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Dietary supplementation with a
complex of cinnamaldehyde,
carvacrol, and thymol negatively
a�ects the intestinal function in
LPS-challenged piglets

Yanyan Zhang†, Qian Li†, Zhongxing Wang†, Yi Dong, Dan Yi,

Tao Wu, Lei Wang, Di Zhao and Yongqing Hou*

Engineering Research Center of Feed Protein Resources on Agricultural By-Products, Ministry of

Education, Wuhan Polytechnic University, Wuhan, China

Background:The e�ects of cinnamaldehyde, carvacrol and thymol complex (CCT)

on the growth performance and intestinal function of piglets challenged with

lipopolysaccharide (LPS) were determined. Colistin sulphate (CS) was as a positive

control.

Method: Piglets (n= 24, 32 days of age) were allocated to four treatments: Control

group (fed basal diet), LPS group (fed basal diet), CS+LPS group (fed basal diet +

50 mg/kg CS), and CCT+LPS group (fed basal diet + 50mg/kg CCT).

Results: Results showed that diarrhea rates of piglets were significantly reduced

by CCT and CS supplementation respectively. Further research showed that

CS supplementation tended to improve the intestinal absorption function in

LPS-challenged piglets. Moreover, CS supplementation significantly reduced the

contents of cortisol in blood and malondialdehyde in the duodenum and the

activities of inducible nitric oxide synthase in the duodenum and ileum and total

nitric oxide synthase in the ileum in LPS-challenged piglets. CS supplementation

significantly increased the activities of sucrase in the ileum andmyeloperoxidase in

the jejunum in LPS-challenged piglets. CS supplementation significantly alleviated

the reduced mRNA levels of immune-related genes (IL-4, IL-6, IL-8, IL-10)

in mesenteric lymph nodes and jejunum and mucosal growth-related genes

(IGF-1, mTOR, ALP) in LPS-challenged piglets. These results suggested that CS

supplementation improved the intestinal function in LPS-challenged piglets by

improving intestinal oxidative stress, immune stress, and absorption and repair

function. However, although CCT supplementation improved oxidative stress by

reducing (p < 0.05) the content of malondialdehyde and the activity of nitric

oxide synthase in the duodenum, CCT supplementation tended to aggravate

the intestinal absorption dysfunction in LPS-challenged piglets. Furthermore,

compared with the control and LPS groups, CCT supplementation remarkably

elevated the content of prostaglandin in plasma and the mRNA levels of pro-

inflammatory factor IL-6 in mesenteric lymph nodes and jejunum, and reduced

the activity of maltase in the ileum in LPS-challenged piglets. These results

suggested that CCT supplementation had a negative e�ect on intestinal function

by altering intestinal immune stress response and reducing disaccharidase activity

in LPS-challenged piglets.

Conclusions: Compared to CS, CCT supplementation exhibited a negative e�ect

on intestinal function, suggesting whether CCT can be as an e�ective feed additive

still needs further study.
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Introduction

Piglet feeding is one of the most critical parts of modern

pig industry (1). However, piglets have a low immunity and

an underdeveloped intestinal system, and piglets are prone to

various stress responses (2). Moreover, the changes of dietary

from easily digestible milk to less digestible solid feeds led to

intestinal dysfunction in piglets and increased sensitivity of piglets

to pathogenic microorganisms (3). Therefore, weaning leads to

high morbidity and mortality in piglets. Although the use of

antibiotics can significantly reduce the morbidity and mortality of

piglets, a series of side effects such as drug resistance and drug

residues also appear (4). The European Union and other countries

banned the use of antibiotic growth-promoting agents in 2006

(5). Subsequently, China banned the use of antibiotic growth-

promoting agents in 2020 (6). Facedwith a series of health problems

in piglet farming after the ban on antibiotics, it is crucial for swine

industry to develop high-quality, safe and efficient additives that

can replace antibiotics.

In recent years, natural plant extracts have been widely studied

as potential feed additives (7). Among them, plant essential oils

were the most widely studied and used (8). Previous studies have

shown that plant essential oils supplemented in diet can enhance

the growth performance of piglets by increasing feed intake,

promoting digestion, exerting antibacterial, anti-inflammatory and

antioxidant effects, and enhancing immune functions (9, 10).

