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Abstract: Alzheimer’s disease (AD) is one of the most common neurodegenerative diseases and its 
onset is significantly associated with genetic factors. Being the capabilities of high specificity and 
accuracy, genetic testing has been considered as an important technique for AD diagnosis. In this paper, 
we presented an improved deep learning (DL) algorithm, namely differential genes screening TabNet 
(DGS-TabNet) for AD binary and multi-class classifications. For performance evaluation, our 
proposed approach was compared with three novel DLs of multi-layer perceptron (MLP), neural 
oblivious decision ensembles (NODE), TabNet as well as five classical machine learnings (MLs) 
including decision tree (DT), random forests (RF), gradient boosting decision tree (GBDT), light 
gradient boosting machine (LGBM) and support vector machine (SVM) on the public data set of gene 
expression omnibus (GEO). Moreover, the biological interpretability of global important genetic 
features implemented for AD classification was revealed by the Kyoto encyclopedia of genes and 
genomes (KEGG) and gene ontology (GO). The results demonstrated that our proposed DGS-
TabNet achieved the best performance with an accuracy of 93.80% for binary classification, and 
with an accuracy of 88.27% for multi-class classification. Meanwhile, the gene pathway analyses 
demonstrated that there existed two most important global genetic features of AVIL and NDUFS4 and 
those obtained 22 feature genes were partially correlated with AD pathogenesis. It was concluded that 
the proposed DGS-TabNet could be used to detect AD-susceptible genes and the biological 
interpretability of susceptible genes also revealed the potential possibility of being AD biomarkers. 
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1. Introduction 

Alzheimer’s disease (AD) is one common progressive neurodegenerative disease that is 
accompanied by typical clinical symptoms including memory loss and impairment in daily 
communications and activities [1]. It accounts for approximately 60–80% of all dementia and the 
etiology of AD is still unknown. The occurrence of AD may be caused by the accumulation of specific 
proteins in and around neurons [2]. And it was thought to be having an estimated 70% of the risk 
attributable to genetic factors [3]. The AD population was expected to be 131.5 million by 2050 
worldwide [4]. Once it was diagnosed, there were no effective treatments and intervened techniques. 
Therefore, the early diagnosis of AD has played a great role in delaying the progression of AD [5].  

In clinical applications, the techniques of AD diagnosis mainly involved neuropsychological 
scores, cerebrospinal fluid (CSF) testing, neuroimaging examinations, and genetic tests [6]. Each 
approach demonstrated typical capabilities and limitations for AD diagnosis. With wide application in 
clinical practices, the neuropsychological scores were easily disturbed by subjective and objective 
factors, such as misrepresentation of family members, cross-cultural differences, etc. [7]. While CSF 
testing was a kind of invasive examination of damaged injury for clinical screening [8]. According to 
the neuroimaging examinations, positron emission tomography (PET) and magnetic resonance 
imaging (MRI) could present morphological, functional and metabolic imaging features. While the 
metabolic PET was greatly limited by availability and radiation doses [9]. MRI modalities preserved 
different limitations, such as low sensitivity of structural MRI (sMRI), poor stability of functional MRI 
(fMRI), and incomplete characterization of brain microstructure for diffusion tensor imaging (DTI) for 
early AD [10–12]. Especially, with the robustness of fast and accurate abilities, genetic testing has 
become the most potential technique for AD detection [13]. 

