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Abstract: The amount and variety of composite structures that need to be inspected for the
presence of impact damage has grown significantly in the last few decades. In this paper, an
application of a probabilistic ultrasonic guided wave imaging technique for impact damage
detection in carbon fiber-reinforced polymers (CFRP) is presented. On the one hand, a linear,
baseline-dependent, technique utilizing the well-known correlation-based RAPID method and an
array of piezoelectric transducers is applied to detect impact-induced damage in plate-like composite
structures. Furthermore, a baseline-independent nonlinear extension of the standard RAPID method
is proposed, and its performance is demonstrated both numerically and experimentally. Compared
to the conventional RAPID, the baseline-free version suffers from a somewhat lower imaging quality.
However, this drawback is compensated by the fact that no damage-free (intact) baseline is necessary
for successful imaging of damage.
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1. Introduction

Conventional nondestructive testing (NDT) methods, such as visual inspection, ultrasonic C-scan,
thermography or shearography, are well established and frequently used in the field of quality control
and defect inspection. Unfortunately, as one can imagine from an example, such as an ultrasonic C-scan
of a composite aircraft wing, these methods are quite bulky and time consuming. Unlike point-by-point
inspection techniques, guided wave (GW) techniques used for material characterization and evaluation
are driven by their ability to inspect large areas using only a limited amount of ultrasonic transducers.
Therefore, the use of GW-based NDT could significantly decrease the inspection time and costs
compared to conventional NDT methods. Moreover, the transducers within the transmitting-receiving
network can be kept in place during the operational lifetime of the component, because they are small
enough not to influence the mechanical performance of the component. Thanks to the improvement in
technology, the durability of such systems becomes more and more recognized. Therefore, GW-based
methods represent a perfect choice for structural health monitoring (SHM) and defect imaging.

Lamb waves are one type of guided waves usually associated with elastic wave propagation in
thin plates. First described in 1917 by British mathematician Horace Lamb in [1], they have drawn
attention ever since. Worlton [2,3] was perhaps the first author who recognized the potential of Lamb
waves for NDT. Shortly after, Grigsby [4] described and highlighted the most important properties of
Lamb waves with respect to the inspection of thin plates. However, the modern era of Lamb wave
research and practical applications dates back to the influential book written by Viktorov in 1967 [5].
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Since then, Lamb waves found their way into many different fields. In NDT only, they have been used
for the inspection of plates [6–8], pipelines [9,10], rails [11], steel wire ropes [12–14] and other complex
structures, such as aircraft wings and fuselage panels [15–18]. In our contribution, we will focus solely
on the application of the Lamb waves for the defect imaging in the plate-like structures.

Although several attempts to visualize defects using the filtered back-projection tomographic
algorithm were done [19–25], the most popular alternative methods are the sum-and-delay methods
and the probability-based algorithms. Both approaches rely on information obtained from a sparse
array or network of ultrasonic transducers that are in most cases permanently attached to the inspected
sample. The sparse array usually consists of a variable number of small, but efficient piezoelectric
transducers (PZT) [26]. In the present work, our focus is aimed at the second approach, represented
here by the RAPID algorithm.

RAPID, first introduced in 2005 by Gao et al. [27], employs a probability-based algorithm and
database of signal difference coefficients (SDCs) to localize and image defects in the plate-like sample.
First, the SDC calculation is used to quantify the difference between a signal acquired in the intact
state and a signal acquired after damage was introduced to the sample [17,28]. Next, the SDC of each
transmitter-receiver (T-R) pair is projected on the corresponding path between the transmitting and
receiving elements of the sparse array, and all contributions are summed to provide a map of the
damage indicator (damage index) [29,30]. This way, the damage is visualized and localized within the
area defined by the sparse array network. One of the most important disadvantages of RAPID, due to
its baseline-dependent nature, is the inherent problem of optimal baseline selection, because changes
in environmental conditions during a measurement can result in false indications. Several authors
proposed different measures to improve the robustness of RAPID to varying environmental conditions,
for example by considering a shape factor optimization [31] or a GW mode selection [32]. However,
the issues with environmental interference still persist. Hence, in this contribution, we propose a
nonlinear baseline-free modification of RAPID that addresses these issues.