Oleum cinnamomi, oregano and thyme oil were widely studied

in feed production. Oleum cinnamomi has been reported to

exhibit potential antibacterial activity and metabolic-modulating

effects (11, 12) And Oleum cinnamomi can protect the intestine

from damage under conditions of oxidative stress, inflammation,

and infections (13). Cinnamaldehyde as a potent inhibitor is

the predominant bioactive compound in oleum cinnamomi,

which can inhibit filamentous molds, bacteria, and yeast (14).

Cinnamaldehyde has been regarded as a potent antibiotic

alternative in livestock production. Previous studies showed

that cinnamaldehyde increased the antioxidant activity of rat

kidneys by increasing the activity of the antioxidant enzyme (15).

Cinnamaldehyde added to the diet may reduce the effects of stress

and promote intake in feedlot cattle particularly early in the feeding

period (16). Cinnamaldehyde also plays an anti-inflammatory

role in Helicobacter pylori-induced gastric inflammation (17).

Oregano has also been reported to exhibit potential antibacterial

activity and antioxidant properties (18). Carvacrol, as the

predominant bioactive in oregano, has antimicrobial, antioxidant,

anti-inflammatory, anti-osteoclastic, and anti-diabetic properties

combined with magnolol (19). Thyme oil has also been reported

to exhibit potential antibacterial activity (18). Carvacrol and

thymol, as the predominant bioactive in thyme oil, can improve

absorption capacity by enhancing the digestive enzyme activity.

And carvacrol and thymol also contribute to the relief from

pathogen pressure by stimulating intestinal mucus production (20).

Furthermore, previous studies have been reported that carvacrol

and thymol supplementation promoted growth and improvedmeat

and egg quality through metabolic-modulating, anti-oxidative,

anti-inflammatory, and antimicrobial effects in poultry production

(21). These 3 plant extracts have been reported to alter membrane

permeability to hydrogen ions and reduce the number of pathogens

in the intestinal tract (22).

In view of the good effect of cinnamaldehyde, carvacrol

and thymol in metabolic-modulating, anti-oxidative, anti-

inflammatory, and antimicrobial effects, whether the combination

of cinnamaldehyde, carvacrol and thymol can better promote

animal growth has not been studied yet. To evaluate the effects

of dietary supplementation with cinnamaldehyde, carvacrol and

thymol complex (CCT) on growth performance and intestinal

function in weaned piglets, a model of piglet intestinal injury

induced by lipopolysaccharide (LPS) stimulation was used in this

study. LPS, as an immune stressor, can disrupt bowel function

by affecting the expression of genes related to intestinal immune

responses, growth, absorption, mucosal energy metabolism, and

mucosal barrier function (23). The model of intestinal injury

induced by LPS stimulation has been widely used to screen

antibiotic substitutes (24–27). To further evaluate whether CCT

can be used as a potential antibiotic substitute in feed, colistin

sulfate (CS), as an antibiotic growth promoter which has been

extensively used as a feed additive to reduce pathogen infections

and improve growth performance after weaning (28, 29), was

served as a positive control in this study.

Therefore, this study investigated the effects of dietary

supplementation with CCT on the growth performance and

intestinal function in weaned piglets challenged by LPS.

Materials and methods

Animals experiment design

In the present study, animal experiment was approved by

the Institutional Animal Care and Use Committee at Wuhan

Polytechnic University (2014-0514, May 10, 2014). All animal

experiments were performed following the guidelines of the

Research Ethics Committee of the College of Animal Science

and Nutritional Engineering, Wuhan Polytechnic University. The

animal experiments were also conducted in accordance with

relevant guidelines and regulations. Twenty-four crossbred healthy

female piglets (Duroc × Landrace × Yorkshire) were weaned after

21 days after birth. After 11 days of environmental adaptation,

piglets (32 days old, 7.29 ± 0.77 kg) were housed individually in

stainless steel metabolic cages (1.20× 1.10m2), and environmental

temperature was maintained at 22–25◦C (30). Food and water

can be freely obtained by piglets. The corn and soybean meal-

based diet was formulated to meet National Research Council’s (31)

recommended requirements for all nutrients [National Research

Council. Nutrient Requirements of pigs. National Academic Press:

Washington, DC (2012)]. During the 11-day adaptation period, all

piglets were fed the basal diet.

