga Pena, and C. Mishra, “Neural network approximations for
Calabi-Yau metrics,” JHEP, vol. 08, p. 105, 2022. doi: 10.1007/JHEP08(2022)105.
arXiv: 2012.15821 [hep-th].

[130] M. Larfors, A. Lukas, F. Ruehle, and R. Schneider, “Learning Size and Shape of
Calabi-Yau Spaces,” Nov. 2021. arXiv: 2111.01436 [hep-th].

[131] A. Ashmore, L. Calmon, Y.-H. He, and B. A. Ovrut, “Calabi-Yau Metrics, Energy
Functionals and Machine-Learning,” Dec. 2021. doi: 10.1142/S2810939222500034.
arXiv: 2112.10872 [hep-th].

[132] A. Ashmore, “Calabi-Yau metrics, CFTs and random matrices,” in Nankai Sympo-
sium on Mathematical Dialogues: In celebration of S.S.Chern’s 110th anniversary,
Feb. 2022. arXiv: 2202.05896 [hep-th].

[133] D. Mehta, Y.-H. He, and J. D. Hauenstein, “Numerical Algebraic Geometry: A New
Perspective on String and Gauge Theories,” JHEP, vol. 07, p. 018, 2012. doi: 10.
1007/JHEP07(2012)018. arXiv: 1203.4235 [hep-th].

[134] M. Cirafici, “Persistent Homology and String Vacua,” JHEP, vol. 03, p. 045, 2016.
doi: 10.1007/JHEP03(2016)045. arXiv: 1512.01170 [hep-th].

[135] K. Bull, Y.-H. He, V. Jejjala, and C. Mishra, “Machine Learning CICY Threefolds,”
Phys. Lett. B, vol. 785, pp. 65–72, 2018. doi: 10.1016/j.physletb.2018.08.008.
arXiv: 1806.03121 [hep-th].

[136] H. Erbin and S. Krippendorf, “GANs for generating EFT models,” Phys. Lett. B,
vol. 810, p. 135 798, 2020. doi: 10.1016/j.physletb.2020.135798. arXiv: 1809.
02612 [cs.LG].

[137] A. Cole and G. Shiu, “Topological Data Analysis for the String Landscape,” JHEP,
vol. 03, p. 054, 2019. doi: 10.1007/JHEP03(2019)054. arXiv: 1812.06960 [hep-th].

[138] K. Bull, Y.-H. He, V. Jejjala, and C. Mishra, “Getting CICY High,” Phys. Lett.
B, vol. 795, pp. 700–706, 2019. doi: 10.1016/j.physletb.2019.06.067. arXiv:
1903.03113 [hep-th].

[139] J. Halverson, B. Nelson, and F. Ruehle, “Branes with Brains: Exploring String Vacua
with Deep Reinforcement Learning,” JHEP, vol. 06, p. 003, 2019. doi: 10.1007/
JHEP06(2019)003. arXiv: 1903.11616 [hep-th].

[140] Y.-H. He and S.-J. Lee, “Distinguishing elliptic fibrations with AI,” Phys. Lett. B,
vol. 798, p. 134 889, 2019. doi: 10.1016/j.physletb.2019.134889. arXiv: 1904.
08530 [hep-th].

125

https://doi.org/10.1007/JHEP05(2021)013
https://arxiv.org/abs/2012.04656
https://arxiv.org/abs/2012.04656
https://arxiv.org/abs/2012.04797
https://doi.org/10.1007/JHEP08(2022)105
https://arxiv.org/abs/2012.15821
https://arxiv.org/abs/2111.01436
https://doi.org/10.1142/S2810939222500034
https://arxiv.org/abs/2112.10872
https://arxiv.org/abs/2202.05896
https://doi.org/10.1007/JHEP07(2012)018
https://doi.org/10.1007/JHEP07(2012)018
https://arxiv.org/abs/1203.4235
https://doi.org/10.1007/JHEP03(2016)045
https://arxiv.org/abs/1512.01170
https://doi.org/10.1016/j.physletb.2018.08.008
https://arxiv.org/abs/1806.03121
https://doi.org/10.1016/j.physletb.2020.135798
https://arxiv.org/abs/1809.02612
https://arxiv.org/abs/1809.02612
https://doi.org/10.1007/JHEP03(2019)054
https://arxiv.org/abs/1812.06960
https://doi.org/10.1016/j.physletb.2019.06.067
https://arxiv.org/abs/1903.03113
https://doi.org/10.1007/JHEP06(2019)003
https://doi.org/10.1007/JHEP06(2019)003
https://arxiv.org/abs/1903.11616
https://doi.org/10.1016/j.physletb.2019.134889
https://arxiv.org/abs/1904.08530
https://arxiv.org/abs/1904.08530

[141] C. R. Brodie, A. Constantin, R. Deen, and A. Lukas, “Machine Learning Line Bundle
Cohomology,” Fortsch. Phys., vol. 68, no. 1, p. 1 900 087, 2020. doi: 10.1002/prop.
201900087. arXiv: 1906.08730 [hep-th].

[142] A. Cole, A. Schachner, and G. Shiu, “Searching the Landscape of Flux Vacua with
Genetic Algorithms,” JHEP, vol. 11, p. 045, 2019. doi: 10.1007/JHEP11(2019)045.
arXiv: 1907.10072 [hep-th].

[143] F. Ruehle, “Data science applications to string theory,” Phys. Rept., vol. 839, pp. 1–
117, 2020. doi: 10.1016/j.physrep.2019.09.005.

[144] Y.-H. He, “Calabi-Yau Spaces in the String Landscape,” Jun. 2020. arXiv: 2006.

16623 [hep-th].

[145] M. Bies, M. Cvetič, R. Donagi, L. Lin, M. Liu, and F. Ruehle, “Machine Learning
and Algebraic Approaches towards Complete Matter Spectra in 4d F-theory,” JHEP,
vol. 01, p. 196, 2021. doi: 10.1007/JHEP01(2021)196. arXiv: 2007.00009 [hep-th].

[146] R. Deen, Y.-H. He, S.-J. Lee, and A. Lukas, “Machine learning string standard mod-
els,” Phys. Rev. D, vol. 105, no. 4, p. 046 001, 2022. doi: 10.1103/PhysRevD.105.
046001. arXiv: 2003.13339 [hep-th].

[147] Y.-H. He and A. Lukas, “Machine Learning Calabi-Yau Four-folds,” Phys. Lett. B,
vol. 815, p. 136 139, 2021. doi: 10.1016/j.physletb.2021.136139. arXiv: 2009.
02544 [hep-th].

[148] A. Constantin, T. R. Harvey, and A. Lukas, “Heterotic String Model Building with
Monad Bundles and Reinforcement Learning,” Aug. 2021. doi: 10 . 1002 / prop .

202100186. arXiv: 2108.07316 [hep-th].

[149] S. Abel, A. Constantin, T. R. Harvey, and A. Lukas, “Evolving Heterotic Gauge
Backgrounds: Genetic Algorithms versus Reinforcement Learning,” Fortsch. Phys.,
vol. 70, no. 5, p. 2 200 034, 2022. doi: 10.1002/prop.202200034. arXiv: 2110.14029
[hep-th].

