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Background: Thyroid cancer is a common malignant tumor of the endocrine
system that has shown increased incidence in recent decades. We explored the
relationship between tumor-infiltrating immune cell classification and the
prognosis of thyroid carcinoma.

Methods: RNA-seq, SNV, copy number variance (CNV), and methylation data for
thyroid cancer were downloaded from the TCGA dataset. ssGSEA was used to
calculate pathway scores. Clustering was conducted using ConsensusClusterPlus.
Immune infiltration was assessed using ESTIMATE and CIBERSORT. CNV and
methylation were determined using GISTIC2 and the KNN algorithm.
Immunotherapy was predicted based on TIDE analysis.

Results: Three molecular subtypes (Immune-enrich(E), Stromal-enrich(E), and
Immune-deprived(D)) were identified based on 15 pathways and the
corresponding genes. Samples in Immune-E showed higher immune
infiltration, while those in Immune-D showed increased tumor mutation
burden (TMB) and mutations in tumor driver genes. Finally, Immune-E showed
higher CDH1 methylation, higher progression-free survival (PFS), higher suitability
for immunotherapy, and higher sensitivity to small-molecule chemotherapeutic
drugs. Additionally, an immune score (IMScore) based on four genes was
constructed, in which the low group showed better survival outcome, which
was validated in 30 cancers. Compared to the TIDE score, the IMScore showed
better predictive ability.

Conclusion: This study constructed a prognostic evaluation model andmolecular
subtype system of immune-related genes to predict the thyroid cancer prognosis
of patients. Moreover, the interaction network between immune genes may play a
role by affecting the biological function of immune cells in the tumor
microenvironment.
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Introduction

Among endocrine tumors, thyroid cancer is a malignant tumor
with the highest incidence and manifests low mortality and a
relatively favorable prognosis (Wang et al., 2020). However, for
locally advanced or recurrent and metastatic thyroid cancer, the
existing treatment methods cannot effectively improve patient
prognosis. Therefore, novel therapeutic approaches such as
immunotherapy targeting the molecular mechanisms of thyroid
cancer initiation and progression are under exploration (Farkona
et al., 2016). Immune-related genes can be used to predict the
prognosis of patients with thyroid cancer and can also serve as
therapeutic targets (Gunda et al., 2018). The tumor
microenvironment (TME) includes the various cell types
(immune cells, fibroblasts, endothelial cells, etc.) and
extracellular components (growth factors, cytokines,
extracellular matrix, hormones, etc.) surrounding cancer cells
(Wu and Dai, 2017). Recent studies have shown that different
types of immune cells affect the tumor progression of various
cancer types, reflecting TME heterogeneity (Zhang et al., 2020;
Chen et al., 2021). Therefore, it is important to understand the role
of immune cells and immune genes in the thyroid cancer
microenvironment.

Immune checkpoint inhibitors have achieved great efficacy in
the treatment of a variety of tumors (Branchoux et al., 2019). In
papillary thyroid carcinoma, BRAF V600E mutation is positively
correlated with the expression of programmed death ligand 1/
programmed death receptor 1 in tumor tissues and immune
checkpoint inhibitors can effectively kill thyroid tumor cells
(Bai et al., 2018). Gnjatic et al. (2017) found that the number
and distribution of tumor-infiltrating immune cells (TIICs)
could affect the treatment response in patients with cancer
and that TIICs are a potential drug target to further improve
patient survival. Inflammation and immune cell infiltration are
closely involved in thyroid cancer initiation and development;
therefore, the exploration of immune infiltration patterns is
needed to evaluate patient treatment response and prognosis
(Mould et al., 2017). Immune genes as prognostic molecular

markers and potential targets for thyroid cancer immunotherapy
have attracted attention (Ma et al., 2020; Zhi et al., 2020; Qin
et al., 2021). The current AJCC TNM staging and risk
stratification of recurrence for patients with differentiated
thyroid cancer are used to guide individualized treatment and
are formulated based on the clinicopathological data on patients
with thyroid cancer without molecular detection. As the AJCC
TNM system is still not sufficiently accurate to classify patients
with cancer with different prognoses, patients must be classified
at the RNA level.