At 32 days old (set as the day 0 of the experiment), all

piglets were divided freely into one of the four groups: (1)

Control group (fed the basal diet and sterile saline was injected

intraperitoneally); (2) LPS group (fed the basal diet and LPS

was injected intraperitoneally); (3) Colistin sulfate (CS)+LPS

group (fed the basal diet supplemented with 50 mg/kg CS

and LPS was injected intraperitoneally); (4) cinnamaldehyde,
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carvacrol and thymol complex (CCT)+LPS group (fed basal

diet supplemented with 50 mg/kg CCT complex and LPS was

injected intraperitoneally).

The trial period was 21 days (day 0 to 20 days). The growth

performance of piglets was statistically analyzed by recording the

body weight (BW), feed intake and diarrhea rates (DR). The blood

samples were gathered from the anterior vena cava of 12-h-fasted

pigs into heparinized vacuum tubes (Becton Dickinson Vacutainer

System) on day 21 of the trial, the collected blood samples were used

for hematological evaluation and separating plasma by centrifuging

(3,500 × g for 10min at 4◦C) (13). Subsequently, overnight

fasted piglets in the LPS, CS+LPS and CCT+LPS groups were

intraperitoneally injected with LPS (100 µg/kg BW, Escherichia

coli serotype 055: B5; Sigma Chemical Inc., St. Louis, MO, USA),

whereas those in the control group were intraperitoneally injected

with the same volume of sterile saline (30). To determine intestinal

absorptive function, all piglets was orally administrated D-xylose

with the dose of 0.1 g/kg BW at 2 h post LPS challenge (32). At

3h after LPS challenge, blood samples were gathered and stored

at −80◦C until analysis. At 6h after LPS challenge, all piglets

were killed under anesthesia with an intravenous injection of

pentobarbital sodium (50 mg/kg BW), and then intestinal samples

were collected.

In addition, cinnamaldehyde (St. Louis, MO, USA; Cat.

W228613; CAS.8007-80-5), carvacrol (CAS.499-75-2) and thymol

(CAS.89-83-8) were purchased from Sigma-Aldrich Chemicals.

The dosage of 50 mg/kg CCT was chosen according to our

previous study by Wang et al. (13). The proportion of the complex

is determined according to the content of the main effective

substances in Oleum cinnamomi, oregano oil and thyme oil (1:1:1).

Collection of intestinal samples

The whole gastrointestinal tracts of piglets were immediately

exposed by quickly opening abdomen from the sternum to the

pubis (32). The small intestine dissected free of the mesentery was

placed on a stainless steel tray (<0◦C). The different intestinal

segments (10 cm) were collected from the distal duodenum, mid-

jejunum and mid-ileum. And then the collected segments were

opened longitudinally with scissors, and the exposed intestinal

cavity surface was flushed with ice-cold PBS (30). A sterile glass

microscope slide was used to scrape mucosal samples at 4◦C, and

then the scraped mucosal was rapidly frozen in liquid nitrogen and

stored at−80◦C until analysis. After piglets were killed, all samples

were collected within 15 min.

Hematology measurement

The whole blood samples were analyzed by the ADVIA

2120i Hematology System (Siemens Healthcare Diagnostics,

Deerfield, Illinois, USA) to determine hematology including

the white blood cell (WBC), red blood cell (RBC), platelet

(PLT), plateletcrit (PCT), hemoglobin (HGB), hematocrit (HCT),

red blood cell distribution width (RDW), mean corpuscular

volume (MCV), mean corpuscular hemoglobin (MCH), mean

corpuscular hemoglobin concentration (MCHC), and mean

platelet volume (MPV).

