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Over the last 60 years, the basic neural circuitry responsible for the supraspinal

control of locomotion has progressively been uncovered. Initially, significant

progress was made in identifying the different supraspinal structures controlling

locomotion in mammals as well as some of the underlying mechanisms. It

became clear, however, that the complexity of the mammalian central nervous

system (CNS) prevented researchers from characterizing the detailed cellular

mechanisms involved and that animal models with a simpler nervous system

were needed. Basal vertebrate species such as lampreys, xenopus embryos, and

zebrafish became models of choice. More recently, optogenetic approaches

have considerably revived interest in mammalian models. The mesencephalic

locomotor region (MLR) is an important brainstem region known to control

locomotion in all vertebrate species examined to date. It controls locomotion

through intermediary cells in the hindbrain, the reticulospinal neurons (RSNs).

The MLR comprises populations of cholinergic and glutamatergic neurons and

their specific contribution to the control of locomotion is not fully resolved

yet. Moreover, the downward projections from the MLR to RSNs is still not

fully understood. Reporting on discoveries made in different animal models, this

review article focuses on the MLR, its projections to RSNs, and the contribution

of these neural elements to the control of locomotion. Excellent and detailed

reviews on the brainstem control of locomotion have been recently published

with emphasis on mammalian species. The present review article focuses on

findings made in basal vertebrates such as the lamprey, to help direct new

research in mammals, including humans.

KEYWORDS

locomotion, descending control, mesencephalic locomotor region (MLR),
neuromodulation, glutamate, acetylcholine

1. Introduction

Locomotion is a basic motor act that allows animals to move in their surroundings to
generate important functions such as fleeing danger, attacking prey, acquiring food, finding
mates, etc. Even though multiple modes of locomotion exist in the different vertebrate
animal species (walking, running, flying, or swimming), the neural organization and the
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mechanisms underlying locomotion are extraordinarily similar
(for reviews see Grillner and Wallén, 1985; Grillner and Dubuc,
1988; Grillner and El Manira, 2020; Grillner, 2021; Grillner and
Kozlov, 2021). One important discovery made in the 1970s by
a group of researchers headed by Sten Grillner was that the
spinal cord comprises oscillatory neural units called central pattern
generators (CPGs) that generate stereotyped rhythmic activity
relying on intrinsic cellular properties and specific connectivity
of the neurons involved (Grillner and Zangger, 1975, 1979;
for reviews see Grillner, 1985; Kiehn, 2006, 2016; Kiehn et al.,
2010; Grillner and El Manira, 2020). The spinal CPGs produce
alternating activity in motoneurons controlling flexor and extensor
muscles. They are motoneurons controlling muscles that act
on more than one joint. Interestingly, these motoneurons were
shown to receive excitation during both flexor and extensor
phases of the locomotor cycle (Perret and Cabelguen, 1980).
Locomotor activity can be recorded directly from muscles of
moving animals, but it can also be recorded from spinal ventral
roots or peripheral nerves under experimental conditions in
which muscles are prevented from contracting with the use of
paralyzing agents in vivo or by extracting the spinal cord from
the animal and maintaining it in vitro (Grillner and Zangger,
1975, 1979; Kudo and Yamada, 1987; Smith and Feldman, 1987).
This output is referred to as fictive rather than active locomotion
because there is no movements produced by the animal. Fictive
preparations are particularly useful to precisely establish the activity
of different populations of neurons in the central nervous system
(CNS) while the circuitry underlying locomotion is active. The
absence of movement under these circumstances constitutes a
clear advantage for stable recordings. Sten Grillner proposed that
there are distinct CPGs controlling each limb segment that are
interconnected with one another to coordinate the locomotor
movements (Grillner, 1981, 1985; see also McCrea and Rybak,
2008; Frigon, 2012; Kiehn, 2016). This concept has been recently
readdressed in further details in a review article (Grillner and
Kozlov, 2021).

As indicated above, the neural structures located above the
spinal cord play a crucial role in controlling the spinal CPGs.
Supraspinal neurons are involved in starting, maintaining, and
stopping locomotion. In addition, they control changes in speed
and direction. How this is achieved is still not fully understood, but
it is the focus of ongoing studies in several laboratories around the
world. There are many interconnected regions from the forebrain
and lower brainstem that contribute to the descending locomotor
control. This review focuses primarily on the brainstem regions.
Figure 1 provides a general overview of the interconnectivity of
CNS regions that play a key role in the control of locomotion in
vertebrates.

Although descending control is critical, sensory inputs play a
crucial role in adapting locomotor activity to conditions prevailing
in the external and internal environments of the animal (not
illustrated in Figure 1). These inputs act both at spinal and
supraspinal levels (Rossignol et al., 2006; for recent reviews see
Akay, 2020; Akay and Murray, 2021).

Locomotion can be elicited by sensory inputs or by internal
cues, giving rise to sensory-evoked and goal-directed locomotion,
respectively. Visual, auditory, mechanical, or olfactory inputs
have all been shown to trigger locomotion (for review see
Rossignol et al., 2006). The cellular mechanisms involved in

FIGURE 1

Schematics illustrating the general organization of supraspinal
structures controlling locomotion in vertebrates. Reticulospinal cells
constitute a large part of the locomotor-related descending inputs
that activate the spinal locomotor CPGs. The MLR receives inputs
from the basal ganglia and projects extensively to reticulospinal
cells. The cortex projects down to the basal ganglia, the MLR and
reticulospinal cells. The basal ganglia and the hypothalamus project
down to the MLR as well as to reticulospinal neurons. There is
another locomotor region, the DLR, that was identified in several
species of vertebrates. Far less is known about this locomotor
region that projects directly to reticulospinal neurons.

the transformation of olfactory (Derjean et al., 2010; Daghfous
et al., 2018; reviewed in Beauséjour et al., 2022), mechanical
(Viana Di Prisco et al., 1997, 2000), visual (Suzuki et al., 2019;
Isa et al., 2021), and vestibular (Zelenin et al., 2007) inputs
into locomotor activity have been identified in lampreys. In this
animal species, reticulospinal neurons (RSNs) play a crucial role
in relaying sensory inputs to the spinal CPGs for locomotion
(Rovainen, 1967a).