This study applied bioinformatic methods to identify immune
molecular subtypes and construct prognostic models and risk-
scoring systems. We evaluated the prognosis of thyroid cancer at
the gene andmolecular levels and further analyzed the immune gene
regulatory network of thyroid cancer to provide new ideas for the
study of the immune-related mechanisms of thyroid cancer and the
development of immune-targeted drugs.

Materials and methods

Raw dataset

RNA-seq, clinical data, transcriptome data, SNV, CNV, and
methylation data on patients with thyroid cancer were
downloaded from The Cancer Genome Atlas on 23 April
2022. For RNA-seq data, samples without clinical follow-up

TABLE 1 Pathological types of thyroid cancer.

Var1 Freq

Other, specify 9

Thyroid papillary carcinoma—classical/usual 355

Thyroid papillary carcinoma—follicular (≥99% follicular patterned) 101

Thyroid papillary carcinoma—tall cell (≥50% tall cell features) 36

FIGURE 1
Identification of three molecular subtypes in thyroid cancer. (A) Identification of Immune-Enrich, Stromal-Enrich, and Immune-Deprived subtypes
in the TCGA dataset. (B) Principal component analyses of the three molecular subtypes.
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information, survival time, or status were removed; Ensembl was
converted into gene symbol, and the median expression of
multiple GeneSymbols was used. The pathological types of
thyroid cancer are shown in Table 1.

Data on a total of 15 pathways (immune, stromal, DNA damage
repair, and oncogenic) and their corresponding genes were obtained
from a previous study (Li and Wang, 2021).

ssGSEA

ssGSEA analysis was used to calculate the scores of the
15 pathways, EMT pathways (HALLMARK_EPITHELIAL_
MESENCHYMAL_TRANSITION), and cytolytic activity (Rooney
et al., 2015) using the R package “GSVA”.

Clustering analysis

Molecular subtyping was performed separately for the TCGA
dataset samples via ConsensusClusterPlus 1.52.0 using the scores for
the 15 pathways (Wilkerson and Hayes, 2010). A total of
500 bootstraps were completed with “pam” arithmetic and
“pearson” distances. Each bootstrap involved TCGA dataset
specimens (≥80%). The cluster number k was set from 2 to 10,
and the optimum k was defined as per cumulative distribution
function (CDF) and AUC. Differences in survival (KM) curves
were analyzed according to the molecular subtypes. Similarly, the
distribution differences in clinical characteristics were compared, and
chi-square tests were conducted. p < 0.05 was defined as statistically
significant. Principal component analysis (PCA) was also performed
to test the rationality of the molecular subtype distributions.

FIGURE 2
Immune infiltration analysis among three molecular subtypes. (A) Distributions of StromalScore among the three molecular subtypes. (B)
Distributions of ImmuneScore among the three molecular subtypes. (C) Distributions of ESTIMATEscores among the three molecular subtypes. (D)
Distributions of TumorPurity among the three molecular subtypes. (E) Differences in EMTscores among the three molecular subtypes. (F) Differences in
cytolytic activity among the three molecular subtypes. (G) Differences in the scores for 28 kinds of immune cells among the three molecular
subtypes. (H) Differences in the scores for 22 kinds of immune cells among the three molecular subtypes. *p < 0.05; **p < 0.01; ***p < 0.001; ****p <
0.0001; ns: no significance.
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Immune cell infiltration

The proportions of 22 tumor-infiltrating immune cells (TIICs)
were calculated using the CIBERSORT algorithm in all malignant
tumor samples. ImmuneScore, StromalScore, ESTIMATEScore, and
TumorPurity were determined using the ESTIMATE algorithm.
ssGSEA identified scores for 28 kinds of immune cells.

Genetic mutations and epigenetics

For 172 tumor driver genes (159 of which had copy data) (Gao
et al., 2013), we used GISTIC2 to analyze the changes in copy number.
Those with a ratio >0.2 were considered Gains, while those with a
ratio <0.2 were considered Losses; and the rest were considered to be
Diploid. SNV was determined using maftools. Methylation of 450K in
seven EMT genes and two mismatch repair genes was determined
using the KNN algorithm in the impute package.