Conventional machine learning (ML) was applied to deduce the biological problems in genetic 
data for the AD intelligence diagnosis [14,15]. Ha [16] proposed a novel computational framework to 
predict miRNA-disease associations via matrix factorization with a disease similarity constraint, and 
got the area under curves (AUCs) of 0.9147 and 0.8905 for global and local leave-one-out cross-
validation (LOOCV), respectively; then, a similarity-based matrix factorization framework was 
presented to identify miRNA-disease associations, yielding better AUCs of 0.9227 and 0.8952 for 
global and local LOOCV, respectively [17]. Once, Oriol et al. [18] used the MLs of least absolute 
shrinkage and selection operator (LASSO), k-nearest neighbor (KNN), support vector machine (SVM) 
on single nucleotide polymorphism (SNP) data to classify late-onset AD, and the SVM achieved the 
best performance with the AUC of 0.72. Xu et al. [19] attempted the application of SVM to analyze 
the protein sequences encoded by genes for AD classification with an accuracy (ACC) of 85.70%. 
Again, Castillo et al. [20] implemented the SVM with three genes (PSEN1, PSEN2 and APP) to 
classify AD and obtained the ACC around 80%. Moreover, Voyle et al. [21] used recursive feature 
elimination-random forest (RFE-RF) to distinguish normal controls (NC), mild cognitive impairment 
(MCI) and AD with an ACC of 62.70% for gene expression data. Besides, Moradi et al. [22] applied 
linear discriminant analysis (LDA) to analyze blood gene expression profiles and got an AUC of 0.84 
for the classification of NC and AD, and 0.80 for the classification of NC and MCI. Up to now, classical 
ML algorithms including SVM, LDA and RF have been widely used and hold big promise for the early 
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detection of AD [23]. However, the tedious feature selection and limited performance of MLs still 
could not meet the clinical needs [24]. 

Recently, deep learning (DL) has been used for the intellectual diagnosis of AD [25]. Wang et al. [26] 
proposed an ensemble of 3D densely connected convolutional networks (3D-DenseNets) for AD and MCI 
diagnosis based on 3D MRI images, with the ACCs of 98.75% for AD/NC, 93.55% for AD/MCI, 98.36% 
for MCI/NC and 97.19% for AD/MCI/NC, respectively. Yu et al. [27] proposed a novel tensorizing 
generative adversarial network (GAN) with high-order pooling to assess MCI/AD based on the T1-
weighted MR images, with the ACC of 89.29% for MCI/NC, 85.71% for AD/MCI, and 95.92% for 
AD/NC; then, a novel multidirectional perception generative adversarial network (MP-GAN) was 
presented to visualize the morphological features indicating the severity of AD for patients of different 
stages, and the MP-GAN achieved better classification performance than GAN in terms of AUC, ACC, 
specificity, and sensitivity [28]. Lee et al. [29] used deep neural networks (DNN) to distinguish NC 
and AD based on blood gene expression data, with an AUC of 0.86. Mahendran et al. [30] proposed 
an enhanced deep recurrent neural network (EDRNN) for DNA methylation data to classify AD and 
NC, and obtained an ACC of 89.40%. Park [31] proposed a deep neural network-based prediction 
model to assess AD and NC based on gene expression and DNA methylation data, with an average 
ACC of 82.30%. Due to the low ACC of existing DLs, the betterment of DL models is imperative to 
improve ACC for AD diagnosis [32,33]. 

In our study, an improved DL approach, namely differential genes screening-TabNet (DGS-
TabNet), was proposed for AD binary and multi-class classifications. It was characterized by two 
modules of DGS and TabNet [34,35]. With the usage of DGS, the susceptible genetic features were 
effectively chosen to facilitate the learning rate and enhance the generalization ability for the proposed 
model. And the main contributions of our study are summarized as follows: 

1) Via the comparison with three novel DLs of multi-layer perceptron (MLP), neural oblivious 
decision ensembles (NODE), TabNet as well as five classical MLs of decision trees (DT), RF, gradient 
boosting decision tree (GBDT), light gradient boosting machine (Light GBM) and SVM [36–43], our 
DGS-TabNet achieved the best performance with the ACC of 93.80% for binary classification, and 
with the ACC of 88.27% for multi-class classification. 