The neural mechanisms underlying goal-directed and sensory-
evoked locomotion are quite similar with regards to the brainstem
and spinal cord. Descending inputs that activate the spinal CPGs
originate mostly from RSNs in the pons and the medulla oblongata,
which receive sensory inputs from all modalities and ascending
inputs from the spinal CPGs. This confers to these cells a role
as command cells, a concept that was originally developed for
invertebrates (Atwood and Wiersma, 1967). In lampreys, sensory
inputs reach RSNs via two synapses, olfaction being the exception
with at least three synapses required. Whether these almost
direct connexions from sensory inputs to RSNs are sufficient for
sensory-evoked locomotion remains to be determined. In vivo
experiments that would examine sensory-evoked locomotion in
the absence of CNS regions above the RSNs have yet to be
conducted.
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As indicated above, goal-directed locomotion is triggered by
internal cues associated with basic needs such as food seeking,
mate finding or exploration. Studies in mammals have revealed
that RSNs located in the hindbrain reticular formation are also
involved (Shefchyk et al., 1984; Jell et al., 1985; Takakusaki, 2013)
in activating the spinal cord locomotor networks. These RSNs are
themselves controlled by upstream locomotor centers. One such
center, the mesencephalic locomotor region (MLR), which was
discovered around 60 years ago by Russian scientists, is located at
the border between the midbrain and the hindbrain (Shik et al.,
1966). It was shown that unilateral or bilateral electrical micro-
stimulation of this region elicits bilaterally coordinated walking
in decerebrated cats. The locomotor output could be controlled
by modifying the stimulation intensity, such that increases in
stimulation strength allow for the transition between locomotor
patterns such as walking, trotting, and galloping. At the time,
the MLR discovery revolutionized our understanding of the
supraspinal control of locomotion, so much so that scientists
began to look for its presence in other species and found it
in monkeys (Eidelberg et al., 1981), rats (Skinner and Garcia-
Rill, 1984), guinea pigs (Marlinsky and Voitenko, 1991), mice
(Caggiano et al., 2018), pigs (Chang et al., 2021), rabbits (Musienko
et al., 2008), geese (Sholomenko et al., 1991a,b), salamanders
(Cabelguen et al., 2003), stingrays (Bernau et al., 1991), and
lampreys (Sirota et al., 2000). Very recently, the MLR was identified
in the zebrafish (Carbo-Tano et al., 2022) further supporting the
fundamental importance of this structure for locomotor control
(see below).

The locomotor-inducing effects of the MLR are relayed to the
spinal cord through direct projections to RSNs, as first shown in
the cat using intracellular recordings (Orlovskii, 1970; Orlovsky,
1970). Jordan’s group described extensive MLR projections to the
bulbar reticular formation (Noga et al., 2003), and showed that
bulbar RSNs were necessary for eliciting locomotion by electrical
(Jordan et al., 2008) or chemical stimulation (Noga et al., 1988)
of the MLR. Similar projections were also shown to be present in
the other species into which the MLR was identified (Brocard and
Dubuc, 2003; Bretzner and Brownstone, 2013; Ryczko et al., 2016a;
Carbo-Tano et al., 2022).

The current understanding relative to the detailed neural
circuitry underlying the MLR effects is only partial in mammals.
On the other hand, the downstream projections from the MLR
to RSNs and the synaptic connectivity of this pathway have been
characterized in more details in lampreys. However, this vertebrate
model does not allow researchers to genetically manipulate neurons
and thus the contribution of specific neuronal populations through
their activation or inactivation cannot be defined. Optogenetics
experiments are now carried out in species amenable to genetic
manipulation to build on previous findings and allow for new
questions to be posed. Major advances have been made in
understanding the specific contributions of different MLR neural
populations (see below) and these findings suggest that the MLR is
a far more complex structure than previously thought. The cellular
mechanisms underlying the connectivity of descending inputs from
the MLR to RSNs have not yet been defined in mammalian models.
This is where basal vertebrate models become highly useful. This
review reports on the MLR function, its different cell populations,
and its downstream connectivity.

2. The organization of the MLR in
mammals

In this section, we review the anatomical organization of
the MLR followed by some of the early findings relative to the
role of the different MLR nuclei in the control of locomotion.
Discovered in cats, the MLR was first defined physiologically as a
brainstem region from which it is possible to elicit coordinated and
controllable locomotion. The amplitude of the muscle bursts and
their frequency changed as the experimenters varied the intensity
or frequency of stimulation. As such, the MLR was proposed to
control the power of locomotion (Shik et al., 1966; Sirota et al.,
2000), somewhat like a rheostat. In the original cat experiments,
the MLR was found to be located at the junction between the
midbrain and hindbrain, in the cuneiform nucleus (CuN; Shik
et al., 1966). Later studies by the group of Edgar Garcia-Rill showed
that the pedunculopontine nucleus in rats (PPN; Figure 2) was
the major contributor in the MLR effects (Garcia-Rill et al., 1987).
They found a striking similarity between the location of the efficient
stimulation sites and that of cholinergic neurons in the PPN. This
study and several others generated some confusion as to the exact
anatomical structures that constituted the MLR. For many years,
it was recognized that both the CuN and the PPN were part of
the MLR (Figure 2). More recent studies in basal vertebrates have
revealed that the area around another cholinergic nucleus located
somewhat more caudally and medially, the laterodorsal tegmental
nucleus (LDT), was highly efficient in eliciting locomotor activity
and likely to correspond to the MLR in these species (Cabelguen
et al., 2003; Le Ray et al., 2003, 2011). Whether the contribution
of the area around the LDT is a specific feature of basal vertebrate
species remains to be determined.

We will now describe the organization of the CuN and the PPN
in mammals and their first uncovered contributions to the control
of locomotion. We will then describe the organization of the MLR
in lampreys.

2.1. The cuneiform nucleus

In humans, the CuN has been anatomically defined by its
location and cell morphologies (Olszewski and Baxter, 1954). It
is ventral to the inferior and superior colliculi in the dorsolateral
part of the mesencephalic tegmentum. In the cat, the CuN is also
ventrally located to both the superior and inferior colliculi (Taber,
1961; Edwards, 1975). The rat CuN is described as a midbrain
reticular structure spreading from the rostral pons to the pretectal
thalamus (Zemlan and Behbehani, 1984, 1988).