This paper is ordered as follows: Section 2 is dedicated to the description of the conventional
RAPID algorithm and its nonlinear baseline-free modification. Next, we present the results of
numerical simulations that were carried out to assess the performance of this baseline-free modification.
The fourth section describes the experimental imaging results of the conventional and the baseline-free
RAPID on an orthotropic CFRP plate. The contribution is summarized and the conclusions are made
in the last section.

2. Guided Wave Imaging Using RAPID

Conventional RAPID, as described by Gao et al. [27], utilizes data from an ultrasonic sparse array
consisting of ne permanently-attached PZT transducers. The direct line-of-sight coverage of such an
array is visualized in Figure 1. In the conventional RAPID, signals between each transmitter-receiver
pair are acquired in two different states: baseline (intact, without damage) and damaged (after the
damage has been introduced) [28]. Let the signal transmitted from the sparse array element i to element
j be denoted Bij and Dij for the baseline and damage state, respectively. If the sparse array consists of
ne elements, then the total number of acquired signals is ne(ne − 1). The total number of signals can be
reduced down to ne

2 (ne − 1), if the reciprocity of the system (Bij = Bji) is assumed [17,30].
Fundamentally, the RAPID algorithm can be broken down into two major parts: the SDC

calculation and the imaging. The SDC values represent a measure of the dissimilarity between
each two signals obtained in two different states, i.e., between Bij and Dij. Even though being the
second step in the algorithm, the imaging part will be described first, since it is general and common
for both the baseline-dependent (linear) and baseline-free (nonlinear) version of the algorithm. Let us
first thus assume that the SDCij coefficients are known for all T-R pairs. We start by dividing the
inspected area of the sample into a rectangular equidistant mesh. Next, we define a priori probability
distribution sij (see Figure 2b) for each T-R pair and every point [x, y] of the mesh as follows:
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sij(x, y) =


β−Rij(x,y)

β−1 , if β > Rij(x, y)

0, if β ≤ Rij(x, y)
, (1)

where β stands for a free-to-choose shape factor that defines the area influenced by one T-R pair [33].
Rij(x, y) is a geometrical function defined as:

Rij(x, y) =

√
(xi − x)2 + (yi − y)2 +

√
(xj − x)2 + (yj − y)2√

(xj − xi)2 + (yj − yi)2
. (2)

which is representing the ratio of the distances |TP|+ |PR| and the |TR|. As a result, the numerator
β− Rij(x, y) from (1) actually describes an ellipse with focal points located in T, R and a major axis

length β |TR|
2 , as illustrated in Figure 2. This ellipse forms the borderline of the region influenced by a

particular T-R pair. If a selected point P lies within the area defined by the borderline, its sij decreases
with the distance from the straight line that connects points T and R. In other words, the further the
point P from the direct path between the transmitter and the receiver, the lower its sij value will be.

Figure 1. Array coverage with 16 PZTs.

The sij is evaluated for all T-R pairs and at all points of the rectangular grid. Once combined with
the individual SDCij values, the final damage index heat map is calculated as:

P(x, y) =
ne

∑
i=1

ne

∑
j=1,i 6=j

SDCijsij(x, y), (3)

where contributions from all T-R pairs are summed up at a particular grid point with the SDCij values
serving as geometrical weights. A cluster of points with a high damage index Pij then indicates the
potential location of a flaw in the sample.
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Figure 2. Geometrical interpretation of the (a) Rij(x, y) function and (b) sij(x, y) function.

2.1. Linear RAPID

In the case of the conventional implementation of RAPID, the SDCij is calculated using the
standard correlation coefficient defined as:

ρij =
Cov(Bij, Dij)

σ(Bij)σ(Dij)
, (4)

where σ(Bij) and σ(Dij) are the signal variances and:

Cov(Bij, Dij) =
ns

∑
k=1

(Bij[k]− µB
ij)(Dij[k]− µD

ij ), i, j = 1, 2, . . . , ne, i 6= j (5)

defines the covariance of the baseline and the damaged signals. Values µij denote the mean value of
the corresponding signal between transmitter i and receiver j, and the index [k] simply indicates that
all signals are discretely sampled at a sampling rate of fs =

1
∆t

(∆t is the sampling interval). The SDCij
value that quantifies the difference in signals can then be calculated using ρij as:

SDCij = 1− ρij, i, j = 1, ..., ne, i 6= j. (6)

The lower the correlation between the baseline and damaged signals, the higher the SDC
coefficient will be and the more profound the dissimilarity is between the two signals.