2) The biological interpretability related to AD pathogenesis for outputted global important 
genetic features was validated by gene enrichment analyses of Kyoto encyclopedia of genes and 
genomes (KEGG) and gene ontology (GO) [44]. This would help to acknowledge the capability of 
genetic features in classification models and provide critical clues for the exploration of the biological 
interpretability of AD-susceptible genes. 

2. Materials and methods 

2.1. Subjects 

Two batches of gene expression data were collected from the gene expression omnibus (GEO) 
datasets (http://www.ncbi.nlm.nih.gov/geo) from the AddNeuroMed consortium. GEO is an open 
international public repository that archives and freely distributes microarray, next-generation 
sequencing, and other forms of high-throughput functional genomics data. It also offers a number of 
web-based tools and strategies to assist users to query, analyze and visualize data. During the genetic 
testing, batch 1 (GSE63060) was prepared by Illumina Human HT-12 v3 Expression BeadChips, and 
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batch 2 (GSE63061) was processed by Illumina Human HT-12 v4 Expression BeadChips.  
This study enrolled 145 patients with AD, 80 MCIs and 104 NCs for batch 1, 131 patients with 

AD, 101 MCIs and 126 NCs for batch 2. The detailed demographics of enrolled participants were 
listed in Table 1. The enrolled standard of the AD group met with the requirement of a diagnostic and 
statistical manual of mental disorders (DSM) [45]; MCI participants were included according to 
Petersen diagnostic criteria; NC cases were chosen by complying with the consortium to establish a 
registry for Alzheimer’s disease (CERAD) [46]. 

Table 1. Demographic information of enrolled participants. 

Demographic 

information 

AD MCI NC 

Batch 1 Batch 2 Batch 1 Batch 2 Batch 1 Batch 2 

Number of subjects 145 131 80 101 104 126 

Age (Mean ± SD) 75.40 ± 6.58 77.82 ± 6.64 74.45 ± 5.99 78.06 ± 7.40 72.37 ± 6.34 75.35 ± 6.04 

Sex (Male/Female) 46/99 50/81 41/39 43/58 42/62 48/78 

2.2. Preprocessing 

The preprocessing of gene expression data was performed by R (version 4.0.2), with the 
following steps: 1) The GSE63060 and GSE63061 datasets were downloaded by the getGEO 
function in the GEOquery package [47]. 2) To exclude unannotated probes, available probes with 
clinical information were kept. Once a gene corresponded to multiple probes, the median of the 
probes was selected [48]. 3) Based on the probes with clinical information, the expression matrices 
were calculated by the exprs function on initial 16,789 gene features for batch 1 data and 24,899 
gene features for batch 2 data, respectively. 4) With the alignment of the two batches, only 16,352 
common probes were left in both datasets of batches 1 and 2 [49]. 

2.3. Differential gene screening TabNet (DGS-TabNet) 

The pipeline of DGS-TabNet mainly had two modules: one is differential gene screening (DGS) 
and the other is TabNet, as shown in Figure 1. The first module of DGS was implemented to select the 
significant differential genes by the reduction of genetic expression data dimensionality; the second 
module of TabNet distinguished significant differential genes as susceptible genetic features for binary 
and multi-class classifications, and output the global important genetic features for the further 
biological interpretability of AD [50]. 
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Figure 1. The pipeline of the DGS-TabNet. 

2.3.1. Differential gene screening (DGS) 

For expression genetics, DGS was recognized as one of the most popular methods to discover 
and understand the molecular pathways behind AD [51]. In our scheme, it was used to label differential 
genes and played a crucial role in AD classification. 