The CuN contains GABAergic neurons in cats (Appell and
Behan, 1990; Pose et al., 2000) and rats (Ford et al., 1995).
Glutamatergic neurons have been observed in the rat (Heise
and Mitrofanis, 2006) in support of previous studies describing
glutamate efferent projections from the CuN to surrounding
structures (Beitz, 1989; Beart et al., 1990). A small number
of cholinergic cells have been observed in the rat (Spann and
Grofova, 1992), where they were viewed as “misplaced” satellite
cells from the PPN (Noback, 1959). Only a small number of
cholinergic neurons were identified near the cat CuN (Kimura
et al., 1981; Jones and Beaudet, 1987; Jones, 1991), specifically in
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FIGURE 2

Mesopontine cholinergic cell populations have been described in the brainstem of mammals many decades ago. Here in the rat, much like in
lampreys, the cells are arranged in a nearly continuous fashion but have been grouped into nuclei by neuroanatomists for simplicity. The exact
names given to each of these nuclei somewhat vary from one species of mammal to the next. The CuN and PPN are traditionally associated with the
MLR. (A) Schematic representation of a cross section of the isthmic region from the rat brainstem showing the mesopontine cholinergic cell
populations (green) in reference to other landmarks in the region. (B) Overlay of brightfield and epifluorescence photomicrographs illustrating the
cholinergic cells area labeled by immunofluorescence against the enzyme choline acetyltransferase. A black asterisk in the left bottom part of the
illustration indicates immunofluorescence artifacts. The frame in panel (A) corresponds to the photographed area. CuN, cuneiform nucleus; IC,
inferior colliculus; LDT, laterodorsal tegmental nucleus; Mes5, mesencephalic root of the trigeminal nerve; MLF, medial longitudinal fasciculus; nIV,
trochlear nerve; SCP, superior cerebellar peduncle.

the ventral subcuneiform nucleus (subCuN). Cholinergic neurons
were found in the subCuN (and PPN) of the monkey, but the
authors suggested that the entire region was the PPN area (Smith
and Parent, 1984). Remarkably, these studies show that, from
rats to humans, the CuN is located in similar areas, bordered
by the same structures, and populated by cells with comparable
morphologies.

The CuN sends descending projections to many areas of the
CNS. It projects to RSNs, a connection crucial for the operation
of the MLR in controlling locomotion. The CuN projects to the
magnocellular reticular nucleus in cats (Abols and Basbaum, 1981),
rats (Beitz, 1982), and monkeys (Chung et al., 1983). A descending
pathway from the CuN was described that mainly reached the
ipsilateral pons and medulla in the cat (Steeves and Jordan, 1984)
and in the rat (Bernard et al., 1989). The cat study reported
additional projections to the dorsal tegmental nucleus and nucleus
raphe magnus.

Several years after the MLR was identified in several vertebrate
species, Sinnamon (1993) proposed that different parts of the MLR
were associated with specific behavioral contexts. For instance,
he proposed that the CuN was involved in defensive responses
(for review, see Grillner et al., 1997; Jordan, 1998). Because the
CuN was also associated with cardiovascular function and analgesic
responses (Korte et al., 1992; Lam et al., 1996), it was linked to
life threatening situations such as fleeing from a predator, allowing
physiological adjustments to facilitate such behaviors. Moreover,
the CuN was shown to be activated alongside other defense-related
structures during social (Kollack-Walker et al., 1997) and predator-
associated stress (Dielenberg et al., 2001).

Electrical stimulation of the CuN triggers aversive or escape
responses in freely moving cats (Mori et al., 1989) and rats
(Depoortere et al., 1990; for review, see Grillner et al., 1997).
Moreover, micro-injections of glutamate in the rat CuN area
causes freezing as a result of a first injection; running occurs
with additional ensuing injections (Mitchell et al., 1988a,b; Kafkafi
et al., 2003), which suggests that gradual recruitment of more
CuN neurons leads to more intense locomotor activity. Although
the CuN can elicit aversive or escape behaviors, it also elicits
controlled locomotion as initially described by Shik et al. (1966) and
subsequent studies. In the freely moving cat, electrical stimulation
of the CuN increased the speed at which they were able to cross
path in search of food (Sterman and Fairchild, 1966). Stimulation of
the CuN was also able to produce rhythmic coordinated movement
of limbs in the decerebrated monkey (Eidelberg et al., 1981).
Increasing stimulation intensity was associated with an increase in
movement frequency, and interestingly, with gait transition from
walking to galloping. Jankowska et al. (2011) confirmed that the
stimulation of the cat CuN elicited synaptic responses in RSNs. The
specific nature of these synaptic responses remains to be established
in the mammalian models.

2.2. The pedunculopontine nucleus

Studies on the MLR carried out in the 1980s suggested that
while the CuN was part of a defensive system, the PPN was
part of an exploratory system (for review, see Jordan, 1998).
The PPN was first identified using cell morphology criteria
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established by Olszewski and Baxter (1954). At that time, a
cholinergic cell nomenclature was not established. Later, the Ch5
nucleus was reported to overlap with the PPN (Mesulam et al.,
1983). At the time, the rat PPN was even defined as a nucleus
composed exclusively of large multipolar cholinergic cells (Rye
et al., 1987). Later studies revealed that the PPN is heterogenous
and not exclusively cholinergic (Mena-Segovia et al., 2009; Wang
and Morales, 2009; Martinez-Gonzalez et al., 2012). In addition
to cholinergic neurons (Clements and Grant, 1990; Spann and
Grofova, 1992; Ford et al., 1995), the PPN contains glutamatergic
and GABAergic neurons (Wang and Morales, 2009). The specific
role of the different populations of PPN neurons is now actively
investigated using optogenetics (see below).

The PPN sends projections to the midbrain, pons, medulla,
and spinal cord (for review, see Inglis and Winn, 1995; Martinez-
Gonzalez et al., 2011). Although the PPN has also abundant
ascending projections to the forebrain (see Caggiano et al., 2018) we
have decided to focus on the descending projections. In the rat and
cat, cholinergic neurons of the PPN innervate cells across a large
portion of the hindbrain reticular formation. Anterograde tracing
experiments revealed that the pars compacta of the cat PPN sends
descending projections that reach the pontine and bulbar reticular
formation (Edley and Graybiel, 1983; Skinner et al., 1990; Inglis and
Winn, 1995; Karachi et al., 2010; Martinez-Gonzalez et al., 2011;
Mazzone et al., 2012) and 47% of descending axons to the pontine
reticular formation are from PPN cholinergic cells (Takakusaki
et al., 1996). Projections to the spinal cord have been reported in the
rat (Rye et al., 1988; Spann and Grofova, 1989), but not in the cat
(Edley and Graybiel, 1983). Other neurotransmitters present in the
PPN, namely glutamate, may also have a more important role than
formerly thought as will be discussed below in relation to lampreys.

Stimulation of the PPN in rats (Garcia-Rill et al., 1987)
was shown to elicit well-coordinated locomotion and the
sites where electrical or chemical stimulation most reliably
induced coordinated locomotion corresponded to the location of
cholinergic cells in the PPN. As shown in the cat (Shik et al., 1966),
the intensity of the locomotor output increased with the strength
of stimulation. Interestingly, it was shown more recently that the
loss of cholinergic neurons in the PPN in humans is associated with
locomotor deficits as seen in Parkinson’s disease (Karachi et al.,
2010). These findings have spiked the interest in the MLR and its
role in gait disorders.

