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A B S T R A C T   

Although autonomous shipping has attracted increasing interest, its further development requires innovative 
solutions to operate autonomous ships without the direct intervention of human operators. This study aims to 
develop a health-aware energy management (HAEM) approach for ship hybrid power plants, integrating the 
health monitoring information from reliability tools with the energy management tools. This approach employs 
the equivalent consumption minimisation strategy (ECMS) along with a Dynamic Bayesian network (DBN), as 
well as the utopia decision-making method and a model for the ship hybrid power plant. The HAEM approach is 
demonstrated for a parallel hybrid power plant of a pilot boat considering realistic operating profiles. The results 
demonstrate that by employing HAEM approach for the investigated ship power plant operating for 300 h re-
duces its failure rate almost fourfold at the cost of fuel consumption increase of around 1.5%, compared to the 
respective operation with the ECMS. This study is expected to contribute towards the development of supervisory 
control of autonomous power plants.   

1. Introduction 

Initiatives to develop autonomous ships have been pursued including 
research and industrial projects, with the most notable examples of the 
AUTOSHIP, MUNIN, AAWA, and Yara Birkeland [1,2]. The use of smart 
sensors, intelligent monitoring capabilities, autonomous 
decision-making functions and data exchange with wireless connectivity 
to the shore are constituent parts of the successful autonomous ships 
operation [3,4]. Nonetheless, technological maturity is not yet achieved, 
since new technologies are currently being developed and tested [3,5]. 
As a result, further developments are required, especially for the highly 
automated parts that must be operated without crew intervention [6]. 

The ship power plant is an essential part of the autonomous ship, as it 
provides power to satisfy the ship’s propulsive and electrical power 
demand. However, in the case of autonomous operations, the power 
plant’s requirements are intrinsically different from conventional ships, 
as the crew cannot perform corrective actions [7]. The system must 
exhibit sufficient resilience where unexpected events and failures occur, 
whilst ensuring the system’s safe operation [7,8]. In this respect, the 
system must possess the capability of recovering during disrupting 
events [9]. Consequently, the availability of the power plant 

functionality is ranked as a higher priority during the design process and 
the autonomous operations [10]. 

Since maintenance in the autonomous ship power plant cannot be 
performed onboard, it is considered a non-repairable system throughout 
the sailing phase [11]. Consequently, one of the most crucial re-
quirements for autonomous operation is to preserve the components and 
system reliability [12]. As the system reliability is greatly influenced by 
the components’ reliability and the power plant’s topology, it can be 
considerably improved by employing configurations with multiple 
components and redundancy [13]. Hence, the hybrid configurations are 
expected to attract the autonomous ship designers interest, as they 
combine both mechanical and electrical components [3,14]. Hybrid 
power plants contribute to potential fuel savings and emissions re-
ductions, whilst offering redundancy by having multiple power sources 
and power consumers, thus providing increased system reliability [15, 
16]. 

Furthermore, the power plant components operating regions can 
greatly influence future degradation patterns (typically, operation close 
to permissible limits accelerates degradation) [17,18]. For configura-
tions with multiple components, the energy management strategies 
determining the components’ setpoints should consider both perfor-
mance criteria (i.e., fuel consumption) and the health state, to reduce 
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degradation and prolong system lifetime expectancy [19]. 
The existing literature reports several methods to tackle the energy 

management of hybrid power plants. These are mainly categorised into 
the following three types: rule-based (RB), optimisation-based (OB), and 
learning-based (LB) [20]. The most widely used In the maritime sector 
include dynamic programming (DP) [21], Pontryagin’s minimisation 
principle (PMP) [22], equivalent consumption minimisation strategy 
(ECMS) [23], model predictive control (MPC) [24], and Reinforcement 
Learning (RL) [25,26]. 

Frequently, the energy management strategies for marine applica-
tions focus mainly on fuel savings and emissions reduction. Recent 
studies [23,27] demonstrated the ECMS to ship hybrid propulsion sys-
tems achieving considerable fuel savings compared to rule-based ap-
proaches. The MPC method using the receding horizon prediction 
technique also exhibited considerable fuel consumption reduction in 
hybrid marine propulsion systems [24,28]. Wu et al. [25] applied a 
double Q reinforcement learning method to a hybrid fuel cell and bat-
tery propulsion system, achieving close to optimal results in different 
operating profiles. Planakis et al. [29] proposed an MPC framework 
employing a trade-off strategy between fuel consumption and NOx 
emissions minimisation. Taheri et al. [30] formulated an optimisation 
method for the operation of a power system considering fuel con-
sumption and CO2 emissions reduction. Nevertheless, these methods do 
not consider how the power allocation at every instant affects the 
component health state or reliability, and consequently the system 
behaviour. 

To assess the health state of ship power plants, the operating history, 
the prevailing environmental conditions and the plant operating con-
ditions need to be considered. Advanced monitoring capabilities are 

needed for diagnosing the current health state as well as providing 
prognosis of the plant’s future behaviour. BahooToroody et al. [31] 
proposed a machine learning approach in a hierarchical Bayesian 
inference framework (HBI) to calculate the remaining useful life (RUL) 
of an autonomous ship’s main engine with different degrees of auton-
omy using actual measurements. Abaei et al. [6,32] utilised probabilistic 
models using the Bayesian inference to calculate reliability metrics for 
unattended power plants considering unexpected and disruptive events. 
Bolbot et al. [33] proposed a monitoring methodology for cruise ship 
power plants, using sensor measurements to predict the dynamic 
blackout probability. Eriksen et al. [34] examined the applicability of a 
Reliability Centred Maintenance (RCM) method to assess maintenance 
and reliability in an unmanned vessel. Lee et al. [35] used fault tree 
analysis (FTA) as a risk tool to support risk-informed decision-making 
for an autonomous collision avoidance system. 

