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We present sympathetic cooling in an optomechanical system consisting of two
coupled cantilevers. The hybridization of the cantilevers creates a symmetric
mode, which is feedback cooled, and an anti-symmetric mode not directly
controllable by the feedback. The scheme of sympathetic cooling is adopted
to cool the anti-symmetric mode indirectly by parametrically coupling to the
feedback-cooled symmetric mode, from which the cooling power can be
transferred. Experiment shows that the realization of coherent dynamics plays
an essential role in sympathetic cooling, in which optimal cooling is achieved
when the mechanical dissipation rate and the strength of coupling become
comparable. The sympathetic cooling is improved by increasing the strength
of mode coupling to enhance the transfer of cooling power. Also, the limit of
sympathetic cooling imposed by the capacity of feedback cooling is reached as
the effective temperatures of the two modes approach the strong coherent
coupling condition. Our research provides the prospect of extending the
cooling techniques to coupled mechanical resonators for a broad application
in sensing and information processing.
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1 Introduction

Cooling of the mechanical resonator is of great significance in improving the sensitivity
of mechanical sensors [1–6] and a prerequisite for exploring the intriguing quantum
phenomena at a macroscale [7–12]. Recent advances on cavity optomechanics that
integrates the unique capacity on sensing and controlling mechanical motions have
allowed cooling mechanical resonators of different types by means of either laser cooling
[13–16] or feedback control [17–21]. For example, the scheme of measurement-based
feedback has demonstrated the potential on realizing quantum control of a room-
temperature mechanical resonator by developing a sensor capable of resolving the zero-
point fluctuation at its thermal decoherence rate [22–24]. With respect to the great successes
on cooling of the mechanical resonator, significant efforts have been devoted to scaling up
the system by connecting additional mechanical resonators for applications ranging from
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high-precision measurement [25–27] to scalable phonon-based
information processing devices [28–31]. Nevertheless, cooling of
coupledmechanical resonators remains a primary obstacle in scaling
up the system because the hybridization of mechanical resonators
typically creates mechanical modes with shapes that are not directly
controllable. Examples include distant mechanical resonators that
cannot be addressed by laser [32, 33], optomechanical mode that
appears dark to the probe [34, 35], and mechanical modes with
symmetries that can balance the actuation force [36].

The realization of cooling in the coupled mechanical resonators
beyond that which can be directly cooled would require a controllable
coupling between mechanical modes [37–40]. The concept of
sympathetic cooling has been achieved in systems such as trapped
ions and atoms to cool degrees of freedom that are inaccessible to direct
laser cooling [41, 42]. In micro- and nanomechanical systems, coherent
coupling between mechanical modes of either distinct mechanical
resonators or different modes of the same resonator have been
achieved so far by optical [43, 44], electrical [45, 46], and elastic
means [47]. Also, dynamical manipulation [48–51], geometric
control [52, 53], and topological transfer [54, 55] of mechanical
motions have been demonstrated in coupled mechanical resonators.
The ability in coherent transfer of motions between the mechanical

resonator opens the possibility to sympathetic cooling in coupled
mechanical resonators by transferring the cooling power to
mechanical modes which is impossible for direct cooling.

In this paper, we present sympathetic feedback cooling in the
optomechanical system consisting of two mechanical modes. The
scheme of measurement-based feedback is implemented to cool one
of the mechanical modes directly. Also, the mechanical mode, which is
unable to be actuated by the feedback force due to the symmetry of its
oscillation shape, is cooled sympathetically by coupling to the feedback-
cooledmode. The coherent dynamics of the sympathetic feedback cooling
is investigated by changing the strength of feedback cooling. Also, the
strength of mode coupling is enhanced to improve the sympathetic
cooling to the limit imposed by the capacity of feedback cooling.

2 Methods

The mechanical resonators used in our experiment are two
elastically coupled cantilevers with dimensions of 200 μm in length,
10 μm in width, and 200 nm in thickness. As illustrated in Figure 1A,
one of the cantilevers (cantilever 1) is inserted into a fiber-based
cavity to form a membrane-in-the-middle optomechanical system,