The basic idea behind the use of SDC values for imaging purposes can be illustrated with the
following example. Imagine that a damage has been introduced to a sample after the acquisition of
baseline signals. The presence of the damage triggers changes in the wave propagation through the
sample, and if the damage lies on or close to a direct path between a selected T-R pair of the network,
the wave propagation will be altered significantly, resulting in a rise of the corresponding SDCij
(correlation decreases). However, if the damage is sufficiently far from the sensor pair, its influence on
the wave propagation will be negligible, and the corresponding SDCij value is low. Thus, by combining
the input from all T-R pairs, the damage index Pij map can be constructed, and the damage can
be visualized.

2.2. Nonlinear RAPID

The main advantages and disadvantages of the conventional RAPID methodology, outlined in
the previous section, were already presented in the Introduction. It is clear that the weakest spot
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of this technique is the baseline signal selection process. Changes in the environmental conditions,
at which the Bij and Dij were measured, can result in severe deterioration of the imaging quality. Hence,
in this section, we propose a method that transforms the conventional RAPID into a baseline-free
method by introducing a SDC parameter based on the scaling subtraction method (SSM) [34,35].
This will eliminate the requirement for an intact baseline signal, which should improve the real-world
applicability of RAPID.

First, some major assumptions have to be presented before the method itself is described. It is
assumed that:

• the defect behaves nonlinearly with increasing excitation amplitude, meaning that it responds
differently to a low amplitude excitation than to a high amplitude excitation due to the existence
of a mesoscopically nonlinear stress-strain behavior at the defect location.

• the nonlinearity of the equipment and transducers is low.

These assumptions have to be made, otherwise the new localization concept would make no
sense. If the nonlinearity of the transmitter and receiver is higher than the nonlinearity of the defect,
the imaging would simply fail. Since the nonlinearity of the transducer response depends on the
excitation amplitude, this has to be kept sufficiently low not to provoke a distortion of the transmitted
signal. This acceptable level can be found experimentally by direct monitoring of the output waveform
distortion as a function of input amplitude.

The details of the baseline-free RAPID method are as follows. First, a low amplitude excitation
signal is applied to the sparse array transducers, and the corresponding response signals Bij are
obtained. The response signals Bij will act as reference (defect-free) signals. Next, a high amplitude
excitation is applied, and the response signals Dij are acquired under the same measurement conditions.
Both sets of measurements can be obtained at the same time (a matter of seconds difference). Hence,
the influence of the environmental conditions, such as temperature variation or mechanical loading,
is negligible. The only difference is that the excitation amplitude has been up-scaled by a scaling factor:

ks =
AD
AB

, (7)

where AB, AD are the amplitudes of the excitation signals for low and high amplitude, respectively.
The new, nonlinearity-based, SDC coefficient is given by the mean square difference between the high
amplitude response signals and the up-scaled low amplitude response:

SDCij =
1
n

n

∑
m=1

(ksBij(tm)− Dij(tm))
2. (8)

If the inspected system is purely linear, the response signals scale up perfectly and are simply
equal to ks · Bij. Hence, the value of the SDC will be equal to zero in this case. The imaging will result
in a blurred unfocused image without any defect indication. However, if a nonlinear defect is present
in the interrogated sample, the SDC value attains a non-zero value for some of the T-R paths.

Based on this principle, the SDC in (3) can be simply replaced by Equation (8), and the new
RAPID method basically becomes baseline-independent, because it does not need an input from a
state measured before the damage took place.

2.3. Correction for Direct Path Propagation

The original RAPID algorithm brings about a second problem. For the imaging to be successful,
the SDC value for each T-R pair should be calculated only from the part of the recorded signal
that corresponds to the direct propagation path (extended by parameter β) between the transducers.
This can be easily done in isotropic materials, but it is considerably more difficult to fulfil this restriction
in orthotropic samples.
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In order to restrict the useful signal and include only the direct propagation, a simple manipulation
can be suggested for the received signal. Assuming an anisotropic plate, let us define the distance
between the transmitter and receiver by x and the angle of propagation with respect to the coordinate
system of the anisotropic plate by θ. Furthermore, we assume that the entire recorded signal contains
ns samples. To assure that only the direct propagation is taken into account, a reduced amount of
samples nr can be considered. Here, nr (nr < ns) can be easily calculated from an estimate of the TOF
between transmitter i and receiver j as follows:

nr = bTOFij fsc+
nc

2
fs

f
, (9)

where fs is the sampling frequency and nc is the number of cycles in the excitation waveform at a
frequency f . TOFij is the time-of-flight defined as:

TOFij =
x

cph(θ)
, (10)

where cph(θ) is the phase velocity of the selected GW mode in the direction given by the angle of
propagation θ in the anisotropic plate. As can be seen from (9), a number of cycles nc that is equal
to the arrival time of the center of the wave packet is taken into account. The phase velocity can be
determined from numerical dispersion data, provided most of the elastic constants of the sample are
known. This approach is used to ensure a proper imaging strategy in anisotropic materials.

2.4. Damage Index Image Processing

The resulting damage index P(x, y) heat map can be improved by thresholding the SDC values
prior to being used in the imaging step. In order to do this, the SDC values are first rescaled to a closed
interval [0,1]. Next, the values below a specified threshold are set to zero, and the remaining ones
are left intact. Clearly, the number of contributing T-R pairs that form the image will drop, and only
the most influenced ones remain. In a more advanced manner, the value of the threshold tSDC can be
determined empirically or linked to the mean value and standard deviation of the initial SDC values.
The general description of this thresholding operation is:

SDCij =

{
0 if SDCij < tSDC i, j = 1, 2, ..., ne, i 6= j

SDCij if SDCij ≥ tSDC i, j = 1, 2, ..., ne, i 6= j
. (11)

Finally, in order to facilitate an easier visual perception, the resulting image can be simply
thresholded at a fixed level tP:

P(x, y) =

{
1 if P(x, y) < tP

0 if P(x, y) ≥ tP
, (12)

thereby creating a binary image that immediately pinpoints the areas with the highest damage index
Pij. If a fixed threshold is applied to the result, the size and location of the suspected defect(s) can be
easily estimated.

3. Numerical Simulations

Numerical simulations were carried out in order to verify the proposed baseline-free RAPID
methodology. The simulations were performed using COMSOL Multiphysics c© (COMSOL AB,
Stockholm, Sweden).
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3.1. Model

The test sample was simulated as a simple bulk square CFRP T300/924C plate with orthotropic
symmetry and dimensions of 288 mm × 296 mm × 2.7 mm (see Figure 3a). The density of the material
is ρ = 1548 kg m−3, and its elastic properties are summarized in Table 1. The simulation model includes
damping that was implemented using a Rayleigh damping model, which is a standard included in
COMSOL Multiphysics c©. In our case, the mass damping parameter αdM of the model was set to zero,
and the stiffness damping parameter:

βdK =
1

2π f Q
(13)

was defined based on the quality factor Q. The quality factor was chosen to be constant (Q = 20) for
all simulations.

Figure 3. (a) Numerically-simulated anisotropic plate; (b) spring-damper model of a delamination.

Table 1. Material properties of the T300/924C composite.

Young’s Modulus [GPa] Shear Modulus [GPa] Poisson’s Ratio

Exx = 127.1 Gxy = 5.0 νxy = 0.320
Eyy = 8.34 Gyz = 2.7 νyz = 0.461
Ezz = 8.85 Gzx = 4.8 νzx = 0.461

Figure 4 shows the dependency of the phase velocity on the angle of propagation for the
fundamental GW modes at a fixed frequency of 50 kHz (calculated using the Legendre polynomial
approach [36]). These data will be used to carry out the direct propagation correction.

For the simulations, the sample contained either one or two (depending on the configuration)
20 mm × 20 mm nonlinear delaminations located at 1/4th of the plate’s thickness (see Figure 3a).
Each defect was simulated as a clapping system (kissing bond) based on the nonlinear stress-strain
model developed by Delrue and Van Den Abeele [37]. The graphical representation of this model
is illustrated in Figure 3b. The nonlinear dynamic behavior of the delamination is controlled by a
set of virtual spring and damper forces at both sides of the delamination, as illustrated in Figure 3b.
These forces can be expressed as functions of the gap distance ∆Z. Above a certain separation
threshold, the two sides are completely separated (stress free surfaces); below the threshold, particular
formulations of the van der Waals forces are implemented. When the surfaces are close to each other,
they will be attracted to each other. However, when they tend to be too close, the attraction force
will turn into a repulsive force, trying to separate the surfaces again. The piecewise behavior of these
additionally introduced elastic contact forces for a kissing bond is illustrated in Figure 5.