System-level monitoring methods are required to assess the ship 
power plant’s health state, which depends on the system layout, com-
ponents and their interconnections. Dynamic Bayesian networks (DBN) 
constitute an emerging method for predicting a complex system’s health 
state [36], capturing the temporal dependencies between the modelled 
components [37]. Guo et al. [38] presented an approach based on a DBN 
to evaluate the operational reliability of a marine propulsion system by 
combining both monitoring and statistical data. Rebello et al. [39] used 
DBN to integrate components’ degradation state into the system’s 
functional state. Gao et al. [40] utilised a DBN to evaluate the reliability 
of an unmanned surface vehicle, by capturing the interactions at the 
component and subsystem levels. 

Nonetheless, the combination of energy management strategies and 
monitoring methods for reliability and health assessment has not been 

Nomenclature list 

I current [A] 
kp propeller constant [–] 
l component load fraction [–] 
llimit maximum engine load at torque/speed limit curve [–] 
m flow mass rate [kg/s] 
N rotational speed [rev/m] 
P power [W] 
QLHV lower heating value of fuel at ISO conditions [kJ/kg] 
Qmax battery capacity [Ah] 
R reliability [–] 
R0 series resistance [Ω] 
s equivalance factor 
SOC state of Charge [–] 
t time [s] 
Ts sampling interval [s] 
u control variable 
Voc open circuit voltage [V] 

Greek symbols 
β Weibull distribution shape factor [–] 
η efficiency [–] 
λ failure rate [h–1] 

Subscripts 
bat battery 
elec electrical 
em electric machine 
eng engine 
eqv equivalent 
f fuel 
i component identifier 

max maximum 
mean mean 
min minimum 
prop propeller 
ress rechargeable energy storage system 
t target 

Abbreviation list 
BN Bayesian network 
BSFC brake-specific fuel consumption 
CPT conditional probabilities tables 
DBN dynamic Bayesian network 
DP dynamic programming 
ECMS equivalent consumption minimisation strategy 
FTA fault tree analysis 
HAEM health-aware energy management 
HBI hierarchical Bayesian inference 
LB learning-based 
MCR maximum continuous rating 
MOCP multi-objective optimal control problems 
MPC model predictive control 
OB optimisation-based 
PHM proportional hazard model 
PMP Pontryagin’s minimisation principle 
PTI power take in 
PTO power take out 
RB rule-based 
RCM reliability centred maintenance 
RL reinforcement learning 
RUL remaining useful life 
STPA system theoretic process analysis 
WPHM Weibull proportional hazard model  
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widely used in the marine industry. Tang et al. [18] used a static opti-
misation method for the energy management of a hybrid ship power 
plant employing models to predict the battery RUL, aiming to minimise 
emissions and fuel consumption whilst extending the battery’s lifetime. 
Hein et al. [41] applied a multi-objective optimisation method for the 
energy management of a hybrid ferry considering battery degradation. 
Johansen and Utne [42,43] integrated System theoretic process analysis 
(STPA) and Bayesian networks to enable supervisory risk control for 
autonomous ships. For autonomous ship power plants, the integration of 
health assessment and the energy management strategy can be 
employed to develop the enabling technology for intelligent 
decision-making to provide the necessary resilience in the case of un-
expected failure events and maximise the plant reliability [44]. 

The concept of health-aware control combining control strategies 
with health monitoring methods was proposed by Escobet et al. [45] to 
address the challenge of health monitoring and management for com-
plex systems, demonstrating its application to a conveyor belt system. 
Salazar et al. [46] applied the same concept to a drinking water network 
considering the trade-off between control performance and system 
reliability. Pour et al. [47] included the health-aware aspect for the 
control of water networks using system reliability in the objective 
function. Balaban et al. [48] proposed an approach to unify prognostics 
and health management with automated decision-making for complex 
systems in the presence of uncertainties. Based on these studies’ find-
ings, it is anticipated that the health-aware control concept can benefit 
the development of maritime autonomous and intelligent systems, 
hence, it is investigated herein. 

From the preceding literature review, the following research gaps are 
revealed: (a) employed energy management studies for hybrid power 
plants focus mainly on the minimisation of performance metrics to 
achieve fuel savings and emissions reduction; (b) the ship power plant 
health metrics like reliability and risk are not integrated into the energy 
management strategies; (c) only a few studies have demonstrated 
decision-making capabilities combining health and reliability moni-
toring with performance criteria. 

This study aims to develop a health-aware energy management 
(HAEM) approach that integrates the health monitoring information 
from reliability tools with energy management. The system reliability is 
calculated and used as the health metric targeting to avoid operating 
regions that can decrease both component(s) and system reliability. The 
proposed approach is applied to the case study of a pilot boat hybrid 
power plant. 

To the best of the authors’ knowledge, it is the first time that such an 
approach is presented in the pertinent literature. Additional novel 
contributions of this study include the investigation of the trade-off 
between fuel consumption and system reliability as well as the use of 
decision-making methods to determine the components’ operating 
conditions. 

The remainder of this study is structured as follows. Section 2 de-
scribes the employed methodology along with the considered methods 
and models. In Section 3, the system description and the required input 

for the examined case study are presented. Section 4 presents and dis-
cusses the derived results. In Section 5, the main findings and conclu-
sions of this study are summarised. 