FIGURE 1
(A) Schematic illustration of the experimental setup. The power of the 1,310 nm probe is 0.12 mW. A bandpass filter with pass band from 1 kHz to
10 kHz is used to filter out the motion signal of higher-order mechanical modes. Also, the motion signal shifted by a phase of π/2 is amplified to drive a
piezoelectric actuator that shakes the whole chip in the direction parallel to mechanical oscillation to apply the feedback force. The experiment is
conducted in high vacuum at an ambient condition with temperature T0 � 300K. (B) Optical mediation of mode hybridization between the two
elastically coupled cantilevers. (C) Thermal oscillation power spectral density of the elastically coupled cantilevers under the control of feedback. For
comparison, the oscillation spectrum at feedback gain g � 9 (red curve) is plotted with that at feedback gain g � 0 (gray curve). Inset: the shapes of
oscillation for the symmetric and the anti-symmetric modes. (D) Effective temperature of the two normal modes. The effective temperatures of the
symmetric mode (red rectangles) and anti-symmetric mode (blue dots) are measured experimentally at different feedback gains. Also, the theoretical
results for the symmetric mode (red line) and anti-symmetric mode (blue line) are calculated at the same condition of our experiment.
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in which the cantilever is trapped by a 1,064 nm laser. Consequently,
the resonant frequency of cantilever 1 becomes trap power P
dependent ω2

1(P) � ω2
1(0) + GP with G �

−2.02 × 107 rad2s−2mW−1 representing the strength of trapping,
whereas the frequency of the other cantilever (cantilever 2) ω2

remains unaffected. In order to monitor the motion of the
trapped cantilever, the cavity is pumped by an additional weak
1,310 nm probe, which couples linearly to the motion of cantilever 1.
Because of the elastic coupling, the motions of the cantilevers are
hybridized into two normal modes in Figure 1B. Specifically, with
the frequencies of the cantilevers approaching (ω1 � ω2), an anti-
crossing of the mechanical mode can be clearly observed at the trap
power of P0 � 7.35mWwith the anti-crossing gap Δ/2π � 459.5Hz.
The complete mode hybridization at the avoided crossing point,

Xs

Xa
( ) � 1�

2
√ 1 1

−1 1
( ) x1

x2
( ), creates a symmetric mode (Xs) and

an anti-symmetric mode (Xa) with the two cantilevers oscillating in
parallel and opposite directions at the same amplitude, respectively.
The frequencies of the symmetric and anti-symmetric modes are
ωs/2π � 6, 213.3Hz and ωa/2π � 6, 672.8Hz, respectively.

Themechanical resonator is cooled at the anti-crossing point using the
scheme of measurement-based feedback, in which a force proportional to
the oscillation velocity Ffb(t) � −mgγm _x1(t) is applied with g
representing the feedback gain. Although feedback control of different
modes simultaneously is possible in its principle, direct feedback cooling of
the two modes at the anti-crossing point is complicated as it requires to
discriminate the two normal modes that are closely spaced in frequency
domain. Here, rather than selectively controlling cantilever 1, we
piezoelectrically actuate the whole chip, to which the two cantilevers
are connected. Also, the displacement of the ith cantilever xi in the
presence of the thermal Brownian force Fth,i can be described by

d2

dt2
+ γm

d

dt
+ ω2

1 −J

−J d2

dt2
+ γm

d

dt
+ ω2

2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ x1 t( )

x2 t( )( )

� 1
m

Ffb t( ) + Fth,1 t( )
Ffb t( ) + Fth,2 t( )( ), (1)

where J denotes the strength of elastic coupling, and the effective
mass and the intrinsic damping rate of the two cantilevers are
assumed to be nearly identical with m ≈ 1 ng and γm/2π ≈ 0.22Hz,
respectively. Owing to the complete hybridization at the anti-
crossing point, we find that the feedback force on the Xa(t) can
be perfectly balanced. Consequently, in Figure 1C, only the
symmetric mode is cold-damped when the feedback is activated,
whereas the anti-symmetric mode remains nearly unaffected. The
effective damping rate of the symmetric mode, γsef f � (1 + g)γm, is
measured to calibrate the feedback gain. In Figure 1D, the effective
temperatures of each mode at different feedback gains are calculated
by integrating the spectra in the vicinity of its resonant frequency.
Note that measurement noises such as shot noise in the optical
detection of mechanical displacement can be amplified by the
feedback and influences the motion of mechanical resonator as
feedback force noise. When the feedback gain is comparable to����
SNR

√
with signal-to-noise ratio in measuring the

thermomechanical motion being SNR � 1.7 × 106 in our case,
the influence of measurement noises can become significant and

impose a fundamental limit to measurement-based feedback
cooling. For simplicity, the experiments in what follows are
conducted at the feedback gain g≪

����
SNR

√
so that the influence

of the measurement noise is negligible.