Plasma biochemistry

Plasma biochemical parameters, such as aspartate transaminase

(AST), total bilirubin (TBIL), alanine transaminase (ALT),

triacylglycerol (TG), blood urea nitrogen (BUN), and alkaline

phosphatase (ALP), were determined by an automatic biochemical

analyzer (HITACHI 7020, Japan).

D-xylose in plasma

The plasma D-xylose was measured as described by Yi et al.

(33). Fifty microliters of plasma was added to 5mL of the

phloroglucinol color reagent solution (Sigma Chemical Inc., St.

Louis, MO, USA) and then heated at 100◦C for 4min. The

samples were cooled at room temperature. A D-xylose standard

solution was prepared by dissolving D-xylose in saturated benzoic

acid (prepared in deionized water) to obtain 0mM, 0.7mM,

1.3mM, and 2.6mM, which were consequently added to the color

reagent solution alongside the samples. The absorbance of samples

and standard solutions at 554nm was determined by using a

spectrophotometer (Model 6100, Jenway Ltd., Felsted, Dunmow,

CM6 3LB, Essex, England, UK). The standard solution of 0 mmol/L

D-xylose was regarded as blank.

Intestinal redox status

The intestinal samples (∼200mg) were homogenized with

cooling saline and then centrifuged at 2,500 rpm for 10min at

4 ◦C to collect the supernatant fluid for further assays. The

concentration of inducible nitric oxide synthase (iNOS), total nitric

oxide synthase (tNOS), hydrogen peroxide (H2O2), catalase (CAT),

glutathione peroxidase (GSH-Px), malondialdehyde (MDA) and

superoxide dismutase (SOD) and so on in the intestinal mucosae

were determined by using commercially available kits (Nanjing

Jiancheng Bioengineering Institute, Nanjing, China).

qPCR analyses for gene expression in
intestine

Each frozen mucosal sample (∼100mg) was powdered

under liquid nitrogen using a mortar and pestle, and then

homogenized in Trizol buffer. Total RNA was extracted by

using the TRIzol Reagent protocol (Invitrogen, Carlsbad, CA,

USA). Total RNA was quantified at an OD of 260 nm using

the NanoDrop
R©
ND-1000A UV-VIS spectrophotometer (Thermo

Scientific, Wilmington, DE, USA), and its purity was evaluated

by determining the OD260/OD280 ratio. When samples showed

an OD260/OD280 = 1.8–2.2, they could be considered 90–

100% pure nucleic acids (34). The RNA integrity in each

sample was evaluated by using 1% denatured agarose gel
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TABLE 1 Sequences of the primers used for quantitative real-time PCR

analysis.

Gene Forward (5′-3′) Reverse (5′-3′)

IGF-1 GCCCAAGGCTCAGAAGG TTTAACAGGTAACTCGTGC

mTOR TTGTTGCCCCCTATTG

TGAAG

CCTTTCGAGATGGCAATGGA

ALP CCACTCCCACGTCTTTA

CCTTT

CTCTCACCACCCACCACCTT

IL-4 TACCAGCAACTTCGT

CCAC

ATCGTCTTTAGCCTTTCCAA

IL-6 TACTGGCAGAAAACA

ACCTG

GTACTAATCTGCACAGCCTC

IL-8 TTCGATGCCAGTGCAT

AAATA

CTGTACAACCTTCTGCACCCA

IL-10 CGGCGCTGTCATCAATT

TCTG

CCCCTCTCTTGGAGCTTGCTA

TNF-α TCCAATGGCAGA

GTGGGTATG

AGCTGGTTGTCTTTCA

GCTTCAC

RPL4 GAGAAACCGTCGCCGAAT GCCCACCAGGAGCAAGTT

GAPDH CGTCCCTGAGACACG

ATGGT

CCCGATGCGGCCAAAT

electrophoresis. When the sample RNA had a 28S/18S rRNA

ratio≥1.8, RNA can be used for quantitative RT-PCR analysis

(35). According to the manufacturer’s instruction, cDNA was

synthesized by using a PrimeScript
R©

RT reagent kit with gDNA

Eraser (Takara, Dalian, China) to reverse-transcribe total RNA.