3. Descending locomotor control in
lampreys

Lampreys have been used for decades to study the neural
mechanisms underlying motor control and sensorimotor
integration. They are basal vertebrates that have diverged
from the main vertebrate lineage more than 550 million years
ago and therefore their CNS is considered a “blueprint” of
the vertebrate brain (Robertson et al., 2014). Interestingly, the
general organization of the lamprey CNS is very similar to that
of mammals, but because it contains much fewer neurons, it
is more amenable to study cellular mechanisms and behavior
simultaneously, an important goal in neuroscience. During his
pioneering work on the lamprey, Rovainen (1967a,b) developed an

in vitro preparation that contributed importantly to characterizing
cellular connectivity in the brainstem and spinal cord.

As in other vertebrate species, the lamprey brainstem has
both sensory and motor functions, and is also the seat of
respiratory and cardiovascular functions. The lamprey and the
more recently evolved vertebrates share several neural network
features, from pathways to intrinsic neuronal properties (Dubuc
et al., 2008). Using the lamprey as a model to characterize the
neural mechanisms underlying locomotion has therefore several
advantages. The lamprey brain comprises a simpler neural circuitry
and its neurons are more easily accessible for recordings, which
provides the possibility to define neural activity of single and
multiple neurons during fictive and active locomotion (semi-intact
preparations). Many key discoveries related to locomotion have
been made using the lamprey model and some of them are listed
below.

Lamprey RSNs provide the link between rostral supraspinal
structures and spinal cord neurons to produce movement
(Figure 3). The lamprey reticular formation consists of four
nuclei: the mesencephalic reticular nucleus (MRN), and three
rhombencephalic (pontine and bulbar) reticular nuclei: the
anterior (ARRN), the middle (MRRN), and the posterior (PRRN)
(Nieuwenhuys, 1972, 1977; Figure 3). There is approximately 2,500
RSNs in lampreys and the PRRN and MRRN together comprise
around 90% of these (Bussières, 1994; Figure 3). In the middle
of the 19th century, Johannes Müller described large axons in
the lamprey spinal cord (Müller, 1840; Rovainen, 1978). The
axons were so large that a dozen of them occupied the entire
ventromedial quadrant of the spinal cord. The cell bodies of these
axons were later identified as located in the reticular formation,
and the scientists of the time referred to them as “Müller cells.”
Because of their large size and distinct morphologies, the Müller
cells attracted considerable attention from microscopists (Johnston,
1902; Tretjakoff, 1909). Studies in other vertebrate species revealed
that the organization of the reticular formation of lampreys is very
similar to that of other basal vertebrates such as fish and amphibians
(Cruce and Newman, 1984).

In the 1960s, Carl Rovainen published several elegant studies
defining the physiological characteristics of the Müller cells (for
review see Rovainen, 1978). Lamprey RSNs were shown to
make direct synaptic connections with spinal motoneurons and
interneurons that compose the CPG for locomotion (Buchanan
et al., 1987). RSNs constitute the final descending pathway for
locomotion. A large proportion of the descending axons use
glutamate as their neurotransmitter (Dale, 1986; Dale and Grillner,
1986). It is not surprising therefore that, in lampreys, fictive
locomotion can be elicited in the in vitro isolated spinal cord
by adding only glutamate or NMDA to the perfusing Ringer’s
solution (Grillner et al., 1981; Sigvardt et al., 1985; Wallén and
Grillner, 1987). In the intact lamprey, RSNs activate the spinal
CPGs whether locomotion is elicited by sensory inputs or by the
MLR. For sensory-evoked locomotion, the brainstem sensory relay
cells activated by sensory inputs directly excite RSNs that in turn
send excitatory inputs to spinal interneurons taking part in the
generation of locomotion (Dubuc et al., 2008; Ryczko and Dubuc,
2013; Daghfous et al., 2016). The next sections will describe the
contribution of RSNs to the control of locomotion elicited by
stimulation of the MLR.
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FIGURE 3

Dorsal view of the brain and rostral spinal cord of lampreys illustrating reticulospinal cells that were labeled by an injection of cobalt-lysine in the
rostral spinal cord. (Left) Schematics illustrating the location of reticulospinal neurons (dark cells). (Right) Brain mounted on a microscope slide
(wholemount preparation). Many of the reticulospinal cells are located just below the ventral surface of the fourth ventricle (PRRN, MRRN, and
ARRN), making them easily accessible for intracellular/patch recordings/imaging as well as for local injections of drugs. Adapted from Bussières
(1994).

3.1. The lamprey MLR

The lamprey MLR was first identified at the beginning of the
Millennium by the group of Réjean Dubuc (Sirota et al., 2000).
Originally, it was shown that electrical stimulation of a region
loosely corresponding to the lamprey PPN elicited controllable
and well-coordinated swimming in a semi-intact preparation
consisting of the brain and the rostral spinal cord (ca. 10 segments)
dissected out in vitro, with the caudal part of the body intact
and capable of swimming. It was later found that stimulation
of a region corresponding to the location of the LDT was
more reliable in eliciting controllable and coordinated swimming

(Brocard and Dubuc, 2003; Le Ray et al., 2003; Brocard et al., 2010;
Smetana et al., 2010; Juvin et al., 2016; Grätsch et al., 2019).
Interestingly, the location of the MLR in salamanders also coincides
with cholinergic cells of the LDT in the isthmic region (Cabelguen
et al., 2003; Ryczko et al., 2016a).