3 Results and discussion

In order to cool the anti-symmetric mode, a parametric pump is
applied to couple the anti-symmetric mode to the feedback-cooled
symmetric mode by modulating the trap power P � P0 +
Pd cos (ωdt) with Pd and ωd denoting the pump power and
pump frequency, respectively. For a high-efficiency sympathetic
cooling, the pump frequency is tuned to perfectly compensate the
frequency offset between the two modes (ωd � ωa − ωs) so that the
motions can be resonantly transferred between the twomodes by the
one-phonon process [49]. Here, by neglecting the contribution of
higher-order processes in Equation (1), the motion of the normal
mode Xa(s)(t) � Re[Aa(s)(t) exp (iωa(s)t)] in the presence of the
sympathetic cooling withAa,s(t) denoting the slow-varying complex
amplitude of oscillation can be described by

i
d

dt
+ i 1 + g( ) γm

2
−Ω
2

−Ω
2

i
d

dt
+ i

γm
2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ As t( )
Aa t( )( )

� 1
2m

�����
2ωaωs

√ Fth,2 t( ) + Fth,1 t( )
Fth,2 t( ) − Fth,1 t( )( ), (2)

with Ω � GPd
2
���
ωaωs

√ denoting the strength of parametric coupling [52].
Equation (2) confirms that only the symmetric mode can be cooled
by the feedback in the absence of the parametric coupling (Ω � 0).
As in Figure 2A, the sympathetic cooling is conducted at the pump
power of Pd � 0.31mW. The strength of the parametric coupling
which is defined by the normal-mode splitting without feedback
cooling (g � 0) is Ω/2π � 4.6Hz. In contrast to that without the
parametric coupling, the resonance of the anti-symmetric mode is
broadened by the feedback, implying that parametric coupling to the
feedback-cooled symmetric mode provides an additional energy
dissipation channel for the anti-symmetric mode. Also, the effective
temperatures of the symmetric mode (Ts

ef f ) and the anti-symmetric
mode (Ta

ef f ) are obtained by integrating the areas under the
resonances of corresponding modes with

Ts
ef f �

2Ω2 + 2 + g( )γ2m
2 + g( ) Ω2 + 1 + g( )γ2m[ ]T0,

Ta
ef f �

2Ω2 + 2 + g( ) 1 + g( )γ2m
2 + g( ) Ω2 + 1 + g( )γ2m[ ]T0. (3)

For a given parametric coupling strength Ω≫ γm, Eq. (3)
indicates that the effective temperature of the anti-symmetric
mode can reach its minimal value Ta

ef f ≈
4

2+gopt
T0 at the optimal

feedback gain gopt ≈
�
2

√
Ω/γm. The effective temperatures of the two

modes at different feedback gains are plotted in Figure 2B. Indeed,
the effective temperature of the anti-symmetric mode is reduced to
approximately 30 K as the feedback gain reaches g � 26, at which the
normal-mode splitting disappears as the effective damping rates of
the normal modes becomes comparable to the strength of
parametric coupling. The disappearance of the normal-mode
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splitting indicates a transition from strong to weak parametric
coupling between the two modes. By increasing the feedback gain
further, the effective temperature of the anti-symmetric mode starts
to rise although the symmetric mode can be cooled continuously.

The dependence of the optimal feedback gain on the parametric
coupling strength reveals that the coherent dynamics plays an essential
role in transferring the cooling power between the parametrically coupled
modes. The real-time dynamics of themotion transduction is investigated
by initializing the system through resonantly actuating the anti-
symmetric mode to an oscillation amplitude of approximately 50 nm.
After the initialization, the parametric pump with Pd � 0.31mW is
applied immediately to couple the anti-symmetric mode to the feedback-
cooled symmetric mode. In Figures 2C,D, the oscillation amplitudes of
the two modes |Aa,s(t)| are recorded in the duration that the parametric
pump is applied. At the feedback gain g � 0, the motions on the two
modes can be coherently exchanged through the Rabi-like oscillation at
the frequency of 4.3 Hz, which is in good agreement with the normal-
mode splitting Ω/2π � 4.6Hz observed in Figure 2A. However, when
the feedback gain exceeds g � 20, the mechanical motions can no longer
be coherently exchanged between the two modes before decaying out,
confirming that the two modes are weakly coupled. Also, in the weak
coupling regime, it is interesting that the energy dissipation rate for the
anti-symmetric mode decreases as the feedback gain increases although
the symmetric mode can be further damped. Such difference reflects that
the stronger feedback cooling of the symmetric mode is counterbalanced

by a weaker energy transduction, which leads to the optimal sympathetic
cooling of anti-symmetric mode observed in Figure 2B.