It was performed by the package of limma [52] and the three main steps were listed as follows: 1) The 
least-squares fit was conducted by the lmFit function, and the comparison matrices were constructed by 
the makeContrasts function; 2) The log-fold change rate (logFC) and t-statistic were calculated by the 
contrasts.fit function; 3) The F-statistic was calculated by the eBayes function. The statistical information 
of the differential genes was summarized by the Toptable function for the parameters of logFC, AveExpr, 
P.Value, adj.P.value and the B statistic. Here, LogFC provided the logarithmic value; AveExpr provided 
the average log expression level of the gene; P.Value reflected the gene’s false discovery rate (FDR) 
of the gene; adj. P.Value represented the FDR correction; the B statistic represented the logarithmic 
ratio of the differential expression gene. Since multiple T tests might lead to an increase of FDR, the 
adj.P.Value < 0.01 was chosen to maintain the false/true positive ratio. 

2.3.2. TabNet 

The TabNet is known as one kind of neural network for the processing of tabular data. It retains 
the representational automatic learning characteristics for deep neural networks and preserves the 
capability of providing predictive analyses. In our study, the TabNet consisted of multiple-step decision 
units and each step included four parts: attentive transformer, feature transformer, split and ReLU 
function. At the end of TabNet, the global important genetic features were outputted. The workflow of 
TabNet was summarized as follows:  

1) The susceptible genetic features processed by DGS were inputted to the batch normalization 
(BN) layer for avoiding overfitting and reducing gradient explosion and gradient disappearance [53]. 
The feature calculation was conducted by the feature transformer layers [38] (Figure 2). It consisted 
of two parts: the first part was trained together on all steps, while the second part was trained separately 
on each step. The gated linear units (GLU) were used in the feature transformer to determine the 
information passed to the next layer [54]. Here, four GLU blocks (two shared and two independent 
blocks) were used for robust and parameter-efficient learning. Residual connections were used in the 
layers to maintain the network stability and to avoid the dramatic changes of variances by multiplying 
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√0.5 [55]. According to the scheme of the attentive transformer layer, it was calculated as: 

𝑀ሾ𝑖ሿ ൌ  𝑠𝑝𝑎𝑟𝑠𝑒 𝑚𝑎𝑥ሺ𝑃ሾ𝑖 െ 1ሿ • h௜ሺ𝑎ሾ𝑖 െ 1ሿሻሻ       (1) 

where a[i-1] was the portion of the split layer divided from the previous step, ℎ𝑖(•) represented the FC 
and BN layers, and p[i] denoted the prior scales and was formulated as: 

Pሾi] = ∏ ሺ𝛾 െ 𝑀ሾ𝑗ሿሻ௜
௝ୀଵ           (2) 

here, the prior scales were used to indicate the application degree of one feature in the previous step. 
2) The mask layer was calculated through the attentive transformer [33] (Figure 3). The final 

output Mask (M) was used to weight the input data by using the fully connected (FC) layer, the BN 
layer and Sparsemax layer. Where the Sparsemax layer assigned feature weights to each feature and 
the sum of all feature weights equaled to 1.0 [56]. To achieve better sparse results, the sparse 
regularization was calculated and the value of each step was factored into the overall loss, which was 
calculated as: 

𝐿௦௣௔௥௦௘ ൌ  ∑ ∑ ∑
ିெ್,ೕሾ௜ሿ

ேೞ೟೐೛ೞ.஻
஽
௝ୀଵ

஻
௕ୀଵ

ேೞ೟೐೛ೞ

௜ୀଵ log ሺ𝑀௕,௝ሾ𝑖ሿ ൅ 𝜀ሻ      (3) 

where 𝜀 was generally assigned a very small value. The sparser of M resulted in smaller L, and meant 
smaller of loss and vice versa.  

3) The vectors outputted from the feature transformer layer were divided into two components by 
the split layer, one was used for computing the final output of the model by ReLU function, and another 
was implemented to calculate the Mask matrices for the next step. 

 

Figure 2. The scheme of feature transformer. 