The initial study describing the MLR of lampreys clearly
established that the inputs from the MLR were relayed by
hindbrain RSNs before reaching the spinal cord to produce
swimming. The MLR inputs to hindbrain RSNs were then
examined in detail. Two reticular nuclei are in the rostral half
of the lamprey hindbrain, a region homologous to the pons of
mammals, namely the anterior (ARRN) and middle (MRRN)
rhombencephalic reticular nuclei, and one large reticular nucleus
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is in the caudal half, homologous to the medulla oblongata,
namely the posterior (PRRN) rhombencephalic reticular nucleus
(Cruce and Newman, 1984; Figure 3). The contribution of
the pontine and bulbar reticular formation to the control of
locomotion in lampreys was examined in electrophysiological
experiments (Brocard and Dubuc, 2003). The MLR was stimulated
electrically while synaptic responses were recorded from RSNs
(Figure 4A1). Dual intracellular recordings of RSNs were also
carried out to compare synaptic responses in different parts of
the reticular formation as well as responses from both sides of
the brainstem. Following MLR stimulation, RSNs in the bulbar
PRRN displayed synaptic responses occurring at a longer latency as
compared to RSNs in the pontine MRRN (Figure 4A2). The longer
latencies resulted from the PRRN being at a greater distance from
the MLR than the MRRN. The stimulus/response relationships
were similar for RSNs in both nuclei, with the same threshold
intensity that evoked synaptic response (Figure 4A2). On the
other hand, the MLR-evoked responses had a greater magnitude
in pontine MRRN RSNs than in bulbar PRRN RSNs. It was
argued that intrinsic properties of RSNs were not responsible
for this difference because larger responses would have been

expected in PRRN cells due to their larger input resistance. It is
possible that a larger density of projections onto pontine MRRN
neurons compared to bulbar PRRN neurons could explain the
difference in synaptic response size. The time to peak of the
responses was also shorter in MRRN neurons (Figure 4A2).
It was hypothesized that this could be due to a disparity in
ionic current kinetics or more synchronous synaptic inputs to
MRRN cells (Brocard and Dubuc, 2003). The contribution of
the MRRN and PRRN to MLR-induced locomotion was also
examined. Following injections of glutamate antagonists in the
pontine MRRN, the MLR stimulation threshold for eliciting
locomotion was markedly increased. Moreover, in experiments
during which locomotor activity was already elicited by stimulating
the MLR, the injection of the antagonists in the MRRN suppressed
locomotor activity (Brocard and Dubuc, 2003). Injections of
glutamate receptor antagonists in the bulbar PRRN had much
weaker effects. These results altogether indicate that projections
from MLR to the pontine reticular formation play a crucial role in
eliciting locomotion. Most of the studies carried out in mammals
have examined MLR inputs to the bulbar and not the pontine
reticular formation. If lessons were to be taken from the lamprey

FIGURE 4

A unilateral stimulation of the MLR in lampreys elicits coordinated and symmetrical swimming movements on both sides. Physiological experiments
showed that the MLR on one side of the brainstem provides highly symmetrical glutamatergic and cholinergic inputs to paired, giant RS cells from
opposite sides of the brainstem. Anatomical experiments confirm the presence of bilateral projections from the MLR to RS cells. (A1) Diagram of the
hindbrain showing the bilateral connections between the MLR and paired, giant RS cells as well as the position of the electrodes for the
electrophysiological experiments. (A2) Left side: the MLR on one side is stimulated at increasing intensities and the synaptic responses are recorded
in paired, giant RS cells located in de pontine reticular formation (MRRN) on opposite sides of the brainstem. Note that the responses are remarkably
similar on both sides. Right side: Same as on the left side, but for paired large RS cells in the bulbar reticular formation (PRRN). (B) Schematized
illustration of the subthreshold synaptic responses elicited in reticulospinal neurons by stimulation of the MLR. Glutamatergic and cholinergic
transmission were blocked or potentiated sequentially by adding different pharmacological agents. The EPSPs were increased under physostigmine,
an inhibitor of the re-uptake of acetylcholine. The EPSPs were significantly decreased under D-tubocurarine, a nicotinic receptor antagonist, and
were further decreased by the addition of a mixture of CNQX/AP5, glutamatergic receptors antagonists. A small response from unknown origin
remained. Adapted from Brocard et al. (2010).
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FIGURE 5

Recruitment pattern of reticulospinal neurons as the stimulation in
the MLR is increased. The spiking frequency of reticulospinal
neurons and swimming frequency are plotted against the intensity
of MLR stimulation. Reticulospinal neurons in the pons (MRRN) are
recruited at low MLR intensity and rapidly reach a discharge
frequency plateau. Bulbar reticulospinal neurons (PRRN) are
recruited at higher MLR stimulation intensities. They start
discharging when the discharge frequency of pontine reticulospinal
cells has reached a plateau. Adapted from Brocard and Dubuc
(2003).

model, more emphasis should be given to the pontine reticular
formation.

The recruitment pattern of pontine MRRN vs. bulbar PRRN
RSNs was also examined in the lamprey model (Figure 5). RSNs
in the MRRN discharged at lower stimulation intensities compared
to cells in the PRRN. The latter began discharging when the RSNs
in the MRRN had already reached a maximum level of discharge.
It was proposed that bulbar PRRN cells could provide additional
excitation to CPG neurons to increase locomotor speed (see also
Wannier et al., 1998).

Altogether, the findings above indicate that MLR inputs
onto the lamprey reticular formation are not evenly distributed
throughout the reticular formation and that different populations
of RSNs are likely to contribute differently to the control of
locomotion.

3.2. Bilaterally symmetrical activation of
RSNs

In the animal species into which the MLR was identified as
of now, stimulating the MLR on one side systematically resulted
in bilaterally symmetrical locomotion. This suggests that the MLR
projects to both sides of the hindbrain. The issue of bilateral effects
of the MLR was examined in the lamprey where injections of
anatomical tracers in the hindbrain reticular formation on one side
revealed the presence of retrogradely labeled neurons in the MLR
on both sides (Sirota et al., 2000). A few years later, it was shown
that there was an ipsilateral bias in the MLR projections as fewer
labeled neurons were found in the contralateral MLR (Brocard
et al., 2010). On the other hand, the anatomical asymmetry seemed
to be compensated physiologically. It was shown that a unilateral
MLR stimulation elicits bilaterally symmetrical inputs in RSNs,
thus contributing to symmetrical locomotion patterns (Figure 4A2;

Brocard et al., 2010). The bilateral projections are monosynaptic as
demonstrated by bathing the brainstem in a high-divalent cation
solution. The synaptic response in RSNs displayed a constant
latency during high-frequency stimulations. Furthermore, when
normal Ringer’s solution was gradually replaced with a Ca2+-
free solution, the intensity of responses in RSNs showed gradual
reduction (Brocard et al., 2010). These data strongly support
monosynaptic connections between the MLR and RSNs. In the
same study, pharmacological activation of the MLR recruited RSNs
in the same way as did electrical stimulation. This suggests that this
observed symmetry is produced by cell bodies located around the
stimulation electrode, supporting the previous anatomical findings.