[150] A. Ashmore, R. Deen, Y.-H. He, and B. A. Ovrut, “Machine learning line bundle
connections,” Phys. Lett. B, vol. 827, p. 136 972, 2022. doi: 10.1016/j.physletb.
2022.136972. arXiv: 2110.12483 [hep-th].

[151] Y.-H. He, S. Lal, and M. Z. Zaz, “The World in a Grain of Sand: Condensing the
String Vacuum Degeneracy,” Nov. 2021. arXiv: 2111.04761 [hep-th].

[152] S. Abel, A. Constantin, T. R. Harvey, and A. Lukas, “String Model Building, Rein-
forcement Learning and Genetic Algorithms,” in Nankai Symposium on Mathemat-
ical Dialogues: In celebration of S.S.Chern’s 110th anniversary, Nov. 2021. arXiv:
2111.07333 [hep-th].

[153] A. Cole, S. Krippendorf, A. Schachner, and G. Shiu, “Probing the Structure of String
Theory Vacua with Genetic Algorithms and Reinforcement Learning,” in 35th Con-
ference on Neural Information Processing Systems, Nov. 2021. arXiv: 2111.11466
[hep-th].

126

https://doi.org/10.1002/prop.201900087
https://doi.org/10.1002/prop.201900087
https://arxiv.org/abs/1906.08730
https://doi.org/10.1007/JHEP11(2019)045
https://arxiv.org/abs/1907.10072
https://doi.org/10.1016/j.physrep.2019.09.005
https://arxiv.org/abs/2006.16623
https://arxiv.org/abs/2006.16623
https://doi.org/10.1007/JHEP01(2021)196
https://arxiv.org/abs/2007.00009
https://doi.org/10.1103/PhysRevD.105.046001
https://doi.org/10.1103/PhysRevD.105.046001
https://arxiv.org/abs/2003.13339
https://doi.org/10.1016/j.physletb.2021.136139
https://arxiv.org/abs/2009.02544
https://arxiv.org/abs/2009.02544
https://doi.org/10.1002/prop.202100186
https://doi.org/10.1002/prop.202100186
https://arxiv.org/abs/2108.07316
https://doi.org/10.1002/prop.202200034
https://arxiv.org/abs/2110.14029
https://arxiv.org/abs/2110.14029
https://doi.org/10.1016/j.physletb.2022.136972
https://doi.org/10.1016/j.physletb.2022.136972
https://arxiv.org/abs/2110.12483
https://arxiv.org/abs/2111.04761
https://arxiv.org/abs/2111.07333
https://arxiv.org/abs/2111.11466
https://arxiv.org/abs/2111.11466

[154] X. Gao and H. Zou, “Applying machine learning to the Calabi-Yau orientifolds with
string vacua,” Phys. Rev. D, vol. 105, no. 4, p. 046 017, 2022. doi: 10.1103/PhysRevD.
105.046017. arXiv: 2112.04950 [hep-th].

[155] G. J. Loges and G. Shiu, “Breeding Realistic D-Brane Models,” Fortsch. Phys.,
vol. 70, no. 5, p. 2 200 038, 2022. doi: 10.1002/prop.202200038. arXiv: 2112.08391
[hep-th].

[156] P. Berglund, B. Campbell, and V. Jejjala, “Machine Learning Kreuzer-Skarke Calabi-
Yau Threefolds,” Dec. 2021. arXiv: 2112.09117 [hep-th].

[157] D. Berman, T. Fischbacher, G. Inverso, and B. Scellier, “Vacua of ω-deformed SO(8)
supergravity,” JHEP, vol. 06, p. 133, 2022. doi: 10.1007/JHEP06(2022)133. arXiv:
2201.04173 [hep-th].

[158] V. Jejjala, W. Taylor, and A. Turner, “Identifying equivalent Calabi–Yau topologies:
A discrete challenge from math and physics for machine learning,” in Nankai Sym-
posium on Mathematical Dialogues: In celebration of S.S.Chern’s 110th anniversary,
Feb. 2022. arXiv: 2202.07590 [hep-th].

[159] A. Constantin, “Intelligent Explorations of the String Theory Landscape,” Apr. 2022.
arXiv: 2204.08073 [hep-th].

[160] G. J. Loges and G. Shiu, “215 Billion Intersecting Brane Models,” Jun. 2022. arXiv:
2206.03506 [hep-th].

[161] W. Cui, X. Gao, and J. Wang, “Machine Learning on generalized Complete Intersec-
tion Calabi-Yau Manifolds,” Sep. 2022. arXiv: 2209.10157 [hep-th].

[162] M. Manko, “An Upper Bound on the Critical Volume in a Class of Toric Sasaki-
Einstein Manifolds,” Sep. 2022. arXiv: 2209.14029 [hep-th].

[163] Y.-H. He, K.-H. Lee, and T. Oliver, “Machine-Learning the Sato–Tate Conjecture,”
Oct. 2020. arXiv: 2010.01213 [math.NT].

[164] Y.-H. He, K.-H. Lee, T. Oliver, and A. Pozdnyakov, “Murmurations of elliptic curves,”
Apr. 2022. arXiv: 2204.10140 [math.NT].

[165] Y.-H. He and J. M. Pérez Ipiña, “Machine-learning the classification of spacetimes,”
Phys. Lett. B, vol. 832, p. 137 213, 2022. doi: 10.1016/j.physletb.2022.137213.
arXiv: 2201.01644 [gr-qc].

[166] H.-Y. Chen, Y.-H. He, S. Lal, and M. Z. Zaz, “Machine Learning Etudes in Conformal
Field Theories,” Jun. 2020. arXiv: 2006.16114 [hep-th].

[167] G. Kántor, V. Niarchos, and C. Papageorgakis, “Solving Conformal Field Theories
with Artificial Intelligence,” Phys. Rev. Lett., vol. 128, no. 4, p. 041 601, 2022. doi:
10.1103/PhysRevLett.128.041601. arXiv: 2108.08859 [hep-th].

[168] G. Kántor, V. Niarchos, and C. Papageorgakis, “Conformal bootstrap with reinforce-
ment learning,” Phys. Rev. D, vol. 105, no. 2, p. 025 018, 2022. doi: 10 . 1103 /

PhysRevD.105.025018. arXiv: 2108.09330 [hep-th].

[169] G. Kántor, V. Niarchos, C. Papageorgakis, and P. Richmond, “6D (2,0) Bootstrap
with soft-Actor-Critic,” Sep. 2022. arXiv: 2209.02801 [hep-th].