2. Developed health-aware energy management decision- 
making approach 

2.1. Overview 

The proposed HAEM approach consists of the following modules: (a) 
the hybrid power plant model; (b) the decision-making based on the 
utopian point method; (c) the energy management system; (d) the dy-
namic reliability estimator with the failure update model. Fig. 1 presents 
the block diagram of the HAEM which highlights the main tools/mod-
ules employed and their interactions in the closed loop system, as well as 
the key input/output parameters. The HAEM approach is applied to a 
ship hybrid power plant that includes an engine, an induction machine 
and a battery as the energy storage system. 

The hybrid power plant model is developed by combing physical and 
surrogate sub-models to sufficiently represent the physical system per-
formance. The energy management is based on ECMS, which is capable 
to handle unknown operating profiles by converting the problem of 
minimising fuel consumption into an instantaneous optimisation prob-
lem, thus achieving near-optimal fuel savings [23]. 

A DBN approach is adopted to estimate the dynamic variation of the 
considered system reliability. A Weibull proportional hazard model 
(WPHM) model is employed to consider the dependence of the failure 
rate on the components’ operating points. In addition, to capture the 
time-dependency for the component reliability estimation, a semi- 
Markovian approach is adopted, which can implicitly update the 
component reliability based on the elapsed time. 

At every instance of the power-split problem, an optimal fuel con-
sumption point is identified by the energy management strategy, 
whereas an optimal system reliability point is proposed by the DBN. The 
Pareto front is developed with these two objectives, and the reference or 
utopia point method is used to identify the plant components’ operating 
points based on the distance minimisation to an infeasible target [49, 
50]. 

2.2. Hybrid power plant model 

Energy management strategies require the assessment of several 
operating points at every timestep. In these cases, high-fidelity models 
can significantly increase the modelling complexity and computational 
cost [51]. On the contrary, quasi-static modelling approaches are suffi-
cient to calculate the fuel consumption and the power plant compo-
nents’ performance parameters [52]. As a result, the investigated power 
plant components are modelled by employing efficiency maps, fuel 
consumption maps and first principles models. 

Fig. 1. Block diagram of the HAEM approach.  
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2.2.1. Marine engine model 
The brake-specific fuel consumption (BSFC) of marine engines de-

pends on the operating point (brake power and rotational speed). This 
study employs the BSFC map, which is developed by employing the 
engine manufacturer data, to calculate the engine fuel mass flow rate as 
a function of engine speed and torque [52]: 

ṁf = feng
(
Qeng,Neng

)
(1)  

where ṁf is fuel flow mass rate, Qeng is the engine torque and Neng is the 
engine rotational speed. 

2.2. Electric machine model 
To calculate the mechanical power and the mechanical losses of the 

electric machine an approach based on its efficiency map is used [53]. 
and the load correction factor is employed [54]. The provided me-
chanical power Pem is expressed as: 

Pem = ηem(Pelec)NemQem, Pelec ≥ 0 (Motoring Mode) (2)  

Pem =
1

ηem(Pelec)
NemQem, Pelec < 0 (Generating Mode) (3)  

where ηem denotes the electric machine efficiency, Qem denotes the 
electric machine torque, Pelec denotes the machine’s electrical power, 
and Nem denotes the electric machine rotational speed. 

2.2.3. Battery model 
The battery performance is modelled by employing the quasi-static 

approach considering the first-order equivalent circuit [52]. The cur-
rent I is calculated as a function of power using the following formula: 

I =
Voc

2R0
−

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(

Voc

2R0

)2

−
Pbat

R0

√

(4)  

where Pbat is the battery power, Voc is the open circuit voltage, R0 is the 
series resistance. 

The battery state of charge (SOC) time variation in the next timestep 
is calculated as: 

SOC(t+Δt) = SOC(t) −
Voc −

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

V2
oc − 4PbatR0

√

2QmaxR0
(5)  

where Qmax is the battery capacity. 
It should be noted that this model does not consider the ageing ef-

fects of the battery due to the loading cycles, whereas the influence of 
the battery temperature is also considered negligible [55]. 

2.2.4. Propeller load 
To model the absorbed power propeller, the propeller law is used 

[56]. Based on the engine maximum continuous rating (MCR) point, the 
propeller torque Qprop is calculated by: 

Qprop = kpN2
eng (6)  

where the kp coefficient is calculated at the MCR point. 

2.3. Energy management strategy (ECMS) 

2.3.1. Overview 
The ECMS converts the global optimisation problem of finding the 

minimum fuel consumption to an instantaneous optimisation problem 
based on arguments for the energy flow in the power plant whilst 
satisfying various constraints [52]. This attribute enables its real-world 
implementation, as energy management is formulated as an optimisa-
tion problem to be solved at every instant, considering the requested 
power setpoint. 

The conversion to the instantaneous problem is performed using an 
equivalence factor, which is tuned for a typical operating profile. 
Nevertheless, it has been shown that ECMS can achieve significant 
robustness in different operating profiles whilst finding near-optimal 
solutions [23]. Furthermore, the ECMS does not require information 
about the future operating profile, compared to receding horizon tech-
niques, thus is can significantly mitigate the computational burden [27]. 