Materials 2016, 9, 901 8 of 17

Figure 4. Angular profile of the phase velocity cph at 50 kHz for the simulated plate (T300/924C).

Apart from the elastic contact force, damping forces were also implemented, which are acting
against the velocity of separation. These forces make sure that the surfaces of the delamination are
not opening too abruptly, avoiding a destruction of the material. At the same time, they assure that
the surfaces are not closing to fast so that the two surfaces cannot overlap. These forces are shown in
Figure 3b. The nonlinear viscoelastic behavior at the delamination level mimics the clapping behavior
of a delamination. Depending on the displacement amplitude of the wave passing by the defect, this
nonlinearity will be activated or not, creating a distortion in the wave propagation, which can be
measured in the received signal after appropriate signal processing.

Figure 5. (a) Spring forces Fst and Fsb and (b) damping forces Fdt and Fdb at the simulated delamination
as a function of the gap distance ∆Z [38].

The implementation of the nonlinear spring-damper forces is performed by introducing dynamic
boundary conditions in COMSOL Multiphysics c©, at those nodes that correspond to the delamination
surface. At these positions, the nodes are split in pairs, and the following analytical formula’s are
implemented for the spring and damper forces [37]:

Fst = −Fsb =


k1(Z0 − ∆z) if ∆z < Z0

k2(Z0 − ∆z) if Z0 ≤ ∆z < aZ0

k3(bZ0 − ∆z) if aZ0 ≤ ∆z < bZ0

0 if bZ0 ≤ ∆z

, (14)

Fdt = −Fdb
=

{
−γ(vzt − vzb) if ≤ ∆z < bZ0

0 if ∆z ≥ bZ0
, (15)

where Z0 is a small characteristic distance between the faces of the delamination, a, b are free parameters
defining the separation conditions (1 < a < b), γ is a damping coefficient and vzt and vzb stand for the
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normal velocities of the top and bottom interfaces. k1, k2 and k3 are the virtual spring constants that
are connected by:

k3 =
1− a
b− a

k2. (16)

Details on the parameter values for the nonlinear delamination model that was used in the
numerical simulation are summarized in Table 2.

Table 2. Model parameters of the nonlinear delamination.

Parameter Name Value Unit

Z0 0.1 mm
a 4
b 5
k1 5× 1013 Nm−3

k2 5× 1012 Nm−3

γ 107 Nsm−3

3.2. Results

In order to test the viability of the proposed baseline-free modification, four numerical evaluate
cases were defined. In the test cases, we test the performance of the imaging algorithm using a variable
number and locations of delaminations and different forms of excitation. The test cases are summarized
in Table 3.

Table 3. Specifications of the numerical test cases.

Test Case Delaminations Locations AB [nm] ks [nm] nc

1 1 [−50,−20] 10 100 20
2 1 [30,70] 10 100 20
3 2 [−50,−20], [40,−60] 10 100 20
4 1 [−50,−20] 10 100 3

The imaging was carried out using a sparse network of eight virtual transducers placed in a
rectangular array. The locations of the transducers are depicted in Figure 3a. The excitation waveform
consisted of a 20-cycle (nc = 20) Hanning windowed sine burst at 50 kHz. The excitation was
implemented as a prescribed normal displacement at the area of the transmitting virtual element.
The received signal was sampled with a sampling frequency of fs = 10 MHz. The adaptive signal
length correction was applied using the dispersion data from Figure 4.

Figures 6–9 show the results of the baseline-free RAPID detection for a CFRP plate containing a
single or two nonlinear delaminations with the properties described in the previous subsection. Except
for Test Case 3, all delaminations were successfully detected, as can be clearly seen from the binarized
images. In Test Case 3, due to the mutual position of the sparse array elements and the defects, it was
necessary to lower the threshold by 5% in order to successfully detect both delaminations (see Figure 8c).
However, it can be easily observed from Figure 8a that both defect zones are clearly highlighted.