3.3. Activation patterns in RSNs

Recent studies in the lamprey show that RSNs respond to MLR
stimulation with three patterns of activity. Some RSNs display a
burst of discharges at the beginning of locomotion, others maintain
their discharge throughout the locomotor bout, while a third type
show bursts at the beginning and at the end of locomotor activity
(Juvin et al., 2016). The three populations of RSNs were named
Start, Maintain, and Stop cells, respectively. To determine if the
Stop cell population was involved in the termination of locomotion,
activation and inactivation experiments were conducted. After
initiation of locomotion by MLR stimulation, an injection of
D-glutamate over the caudal part of the pontine MRRN activated
Stop cells, Start cells and interneurons in that region, but most
importantly, it lead to the termination of locomotion. This could
be due to a larger number of Stop cells being activated, or Start
cells being in a low state of excitability during ongoing locomotion.
Again, with ongoing MLR-evoked locomotion, Stop cells were then
inactivated using local injections of the glutamatergic antagonists,
CNQX/AP5. In those experiments, the duration of the locomotor
activity was not significantly modified, but the length of the
deceleration period was extended and less abrupt. The authors
suggested that Stop cells are probably not the only cells providing
a termination command, but they could be needed in cases
where locomotion must stop quickly. The identification of Stop
cells in the reticular formation of lampreys followed observations
made by the group of Kiehn in mice (Bouvier et al., 2015).
They elegantly showed that selective activation of V2a neurons
of the rostral medulla stopped ongoing locomotor activity and
that inactivation of such neurons decreased spontaneous stopping
in vivo. Interestingly, the Stop neurons found in lampreys were
located in a similar region of the reticular formation, suggesting
that the anatomo-physiological features of the locomotor control
system are well conserved in vertebrates.

In lampreys, it was later discovered that the stop signals
originated in the MLR. High intensity stimulation to the MLR
evoked the initiation of locomotion, but then a second lower
intensity stimulation terminated the locomotor event (Grätsch
et al., 2019). These findings suggested that the MLR can control
such opposite behaviors. In the same study, stimulating the MLR
while ejecting glutamate agonist over the Stop cell region in
the pontine MRRN elicited a decrease in swimming duration,
whereas cholinergic agonist showed no change in such component
of swimming. To confirm the role of glutamate in the MLR
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termination command, glutamate receptors were blocked in
Stop cells, which prevented the reduction in the duration of
the locomotor activity observed after application of the second
lower-intensity stimulation. These findings in the lamprey show
quite clearly that glutamatergic inputs from the MLR to Stop
cells are responsible for terminating locomotor activity, while
cholinergic inputs do not seem to be involved in activating Stop
cells. Interestingly, it was shown in mammals that activation
of GABAergic neurons of the CuN or PPN stops locomotion
momentarily (Roseberry et al., 2016; Caggiano et al., 2018).

3.4. Neurotransmitters involved in
transmitting signals from the MLR to
RSNs

In lampreys, many choline acetyltransferase-immunoreactive
cells were found in the isthmic region (Pombal et al., 2001). This
was confirmed by Le Ray et al. (2003) who also showed that MLR-
evoked locomotion relies on both glutamatergic and cholinergic
inputs (Figure 4B). The authors showed a dose-dependent
receptor-mediated depolarization following local ejections of
acetylcholine onto RSNs. This response persisted after adding
TTX to the perfusion Ringer’s solution, suggesting a direct effect
onto RSNs. Because single injections did not always produce
reliable responses, it was argued that a slow build-up was needed
following MLR stimulation to produce locomotion that could be
the result of nicotinic inputs. As expected, the nicotinic cholinergic
antagonist, D-tubocurarine, blocked this build-up. In addition,
when locomotion was induced by NMDA perfusion onto the
spinal cord, nicotinic activation of RSNs caused an acceleration
of the locomotor rhythm. It is noteworthy that a previous study
had shown that cholinergic neurotransmission had no effect on
RSNs when bath-applied (Matthews and Wickelgren, 1979). The
absence of effect in bath-applied conditions may have been due to
desensitization of the cholinergic receptors.

Le Ray et al. (2003) suggested that cholinergic inputs to RSNs
could cooperate with glutamatergic inputs to induce locomotion.
It was found that the two neurotransmitter systems were involved
in the synaptic inputs from the MLR to RSNs (Figure 4B).
The synaptic responses observed under control conditions
were significantly reduced by adding a glutamate antagonist
to the perfusing Ringer’s solution (Figure 4B). Additionally
blocking nicotinic cholinergic receptors reduced even further
the synaptic responses, whereas blocking cholinergic reuptake
markedly increased the responses. These findings indicate that
glutamate and acetylcholine transmission play a role in the MLR-
induced activation of RSNs. How these two neurotransmitter
systems interact remains to be determined.

3.5. Muscarinic contribution

Sensory inputs are crucial to the control and modulation of
locomotion (for review see Rossignol et al., 2006). In lampreys,
cholinergic inputs from the MLR were shown to also modulate
sensory transmission. A local application of muscarinic agonists
on RSNs reduced their response to a sensory stimulation

(Le Ray et al., 2004), whereas application of an antagonist produced
the opposite effect. A similar decrease in synaptic sensory
transmission to RSNs occurred when the MLR was stimulated
(Le Ray et al., 2010). The depression of sensory transmission was
correlated to the intensity of stimulation of the MLR. The authors
proposed that as the MLR induces locomotion (goal-directed), it
reduces sensory inputs that could perturb the locomotor activity
(Le Ray et al., 2010). Another role of cholinergic inputs from
the MLR was described by Smetana et al. (2010). The authors
showed that a parallel cholinergic pathway from the MLR activated
downstream muscarinoceptive cells in the hindbrain (Figure 6)
and that those cells in turn projected to RSNs to increase their
level of excitation. The pathway was recruited only at high levels
of activation of the MLR. The authors argued that this pathway was
boosting local motor output and they described it as a brainstem
hyperdrive mechanism for locomotion (Figure 6).

3.6. Salamanders and zebrafish

In tetrapods, the downstream projections from the MLR to
brainstem neurons remained unknown until recently. Ryczko
et al. (2016b) examined the brainstem circuits from the MLR to
identified RSNs in the salamander Notophthalmus viridescens. They
showed bilateral projections from the MLR to hindbrain RSNs, and
calcium-imaging coupled to electrophysiology techniques revealed
that a unilateral MLR stimulation produced very similar responses
in RSNs on both sides. Bath-application or local microinjections of
glutamatergic antagonists markedly reduced RSN responses. The
authors showed that the brainstem circuits activated by the MLR in
salamanders are organized very similarly to those of lampreys.