2.3.2. Optimisation problem formulation 
The underlying idea behind ECMS is that a cost is assigned to the 

electrical energy to render it equivalent to the amount of fuel that can be 
saved or consumed. As a result, the instantaneous equivalent fuel mass 
flow rate ṁf ,eqv(t) is the sum of the engine fuel mass flow rate and the 
equivalent or virtual fuel mass flow rate corresponding to the 
rechargeable energy storage system ṁress(t): 

ṁf ,eqv(t) = ṁf (t) + ṁress(t) (7) 

The equivalent or virtual fuel mass flow rate is calculated using an 
equivalence factor, which is estimated using a typical operating profile. 
Usually, the equivalence factor varies for the charging and discharging 
phases respectively [52]. Nevertheless, a single value suffices to capture 
the efficiency in the electrical path [23]. Consequently, the equivalent or 
virtual fuel flow mass rate is calculated by: 

ṁress(t) = s(t)
Pbat

QLHV
(8)  

where s(t) is the equivalence factor and QLHV is the fuel’s lower heating 
value at ISO conditions (corresponding to 42,700 kJ/kg according to ISO 
3046 [57]). 

To guarantee that the SOC does not exceed the admissible limits, a 
penalty function is introduced [52]. The penalty function adjusts its 
value based on the deviation of the SOC from its target value SOCt (p 
(SOC) 〈 1 for SOC 〉 SOCt, resulting in a lower cost attributed to battery 
energy, increasing the discharge likelihood, whereas p(SOC) > 1 when 
SOC < SOCt, increasing the cost of battery energy and reducing the 
discharge likelihood). The penalty function takes the following form: 

p(SOC) = 1 −

(
SOC(t) − SOCt

(SOCmax − SOCmin)/2

)3

(9) 

The equivalent or virtual fuel flow mass rate is then calculated ac-
cording to the following equation: 

ṁress(t) = s(t)
Pbat

QLHV
p(SOC) (10) 

The control variable u denotes the provided power by the battery 
Pbat, whereas the exogenous input parameters include the battery SOC, 
the requested propulsive power Pprop, and the propeller rotational speed 
Nprop. The instantaneous equivalent fuel mass flow rate is subsequently 
calculated for several discrete candidate control variables. Finally, the 
optimal solution consists of the control parameters values to minimise 
the instantaneous equivalent fuel mass flow rate according to the 
following equation: 

u∗(t) = argmin
u

ṁf ,eqv
(
u, SOC,Pprop,Nprop

)
(11) 

The solutions must also satisfy various constraints for the provided 
power and the rotational speed of the electric machine and the engine 
whilst ensuring that the SOC does not exceed the permissible limits. 

2.4. System reliability estimator 

2.4.1. Dynamic Bayesian network (DBN) 
A DBN is employed to calculate the system reliability based on the 

logical structure of the system, whilst considering the temporal de-
pendencies to predict the liability in future time steps [38]. The 
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components and system reliability is employed herein to represent the 
system health state, as reliability expresses the probability of a compo-
nent performing the required function at a specific time period [17,46, 
47]. 

The DBN is an extension of the Bayesian network (BN), which cap-
tures network the temporal behaviour [58]. Bayesian networks are 
probabilistic directed acyclic graphs, which employ nodes to represent 
variables and edges to characterise the dependencies between these 
variables whilst using conditional probabilities tables (CPT) to quantify 
these dependencies. The nodes and edges constitute the qualitative part 
of the BN, whilst the conditional probabilities enable the quantitative 
analysis. The joint probability distribution in the Bayesian network is 
given by the following equation [59]: 

P(X1,X2, …,Xn) =
∏n

i=1
P(Xi|Pa(Xi)) (12)  

where Pa(Xi) represents the parent set of any variable Xi, and 
P(Xi|Pa(Xi)) is the conditional probability distribution function of vari-
able Xi given its parent set. 

Unlike BNs which are static models, DBNs can represent several time 
slices, where the nodes between the different time slices can be con-
nected with directed temporal edges to unveil the temporal de-
pendencies. The transition between the previous time slice and the 
current time slice is expressed by the following equation [59]: 

P(Zt|Zt− 1) =
∏n

i=1
P
(
Zi,t
⃒
⃒Pa
(
Zi,t
))

(13)  

where Z is the family of random variables X1,X2, to XN, Zi,t is the ith node 
at the time slice t, and Pa(Zi,t) is the parent nodes of Zi,t from the same 
and previous time slices. 

Consequently, the final joint probability distribution for all the time 
slices takes the following form [59]: 

P(Z1:N) =
∏N

t=1

∏n

i=1
P
(
Zi,t
⃒
⃒Pa
(
Zi,t
))

(14) 

Since the DBN in this study is used to calculate the overall system 
reliability, the approach proposed by Bobbio et al. [60] is followed, 
where fault trees are mapped into Bayesian networks. Firstly, the com-
ponents of the power plants are modelled as root nodes with the 
component reliability being provided as input, which gets updated at 
every timestep. The next step is to model the interconnections between 
the component nodes to capture their effect on the subsequent system 
behaviour. As a result, intermediate nodes are used, which represent the 
causal relationships equivalent to logical gates found in fault trees 
(AND/OR gates). These nodes are modelled as noisy gates by specifying 
accordingly the CPT tables [61]. 

To carry out the quantitative analysis, the calculations are performed 
using the SMILE engine, which is developed in C++ [62]. Since the 
modelling has been implemented in the MATLAB environment, a 
wrapper was used to import the SMILE engine into MATLAB. This 
toolbox supports the use of virtual evidence as input [63], where the 
evidence is provided in the form of a probability distribution. 

Furthermore, the DBN employs two time slices for which the DBN 
input parameters are updated at each timestep. The first time slice es-
timates system reliability at the current time step, whereas the second 
time slice calculates system reliability at the end of the considered 
timestep, considering the influence of the components’ operating points. 
The forecasted system reliability in the various investigated operating 
points is used as input for the decision-making method discussed in the 
following sections. 