127

https://doi.org/10.1103/PhysRevD.105.046017
https://doi.org/10.1103/PhysRevD.105.046017
https://arxiv.org/abs/2112.04950
https://doi.org/10.1002/prop.202200038
https://arxiv.org/abs/2112.08391
https://arxiv.org/abs/2112.08391
https://arxiv.org/abs/2112.09117
https://doi.org/10.1007/JHEP06(2022)133
https://arxiv.org/abs/2201.04173
https://arxiv.org/abs/2202.07590
https://arxiv.org/abs/2204.08073
https://arxiv.org/abs/2206.03506
https://arxiv.org/abs/2209.10157
https://arxiv.org/abs/2209.14029
https://arxiv.org/abs/2010.01213
https://arxiv.org/abs/2204.10140
https://doi.org/10.1016/j.physletb.2022.137213
https://arxiv.org/abs/2201.01644
https://arxiv.org/abs/2006.16114
https://doi.org/10.1103/PhysRevLett.128.041601
https://arxiv.org/abs/2108.08859
https://doi.org/10.1103/PhysRevD.105.025018
https://doi.org/10.1103/PhysRevD.105.025018
https://arxiv.org/abs/2108.09330
https://arxiv.org/abs/2209.02801

[170] T. R. Harvey and A. Lukas, “Quark Mass Models and Reinforcement Learning,”
JHEP, vol. 08, p. 161, 2021. doi: 10.1007/JHEP08(2021)161. arXiv: 2103.04759
[hep-th].

[171] Y. Gal, V. Jejjala, D. K. Mayorga Peña, and C. Mishra, “Baryons from Mesons: A
Machine Learning Perspective,” Int. J. Mod. Phys. A, vol. 37, no. 06, p. 2 250 031,
2022. doi: 10.1142/S0217751X22500312. arXiv: 2003.10445 [hep-ph].

[172] S. Krippendorf, D. Lust, and M. Syvaeri, “Integrability Ex Machina,” Fortsch. Phys.,
vol. 69, no. 7, p. 2 100 057, 2021. doi: 10.1002/prop.202100057. arXiv: 2103.07475
[nlin.SI].

[173] Y.-H. He and M. Kim, “Learning Algebraic Structures: Preliminary Investigations,”
May 2019. arXiv: 1905.02263 [cs.LG].

[174] S. Krippendorf and M. Syvaeri, “Detecting Symmetries with Neural Networks,” Mar.
2020. arXiv: 2003.13679 [physics.comp-ph].

[175] H.-Y. Chen, Y.-H. He, S. Lal, and S. Majumder, “Machine learning Lie structures &
applications to physics,” Phys. Lett. B, vol. 817, p. 136 297, 2021. doi: 10.1016/j.
physletb.2021.136297. arXiv: 2011.00871 [hep-th].

[176] L. Alessandretti, A. Baronchelli, and Y.-H. He, “Machine Learning meets Number
Theory: The Data Science of Birch-Swinnerton-Dyer,” Nov. 2019. arXiv: 1911.02008
[math.NT].

[177] Y.-H. He, K.-H. Lee, and T. Oliver, “Machine-Learning Number Fields,” Nov. 2020.
arXiv: 2011.08958 [math.NT].

[178] Y.-H. He, K.-H. Lee, and T. Oliver, “Machine-Learning Arithmetic Curves,” Dec.
2020. arXiv: 2012.04084 [math.NT].

[179] M. Amir, Y.-H. He, K.-H. Lee, T. Oliver, and E. Sultanow, “Machine Learning Class
Numbers of Real Quadratic Fields,” Sep. 2022. arXiv: 2209.09283 [math.NT].

[180] V. Jejjala, A. Kar, and O. Parrikar, “Deep Learning the Hyperbolic Volume of a
Knot,” Phys. Lett. B, vol. 799, p. 135 033, 2019. doi: 10.1016/j.physletb.2019.
135033. arXiv: 1902.05547 [hep-th].

[181] S. Gukov, J. Halverson, F. Ruehle, and P. Su lkowski, “Learning to Unknot,” Mach.
Learn. Sci. Tech., vol. 2, no. 2, p. 025 035, 2021. doi: 10.1088/2632-2153/abe91f.
arXiv: 2010.16263 [math.GT].

[182] J. Craven, V. Jejjala, and A. Kar, “Disentangling a deep learned volume formula,”
JHEP, vol. 06, p. 040, 2021. doi: 10.1007/JHEP06(2021)040. arXiv: 2012.03955
[hep-th].

[183] J. Craven, M. Hughes, V. Jejjala, and A. Kar, “Learning knot invariants across di-
mensions,” Nov. 2021. arXiv: 2112.00016 [hep-th].

[184] J. Craven, M. Hughes, V. Jejjala, and A. Kar, “(K)not machine learning,” in Nankai
Symposium on Mathematical Dialogues: In celebration of S.S.Chern’s 110th anniver-
sary, Jan. 2022. arXiv: 2201.08846 [hep-th].

128

https://doi.org/10.1007/JHEP08(2021)161
https://arxiv.org/abs/2103.04759
https://arxiv.org/abs/2103.04759
https://doi.org/10.1142/S0217751X22500312
https://arxiv.org/abs/2003.10445
https://doi.org/10.1002/prop.202100057
https://arxiv.org/abs/2103.07475
https://arxiv.org/abs/2103.07475
https://arxiv.org/abs/1905.02263
https://arxiv.org/abs/2003.13679
https://doi.org/10.1016/j.physletb.2021.136297
https://doi.org/10.1016/j.physletb.2021.136297
https://arxiv.org/abs/2011.00871
https://arxiv.org/abs/1911.02008
https://arxiv.org/abs/1911.02008
https://arxiv.org/abs/2011.08958
https://arxiv.org/abs/2012.04084
https://arxiv.org/abs/2209.09283
https://doi.org/10.1016/j.physletb.2019.135033
https://doi.org/10.1016/j.physletb.2019.135033
https://arxiv.org/abs/1902.05547
https://doi.org/10.1088/2632-2153/abe91f
https://arxiv.org/abs/2010.16263
https://doi.org/10.1007/JHEP06(2021)040
https://arxiv.org/abs/2012.03955
https://arxiv.org/abs/2012.03955
https://arxiv.org/abs/2112.00016
https://arxiv.org/abs/2201.08846

[185] Y.-H. He and S.-T. Yau, “Graph Laplacians, Riemannian Manifolds and their Machine-
Learning,” Jun. 2020. arXiv: 2006.16619 [math.CO].

[186] Y.-H. He, “Universes as big data,” Int. J. Mod. Phys. A, vol. 36, no. 29, p. 2 130 017,
2021. doi: 10.1142/S0217751X21300179. arXiv: 2011.14442 [hep-th].

[187] Y.-H. He, “Machine-Learning Mathematical Structures,” Jan. 2021. arXiv: 2101.

06317 [cs.LG].

[188] P. Betzler and S. Krippendorf, “Connecting Dualities and Machine Learning,” Fortsch.
Phys., vol. 68, no. 5, p. 2 000 022, 2020. doi: 10.1002/prop.202000022. arXiv:
2002.05169 [physics.comp-ph].

[189] J. Halverson, A. Maiti, and K. Stoner, “Neural Networks and Quantum Field Theory,”
Mach. Learn. Sci. Tech., vol. 2, no. 3, p. 035 002, 2021. doi: 10.1088/2632-2153/
abeca3. arXiv: 2008.08601 [cs.LG].

[190] A. Maiti, K. Stoner, and J. Halverson, “Symmetry-via-Duality: Invariant Neural Net-
work Densities from Parameter-Space Correlators,” Jun. 2021. arXiv: 2106.00694

[cs.LG].

[191] D. Luo and J. Halverson, “Infinite Neural Network Quantum States,” Dec. 2021.
arXiv: 2112.00723 [quant-ph].

[192] J. Halverson, “Building Quantum Field Theories Out of Neurons,” Dec. 2021. arXiv:
2112.04527 [hep-th].