Tumor immune dysfunction and exclusion
(TIDE)

The TIDE (Jiang et al., 2018; Fu et al., 2020) algorithm (http://
tide.dfci.harvard.edu) was used to evaluate the exclusion of CTL and
dysfunction of tumor infiltration cytotoxic T lymphocytes (CTL) by
immunosuppressive factors.

Drug sensitivity analysis

The sensitivity to traditional medicines (IC50 values) was
predicted using pRRophetic (Geeleher et al., 2014).

Construction of the IMscore

In the TCGA dataset, thyroid cancer samples were randomly
grouped into the training and test datasets in a 1:1 ratio. In the
TCGA dataset, we identified pathway genes and pathways with
Pearson correlations below the threshold |R| > 0.4, p < 0.05 to obtain
related genes. In the training dataset, univariate Cox analysis was
performed to screen genes related to prognosis. LASSO Cox
regression in the glmnet package in R language and stepAIC in
the MASS package were performed to select the best prognostic
genes. A penalty coefficient λ of the optimal value and genes for the
model development were determined through 10-fold cross-
validation for a total of 1000 iterations. The risk scores for each
were calculated using the following formula:

IMscore � ∑ βi × Expi,

where βi refers to the Cox hazard ratio coefficient of mRNA and
Expri is the expression level of a gene. Samples in the training dataset
were assigned into two groups of high-risk and low-risk based on the
optimal segmentation point cutoff, which was determined using the

FIGURE 3
Immune checkpoint genes among the three molecular subtypes. (A) Differences in PDCD1 expression among the three molecular subtypes. (B)
Differences in CTLA4 expression among the three molecular subtypes. (C) Differences in LAG3 expression among the three molecular subtypes. (D)
Differences in CD274 expression among the three molecular subtypes. (E) Differences in MHC-related gene expression among the three molecular
subtypes. ****p < 0.0001.
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survminer package. Simultaneously, the effectiveness and robustness
of the prognostic risk model were validated in test and entire TCGA
datasets. Survival differences among the risk groups were evaluated
using Kaplan–Meier (KM) curves combined with log-rank tests. The
performance of IMscore in pan-cancer, immunotherapy datasets
(IMvigor210 and GSE91061) was also evaluated.

Sangerbox assisted with this article (Shen et al., 2022).

Statistical analysis

The software packages used in this study were implemented in R
software (version 4.2.2; https://www.r-project.org/). A p-value < 0.
05 was considered statistically significant.

Results

Identification of three molecular subtypes in
thyroid cancer

Based on scores in 15 pathways, three molecular subtypes
(Immune-Enrich (E), Stromal-Enrich (E), and Immune-Deprived
(D)) in thyroid cancer were identified by ConsensusClusterPlus for

k = 3 (Figure 1A). The PCA results showed that the three molecular
subtypes had distinct boundaries, indicating the rationality of the
subtype classification (Figure 1B). Samples in Immune-D showed
better OS, while those in Immune-D showed better progression-free
survival (PFS) (Supplementary Figure S1A). The distribution of
clinical features of the three molecular subtypes indicated the
significance of the T and N stages (Supplementary Figure S1B).

Immune cell infiltration analysis among
molecular subtypes

The results of the ESTIMATE analysis showed higher and lower
ImmuneScore, StromalScore, and ESTIMATEScore in Immune-E
and Immune-D, respectively (Figures 2A–C). TumorPurity was
lower in Immune-E (Figure 2D). A higher EMT score was
observed in Stromal-E (Figure 2E). The cytolytic activity score
was increased in Immune-E (Figure 2F). In total, 28 kinds of
immune cells showed higher scores in Immune-E (Figure 2G),
while 18 of 22 immune cells also had higher scores in Immune-E
(Figure 2H).