The fourth and last test case demonstrates the effect of signal duration (number of sine cycles) on
the imaging performance. The test case is similar to the first test case with one exception. The number
of cycles in the excitation signal was decreased from nc = 20 to nc = 3. The effect of this change can be
observed in Figure 9. It is obvious from a comparison between Figures 6 and 9 that the imaging output
is different for different values of nc. A higher number of cycles clearly improves the performance of
the baseline-free imaging algorithm.



Materials 2016, 9, 901 10 of 17

Figure 6. Result of Test Case 1 for nonlinear RAPID imaging on a simulated anisotropic plate,
(a) without binarization and (b) with binary thresholding. The center of the delamination is located at
[−50,−20]. The binarization threshold was set to tP = 0.8, the shape factor to β = 1.015 and the SDC
threshold to tSDC = 0.25. The actual location of the delamination is marked with a white square in (a)
and a red square in (b).

Figure 7. Result of Test Case 2 for nonlinear RAPID imaging on a simulated anisotropic plate,
(a) without binarization and (b) with binary thresholding. The center of the delamination is located at
[30,−70]. The binarization threshold was set to tP = 0.8, the shape factor to β = 1.015 and the SDC
threshold to tSDC = 0.25. The actual location of the delamination is marked with a white square in (a)
and a red square in (b).

The main reason for the inferior imaging performance at low nc is the fact that a shorter signal is
inherently more broadband, and the more broadband the signal is, the higher the dispersion will be.
As a natural consequence, we obtain a less precise estimation of the TOF and a poorer adaptive signal
length correction. On the other hand, a larger nc instigates unavoidable problems with reflections
coming back from the edges of the plate. Therefore, an optimal nc that avoids reflections and provides
narrowband excitation has to be found for every application, based on the sample geometry and the
sample’s dispersion characteristics.
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Figure 8. Result of Test Case 3 for nonlinear RAPID imaging on a simulated anisotropic plate,
(a) without binarization, (b) with binary thresholding (tP = 0.8) and (c) with lowered binary threshold
(tP = 0.75). The centers of the delaminations are located at [−50,−20] and [40,−60]. The shape factor
is set to β = 1.015 and the SDC threshold to tSDC = 0.25. The actual location of the delamination is
marked with white squares in (a) and a red square in (b,c).

Figure 9. Result of Test Case 4 for nonlinear RAPID imaging on a simulated anisotropic plate,
(a) without binarization and (b) with binary thresholding. The excitation waveform was a three-cycle
sine burst, at 50 kHz with the Hanning window. The center of the delamination is located at [−50,−20].
The binarization threshold was set to tP = 0.8, the shape factor to β = 1.015 and the SDC threshold to
tSDC = 0.25. The actual location of the delamination is marked with a white square in (a) and a red
square in (b).

Another reason may be linked to the behavior of the nonlinear delamination and the related SDC
value. At low nc, only a very small portion of the signal is distorted due to the nonlinear delamination,
because the faces of the delamination undergo just three cycles instead of 20. Therefore, the nonlinear
effects influence the result only slightly at nc = 3, whereas they have more time to build up for nc = 20.
According to Delrue and Van Den Abeele [37], the combination of SSM and the nonlinear delamination
model performs very well for larger nc ≈ 40. The rigorous study of the mode behavior for the small nc

has not been published yet.

4. Experimental Results

The above discussed linear and nonlinear versions of RAPID were further experimentally verified
on an orthotropic CFRP plate.
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4.1. Test Sample

The test sample to be investigated is a 400 mm × 400 mm CFRP plate consisting of 11 separate
layers/plies (see Figure 10a). The stacking sequence of the laminate, as well as the ply type are given
in Table A1. The laminated composite can be concisely described using the standard stacking sequence
notation as [(0, 45)2, 90,−45, 0,−45, 90, 0]T [39]. The elastic properties of the plies are collected in
Table A2. The total thickness of the plate is approximately htot = 4.3 mm. Due to the (non-symmetric)
stacking sequence, the global (homogenized) in-plane elastic properties of the plate cannot be assumed
simply quasi-isotropic. Isotropy can only be assumed for the lowest antisymmetric mode A0, as can be
seen in Figure 10b.