[193] S. Krippendorf and M. Spannowsky, “A duality connecting neural network and cos-
mological dynamics,” Mach. Learn. Sci. Tech., vol. 3, no. 3, p. 035 011, 2022. doi:
10.1088/2632-2153/ac87e9. arXiv: 2202.11104 [gr-qc].

[194] J. Cotler and S. Rezchikov, “Renormalization Group Flow as Optimal Transport,”
Feb. 2022. arXiv: 2202.11737 [hep-th].

[195] D. S. Berman, J. J. Heckman, and M. Klinger, “On the Dynamics of Inference and
Learning,” Apr. 2022. arXiv: 2204.12939 [cond-mat.dis-nn].

[196] J. A. Anderson, An introduction to neural networks. MIT press, 1995.

[197] K. Hornik, M. B. Stinchcombe, and H. L. White, “Multilayer feedforward networks
are universal approximators,” Neural Networks, vol. 2, pp. 359–366, 1989.

[198] D. Yarotsky, “Error bounds for approximations with deep ReLU networks,” Neural
Networks, vol. 94, pp. 103–114, 2017, issn: 0893-6080. doi: doi.org/10.1016/j.
neunet.2017.07.002.

[199] B. Hanin, “Universal Function Approximation by Deep Neural Nets with Bounded
Width and ReLU Activations,” Mathematics, vol. 7, no. 10, 2019, issn: 2227-7390.
doi: 10.3390/math7100992.

[200] P. Kidger and T. Lyons, Universal approximation with deep narrow networks, 2019.
doi: 10.48550/ARXIV.1905.08539.

129

https://arxiv.org/abs/2006.16619
https://doi.org/10.1142/S0217751X21300179
https://arxiv.org/abs/2011.14442
https://arxiv.org/abs/2101.06317
https://arxiv.org/abs/2101.06317
https://doi.org/10.1002/prop.202000022
https://arxiv.org/abs/2002.05169
https://doi.org/10.1088/2632-2153/abeca3
https://doi.org/10.1088/2632-2153/abeca3
https://arxiv.org/abs/2008.08601
https://arxiv.org/abs/2106.00694
https://arxiv.org/abs/2106.00694
https://arxiv.org/abs/2112.00723
https://arxiv.org/abs/2112.04527
https://doi.org/10.1088/2632-2153/ac87e9
https://arxiv.org/abs/2202.11104
https://arxiv.org/abs/2202.11737
https://arxiv.org/abs/2204.12939
https://doi.org/doi.org/10.1016/j.neunet.2017.07.002
https://doi.org/doi.org/10.1016/j.neunet.2017.07.002
https://doi.org/10.3390/math7100992
https://doi.org/10.48550/ARXIV.1905.08539

[201] M. Leshno, V. Y. Lin, A. Pinkus, and S. Schocken, “Multilayer feedforward networks
with a nonpolynomial activation function can approximate any function,” Neural
Networks, vol. 6, no. 6, pp. 861–867, 1993, issn: 0893-6080. doi: doi.org/10.1016/
S0893-6080(05)80131-5.

[202] J. Cramer, “The Origins of Logistic Regression,” 2002. doi: doi.org/10.2139/ssrn.
360300. [Online]. Available: https://ssrn.com/abstract=360300.

[203] C. Cortes and V. Vapnik, “Support-vector networks,” Machine Learning, vol. 20,
no. 3, pp. 273–297, Sep. 1995, issn: 1573-0565. doi: 10.1007/BF00994018.

[204] J. Bromley, J. W. Bentz, L. Bottou, et al., “Signature verification using a siamese time
delay neural network,” International Journal of Pattern Recognition and Artificial
Intelligence, vol. 7, 1993, issn: 669-688.

[205] R. Kohavi et al., “A study of cross-validation and bootstrap for accuracy estimation
and model selection,” in Ijcai, Montreal, Canada, vol. 14, 1995, pp. 1137–1145.

[206] D. P. Kingma and J. Ba, Adam: A method for stochastic optimization, 2017. arXiv:
1412.6980 [cs.LG].

[207] D. Chicco and G. Jurman, “The advantages of the Matthews correlation coefficient
(MCC) over F1 score and accuracy in binary classification evaluation,” BMC ge-
nomics, vol. 21, no. 1, p. 6, 2020.

[208] I. T. Jolliffe and J. Cadima, “Principal component analysis: A review and recent devel-
opments,” Philosophical Transactions of the Royal Society A: Mathematical, Physical
and Engineering Sciences, vol. 374, 1065 2016. doi: doi.org/10.1098/rsta.2015.
0202.

[209] N. Otter, M. A. Porter, U. Tillmann, P. Grindrod, and H. A. Harrington, “A roadmap
for the computation of persistent homology,” EPJ Data Science, vol. 6, no. 1, p. 17,
Aug. 2017, issn: 2193-1127. doi: 10.1140/epjds/s13688-017-0109-5.

[210] H. Steinhaus, “Sur la division des corps matériels en parties,” Bulletin L’Académie
Polonaise des Science, vol. 4, pp. 801–804, 1957.

[211] A. K. Jain, “Data clustering: 50 years beyond K-means,” Pattern Recognition Letters,
vol. 31, no. 8, pp. 651–666, 2010, Award winning papers from the 19th International
Conference on Pattern Recognition (ICPR), issn: 0167-8655. doi: doi.org/10.1016/
j.patrec.2009.09.011.

[212] J. L. Gross and J. Yellen, Graph Theory and Its Applications, Second Edition (Discrete
Mathematics and Its Applications). Chapman & Hall/CRC, 2005, isbn: 158488505X.

[213] R. D. Luce and A. D. Perry, “A method of matrix analysis of group structure,”
Psychometrika, vol. 14, no. 2, pp. 95–116, Jun. 1949, issn: 1860-0980. doi: 10.1007/
BF02289146.

[214] T. Kavitha, K. Mehlhorn, D. Michail, and K. E. Paluch, “An Õ(m2n) algorithm for
minimum cycle basis of graphs,” Algorithmica, vol. 52, no. 3, pp. 333–349, Nov. 2008,
issn: 1432-0541. doi: 10.1007/s00453-007-9064-z.

130

https://doi.org/doi.org/10.1016/S0893-6080(05)80131-5
https://doi.org/doi.org/10.1016/S0893-6080(05)80131-5
https://doi.org/doi.org/10.2139/ssrn.360300
https://doi.org/doi.org/10.2139/ssrn.360300
https://ssrn.com/abstract=360300
https://doi.org/10.1007/BF00994018
https://arxiv.org/abs/1412.6980
https://doi.org/doi.org/10.1098/rsta.2015.0202
https://doi.org/doi.org/10.1098/rsta.2015.0202
https://doi.org/10.1140/epjds/s13688-017-0109-5
https://doi.org/doi.org/10.1016/j.patrec.2009.09.011
https://doi.org/doi.org/10.1016/j.patrec.2009.09.011
https://doi.org/10.1007/BF02289146
https://doi.org/10.1007/BF02289146
https://doi.org/10.1007/s00453-007-9064-z

[215] H. Wiener, “Structural determination of paraffin boiling points,” Journal of the Amer-
ican Chemical Society, vol. 69, no. 1, pp. 17–20, Jan. 1947, issn: 0002-7863. doi:
10.1021/ja01193a005.