Furthermore, the expression levels of PDCD1, CTLA4, LAG3,
and CD274(PD-L1) were upregulated in Immune-E (Figures
3A–D). The expression analysis of MHC genes showed increases

FIGURE 4
Mutation analysis of tumor-driving genes. (A)Mutation analysis of tumor-driving genes among the threemolecular subtypes. (B)Differences in TBM
among the three molecular subtypes. (C) KM survival curves of CSMD1 and ERBB3 mutants and wildtype. **p < 0.01; ns: no significance.
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in 21 genes in Immune-E (Figure 3E). These results indicated higher
immune infiltration in Immune-E.

Genome mutation analysis of the molecular
subtypes

Next, we analyzed the gene mutations among the molecular
subtypes. The results demonstrated that 60 genes among
172 tumor-driving genes showed varying degrees of mutation in
the three molecular subtypes (Figure 4A). The TMB was higher in
Immune-D compared to Stromal-E (Figure 4B). Tumor driver
gene mutations and wild-type samples used for KM analysis
showed better survival outcomes in samples with CSMD1 and
ERBB3 wildtype compared to samples with CSMD1 and ERBB3
mutations (Figure 4C). CNV analysis of 159 genes showed copy
number amplification and deletion in 22 genes in the three
molecular subtypes (Figure 5A). Expression analysis of the
corresponding genes in CNV groups of DOLPP1, PLEKHA6,
PTEN, and MNDA demonstrated that the four genes had higher
expression levels in the Gain group and low expression in the Loss
group (Figure 5B).

A total of seven EMT genes and two mismatch repair genes were
used to calculate the 450K beta values. The beta values of ZEB1,
TW1ST1, CDH2, CDH1, and MLH1 differed among the three
molecular subtypes (Figure 6A). Pearson correlation analysis of gene
expressions and beta values showed that ZEB1, VIM, CDH2, CDH1,
and CLDN1 expressions were negatively correlated with beta value
(Figure 6B). The beta value of the cg probe site in CDH1 was higher in
Immune-E (Figure 6C). Similarly, the beta value of the cg probe site was
negatively correlated with CDH1 expression (Figure 6D).

Immunotherapy prediction and drug
sensitivity analysis

We used TIDE (http://tide.dfci.harvard.edu/) software to
evaluate the potential clinical effect of immunotherapy according
to the molecular subtypes. The TIDE score was lower for Immune-E,
indicating that Immune-E may be more suitable for
immunotherapy. Moreover, 47% of samples in Immune-E
showed immunotherapy response, a proportion higher than those
in Stromal-E and Immuno-D (Figure 7A). The IC50 values for
cisplatin, erlotinib, sunitinib, paclitaxel, saracatinib, and dasatinib

FIGURE 5
CNV analysis of tumor-driving genes. (A) CNV analysis of tumor-driving genes among the three molecular subtypes. (B) Expression differences of
four genes in three CNV groups. *p < 0.05; **p < 0.01; ****p < 0.0001; ns: no significance.
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were lower in Immune-E, suggesting that Immune-E is more
sensitive to those chemotherapeutic drugs (Figure 7B).

Construction of the IMScore

In the TCGA dataset, Pearson correlation analysis between
genes in pathways and pathways identified 1784 genes with |R|
>0.4 and p < 0.05. Then, in the TCGA training dataset, seven
prognosis genes (p < 0.05) for thyroid cancer were screened from
1784 genes using univariate Cox analysis. Finally, four genes were
used to construct a prognostic model (IMScore =
0.732*HSPA6+0.917*FLNC 1.083*CLDN2 0.966*E2F1) through
lasso analysis and the stepAIC method.

In the TCGA training, testing, and entire TCGA datasets,
samples were classified into high and low IMScore groups using
the cutoff. KM curve analysis showed that patients in the low group
had longer survival times. Moreover, in terms of PFS, DFI, and DSS,
the low group showed better PFI (p = 0.04) and DSS (p < 0.0001)
(Figure 8A). The IMScores were higher in the Immune-D and
Stromal-E subtypes (Figure 8B).