In zebrafish, questions relative to the connectivity between
the different brain structures involved in the neural control

FIGURE 6

Schematic illustration of downward projections from the MLR to the
pontine reticular formation. In addition to direct projections from
glutamatergic and cholinergic MLR neurons to reticulospinal
neurons, there is a muscarinic cholinergic projection from the MLR
to a group of muscarinoceptive cells in the hindbrain that in turn
provide extra excitation to reticulospinal neurons. This pathway is
believed to boost the locomotor output at high swimming speeds,
acting as a hyperdrive mechanism for locomotion. Adapted from
Smetana et al. (2010).
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of locomotion have been examined efficiently for many years
using combined approaches such as optogenetics, imaging,
electrophysiology, and behavior (Thouvenin and Wyart, 2017;
Severi et al., 2018). There is overwhelming evidence for a crucial
role of RSNs neurons in the descending control of locomotion in
zebrafish (see Kimura et al., 2013). However, despite the multiple
approaches used, the zebrafish MLR has remained elusive. For
instance, stimulation of the nucleus of the medial longitudinal
fasciculus (nMLF) elicits locomotion in zebrafish. It was suggested
from these experiments that the zebrafish nMLF could correspond
to the MLR in these animals (Green and Hale, 2012). However, the
anatomical location of the nMLF is far from being homologous
to that of the mesopontine border-located MLR in other basal
vertebrates. It is likely that the observed stimulation effects in those
zebrafish experiments were equivalent to stimulating RSNs as seen
in other species. The zebrafish MLR was recently uncovered as
a small region dorsal to the locus coeruleus with glutamatergic
and cholinergic neurons (Carbo-Tano et al., 2022). Stimulation
of this newly-identified zebrafish MLR reliably elicited forward
bouts of controlled duration and speed. The same authors showed
that locomotion resulted from the activation of V2a RSNs in the
pontine and retropontine regions, as well as in the medulla. These
recent findings bring the zebrafish in the forefront as a highly
useful animal model to characterize the detailed neural mechanisms
underlying the supraspinal control of locomotion. Moreover, the
strikingly similar location of the zebrafish MLR as compared to
that of the lamprey indicates that basal vertebrates use very similar
brainstem neural mechanisms to control locomotion.

4. Revisiting the mammalian MLR

Research carried out in lampreys has provided new and
valuable information on the operation of the MLR and RSNs during
locomotion. These findings have in part paved the way for new
research in mammalian models. The impressive advances made
in mouse genetics have also provided exciting new approaches
with optogenetic techniques. We have described above the general
organization of the MLR as it stood historically. We will now
present some of new findings made in mammals. Excellent recent
review articles have been written on this subject (Leiras et al., 2022;
Noga and Whelan, 2022). We will first address recent findings on
the connectivity between the MLR and RSNs in mammals and then
the new findings on the specific role of genetically-identified MLR
neurons in locomotor behavior.

Early neuroanatomical studies had shown that the pontine
reticular formation receives inputs from the MLR in cats (Garcia-
Rill, 1983; Garcia-Rill et al., 1983a,b,c; Steeves and Jordan, 1984)
and in rats (Garcia-Rill, 1986; Garcia-Rill et al., 1986). The presence
of cholinergic neurons in the MLR suggested that acetylcholine
played a role in activating RSNs. It was shown that carbachol,
a muscarinic agonist, excited pontine reticular neurons, whereas
a muscarinic antagonist blocked PPN-induced excitation in the
same neurons. This suggested that the effects were due to
muscarinic receptor activation (Homma et al., 2002). On the
other hand, carbachol did not elicit locomotion when injected
into the avian pontine reticular formation (Sholomenko et al.,
1991a,b), contrary to what happens in the rat (Mamiya et al.,

2005). Cholinergic agonists injected into the rat ventromedial
medulla induced locomotion (Kinjo et al., 1990), an effect that
was blocked by a cholinergic antagonist. However, in the avian
model, carbachol did elicit locomotion when injected in a region
homologous to the cat bulbar reticular formation (Sholomenko
et al., 1991a,b). Taken together, these results suggested a key
role of PPN cholinergic projections in MLR-induced locomotion.
Unfortunately, the cellular mechanisms by which the MLR effects
were exerted remained unknown. Moreover, the discrepancies
between different species have not been addressed as well as the
differential effects of cholinergic inputs on pontine vs. bulbar RSNs.

Few studies have directly characterized the MLR inputs onto
RSNs in mammals. In an elegant study, Bretzner and Brownstone
(2013) showed that bulbar RSNs expressing Lhx3 and/or Chx10
in mice received inputs from the MLR. Moreover, these neurons
displayed an increased expression of c-Fos associated with motor
tasks, and their electrophysiological properties suggested that they
were indeed involved in the control of locomotion. Glutamatergic
neurons within the lateral paragigantocellular nucleus (LPGi) were
recently shown to be essential for high-speed locomotion as they
receive glutamatergic inputs from the CuN (Capelli et al., 2017).

Specific populations of RSNs are now known to be involved in
stopping locomotion. Photo-stimulation of some Chx10 positive
neurons in the hindbrain halted ongoing locomotion (Bouvier
et al., 2015). This indicated that not all descending RSNs produce
excitatory effects in the spinal cord. Interestingly, a population of
Stop cells was later described in lampreys at the same location
in the reticular formation (Juvin et al., 2016; and see above).
The descending inputs to RSNs are likely to be organized in a
complex fashion, whereby different inputs may activate, maintain,
or stop locomotion. Some other specific inputs may be involved in
steering and controlling speed. As indicated above, glutamatergic,
and cholinergic neurons are present in the mammalian MLR. The
contribution of these two neurotransmitter systems to the activity
of RSNs has not yet been fully resolved. On the other hand, the
behavioral effects of activating specific populations of glutamatergic
and cholinergic neurons in the MLR have been examined in several
studies using optogenetic tools in mammals.