Figure 10. (a) CFRP plate for experimental testing; (b) angular dependence of the phase velocity at
50 kHz for the CFRP plate.

The angular profile of cph for the A0 mode is nearly circular. The phase velocities of the other
modes, such as S0 and SH0, are strongly dependent on the direction of propagation. This is a fact that
has to be kept in mind during the damage location or beam-forming imaging of laminated plates with
non-symmetric layups.

4.2. Experimental Setup

For the experimental validation of RAPID, an experimental setup for GW imaging was developed,
consisting of a single channel arbitrary waveform generator (AWG) NI PXI-5412 (100 MHz, 14-bit,
single channel, National Instruments Corporation, Austin, TX, USA) that was routed to a multiplexing
unit via an AR150A100B amplifier (Amplifier Research, Souderton, PA, USA). The signal from the
switch board was connected to the individual PZTs of the sparse array network using a 50 Ω shielded
coaxial cable. The input from the amplifier is connected to the transmitting element, while the other
elements are connected to the receiving digitizers: NI PXI-5122 (100 MHz, 14-bit, two channels,
National Instruments Corporation, Austin, TX, USA). All transmitting and receiving cards were hosted
in a single chassis NI PXI-1022 (National Instruments Corporation, Austin, TX, USA). The transmitting
element is disconnected from the receiving stage during the excitation to avoid leakage and crosstalk
of this signal to other channels. The PZT transducers used as sparse array elements were DuraAct c©

P-876 flexible PZTs (PI Ceramic GmbH, Lederhose, Germany), in either rectangular or circular shape,
covered in a protective polymeric layer. The entire measurement was controlled using a virtual
instrument (VI) program written in LabVIEW c©.
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4.3. Linear Conventional RAPID

In order to illustrate the conventional baseline dependent RAPID, a test was conducted on a CFRP
plate. It was equipped with 16 rectangular DuraAct c© transducers (PI Ceramic GmbH, Lederhose,
Germany) that were coupled using Hysol c© adhesive (Henkel AG, Düsseldorf, Germany). The baseline
signal was recorded at standard room temperature in laboratory conditions using the experimental
setup described in Section 4.2. It was subsequently damaged by a 21 J impact in the upper right corner
(see Figure 11c for the result of a traditional C-scan analysis after impact).

Figure 11. Baseline-dependent RAPID imaging on a CFRP plate, excitation waveform: five-cycle sine
burst f = 50 kHz, β = 1.015 and tSDC = 0.5 (a) damage index P(x, y), (b) thresholded binary RAPID
image using a threshold level at tP = 0.9 max{P(x, y)} (c) ultrasonic C-scan of the plate.

Before and after the impact, with a difference of more than a month, the sample was excited using
a five-cycle sine burst at 50 kHz with a Hanning window. According to Figure 10b, only the A0 and
S0 modes are excited at this frequency range. Moreover, using the experimental dispersion analysis,
it was found that the A0 mode is the most dominant mode at this excitation frequency. The received
signals were sampled at 10 MHz, and ns = 16,384 samples were acquired. The input amplitude to the
amplifier was 0.1 V. The “current” set of signals Dij was acquired using the same test stand at ambient
room temperature without any precise temperature adjustments.

For the subsequent analysis, the length of the signal between every T-R pair was restricted to
include only the direct propagation of the A0 mode [32]. This was easily done based on the angular
dispersion data and the phase and group velocities from Figure 10b. Hence, knowing the propagation
distance, direction and velocity, the signal can be properly time windowed.

The resulting damage index image is depicted in Figure 11a. The impact zone is well indicated in
the binarized image (Figure 11b).

4.4. Nonlinear Baseline-Free RAPID

The experimental setup for the nonlinearity-based baseline-free RAPID validation was the same
as described in Section 4.2. The lower input amplitude to the amplifier was set to Alin = 0.01 V, and
the SSM scaling coefficient was ks = 10. The actual voltage input to the PZT was approximately
8 V and 80 V for the lower and higher amplitude excitation, respectively. The excitation frequency
was f = 50 kHz, and the waveform was a three-cycle Hanning windowed tone burst. Such a low
cycle count was selected due to the position of the defect and due to the shape of the sparse array.
A longer duration of excitation would result in a mixing of directly propagating signals and signals
that are reflected from the edges of the sample. Hence, the short excitation is unavoidable in this case.
The signals were sampled with a sampling frequency fs = 10 MHz, and each signal was averaged
512 times to get a good SNR for the low amplitude excitation.
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Figure 12 shows the result of the nonlinear RAPID imaging of the impact damage, applying
the following imaging parameters: tSDC = 0.15, β = 1.015, tP = 0.8. The defect was
satisfactorily highlighted in the damage index map and subsequently segmented using the fixed
threshold binarization.