[216] P. Bonacich, “Power and centrality: A family of measures,” American Journal of
Sociology, vol. 92, no. 5, pp. 1170–1182, 1987, issn: 00029602, 15375390. (visited on
09/26/2022).

[217] D. A. Cox, Galois theory. John Wiley & Sons, 2011, vol. 61.

[218] P. Guillot, An elementary approach to dessins d’enfants and the grothendieck-teichmüller
group, 2014. arXiv: 1309.1968 [math.GR].

[219] L. Zapponi, “What is a dessin d’enfant,” Notices of the AMS, vol. 50, no. 7, 2003.

[220] Y.-H. He, J. McKay, and J. Read, “Modular Subgroups, Dessins d’Enfants and El-
liptic K3 Surfaces,” J. Comput. Math., vol. 16, pp. 271–318, 2013. doi: 10.1112/
S1461157013000119. arXiv: 1211.1931 [math.AG].

[221] H. Magureanu, “Seiberg-Witten geometry, modular rational elliptic surfaces and BPS
quivers,” JHEP, vol. 05, p. 163, 2022. doi: 10 . 1007 / JHEP05(2022) 163. arXiv:
2203.03755 [hep-th].

[222] A. Hanany, Y.-H. He, V. Jejjala, J. Pasukonis, S. Ramgoolam, and D. Rodriguez-
Gomez, “Invariants of Toric Seiberg Duality,” Int. J. Mod. Phys. A, vol. 27, p. 1 250 002,
2012. doi: 10.1142/S0217751X12500029. arXiv: 1107.4101 [hep-th].

[223] G. Shimura, Introduction to the arithmetic theory of automorphic functions. Princeton
university press, 1971, vol. 1.

[224] A. Sebbar, “Classification of torsion-free genus zero congruence groups,” Proceedings
of the American Mathematical Society, pp. 2517–2527, 2001.

[225] N. I. Akhiezer, Elements of the theory of elliptic functions. American Mathematical
Soc., 1990, vol. 79.

[226] R. Miranda and U. Persson, “Configurations of In fibers on elliptic K3 surfaces,”
Mathematische Zeitschrift, vol. 201, no. 3, pp. 339–361, 1989.

[227] U. Persson and R. Miranda, Dessin d’Enfant Table, 1989. [Online]. Available: https:
//webspace.science.uu.nl/~beuke106/mirandapersson/Dessins.html (visited
on 10/23/2020).

[228] F. Beukers, Montanus List. [Online]. Available: https://webspace.science.uu.
nl/~beuke106/mirandapersson/montanuslist.txt (visited on 10/23/2020).

[229] Y.-H. He, “Calabi-Yau Varieties: from Quiver Representations to Dessins d’Enfants,”
Nov. 2016. arXiv: 1611.09398 [math.AG].

[230] B. Feng, A. Hanany, and Y.-H. He, “D-brane gauge theories from toric singularities
and toric duality,” Nucl. Phys. B, vol. 595, pp. 165–200, 2001. doi: 10.1016/S0550-
3213(00)00699-4. arXiv: hep-th/0003085.

[231] B. Feng, A. Hanany, Y.-H. He, and A. M. Uranga, “Toric duality as Seiberg duality
and brane diamonds,” JHEP, vol. 12, p. 035, 2001. doi: 10.1088/1126-6708/2001/
12/035. arXiv: hep-th/0109063.

131

https://doi.org/10.1021/ja01193a005
https://arxiv.org/abs/1309.1968
https://doi.org/10.1112/S1461157013000119
https://doi.org/10.1112/S1461157013000119
https://arxiv.org/abs/1211.1931
https://doi.org/10.1007/JHEP05(2022)163
https://arxiv.org/abs/2203.03755
https://doi.org/10.1142/S0217751X12500029
https://arxiv.org/abs/1107.4101
https://webspace.science.uu.nl/~beuke106/mirandapersson/Dessins.html
https://webspace.science.uu.nl/~beuke106/mirandapersson/Dessins.html
https://webspace.science.uu.nl/~beuke106/mirandapersson/montanuslist.txt
https://webspace.science.uu.nl/~beuke106/mirandapersson/montanuslist.txt
https://arxiv.org/abs/1611.09398
https://doi.org/10.1016/S0550-3213(00)00699-4
https://doi.org/10.1016/S0550-3213(00)00699-4
https://arxiv.org/abs/hep-th/0003085
https://doi.org/10.1088/1126-6708/2001/12/035
https://doi.org/10.1088/1126-6708/2001/12/035
https://arxiv.org/abs/hep-th/0109063

[232] F. Cachazo, B. Fiol, K. A. Intriligator, S. Katz, and C. Vafa, “A Geometric unification
of dualities,” Nucl. Phys. B, vol. 628, pp. 3–78, 2002. doi: 10.1016/S0550-3213(02)
00078-0. arXiv: hep-th/0110028.

[233] Y.-H. He, “Lectures on D-branes, gauge theories and Calabi-Yau singularities,” in 1st
Hangzhou-Beijing International Summer School, Aug. 2004. arXiv: hep-th/0408142.

[234] G. Musiker and C. Stump, “A compendium on the cluster algebra and quiver package
in sage,” Feb. 2011. arXiv: 1102.4844 [math.CO].

[235] H. Zhang, “The Optimality of Naive Bayes,” in Proceedings of the Seventeenth Inter-
national Florida Artificial Intelligence Research Society Conference, FLAIRS 2004,
vol. 2, Jan. 2004.

[236] J. Gray, Y.-H. He, A. Hanany, N. Mekareeya, and V. Jejjala, “SQCD: A geometric
aperçu,” Journal of High Energy Physics, vol. 2008, no. 05, pp. 099–099, May 2008.

[237] A. Hanany, N. Mekareeya, and G. Torri, “The Hilbert series of adjoint SQCD,” Nu-
clear Phys. B, vol. 825, no. 1-2, pp. 52–97, 2010, issn: 0550-3213.

[238] Y. Chen and N. Mekareeya, “The Hilbert series of U/SU SQCD and Toeplitz deter-
minants,” Nuclear Phys. B, vol. 850, no. 3, pp. 553–593, 2011, issn: 0550-3213.

[239] N. Jokela, M. Järvinen, and E. Keski-Vakkuri, “New results for the SQCD Hilbert
series,” J. High Energy Phys., no. 3, 048, front matter+30, 2012, issn: 1126-6708.

[240] S. Benvenuti, A. Hanany, and N. Mekareeya, “The Hilbert series of the one instanton
moduli space,” J. High Energy Phys., no. 6, pp. 100, 40, 2010, issn: 1126-6708.

[241] A. Hanany, N. Mekareeya, and S. S. Razamat, “Hilbert series for moduli spaces of
two instantons,” J. High Energy Phys., no. 1, 070, front matter + 48, 2013, issn:
1126-6708.

[242] E. I. Buchbinder, A. Lukas, B. A. Ovrut, and F. Ruehle, “Instantons and Hilbert
Functions,” Phys. Rev. D, vol. 102, no. 2, p. 026 019, 2020. doi: 10.1103/PhysRevD.
102.026019. arXiv: 1912.08358 [hep-th].