Performance prediction of the prognostic
model

Among 32 cancer types in the TCGA dataset, high IMScore
survival times were shorter than low IMScore survival times except
for TGCT and UCS (Supplementary Figure S2). We validated the
prediction effect of IMScore in the immunotherapy datasets
IMvigor210 and GSE91061. In the IMvigor210 dataset, samples
with a low IMScore had better survival outcomes, and the 0.5-, 1-,
and 1.5-year AUCs were 0.58, 0.64, and 0.65, respectively
(Figure 9A). The samples with low TIDE had better survival
outcomes, and the 0.5-, 1-, and 1.5-year AUCs were 0.54, 0.57,
and 0.57, respectively (Figure 9B). Samples with low PD-L1 also had
better survival outcomes, and the 0.5-, 1-, and 1.5-year AUCs were
0.6, 0.6, and 0.59, respectively (Figure 9C). The prediction of the
response to treatment showed AUCs of TIDE, PD-L1, and IMScore
of 0.58, 0.57, and 0.67, respectively (Figure 9D). In the
GSE91061 dataset, samples with a low IMScore had better
survival outcomes, and the 0.5-, 1-, and 1.5-year AUCs were
0.59, 0.75, and 0.75, respectively (Figure 9E). The samples with
low TIDE had better survival outcomes, and the 1-, 2-, 2.5-year

FIGURE 6
Methylation analysis of genes among the three molecular subtypes. (A) 450K beta value differences for nine genes among the three molecular
subtypes. (B) Correlation analysis between 450K beta values and gene expression. (C) Distributions of beta in the cg probe site in CDH1 among the three
molecular subtypes. (D) Correlation analysis between 450K beta values of CDH1 and CDH1 expression. *p < 0.05; **p < 0.01; ***p < 0.001; ****p <
0.0001; ns: no significance.
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AUCs were 0.61, 0.58, and 0.59, respectively (Figure 9F). The
survival outcomes did not differ significantly between the low-
and high- PD-L1 groups, and the 0.5-, 1-, 1.5-year AUCs were
0.54, 0.57, and 0.57, respectively (Figure 9G). The prediction of the
response to treatment showed AUCs of TIDE, PD-L1, and IMScore
of 0.58, 0.55, and 0.61, respectively (Figure 9H). The results of the
aforementioned analyses demonstrated the better prediction effect
of the IMScore compared to TIDE.

Nomogram model of thyroid cancer

First, univariate analysis showed that age, gender, TNM stage
(p < 0.001), stage, and IMScore were significantly associated with a
shorter OS in patients with thyroid cancer (Figure 10A). Then, we
established a nomogram model that included the important
predictors in the Cox analysis to predict the prognosis of thyroid
cancer (Figure 10B). The calibration curve showed good

concordance between the predicted and observed values of 1-, 3-,
and 5-year OS (Figure 10C). The decision curve showed that the
nomogram had the best prediction performance for the prognosis of
thyroid cancer (Figure 10D).

Discussion

The main obstacle to tumor progression is the immune system,
which sees tumors as emerging pathogens that require elimination
(Martin et al., 2021). Understanding tumor immunity is critical for
improving current immunotherapy regimens. In 2018, Thorsson
et al. (2018) developed a new immune classification system
comprising six immune subtypes: C1 (wound healing), C2 (IFN-
γ phenotype), C3 (inflammatory), C4 (lymphocyte depletion),
C5 Type I (immunosilencing), and type C6 (TGF-β dominant).
In different tumors, different immune subtypes have different
prognoses, and patients with C4 and C6 tumors have worse

FIGURE 7
TIDE and drug sensitivity analysis. (A) TIDE analysis among the three molecular subtypes. (B) IC50 analysis of eight drugs among the three molecular
subtypes. *p < 0.05; **p < 0.01; ****p < 0.0001; ns: no significance.
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prognoses. In colorectal cancer, the immune subtypes are mainly
types C1 and C2. Different immune subtypes cause different
biological differences, which may explain drug heterogeneity in
patients with traditional cytotoxic drugs and immunotherapy
(Soldevilla et al., 2019). We divided thyroid cancer samples into
three immune types based on immune cells: Immune-enrich (E),
Stromal-enrich(E), and Immune-deprived(D). Immuno-E showed a
high immune cell infiltration but shorter OS, probably because of a
small number of dead samples (7.96%).