 

Figure 3. The scheme of attentive transformer. 
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2.4. Experimental setup 

In order to validate the performance of our proposed algorithm, it was compared with three novel 
DLs of MLP, NODE and TabNet and five classical ML models of DT, RF, GBDT, Light GBM and 
SVM on the data set of GEO for binary classification (AD vs NC) and multi-class classification (AD 
vs MCI vs NC), respectively. During the performance evaluation, five indices of ACC, AUC, recall 
(REC), precision (PRE) and F1-Score were measured for quantitative evaluation [57]. And the 
interpretability of DGS-TabNet was also evaluated by enrichment analyses of KEGG and GO.  

For classical MLs, it was noted that the differential genes were selected by the DGS and boruta 
algorithm [58]. Here, the experiments for classification were carried out on a PC with Windows 10, 64 
bit, with 3.00 GHz Intel® coreTM i9-10980XE processor. The training and testing groups were 
randomly divided at a ratio of 1:1, and the repeated iterative training was carried out by 10-fold cross-
validation. Here, the normalization was conducted by the minmix function, and automatic tuning of the 
model was conducted by the tune_model function with the iteration of 100. 

Similar to MLs, the DGS was also used to screen differential genes for DLs comparison. During 
the stage of pre-training, the experimental hardware were 2 chips of NVIDIA RTX6000 GPU and the 
models of DLs were built on the pytorch framework. The training and test groups were randomly 
assigned at a 1:1 ratio, and the learning rate was set to 1e-3 with the maximum epoch of 200. Besides, 
the strategies of dropout and early stopping (patience = 5) were used to alleviate the overfitting of our 
models. The main hyperparameters were listed as: the width of the decision prediction layer (n_d): 32, 
44, 52; the width of the attention embedding for each mask (n_a): 10, 14, 36, 38; coefficient for feature 
reusage in the masks (gamma): 1.0, 1.2, 1.3, 1.5; number of shared GLU at each step (n_shared): 1, 2, 
5; sparsity loss coefficient (lambda_sparse): 0.0011-0.0081; optimizer: Adam; number of steps in the 
architecture (n_steps): 3, 4, 5; number of instances per batch (batch_size): 10. Here, the Bayesian 
optimization algorithm was used to tune the hyperparameters [59,60]. 

The biological interpretability of DGS-TabNet was conducted by the analyses of KEGG and GO 
via the package of clusterProfiler [61,62]. Here, the enrichment analysis of GO included three aspects 
of biological process (BP), cellular component (CC) and molecular function (MF). The globally 
important genetic features outputted by the DGS-TabNet encoder at the best classification were chosen 
for biological pathways on the two batches of datasets. Here, only the globally important gene features 
above the weight threshold of 0 were kept for biological interpretability. 

3. Results 

3.1. Results of binary and multi-class classification 

The comparison of MLs and DLs for binary classification was presented in Table 2. It was clear 
that the DGS-TabNet exhibited the best performance with the ACC of 93.80%, AUC of 98.53%, 
REC of 93.80%, PRE of 93.96% and F1 of 93.79% for batch 2. Besides, the SVM proved to be the 
best model in the five traditional MLs. The convergence curves of training and testing were shown 
in Figure 4.  
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Table 2. Results of binary classification. 

Method 
ACC AUC REC PRE F1 

Batch 1 Batch 2 Batch 1 Batch 2 Batch 1 Batch 2 Batch 1 Batch 2 Batch 1 Batch 2 

DT 73.60 87.60 76.29 86.14 92.31 76.19 62.34 97.96 74.42 85.71 

RF 76.00 89.15 85.88 96.83 65.38 90.48 73.91 87.69 69.39 89.06 

GBDT 75.20 90.70 86.75 97.98 76.92 90.48 67.80 90.48 72.07 90.48 

LightGBM 78.40 90.70 85.91 97.47 76.92 87.30 72.73 93.22 74.77 90.16 

SVM 88.00 93.80 94.02 98.46 86.54 93.65 84.91 93.65 85.71 93.65 

MLP 76.00 70.54 82.90 74.07 76.00 70.54 76.63 71.15 76.14 70.22 

NODE 75.20 76.74 87.88 84.60 75.20 76.74 77.84 76.75 73.37 76.73 

TabNet 80.00 88.00 89.14 93.89 80.00 88.00 79.95 88.16 79.97 88.36 

Proposed 89.60 93.80 95.10 98.53 89.60 93.80 89.72 93.96 89.51 93.79 

 

Figure 4. Convergence curves of training and testing for binary classification. (A) batch 1; 
(B) batch 2. 