Figure 12. Result of nonlinear RAPID imaging on a CFRP plate, (a) without binarization and (b) with
binary thresholding. The excitation waveform was a three-cycle sine burst at 50 kHz with a Hanning
window. Threshold for binarization was set to tP = 0.8. The actual location of the delamination is
marked with a white square in (a) and a red square in (b).

5. Discussion and Conclusions

Based on the linear and nonlinear measurements and subsequent analysis, we come to the
following conclusions: First, the conventional linear RAPID, employing correlation-based SDC
coefficients, proved to be a considerably reliable imaging technique when used in the laboratory
conditions. The predicted location of the damage corresponds very well with the ultrasonic C-scan
data depicted in Figure 11c. On the other hand, the size of the defect is somewhat overestimated.
However, it is a very satisfactory result especially considering the extended period between which the
baseline and damaged signals were taken.

Second, the nonlinear baseline-free RAPID was able to detect the same defect using SSM-based
SDC coefficients. Important to note here is that the coefficient and the baseline signals were acquired
after the impact damage was introduced in the plate and that no reference to an intact state is required.
Figure 12 suggests that most of the nonlinear effects are generated when waves propagate through
the damaged region in the y-direction. This can be attributed to the distribution of the partial damage
caused by the impact along the dominant material symmetry axes (0◦, 90◦). However, the shape of
the damage distribution inferred by the nonlinear RAPID method does not entirely conform with the
result from the ultrasonic C-scan. Therefore, another technique with higher spatial resolution, for
instance uCT, should be used to confirm whether the micro-cracking is indeed present in a wider area
than predicted by the C-scan.

Compared to the conventional RAPID, the baseline-free version suffers from lower imaging
quality. However, this drawback is compensated by the fact that no damage-free (intact) baseline
is necessary for successful imaging of damage. This promising result can be further investigated
and developed in view of achieving more robust and more environment interference-resistant SHM
methods in the future.
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Abbreviations

The following abbreviations are used in this manuscript:

ACU Air-coupled ultrasound
AWG Arbitrary waveform generator
CFRP Carbon fiber-reinforced polymer
GW Guided wave
NDT Nondestructive testing
PZT Piezoelectric transducer
RAPID Reconstruction algorithm for probabilistic inspection of damage
SDC Signal difference coefficient
SHM Structural health monitoring
SSM Scaling subtraction method
TOF Time-of-flight

Appendix A

Table A1. Stacking sequence of a CFRP plate. Angle ϕ defines the in-plane rotation of the ply with
respect to the global coordinate system (first Euler angle). The total thickness of the plate is 4.3 mm.

Ply # Type ϕ [◦] hi [mm] ρ [kg m−3]

1 5 Harness 0 0.480 1770
2 NCFBiaxial 45 0.480 1790
3 Uni-weave 0 0.480 1790
4 NCF Biaxial 45 0.480 1790
5 NCF Biaxial 0 0.480 1790
6 NCF Biaxial 90 0.480 1790
7 NCF Biaxial −45 0.480 1790
8 Uni-weave 0 0.480 1790
9 NCF Biaxial −45 0.480 1790

10 5 Harness 90 0.480 1770
11 Glass Ply 0 0.1270 2500

Table A2. Engineering elastic properties in the principal directions for the CFRP layered plate.

Lamina E1 E2 E3 G12 G23 G13 ν12 ν13 ν23

[GPa] [GPa] [-]

5 Harness 65.0 65.0 8.8 3.6 3.6 3.6 0.041 0.041 0.041
NCF Biaxial 81.0 81.0 8.8 4.1 4.1 4.1 0.033 0.033 0.033
Uni-weave 152.0 8.8 8.8 4.1 4.1 4.1 0.018 0.018 0.310
Glass ply 70.0 70.0 70.0 28.7 28.7 28.7 0.220 0.220 0.220
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