2.4.2. Components reliability 
The constituent parts of the DBN that get updated at every timestep 

are the root nodes, which represent the random variables pertinent to 

the components’ reliability. As reliability is a function that depends on 
time, the components’ reliability must be calculated at every timestep of 
the energy management strategy and update the root nodes of the DBN. 

Furthermore, the operating point of each power plant component 
influences both the performance and the component reliability, conse-
quently the remaining component lifespan [18]. As a result, it is needed 
to capture the influence of the operating point on each component 
reliability, whilst considering the effect of the previous operational 
history. 

In this respect, a WPHM is used to update the failure rate in each time 
step to account for the influence of the operating point variation. The 
WPHM is an extension of the classical proportional hazard model (PHM) 
introduced by Cox [64], where the failure rate function follows the 
Weibull distribution [65]. Contrary to exponential approaches where 
the failure rate is constant, using values of the Weibull distribution 
shape factor (β) greater than 1 results in increasing the failure rates with 
time; thus, capturing the components’ reliability decrease. According to 
the WPHM, the failure rate λ(t, l) is given by [49]: 

λ(t, l) = βλβ
0t

β− 1g(l, θ) (15)  

where λ0 is the baseline failure rate, whereas the function g(l,θ) is called 
the covariate function that depends on the covariate l representing the 
component load and a component parameter θ. 

In health-aware control applications, the covariate function of the 
load can take many forms including exponential, linear and quadratic 
[17,46]. In this study, the linear form is chosen where the values for the 
failure rates are based on the OREDA database [66]. In particular, the 
mean and maximum values of the failure rate (λmean and λmax) are 
considered, whereas the failure rate is considered a linear function of the 
load [67]. The component failure rate is thus expressed according to the 
following equation: 

λ(t, l) = βλβ
meant

β− 1

(

1+

((
λmax

λmean

)β

− 1

)

l

)

(16)  

where l is the specific power plant component load. 
This model is used for all the components except for the engine, 

where its failure rate is modelled to depend also on the engine speed. 
More specifically, regions of the engine operating envelope close to the 
torque/speed limit as well as low loads are preferred to be avoided, as 
they can potentially accelerate degradation. Thus, it is assumed that the 
engine failure rate exhibits its maximum values for loads of 20% (and 
less) and at the torque limit region. For the other operating regions, the 
engine failure rate is a linear function of the load. According to the 
considered WPHM, the engine failure rate is calculated by the following 
equations: 

λ(t, l) = βλβ
maxt

β− 1, 0 ≤ l < 0.2 (17)  

λ(t, l) = βλβ
meant

β− 1

(

1+

((
λmax

λmean

)β

− 1

)
l − 0.2

llimit − 0.2

)

, 0.2 ≤ l < 1 (18)  

where llimit the maximum load at every engine speed at the torque/speed 
limit curve. 

Since the values of the failure rates from the OREDA database are 
considered constant, a transformation is necessary for their use in the 
Weibull distribution. The correction procedure as described by Denson 
et al. [68] is followed herein. 

The power plant components’ failure rates are calculated at every 
timestep using Eqs. (16)–(18). For operational components in the cur-
rent time step, these failure rates provide information to calculate the 
conditional probability of the component failing in the next time step. 
Nonetheless, it is essential to calculate the system and components’ 
reliability time variation by including the influence of the previous 
operating points and the past operational time. In this respect, a 
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nonhomogeneous semi-Markov chain is adopted. 
In the classical Markov chain, the future states depend only on the 

present state without considering history (memoryless property) [69]. 
By extending the Markov chain to a semi-Markov chain, a stochastic 
process can be modelled where transitions can occur at different times, 
satisfying the Markov property of each transition [70]. The difference 
between a homogeneous semi-Markov chain and a nonhomogeneous 
semi-Markov chain is that in the former transition probabilities are in-
dependent of time, whereas in the latter they depend on the current state 
and the elapsed time. 

In this respect, a nonhomogeneous semi-Markov chain is built for 
every component with a discrete random variable xi having two mutu-
ally exclusive states (working or failure) and the transition probabilities 
matrix [46] according to the following equation: 

P(xi(k+ 1)|xi(k)) =
[

1 − pi(k) pi(k)
0 1

]

(19)  

where k denotes the current timestep, and pi(k) is the probability of the 
ith component failing in the next timestep (k + 1) given that it was 
working in the current timestep. 

From the above definition, the probability pi(k) is calculated based 
on the failure rate definition [11] according to the following equation: 

pi(k) = λi(k, l)Δt (20)  

where Δt is the interval between the following and the current timestep. 
Moreover, component reliability Ri is defined based on the failure 

rate using the following formula: 

Ri(t) = e

−

∫t

0

λi(t, l)dt

(21)  

By discretising the above expression for the different timesteps, each 
component reliability is calculated as: 

Ri(k) = e
− Ts
∑k

k=0
λi(k,l)

(22)  

where Ts is the sampling interval of the timesteps. 
Each component reliability is calculated for the next timestep based 

on the dictated operating profile, and subsequently, it is fed into the root 
nodes for the current and the next time slices of the DBN. The DBN gets 
updated at every execution of the energy management strategy by 
providing the components reliability of the next timesteps. It should be 
noted that the input of the root nodes is in the form of a probability 
distribution, as it represents reliability, which is provided to the DBN in 
the form of virtual evidence [39]. 

By using the WPHM and the semi-Markov chain, the past operational 
period and the influence of the previous points can be explicitly 
captured in the reliability of the components, whilst updating the 
components’ reliability as evidence for the DBN to calculate the system 
reliability. Furthermore, the overall system reliability is calculated for 
every different operating point that satisfies the constraints dictated by 
the energy management strategy. 