[243] D. Forcella, A. Hanany, and A. Zaffaroni, “Master Space, Hilbert Series and Seiberg
Duality,” JHEP, vol. 07, p. 018, 2009. doi: 10.1088/1126-6708/2009/07/018.
arXiv: 0810.4519 [hep-th].

[244] A. Hanany, E. E. Jenkins, A. V. Manohar, and G. Torri, “Hilbert series for flavor
invariants of the Standard Model,” J. High Energy Phys., no. 3, pp. 096, 7, 2011,
issn: 1126-6708.

[245] L. Lehman and A. Martin, “Low-derivative operators of the Standard Model effective
field theory via Hilbert series methods,” Journal of High Energy Physics, vol. 02,
no. 81, 2016.

[246] Y. Xiao, Y.-H. He, and C. Matti, “Standard model plethystics,” Phys. Rev. D,
vol. 100, p. 076 001, 7 Oct. 2019.

[247] V. Braun, “Counting points and Hilbert series in string theory,” in Strings, gauge
fields, and the geometry behind, World Sci. Publ., Hackensack, NJ, 2013, pp. 225–235.

132

https://doi.org/10.1016/S0550-3213(02)00078-0
https://doi.org/10.1016/S0550-3213(02)00078-0
https://arxiv.org/abs/hep-th/0110028
https://arxiv.org/abs/hep-th/0408142
https://arxiv.org/abs/1102.4844
https://doi.org/10.1103/PhysRevD.102.026019
https://doi.org/10.1103/PhysRevD.102.026019
https://arxiv.org/abs/1912.08358
https://doi.org/10.1088/1126-6708/2009/07/018
https://arxiv.org/abs/0810.4519

[248] S. Cremonesi, A. Hanany, and A. Zaffaroni, “Monopole operators and Hilbert series
of Coulomb branches of 3d N= 4 gauge theories,” Journal of High Energy Physics,
vol. 5, 2014.

[249] A. Bourget, J. F. Grimminger, A. Hanany, R. Kalveks, M. Sperling, and Z. Zhong,
“Magnetic Lattices for Orthosymplectic Quivers,” JHEP, vol. 12, p. 092, 2020. doi:
10.1007/JHEP12(2020)092. arXiv: 2007.04667 [hep-th].

[250] A. Bourget, J. F. Grimminger, A. Hanany, M. Sperling, and Z. Zhong, “Branes,
Quivers, and the Affine Grassmannian,” Feb. 2021. arXiv: 2102.06190 [hep-th].

[251] A. Bourget, S. Cabrera, J. F. Grimminger, A. Hanany, and Z. Zhong, “Brane Webs
and Magnetic Quivers for SQCD,” JHEP, vol. 03, p. 176, 2020. doi: 10 . 1007 /

JHEP03(2020)176. arXiv: 1909.00667 [hep-th].

[252] A. Bourget, J. F. Grimminger, A. Hanany, R. Kalveks, M. Sperling, and Z. Zhong,
“Folding orthosymplectic quivers,” JHEP, vol. 12, p. 070, 2021. doi: 10 . 1007 /

JHEP12(2021)070. arXiv: 2107.00754 [hep-th].

[253] C. Closset, S. Schafer-Nameki, and Y.-N. Wang, “Coulomb and Higgs Branches
from Canonical Singularities: Part 0,” JHEP, vol. 02, p. 003, 2021. doi: 10.1007/
JHEP02(2021)003. arXiv: 2007.15600 [hep-th].

[254] A. Dey, A. Hanany, N. Mekareeya, D. Rodŕıguez-Gómez, and R.-K. Seong, “Hilbert
Series for Moduli Spaces of Instantons on C2/Zn,” JHEP, vol. 01, p. 182, 2014. doi:
10.1007/JHEP01(2014)182. arXiv: 1309.0812 [hep-th].

[255] G. Brown and A. M. Kasprzyk, The Graded Ring Database, Online. [Online]. Avail-
able: http://www.grdb.co.uk/.

[256] G. Brown and A. M. Kasprzyk, The Fano 3-fold database, Zenodo https://doi.

org/10.5281/zenodo.5820338, 2022.

[257] A. M. Kasprzyk, “Canonical toric fano threefolds,” Canadian Journal of Mathematics,
vol. 62, no. 6, pp. 1293–1309, 2010. arXiv: 0806.2604 [math.AG].

[258] S. Altınok, G. Brown, and M. Reid, “Fano 3-folds, K3 surfaces and graded rings,”
in Topology and geometry: commemorating SISTAG, ser. Contemp. Math. Vol. 314,
Amer. Math. Soc., Providence, RI, 2002, pp. 25–53.

[259] G. Brown and A. M. Kasprzyk, “Kawamata boundedness for Fano threefolds and the
Graded Ring Database,” arXiv:2201.07178 [math.AG], 2022.

[260] B. Bengfort and R. Bilbro, “Yellowbrick: Visualizing the Scikit-Learn Model Selection
Process,” The Journal of Open Source Software, 1075th ser., vol. 4, no. 35, 2019. doi:
10.21105/joss.01075.

[261] A. M. Kasprzyk and B. Nill, “Fano polytopes,” in Strings, gauge fields, and the
geometry behind, World Sci. Publ., Hackensack, NJ, 2013, pp. 349–364.

[262] C. Haase and I. V. Melnikov, “The Reflexive Dimension of a Lattice Polytope,” Annals
of Combinatorics, vol. 10, no. 2, pp. 211–217, 2006, issn: 0219-3094. doi: 10.1007/
s00026-006-0283-9.

133

https://doi.org/10.1007/JHEP12(2020)092
https://arxiv.org/abs/2007.04667
https://arxiv.org/abs/2102.06190
https://doi.org/10.1007/JHEP03(2020)176
https://doi.org/10.1007/JHEP03(2020)176
https://arxiv.org/abs/1909.00667
https://doi.org/10.1007/JHEP12(2021)070
https://doi.org/10.1007/JHEP12(2021)070
https://arxiv.org/abs/2107.00754
https://doi.org/10.1007/JHEP02(2021)003
https://doi.org/10.1007/JHEP02(2021)003
https://arxiv.org/abs/2007.15600
https://doi.org/10.1007/JHEP01(2014)182
https://arxiv.org/abs/1309.0812
http://www.grdb.co.uk/
https://doi.org/10.5281/zenodo.5820338
https://doi.org/10.5281/zenodo.5820338
https://arxiv.org/abs/0806.2604
https://arxiv.org/abs/2201.07178
https://doi.org/10.21105/joss.01075
https://doi.org/10.1007/s00026-006-0283-9
https://doi.org/10.1007/s00026-006-0283-9

[263] G. Balletti, A. M. Kasprzyk, and B. Nill, “On the maximum dual volume of a canon-
ical Fano polytope,” 2016. arXiv: 1611.02455 [math.CO].

[264] V. Batyrev, A. Kasprzyk, and K. Schaller, “On the Fine Interior of Three-dimensional
Canonical Fano Polytopes,” 2019. arXiv: 1911.12048 [math.AG].