The comparison of transitional MLs and DLs for multi-class classification was displayed in 
Table 3. Similarly, the proposed approach of DGS-TabNet outperformed the best performance with 
the ACC of 88.27%, AUC of 94.97%, REC of 88.27%, PRE of 88.43% and F1 of 88.24% on batch 2. 
It was obvious that the performance of multi-class classification was lower than that of binary 
classification on both data sets of batches 1 and 2. The convergence curves of training and testing 
were shown in Figure 5.  
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Table 3. Results of multi-class classification. 

 

Figure 5. Convergence curves of training and testing for multi-class classification. (A) 
batch 1; (B) batch 2. 

3.2. Interpretability of the DGS-TabNet 

In Table 4, the binary classification of batch 2 showed the best performance. There were the 22 
global important genetic features left, and the two largest global important feature weights of AVIL 
and NDUFS4 were 0.3701 and 0.3077, respectively. 

The biological pathways enriched by KEGG were found to be related to 19 varied diseases 
including Ribosome, Coronavirus disease (COVID-19), Huntington disease, Parkinson disease, AD 
etc. (Figure 6). Especially, the rich factor of AD was about 0.0025 and showed weak correlation with 
the AD. While the GO analysis enriched a total of 48 BP, 24 CC and 17 MF for biological processes 
of AD (Figure 7).  

Method 
ACC AUC REC PRE F1 

Batch 1 Batch 2 Batch 1 Batch 2 Batch 1 Batch 2 Batch 1 Batch 2 Batch 1 Batch 2 

DT 53.33 65.92 63.85 78.44 50.23 65.04 52.09 68.55 52.43 66.47 

RF 63.64 70.39 80.45 88.98 60.98 70.63 63.92 71.12 62.87 70.62 

GBDT 61.21 85.47 79.42 94.53 58.05 84.97 61.54 85.72 60.59 85.53 

LightGBM 65.45 81.01 82.32 94.17 63.10 80.40 64.71 81.29 64.94 81.10 

SVM 72.73 78.77 87.21 92.21 72.53 78.30 72.91 79.59 72.79 79.00 

MLP 55.76 46.37 74.89 60.17 55.76 46.37 58.31 33.89 55.73 33.85 

NODE 56.97 54.19 78.27 70.65 56.97 54.19 61.88 52.92 54.70 53.09 

TabNet 61.82 49.72 74.41 62.85 61.82 49.72 61.06 52.90 60.22 47.86 

Proposed 80.00 88.27 88.77 94.97 80.00 88.27 79.90 88.43 79.68 88.24 



8367 

Mathematical Biosciences and Engineering  Volume 20, Issue 5, 8358–8374. 

Table 4. Global important genetic features. 

Genetic features Feature weights Genetic features Feature weights 

AVIL 0.370100 LOC652864 0.005331 

NDUFS4 0.307700 LOC649864 0.005196 

REXO2 0.065700 CD79B 0.004798 

RPS25 0.053190 WDFY2 0.004436 

KCNG1 0.051161 CMTM2 0.003629 

SNRPB2 0.029107 RPL3 0.003358 

EGFL6 0.027134 RSL1D1 0.003124 

SNORD33 0.026315 EIF3E 0.000668 

MAP3K6 0.016846 TBC1D2B 0.000256 

LOC653702 0.012487 KIAA1160 0.000132 

HNRNPH2 0.009302 ASNSD1 0.000002 

 

Figure 6. The KEGG enrichment analysis of global important genetic features. 
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Figure 7. The GO enrichment analysis of global important genetic features. The x-axis and 
y-axis stand for RichFactor and GO items, respectively. 