A recent study by the group of Ole Kiehn (Caggiano et al.,
2018) revealed that glutamatergic subpopulations of neurons in
both the PPN and the CuN control slow alternating locomotion.
The glutamatergic subpopulations in both the PPN and the CuN
would maintain ongoing locomotion in the walk and trot range.
The authors suggested that glutamatergic neurons in the PPN
would promote locomotion for the purpose of explorative behavior,
whereas those in the CuN would promote escape locomotion.
These important findings confirm that both the PPN and the CuN
show a significant contribution to the control of locomotion, but to
seemingly different aspects of the motor output. A study from the
group of Frédéric Bretzner revealed that distinct cell populations
in the midbrain exhibit phasic or tonic effects to control posture
or locomotion (Josset et al., 2018). The authors showed that both
glutamatergic and cholinergic neurons in the PPN modulate slow
walking, whereas CuN glutamatergic neurons were associated with
escape behavior as they trigger running. Both behaviors are elicited
by different cell populations that project to excitatory RSNs to
produce specific gait patterns (Drew et al., 1986; Noga et al., 2003;
Caggiano et al., 2018).
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Dautan et al. (2021) reported that CuN glutamatergic
neurons are more electrophysiologically homogeneous than PPN
neurons and have mostly short-range connectivity, whereas PPN
glutamatergic neurons are heterogeneous and have long-range
connections in the brain. In their hands, optogenetic activation of
CuN neurons elicited short-lasting muscle activation, whereas PPN
neuron activation produced long-lasting increases in muscle tone
associated with disrupted gait. Recently, the group of Brian Noga
re-examined the distribution of locomotion-activated neurons
in the brainstem of the cat using c-Fos immunohistochemistry
following electrical stimulation of the MLR (Opris et al., 2019). Fos-
labeled neurons were more abundant on the side of stimulation.
Labeling was seen in downstream regions traditionally associated
with locomotor control as well as regions associated with
cardiorespiratory function. Interestingly, the study confirmed that
the CuN participated extensively in the initiation of locomotion,
whereas it showed little evidence for the PPT to play such a role.
The results confirmed the multifaceted action of the MLR not only
in the control of locomotion but in other physiological functions
(for review see Ryczko and Dubuc, 2013). The multiple functions of
the MLR were also recently reviewed by Noga and Whelan (2022).

Another study by the group of Dimitri Ryczko (van der
Zouwen et al., 2021) revealed that the MLR is involved not only in
controlling the speed of locomotion, but in steering control. Using
optogenetic stimulation of the MLR in mice, they confirmed that
augmenting the laser power increased the locomotor speed. On
the other hand, the mice could still stop abruptly and make sharp
turns during the MLR stimulation when approaching a corner in
the open-field arena. The authors suggested that distinct brainstem
neurons control speed and turning/stopping movements. The same
group of researchers showed that selective optogenetic stimulation
of glutamatergic neurons in the CuN increased the number of
locomotor initiations and the time spent in locomotion (Fougère
et al., 2021). Other optogenetic experiments in the rat showed
that excitation of PPN cholinergic neurons causes hyperactivity
in locomotion behavior, whereas inhibition of the same neurons
showed hypokinesia (Xiao et al., 2016).

As indicated above, specific populations of Chx10-positive
neurons have been shown to be involved in stopping locomotion
when activated bilaterally (Bouvier et al., 2015). More recently, it
was shown that a unilateral activation of these neurons produced
an ipsilateral turn (Cregg et al., 2020). These studies suggest that
the reticular formation is more important for steering than the
upstream MLR. This is consistent with observations previously
made in the lamprey (Deliagina et al., 2000) where the crucial role of
RSNs in steering was demonstrated. Altogether, there is increasing
evidence that CuN neurons modulate the speed of locomotion (Lee
et al., 2014; Roseberry et al., 2016; Josset et al., 2018), whereas PPN
neurons could modulate exploratory locomotion (Caggiano et al.,
2018) as well as the pattern of locomotor output (Josset et al., 2018).
Other optogenetic experiments in the rat showed that excitation of
PPN cholinergic neurons causes hyperactivity, whereas inhibition
of the same neurons caused hypokinesia (Xiao et al., 2016). Despite
the significant advances made on the behavioral effects of activating
or inactivating specific populations of neurons located in the
different parts of the MLR, there are still discrepancies in the results.
This could be due to the large physical extent of the MLR and the
fact that it also contains many populations of neurons.

Optogenetic tools have also been used to characterize the
ascending effects of the MLR. It was found that optogenetic
activation of the PPN drives locomotion and modulates the activity
of speed-modulated neurons in the cortex (Carvalho et al., 2020).
Moreover, it was reported that the direct and indirect pathways in
the basal ganglia had opposing effects on locomotor modulation
(Bateup et al., 2010; Kravitz et al., 2010) and that the basal ganglia
regulated the MLR with reciprocal inputs from the latter region
(Roseberry et al., 2016). Three neurochemically distinct cell types
within the MLR were examined: glutamatergic, GABAergic, and
cholinergic neurons. The glutamatergic population was found to
encode locomotor state and speed. The activation of GABAergic
neurons in the MLR caused the locomotion to stop, either through
local effects on glutamatergic neurons or downstream effects to the
reticular formation. The authors showed that cholinergic neurons
within the MLR were insufficient to elicit locomotion, but they
could modulate ongoing locomotion. An important contribution of
dopaminergic inputs on MLR neurons was recently described in the
mouse (Sharma et al., 2018) as seen in lampreys (Ryczko et al., 2013,
2016b, 2017; Ryczko and Dubuc, 2017). Altogether, these studies
highlight the power of up-to-date genetic tools in defining the
contribution of specific cell populations on behavior. The detailed
connectivity and neural activity within these locomotor networks
remain to be defined more precisely. To fully understand the role
of the MLR in the control of locomotion, it is necessary not only to
characterize its downstream projections to the reticular formation,
but also its inputs from the forebrain and other brainstem
structures. This topic, although highly important, exceeds the scope
of this review.

5. Conclusion

In this review, we have presented a general overview of
some of the brainstem mechanisms involved in the control
of locomotion. We argue that results obtained in more basal
vertebrates such as the lamprey, zebrafish, and salamander, can
provide useful cues to orient further research in mammals.
As indicated above, the recent development of genetic tools
has significantly revived enthusiasm on the supraspinal control
of locomotion in mammals. Optogenetic tools have been very
useful for linking neuronal activation or inactivation and the
behavioral output, as well as to highlight the specific contributions
of different neurotransmitter systems. On the other hand,
to fully identify the underlying cellular mechanisms, synaptic
connectivity should be known. For instance, the connectivity
between different populations of neurons in the mammalian
MLR and the downstream RSNs must be defined in details. On
that matter, other animal models could provide new important
information. Genetic tools have been efficiently used in zebrafish
in combination with imaging and electrophysiological techniques
to successfully study synaptic connectivity (Severi et al., 2014,
2018; Thiele et al., 2014; Thouvenin and Wyart, 2017; Carbo-
Tano et al., 2022). The activity of entire populations of neurons
can be monitored and characterized during ongoing locomotion.
Classic electrophysiological approaches can be used to define the
synaptic connectivity between neurons involved in the control of
locomotion. Moreover, whole populations of genetically identified
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neurons can be selectively activated or inactivated, bridging the
gap between cellular mechanisms and behavior. It is likely that
the zebrafish model will be increasingly useful to characterize the
cellular mechanisms underlying locomotion.
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