[265] A. A. Borisov and L. A. Borisov, “Singular toric Fano varieties,” Matematicheskii
Sbornik, vol. 183, no. 2, pp. 134–141, 1992.

[266] A. M. Kasprzyk, “Bounds on fake weighted projective space,” Kodai Mathematical
Journal, vol. 32, no. 2, pp. 197 –208, 2009. doi: 10.2996/kmj/1245982903.

[267] G. Averkov, A. Kasprzyk, M. Lehmann, and B. Nill, Sharp bounds on fake weighted
projective spaces with canonical singularities, 2021. doi: 10.48550/ARXIV.2105.

09635.

[268] D. Sommerville, Introduction to the Geometry of N Dimensions (Dover Books on
Mathematics). Dover Publications, isbn: 9780486842486.

[269] A. Hanany and R.-K. Seong, “Brane Tilings and Reflexive Polygons,” Fortsch. Phys.,
vol. 60, pp. 695–803, 2012. doi: 10 . 1002 / prop . 201200008. arXiv: 1201 . 2614

[hep-th].

[270] C. Vafa, “String Vacua and Orbifoldized L-G Models,” Mod. Phys. Lett. A, vol. 4,
p. 1169, 1989. doi: 10.1142/S0217732389001350.

[271] M. Kreuzer and H. Skarke, “No mirror symmetry in Landau-Ginzburg spectra!” Nu-
clear Physics B, vol. 388, no. 1, 113–130, Dec. 1992, issn: 0550-3213. doi: 10.1016/
0550-3213(92)90547-o.

[272] A Klemm, B Lian, S.-S Roan, and S.-T Yau, “Calabi-Yau four-folds for M- and F-
theory compactifications,” Nuclear Physics B, vol. 518, no. 3, 515–574, May 1998,
issn: 0550-3213. doi: 10.1016/s0550-3213(97)00798-0.

[273] V. V. Batyrev, “On the stringy Hodge numbers of mirrors of quasi-smooth Calabi-Yau
hypersurfaces,” Jun. 2020. arXiv: 2006.15825 [math.AG].

[274] V. V. Batyrev and L. A. Borisov, “On Calabi-Yau complete intersections in toric
varieties,” in Higher dimensional complex varieties, de Gruyter, 2011, pp. 39–66.

[275] N. Seiberg, “Five-dimensional SUSY field theories, nontrivial fixed points and string
dynamics,” Phys. Lett. B, vol. 388, pp. 753–760, 1996. doi: 10.1016/S0370-2693(96)
01215-4. arXiv: hep-th/9608111.

[276] P. Jefferson, H.-C. Kim, C. Vafa, and G. Zafrir, “Towards Classification of 5d SCFTs:
Single Gauge Node,” May 2017. arXiv: 1705.05836 [hep-th].

[277] L. Bhardwaj and G. Zafrir, “Classification of 5d N = 1 gauge theories,” JHEP, vol. 12,
p. 099, 2020. doi: 10.1007/JHEP12(2020)099. arXiv: 2003.04333 [hep-th].

[278] F. Apruzzi, C. Lawrie, L. Lin, S. Schäfer-Nameki, and Y.-N. Wang, “Fibers add
Flavor, Part II: 5d SCFTs, Gauge Theories, and Dualities,” JHEP, vol. 03, p. 052,
2020. doi: 10.1007/JHEP03(2020)052. arXiv: 1909.09128 [hep-th].

134

https://arxiv.org/abs/1611.02455
https://arxiv.org/abs/1911.12048
https://doi.org/10.2996/kmj/1245982903
https://doi.org/10.48550/ARXIV.2105.09635
https://doi.org/10.48550/ARXIV.2105.09635
https://doi.org/10.1002/prop.201200008
https://arxiv.org/abs/1201.2614
https://arxiv.org/abs/1201.2614
https://doi.org/10.1142/S0217732389001350
https://doi.org/10.1016/0550-3213(92)90547-o
https://doi.org/10.1016/0550-3213(92)90547-o
https://doi.org/10.1016/s0550-3213(97)00798-0
https://arxiv.org/abs/2006.15825
https://doi.org/10.1016/S0370-2693(96)01215-4
https://doi.org/10.1016/S0370-2693(96)01215-4
https://arxiv.org/abs/hep-th/9608111
https://arxiv.org/abs/1705.05836
https://doi.org/10.1007/JHEP12(2020)099
https://arxiv.org/abs/2003.04333
https://doi.org/10.1007/JHEP03(2020)052
https://arxiv.org/abs/1909.09128

[279] F. Apruzzi, C. Lawrie, L. Lin, S. Schäfer-Nameki, and Y.-N. Wang, “Fibers add
Flavor, Part I: Classification of 5d SCFTs, Flavor Symmetries and BPS States,”
JHEP, vol. 11, p. 068, 2019. doi: 10.1007/JHEP11(2019)068. arXiv: 1907.05404
[hep-th].

[280] O. DeWolfe, T. Hauer, A. Iqbal, and B. Zwiebach, “Uncovering the symmetries on
[p,q] seven-branes: Beyond the Kodaira classification,” Adv. Theor. Math. Phys.,
vol. 3, pp. 1785–1833, 1999. doi: 10.4310/ATMP.1999.v3.n6.a5. arXiv: hep-

th/9812028.

[281] V. Saxena, “Rank-two 5d SCFTs from M-theory at isolated toric singularities: a
systematic study,” JHEP, vol. 04, p. 198, 2020. doi: 10.1007/JHEP04(2020)198.
arXiv: 1911.09574 [hep-th].

[282] J. Vitoria, “Mutations Vs. Seiberg duality,” J. Algebra, vol. 321, pp. 816–828, 2009.
doi: 10.1016/j.jalgebra.2008.11.012. arXiv: 0709.3939 [math.RA].

[283] A. P. Fordy and R. J. Marsh, “Cluster mutation-periodic quivers and associated Lau-
rent sequences,” J. Algebr. Comb., vol. 34, pp. 19–66, 2011. doi: 10.1007/s10801-
010-0262-4. arXiv: 0904.0200 [math.CO].

[284] F. Benini, D. S. Park, and P. Zhao, “Cluster Algebras from Dualities of 2d N = (2,
2) Quiver Gauge Theories,” Commun. Math. Phys., vol. 340, pp. 47–104, 2015. doi:
10.1007/s00220-015-2452-3. arXiv: 1406.2699 [hep-th].

[285] S. Franco and G. Musiker, “Higher Cluster Categories and QFT Dualities,” Phys.
Rev. D, vol. 98, no. 4, p. 046 021, 2018. doi: 10.1103/PhysRevD.98.046021. arXiv:
1711.01270 [hep-th].

[286] A. B. Goncharov and R. Kenyon, “Dimers and cluster integrable systems,” Jul. 2011.
arXiv: 1107.5588 [math.AG].

[287] H. Williams, “Toda Systems, Cluster Characters, and Spectral Networks,” Commun.
Math. Phys., vol. 348, no. 1, pp. 145–184, 2016. doi: 10.1007/s00220-016-2692-x.
arXiv: 1411.3692 [math.RT].

[288] M. Kontsevich and Y. Soibelman, “Stability structures, motivic Donaldson-Thomas
invariants and cluster transformations,” Nov. 2008. arXiv: 0811.2435 [math.AG].