Cancer is essentially a genomic disease that progresses as
mutations including CNVs and SNPs accumulate in somatic
cells, as well as epigenomic alterations with or without inherited
alterations. CNV is one of the most common markers in the cancer

genome, which can lead to oncogene activation and tumor
suppressor gene inactivation (Nakagawa and Fujita, 2018). DNA
methylation is the most important epigenetic variation in the human
genome, and the process of cell carcinogenesis is always
accompanied by extensive changes in DNA methylation (Locke
et al., 2019; Pan et al., 2021). To further explore the underlying
differences in mechanism among the three immune subtypes, we
selected methylation and gene copy number. We detected CNV and
hypermethylation of tumor driver genes in all three subtypes. The
methylation and copy values of genes were negatively and positively
correlated with mRNA expression levels, respectively; hence, the
differences between thyroid cancer subtypes may be due to changes
in gene copy number and methylation.

FIGURE 8
KM survival analysis. (A) KM survival analysis of the high and low groups in TCGA train, test, entire, TCGA-PFI, TCGA-DFI, and TCGA-DSS datasets. (B)
Differences in IMScore among the three molecular subtypes.
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FIGURE 9
Performance of IMScore in immunotherapy datasets. (A) KM survival curve and ROC analysis of IMScore in the IMvigor210 dataset. (B) KM survival
curve and ROC analysis of TIDE in the IMvigor210 dataset. (C) KM survival curve and ROC analysis of PD-L1 in the IMvigor210 dataset. (D) ROC analysis of
IMScore and TIDE in the IMvigor210 dataset. (E) KM survival curve and ROC analysis of IMScore in the GSE91061 dataset. (F) KM survival curve and ROC
analysis of TIDE in the GSE91061 dataset. (G) KM survival curve and ROC analysis of PD-L1 in the GSE91061 dataset. (H) ROC analysis of IMScore and
TIDE in the GSE91061 dataset.

FIGURE 10
Nomogram construction. (A) Univariate analysis of the IMScore and clinical features. (B) Nomogram that incorporated the IMScore and clinical
features was developed. (C) Calibration curve. (D) Decision curve analysis.
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In this study, biological information analysis identified four genes,
HSPA6, FLNC, CLDN2, and E2F1 as candidate biomarkers of thyroid
cancer. Recently, HSPA6 was found to be indispensable in the
Withaferin A-mediated inhibition of apoptosis/autophagy or
migration in breast cancer cells (Hahm et al., 2021). Alterations in
Claudin-2 (CLDN2), a component of cellular tight junction, are involved
in the progression of a variety of cancer types (Buchert et al., 2010;
Tabariès et al., 2011; Tabariès et al., 2012). E2F1 is a potent oncogene in
human cancers, including thyroid cancer, prostate cancer, lung cancer,
and colorectal cancer, that can accelerate the invasion, spread, and
metastasis of cancer cells and further predict poor prognosis (Bi et al.,
2017; Yin et al., 2017; Zhou et al., 2020; Yang et al., 2022).

Although we used bioinformatics methods on large numbers of
samples to identify genetic subgroups and develop a prognosis model
of thyroid carcinoma that showed significant prognostic differences,
this study has several limitations. Future work will place a greater
emphasis on research that is both fundamentally experimental and
functionally in-depth. Moreover, we were unable to consider other
factors because the samples lacked essential clinical follow-up
information, such as diagnostic specifics; for instance, whether the
patients had other health conditions. These factors may have
informed the differentiation of the molecular subtypes.

In conclusion, we identified three immune molecular subtypes
and developed a prognostic model based on four prognostic genes,
which may provide new targets for the diagnosis and treatment of
thyroid cancer. Further studies are needed to confirm the
mechanism of prognostic genes, which will provide new
opportunities for the diagnosis and treatment of thyroid cancer.
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