2.5. Decision-making method 

In the previous sections, the calculations of the instantaneous 
equivalent fuel flow mass rate and the system reliability were presented. 
However, a single operating point should be identified for every power 
plant component. As indicated by the results presented in the next sec-
tion, optimal fuel consumption and optimal system reliability do not 
always occur at the same operating point, as a result, a trade-off strategy 
should be followed to choose the operating point as a compromise be-
tween these two objectives. 

The most straightforward approach to solving multi-objective 

optimal control problems (MOCP) is by a scalarisation technique using 
weighting factors [50]. A weighting factor is assigned to every objective, 
as a result, the control problem employs a single objective function that 
must be minimised or maximised. The weighting factors are typically 
determined by using experts’ knowledge, which is not always available 
in the case of hybrid systems and autonomous operations. Consequently, 
a more sophisticated method should be followed, where the weight for 
each objective dynamically changes based on the power demand and the 
prevailing conditions. 

This study employs, the reference or utopia point method [50,49], 
for facilitating decision-making. To select the components operating 
point at each time step, the Pareto front of the two selected objectives is 
identified. All the solutions in the Pareto front are feasible, however, the 
final solution is selected based on the distance minimisation to an 
infeasible target or utopia point. The distance to an infeasible target 
point T should be minimised, so that does not belong to the Pareto front 
J, according to the following equation: 

min
u

J(u) = min
u

T − J(u) (23) 

The infeasible point is identified as the point with the lowest 
equivalent fuel mass flow rate and the highest system reliability, which 
apparently cannot be achieved. Both objectives are scalarised from zero 
to unity based on their extreme values to make their contribution equal 
(their maximum values and minimum values are set to one and zero, 
respectively). An example of applying this method to the Pareto front of 
this case study is shown in Fig. 2. The circle at the bottom right corner 
represents the utopia point, while the other circle denotes the selected 
setpoint which is selected based on the calculated minimum distance 
highlighted by the dashed line. This process of building the Pareto front 
and minimising the distance to the utopia point is repeated in every time 
step. 

3. Case study description 

The HAEM approach is demonstrated in the case study of a parallel 
hybrid power plant of a pilot boat. A schematic representation of the 
investigated power plant configuration is presented in Fig. 3. 

This study models the mechanical and electrical components of the 
considered power plant. For operating autonomously, additional com-
ponents are expected pertinent to software, sensors, actuators, intelli-
gent monitoring and communications. However, these are considered 
out of this study’s scope. 

3.1. Operating profile 

To examine the behaviour of the HAEM approach as close as possible 
to real operating conditions, available engine speed data corresponding 

Fig. 2. Example at a specific timestep of the Pareto front with the two objec-
tives normalised. 
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to three voyages, which were acquired from a pilot boat equipped with a 
mechanical propulsion system and marine diesel engines, were 
employed. 

Subsequently, the demanded propulsion power that is required as 
input is estimated by using the propeller law, i.e., considering the cubic 
function of the provided engine speed. Furthermore, the recorded speed 
has an inherent noise due to the operating condition disturbances and 
the sensor’s uncertainty, thus filtering was performed to provide the 
power setpoints. Fig. 4 presents the power setpoints combining the three 
sample voyages. 

Based on the power demand profile for these voyages, a half-month 
operating profile was developed by arranging the three voyages in 
random order as well as by altering the power setpoints with a ± 10% 
random variation to represent a more realistic scenario. 

3.2. Models input 

The characteristics of the selected power plant components are 
presented in Table 1. The hybrid configuration is of the parallel type, 
which indicates that the two prime movers (diesel engine and the 
electric machine) are coupled in a gearbox providing power either 
individually or simultaneously to the propeller. In the power take in 
(PTI) mode, the electric machine operates as a motor receiving energy 
from the battery and providing power to the propeller. In the power take 
out (PTO) mode, the electric machine operates as a generator charging 
the battery. 

The engine manufacturer data were employed to develop the fuel 
consumption map. In particular, the considered marine engine is the 
Scania DI16M, which is a twin-turbo four-stroke diesel engine [71]. For 
the other components, the models described in Section 2 were deployed 
with the system parameters provided in Table 1. All the models were 
implemented in the MATLAB environment Table 2. 

3.3. Reliability models input 

The developed DBN has a qualitative and a quantitative part. The 
qualitative part presents the structure of the network showing the nodes’ 
interconnections. Fig. 5 presents the developed DBN for the investigated 
ship hybrid power plant, where the arcs above the root nodes represent 
the temporal dependences. 

The components’ reliability is calculated in every timestep and is 
used as an input in the form of virtual temporal evidence to the DBN. In 
addition, for the intermediate nodes, noisy-OR gates were used to speed 
up the inference computation [63]. 

Furthermore, the values for the shape parameters employed for the 
WPHM are based on the data reported in [67]. The failure rates are taken 
from the OREDA database, whereas their mean and maximum values are 
chosen by aggregating all the failure modes of the investigated 
components. 

Fig. 3. Parallel hybrid power plant configuration.  

Fig. 4. Sample operating profile with the three sample voyages combined.  

Table 1 
Investigated hybrid power plant parameters.  

Component Parameter Value 

Engine Type 4 stroke, 8 cylinders 
Power MCR (kW) 423 
Speed MCR (RPM) 2100 

Electric Machine Nominal power (kW) 100 
Battery Type Lithium-ion 

Module capacity (Ah) 100 
Nominal Voltage (V) 12 
Number of modules 100  

Table 2 
Failure rates and shape parameters for the considered components.  