4. Discussion 

Till now, a variety of classical MLs and novel DLs have been used to distinguish AD on gene 
expression data. The MLs generally relied on feature engineering to downscale high-dimensional 
gene expression features to achieve a more accurate classification of AD. While it could not be 
generalized by the limited performance in clinical practices. To this purpose, our proposed DL 
algorithm was implemented to improve the performance of AD diagnosis on tabular gene data, and 
even was used to exploit the intrinsic association of gene expression features with AD pathology. It 
was verified that our proposed DGS-TabNet presented the best performance for AD classification on 
public gene expression data. 

Since the gene expression data usually contained redundant and irrelevant features, the purpose 
of DGS was generally used to select the most relevant subset of features from whole features. It was 
clear that the feature selection decided the performance of classifiers and the DGS applied to genetic 
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data had aroused the concerns of many studies [63]. During the performance evaluation, the traditional 
SVM performed better performance than four other MLs. This was because the SVM had the 
advantage of being robust against noise in genetic data and deducing the solution unique for linearly 
separable problems [64]. For DLs, the DGS-TabNet presented the best performance for AD 
classification. It was due to the fact that the DGS module could effectively select the deferential genes 
for biological interpretability between normal phenotypes and disease phenotypes. Without reliable 
feature extraction, the MLP and NODE preserved low accuracies for AD classification. 

Learned from the KEGG and GO enrichment analyses, the globally important genetic features 
were used to explore the biological interpretability of the proposed DL model. It was proved that one 
of the global important genes of AVIL actively participated in the protein encoding of the gelsolin/villin 
family of proteins and it might play a great role in the development of neuronal cells [65]. Whereas 
the neuropathological features of AD included neurogenic fiber tangles with hyperphosphorylated tau 
proteins [66]. These processes included the proliferation, differentiation and maturation of neural stem 
cells and the regulation of their synaptic and neurotransmission-related processes through interactions. 
It was suggested that the AVIL gene might be potentially relevant to the formation of AD. According 
to another NDUFS4 gene, it was thought that the mutations of NDUFS4 would lead to mitochondrial 
complex I defects [67]. During the KEGG enrichment analysis, the gene NDUFS4 was reported to 
correlate with 12 biological neurodegenerative pathways, including Huntington’s disease, amyotrophic 
lateral sclerosis, and AD, etc. The NDUFS4 enriched in 1 BP, 3 CC3 and 3 MF was proved to be 
correlated with mitochondrial NADH dehydrogenase and the mitochondrial integrity declined with 
age and affected a variety of brain functions, such as memory, learning and sensory processes [68]. 
Other 20 global important genes were also associated with molecular pathways involved in the 
development of AD such as neuroinflammation, oxidative stress, defects in mitochondrial dynamics 
and function, cholesterol and fatty acid metabolism, and impairment of glucose energy pathways in 
the brain [69]. These enrichment analyses suggested that the globally important genes were potentially 
highly relevant to the pathogenesis of AD, and it might serve as strong support for the biological 
interpretability of the proposed model.  

Generally, there were several limitations in our study. First, there was no gold standard genetic 
data available for reliable method evaluation. Due to the data inconsistency, more large sample data 
sets should be used to verify the generalizability and robustness of our proposed DL algorithm. 
Secondly, for the betterment of robustness, more types of DL models should be investigated to assess 
the biological interpretability of AD. In the future, the AD prediction on longitudinal genetic data 
would be an important prospect for AD diagnosis. 

5. Conclusions 

It was concluded that the proposed DGS-TabNet could well deduce the susceptible genes, and 
the biological interpretability of susceptible genes also revealed the potential possibility of being 
AD biomarkers. 
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