We demonstrate that sympathetic cooling can be improved by
increasing the strength of parametric coupling to enhance the transfer
of cooling power. The strength of parametric coupling for each pump
power Pd is calibrated at g � 0 by measuring the normal-mode splitting
Ω with dΩ/dPd ≈ 2π × 14.7 rad · s−1mW−1. As in Figure 3A, the anti-
symmetric mode is sympathetically cooled by parametrically coupling to
the symmetric mode, which is feedback-cooled at a fixed gain g � 25. It
shows that the sympathetic cooling can be improved obviously by
turning up the parametric pump. As the pump power beyond
Pd � 0.57mW, a strong parametric coupling between the anti-
symmetric mode and the feedback-cooled symmetric mode is
achieved, which creates a clear normal-mode splitting. The effective
temperatures of the twomodes at different parametric coupling strengths
are plotted in Figure 3B. The transfer of cooling power between the two
modes reduces the effective temperature of the anti-symmetric mode at
the expense of heating up the symmetric mode at the mean time. Also,
the limit of the sympathetic cooling imposed by the cooling capacity of
feedback is reached as the effective temperatures of the two modes
approaching Ta,s

ef f → 2
2+gT0 at the condition of strong parametric pump

(Ω≫gγm). In our experiment, sympathetic cooling of the anti-
symmetric mode close to the limit with Ta

ef f � 27K is achieved at the
pump power of Pd � 0.77mW with the effective temperature of the
feedback-cooled symmetric mode rising from 15 K to 25 K.

FIGURE 2
(A) Thermal oscillation power spectral density of the modes cooled sympathetically at different feedback gains. The spectra for different feedback
gains are recorded at the pump power of Pd � 0.31mW. In the case of g � 0, the parametric pump creates a normal-mode splitting of 4.6 Hz. (B) Effective
temperature of the modes cooled sympathetically under different feedback gains. The effective temperatures of the symmetric mode (red rectangles)
and anti-symmetric mode (blue dots) are measured experimentally by integrating the corresponding spectrum in (A) around its resonant frequency.
Also, the theoretical results for the symmetricmode (red line) and anti-symmetricmode (blue line) calculated at the same condition of our experiment are
plotted for comparison. (C, D) Oscillation amplitudes of the symmetric and anti-symmetric modes. The anti-symmetric mode is actuated using the
radiation pressure force. Also, the real-time oscillation amplitude is measured experimentally by demodulating the motion signal at the resonant
frequencies of the corresponding mode with the bandwidth of 60 Hz.
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4 Conclusion

In summary, we have presented sympathetic feedback cooling of
elastically coupled mechanical resonators in an optomechanical
system, which allows for sensing and coherent controlling of
mechanical motions simultaneously. The complete hybridization
between cantilevers creates two normal modes with the cantilevers
oscillating symmetrically and anti-symmetrically. In order to cool
the anti-symmetric mode that is beyond direct control due to its
oscillation shape, a parametric pump is applied to resonantly couple
the two modes. As a result, when the symmetric mode is feedback
cooled, the cooling power can be transferred to the anti-symmetric
mode. We demonstrate that the coherent dynamics plays an
essential role in sympathetic cooling with an optimal cooling
achieved when the mechanical dissipation becomes comparable
to the strength of parametric coupling. The sympathetic cooling
is improved by increasing the strength of parametric coupling to
enhance the transfer of cooling power. Also, sympathetic cooling of
the anti-symmetric mode to the limit imposed by the capacity of
feedback is achieved when the effective temperatures of the two
modes approach.

Although the sympathetic cooling of the anti-symmetric mode,
which has been widely adopted in mechanical sensors for its
resilience to vibration noises [36, 56–58], is demonstrated in
our experiment, the scheme can be generally extended to
coupled mechanical resonator array to transfer cooling power
to distant mechanical resonators that are inaccessible by direct
cooling. Also, significant improvement on the limit of sympathetic
cooling can be expected under the condition of deep feedback
cooling, in which the measurement noises, such as shot noise and
photodetector noise, should be taken into account. With respect to
the great advances on the measurement-based feedback control,
our research on sympathetic feedback cooling provides a feasible
scheme to cool coupled mechanical resonators for scalable phonon
information processing.
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mode (blue line) calculated at the same condition of our experiment are plotted for comparison.
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