Component Maximum failure 
rate (h–1) 

Mean failure 
rate (h–1) 

Shape parameter 
β (–) 

Engine 32.42 10–4 17.68 10–6 2.4 
Electric 

Machine 
97.56 10–6 43.76 10–6 1.2 

Battery 136.81 10–6 63.57 10–6 1.69 
Gearbox 3.80 10–6 1.01 10–6 2.028  

Fig. 5. Unrolled dynamic Bayesian network structure.  
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4. Results and discussion 

4.1. Energy management strategy evaluation 

The use of the ECMS for energy management does not guarantee the 
globally optimal solution, as the problem is converted to an instanta-
neous minimisation problem for real-world applications, where the 
operating profile is not known a priori. However, it can achieve near- 
optimal solutions with a considerably low computational burden. 

Furthermore, the results obtained are greatly affected by the selec-
tion of the equivalence factor [23]. In this study, the equivalence factor 
is considered constant and is tuned based on the employed operating 
profile. The selection of the equivalence is based on the shooting method 
as described in [52]. 

Moreover, to verify ECMS, a comparison was made with Dynamic 
Programming (DP). In the energy management problem of hybrid con-
figurations, DP is the method that approximates the globally optimal 
solution, since the full history of the operating profile is provided as 
input and the optimisation problem is solved backwards in time [72]. 

This study employs the DP function developed in [73]. The state 
variable (SOC) is discretised considering Nx=101, whereas the control 
variables were discretised with Nu=201 values. To make the compari-
son equivalent the same discretisation was performed for the ECMS. In 
addition, the DP function enables the use of the boundary line, which 
provides more accurate results with fewer function evaluations [73]. 

Fig. 6 presents the time variations of the battery SOC and consumed 
fuel amount, which were derived by employing the DP and ECMS. The 
initial SOC is set to 70% for both methods. The total fuel consumption 
calculated by ECMS is 3.2% more than the global optimal solution 
achieved by the DP, demonstrating that ECMS is an effective strategy to 
achieve near-optimal results with a relatively low computational cost. 
However, there exists a slight difference in the final SOC value, which 
can be expected as in DP final state is explicitly set by the user, contrary 
to ECMS. 

4.2. Half-month operating profile results 

In this section, the results for the half-month operating profile are 
presented. It should be noted that the half-month operating profile refers 
only to the operational time and not the calendar time. Calendar time is 
longer, as the ship does not operate continuously. In addition, the initial 
reliability of the investigated components of the power plant is set to 
0.95, to represent a close-to-new condition. 

To reveal the advantages of the HAEM approach incorporating 
health-aware capabilities, a comparison is made against the ECMS 
considering the same operating profile. ECMS only employs the objec-
tive of reducing the total fuel consumption, consequently, it can be used 
as a benchmark to unveil the differences in the components and the 
hybrid power plant reliability as well as the total fuel consumption. 

Since the power setpoints for the half-month operating profile are too 
many to be plotted in a single diagram, only the sample operating profile 
is presented in Fig. 7 to examine how the ECMS and HAEM dictate the 
setpoints for the investigated hybrid power plant components. In low 
loads where the engine exhibits high BSFC values, the electric machine 
operates using energy from the battery to provide the requested power 
to the propeller. In high loads where the engine exhibits lower BSFC 
values, the engine provides power for covering the propeller demand 
and charging the battery. This behaviour is spotted in both methods. 

Fig. 8 presents a comparison of the battery SOC values along the half- 
month operation for both strategies. This study assumed that the initial 
battery SOC is 70% whereas the battery charging takes place via power 
generated from the diesel engine operation (shore/port stations 
charging was not considered). It can be inferred from Fig. 8 that in both 
strategies the battery SOC exhibits distinct cycles of discharging and 
charging. Nonetheless, both methods succeed in keeping the SOC 
around the set target value. The ECMS manages to keep the average 
value to the target of 70% through the implementation of the penalty 
function described in the previous section. However, the HAEM 
approach leads to the initial SOC decrease for the first 20 h operating 
period. This means that the battery provided more power/energy 
compared to the engine during this period, which is attributed to the 
battery’s lower failure rate compared to the engine. However, it man-
ages to keep the SOC target value to around 55% throughout the 
considered time period, avoiding the risk of keeping the battery at low 
SOC. 

To quantify the fuel savings, Fig. 9 presents the total (cumulative) 
fuel consumption for the considered operating period derived from the 
two approaches as well as the fuel consumption of the baseline power 
plant. It is evident that the hybrid configuration with the ECMS results in 
a fuel reduction of around 17% compared to the baseline configuration 
(conventional power plant). This behaviour is in alignment with results 
from pertinent studies dealing with the potential reductions in fuel and 
operational cost [15,26]. 

Moreover, the HAEM approach resulted in an increase of the total 
fuel consumption by around 1.5% compared to the ECMS. This is 
attributed to the employed trade-off between fuel consumption and 
system reliability. As a result, the engine operates in higher reliability 
regions, at the expense of slightly increased fuel consumption. 

Fig. 10 presents the comparison of the system reliability calculated in 
the terminal node for the ECMS and HAEM, respectively. Το determine 
the system reliability time variation using HAEM, two time slices were 
considered at 150 and 300 h, respectively. The system reliability in-
creases compared to the scenario where the ECMS is employed, by 0.015 
at 150 h and 0.029 at 300 h. Since these values represent probabilities 
and cannot be interpreted explicitly, the failure rate was estimated by 
differentiating Eq. (21) at the same time slices. At 150 h the overall 
system failure rate is estimated to be 2.97 10–6 h–1 and 3.28 10–6 h–1 

with the ECMS and HAEM, respectively. At 300 h, the overall system 

Fig. 6. Performance comparison of ECMS with DP.  
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failure rate is found 2 10–6 and 7.65 10–6 h–1 for the ECMS and HAEM, 
respectively, which is almost 4 times smaller compared to ECMS. 
Apparently, the HAEM gains are more evident as the operating period of 
the hybrid power plant increases, resulting in prolonging the system’s 
lifetime expectancy as well as retaining high reliability, which is one of 
the crucial requirements for autonomous operations. 