[289] D. Gaiotto, G. W. Moore, and A. Neitzke, “Wall-crossing, Hitchin Systems, and the
WKB Approximation,” Jul. 2009. arXiv: 0907.3987 [hep-th].

[290] N. Arkani-Hamed, J. L. Bourjaily, F. Cachazo, A. B. Goncharov, A. Postnikov,
and J. Trnka, Grassmannian Geometry of Scattering Amplitudes. Cambridge Uni-
versity Press, Apr. 2016, isbn: 978-1-107-08658-6, 978-1-316-57296-2. doi: 10.1017/
CBO9781316091548. arXiv: 1212.5605 [hep-th].

[291] J. Golden, A. B. Goncharov, M. Spradlin, C. Vergu, and A. Volovich, “Motivic Am-
plitudes and Cluster Coordinates,” JHEP, vol. 01, p. 091, 2014. doi: 10 . 1007 /

JHEP01(2014)091. arXiv: 1305.1617 [hep-th].

[292] N. Arkani-Hamed and J. Trnka, “The Amplituhedron,” JHEP, vol. 10, p. 030, 2014.
doi: 10.1007/JHEP10(2014)030. arXiv: 1312.2007 [hep-th].

135

https://doi.org/10.1007/JHEP11(2019)068
https://arxiv.org/abs/1907.05404
https://arxiv.org/abs/1907.05404
https://doi.org/10.4310/ATMP.1999.v3.n6.a5
https://arxiv.org/abs/hep-th/9812028
https://arxiv.org/abs/hep-th/9812028
https://doi.org/10.1007/JHEP04(2020)198
https://arxiv.org/abs/1911.09574
https://doi.org/10.1016/j.jalgebra.2008.11.012
https://arxiv.org/abs/0709.3939
https://doi.org/10.1007/s10801-010-0262-4
https://doi.org/10.1007/s10801-010-0262-4
https://arxiv.org/abs/0904.0200
https://doi.org/10.1007/s00220-015-2452-3
https://arxiv.org/abs/1406.2699
https://doi.org/10.1103/PhysRevD.98.046021
https://arxiv.org/abs/1711.01270
https://arxiv.org/abs/1107.5588
https://doi.org/10.1007/s00220-016-2692-x
https://arxiv.org/abs/1411.3692
https://arxiv.org/abs/0811.2435
https://arxiv.org/abs/0907.3987
https://doi.org/10.1017/CBO9781316091548
https://doi.org/10.1017/CBO9781316091548
https://arxiv.org/abs/1212.5605
https://doi.org/10.1007/JHEP01(2014)091
https://doi.org/10.1007/JHEP01(2014)091
https://arxiv.org/abs/1305.1617
https://doi.org/10.1007/JHEP10(2014)030
https://arxiv.org/abs/1312.2007

[293] S. He, Z. Li, and Q. Yang, “Notes on cluster algebras and some all-loop Feynman
integrals,” Journal of High Energy Physics, vol. 2021, Jun. 2021. doi: 10.1007/

JHEP06(2021)119.

[294] M. Alim, S. Cecotti, C. Córdova, S. Espahbodi, A. Rastogi, and C. Vafa, “BPS quivers
and spectra of complete N = 2 quantum field theories,” Comm. Math. Phys., vol. 323,
no. 3, pp. 1185–1227, 2013, issn: 0010-3616. doi: 10.1007/s00220-013-1789-8.

[295] A. Felikson, M. Shapiro, and P. Tumarkin, “Cluster algebras of finite mutation type
via unfoldings,” International Mathematics Research Notices, vol. 2012, Jun. 2010.
doi: 10.1093/imrn/rnr072.

[296] S. Fomin and A. Zelevinsky, “Y-systems and generalized associahedra,” Annals of
Mathematics, vol. 158, no. 3, pp. 977–1018, 2003.

[297] S. Fomin and N. Reading, Root systems and generalized associahedra, 2008. arXiv:
math/0505518 [math.CO].

[298] P.-P. Dechant, “From the Trinity (A3, B3, H3) to an ADE correspondence,” Proceed-
ings of the Royal Society A, vol. 474, no. 2220, p. 20 180 034, 2018.

[299] T. Nakanishi, “Cluster Algebras and Scattering Diagrams, Part I. Basics in Cluster
Algebras,” 2022. arXiv: 2201.11371 [math.CO].

[300] A. Gadde, S. Gukov, and P. Putrov, “(0, 2) trialities,” JHEP, vol. 03, p. 076, 2014.
doi: 10.1007/JHEP03(2014)076. arXiv: 1310.0818 [hep-th].

[301] S. Franco, S. Lee, and R.-K. Seong, “Brane brick models and 2d (0, 2) triality,” JHEP,
vol. 05, p. 020, 2016. doi: 10.1007/JHEP05(2016)020. arXiv: 1602.01834 [hep-th].

[302] S. Franco, S. Lee, R.-K. Seong, and C. Vafa, “Quadrality for Supersymmetric Matrix
Models,” JHEP, vol. 07, p. 053, 2017. doi: 10 . 1007 / JHEP07(2017) 053. arXiv:
1612.06859 [hep-th].

[303] T. Coates, J. Hofscheier, and A. Kasprzyk, Machine learning the dimension of a
polytope, 2022. doi: 10.48550/ARXIV.2207.07717.

[304] S. Chen, Y.-H. He, E. Hirst, A. Nestor, and A. Zahabi, “Mahler Measuring the Genetic
Code of Amoebae,” Dec. 2022. arXiv: 2212.06553 [hep-th].

[305] M.-W. Cheung, P.-P. Dechant, Y.-H. He, E. Heyes, E. Hirst, and J.-R. Li, “Clustering
Cluster Algebras with Clusters,” Dec. 2022. arXiv: 2212.09771 [hep-th].

136

https://doi.org/10.1007/JHEP06(2021)119
https://doi.org/10.1007/JHEP06(2021)119
https://doi.org/10.1007/s00220-013-1789-8
https://doi.org/10.1093/imrn/rnr072
https://arxiv.org/abs/math/0505518
https://arxiv.org/abs/2201.11371
https://doi.org/10.1007/JHEP03(2014)076
https://arxiv.org/abs/1310.0818
https://doi.org/10.1007/JHEP05(2016)020
https://arxiv.org/abs/1602.01834
https://doi.org/10.1007/JHEP07(2017)053
https://arxiv.org/abs/1612.06859
https://doi.org/10.48550/ARXIV.2207.07717
https://arxiv.org/abs/2212.06553
https://arxiv.org/abs/2212.09771

	Introduction
	Dramatis Personae
	Gauge Theories
	String Theories
	Data Science

	Research Work
	Dessins d'Enfants (2004.05218)
	Quiver Mutation (2006.10783)
	Hilbert Series (2103.13436)
	Amoebae (2106.03695)
	Polytopes (2109.09602)
	Calabi-Yaus (2112.06350)
	Brane Webs (2202.05845)
	Cluster Algebras (2203.13847)

	Outlook
	Appendices
	Calabi-Yau Analysis
	Additional PCA Information
	Additional Hodge Plots
	Additional Misclassification Analysis

	Cluster Algebra Data
	Oriented Quivers
	Seed Exchange Graphs

	References