As the engine is the power plant component with the highest failure 
rate, it is considered the most critical for autonomous operations. Fig. 11 
presents the engine reliability time variations for the two approaches 
and the baseline power plant. It is evident that when the engine only 
provides the required power (baseline configuration), its reliability 

decreases rapidly to unacceptable levels for autonomous operations. It is 
noted that the MUNIN project recommended that the engine should 
operate reliably without human intervention for 500 h [6]. It is also 
expected that maintenance activities during port calls will be performed 
for autonomous ships, which leads to retaining high reliability values. 

Fig. 12 presents the engine load diagram with superimposed BSFC 
contours. The operating points derived from both the ECMS and HAEM 
are also shown in this figure. By using the proposed approach, operating 
points below 20% and near the torque limit are frequently avoided, thus 
resulting in engine prolonged lifetime and safer operation. On the con-
trary, the ECMS selects operating points in the whole operating region as 

Fig. 7. Power plant components operating setpoints results.  

Fig. 8. Battery State of Charge results.  

Fig. 9. Total (cumulative) fuel consumption comparison results.  
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long the performance constraints are satisfied. 

4.3. Discussion 

The derived simulation results demonstrated the impact of the 
health-aware energy management decision-making (using the utopia 
method considering the contradictory objectives to minimise the fuel 
consumption and retain the plant reliability) on the considered hybrid 
power plant. The consideration of the health state by using reliability as 
the health indicator provides additional capabilities in decision-making. 
The proposed HAEM approach considers the influence of the compo-
nent’s operating conditions on their failure rate and effectively 

combines a reliability method and an energy management strategy. The 
DBN was used to calculate the dynamic reliability whilst revealing the 
interactions between the power plant components. Systems with mul-
tiple components of various types exhibit increased complexity and may 
involve unpredictable interactions, thus influencing system function-
ality in a complex manner [74]. 

The HAEM approach is based on decision-making that integrates the 
system health monitoring with the energy management. Thus, it can be 
effective for autonomous ship power plants, which due to the crew 
absence require extended monitoring and health assessment capabilities 
as well as resilience to failures [9,10]. However, apart from the power 
plant main and auxiliary components, other intelligent systems and 

Fig. 10. Hybrid propulsion plant reliability time variation.  

Fig. 11. Engine reliability evolution.  

Fig. 12. Comparison of the engine operating points.  
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technologies need to be also considered. 
Nonetheless, the HAEM approach exhibits some limitations. The 

ECMS considered a constant equivalence factor, which was tuned based 
on the employed operating profile. However, in real conditions with 
varying operating profiles, this approach cannot guarantee optimal fuel 
savings [52]. To tackle this limitation, adaptive methods with varying 
equivalence factors can be used by providing estimates of future power 
demands [23]. Another limitation is that the reliability is estimated 
based on failure rates provided by databases and models of low 
computational effort. As the involved uncertainties (aleatory and 
epistemic) may affect the decision-making process, it is essential to 
consider the uncertainties of data and models [75], by incorporating 
information from sensors measurements and updating the system health 
status based on real-time evidence [76]. 

This study did not consider battery ageing, as the main aim was to 
demonstrate the proposed HAEM approach. Physical or data-driven 
models in the pertinent literature to estimate the battery RUL [77,78], 
whereas temperature models can be employed to consider the effect of 
charge-discharge cycles [79]. 

Another aspect that affects health estimation is system complexity. In 
this case study, the investigated power plant had a simple structure. Real 
applications include complex topologies with interdependent systems, 
subsystems and components [80]. This case study did not consider the 
response to failure scenarios. For autonomous operations, the response 
to faults and failures must be investigated, as fault tolerance and resil-
ience are vital [42]. Future studies could investigate more complex 
systems along with critical failure propagation, whilst considering the 
system reconfiguration. 

5. Conclusions 

This study proposed a decision-making approach for the health- 
aware energy management of ship power plants demonstrating its 
application for the case study of a pilot boat hybrid power plant, 
benchmarking the derived results against ECMS. The main findings of 
this study are summarised as follows. 

The HAEM approach considers the trade-off operation between fuel 
consumption and system reliability. The results demonstrated that the 
hybrid configuration brings substantial fuel savings of around 17% 
compared to the baseline configuration that has mechanical propulsion 
powered by a diesel engine. In addition, a rapid decrease in engine 
reliability was observed in the baseline configuration compared to the 
hybrid plant. 

The HAEM approach demonstrated higher reliability levels at the 
expense of a slight increase in fuel consumption by 1.5% compared to 
ECMS. The overall system failure rate was reduced almost 4 times at 300 
h of operational time by employing the HAEM compared to ECMS. 
Hence, improved power plant reliability as well as prolonged system 
lifetime expectancy and reduction of maintenance costs can be achieved. 

For the engine, which is the most critical component, operation in 
more reliable regions can be achieved, which is expected to result in 
enhanced safety levels, avoiding rapid degradation. 

This study is an initial step towards autonomous power plant oper-
ations. Future studies could focus on extending the energy management 
strategy and the reliability estimation, considering more complex sys-
tem representations, investigating the injection of faults and addressing 
uncertainties. 
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