And then the synthesized cDNA was stored at −20◦C for

further analysis.

The primer pairs (Table 1) used to amplify cDNA fragments

were used for qPCR as previously described by Yi et al. (34).

The SYBR
R©

Premix Ex TaqTM (Takara, Dalian, China) on an

Applied Biosystems 7500 Fast Real-Time PCR System (Foster

City, CA, USA) was used to perform qPCR. The reaction

mixture (50 µL) included 25 µL of SYBR
R©

Premix Ex TaqTM

(2×), 4 µL of cDNA and 0.2µM of each primer. Each sample

was conducted in triplicate. The reaction conditions of qPCR

(two-step amplification): 95◦C for 30 s, followed by 40 cycles

of 95◦C for 5 s and 60◦C for 31 s. A subsequent melting

curve (9 ◦C for 15 s, 60◦C for 1min and 95◦C for 15 s)

with continuous fluorescence measurement and final cooling to

room temperature was processed. The melting curves of the

products and the size of the amplicons were used to evaluate

the specificity of qPCR (36). The ribosomal protein L4 (RPL4)

and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) were as

references in this study (37). Results were analyzed by 2−11Ct

method (38).

Statistical analysis

All data were showed as means ± SD and analyzed

using one-way ANOVA. The normality and constant variance

for data were tested using Levene’s test. Differences among

TABLE 2 E�ects of CCT on growth performance and DR of weaned

piglets.

Item Control SC CCT p-value

ADFI (kg) 0.66± 0.06 0.69± 0.10 0.68± 0.08 0.767

ADG (kg) 0.39± 0.04 0.40± 0.06 0.40± 0.06 0.878

F/G 1.71± 0.07 1.74± 0.08 1.73± 0.09 0.747

DR (%) 46.6± 9.56a 6.61± 1.58b 10.0± 2.60b <0.001

Data are means ± SD, n = 6, CS, colistin sulfate; CCT, a complex of cinnamaldehyde,

carvacrol and thymol; ADFI, average daily feed intake; ADG, average daily gain; F/G,

feed/gain ratio; DR, diarrhea rate. Differences among treatmentmeans were determined using

Duncan’s post-hoc tests. a,bMeans within rows with different superscripts differ (P < 0.05).

TABLE 3 E�ects of CCT supplementation on blood biochemical

parameters and hematological parameters in piglets before LPS challenge.

Items Control CS CCT p-value

Blood biochemical parameters

ALT (U/L) 56.8± 10.6a 65.3± 12.5a 85.8± 7.60b <0.001

CHOL

(mmol/L)

2.21± 0.16a 2.22± 0.29a 2.84± 0.33b <0.001

TG (mmol/L) 0.68± 0.10a 0.56± 0.12a 0.89± 0.16b <0.001

BUN (mmol/L) 3.12± 0.65a 2.67± 0.35a 4.25± 0.60b <0.001

CL (mmol/L) 105± 1.27 108± 3.35b 108± 2.16b 0.009

GLU (mmol/L) 4.47± 0.70b 4.79± 0.47b 3.80± 0.50a 0.028

ALP (U/L) 327± 71.3b 328± 56.0b 240± 35.7a 0.021

Hematological parameters

MONO (109/L) 0.82± 0.13a 0.81± 0.14a 1.36± 0.39b <0.001

MPV (fL) 13.7± 2.32a 15.6± 2.65ab 19.9± 3.82b 0.043

PCT (%) 0.67± 0.16a 0.99± 0.15b 1.11± 0.31b 0.015

Data are means ± SD, n = 6, CS, colistin sulfate; CCT, a complex of Cinnamaldehyde,

carvacrol and thymol; ALT, alanine transaminase; CHOL, cholesterol; TG, triacylglycerol;

BUN, blood urea nitrogen; CL, blood chlorine; GLU, glucose; ALP, alkaline phosphatase;

MONO, monocytic cell count; MPV, mean platelet volume; PCT, plateletcrit. Differences

among treatmentmeans were determined usingDuncan’s post-hoc tests. a,bMeans within rows

with different superscripts differ (P < 0.05).

treatment means were determined using Duncan’s post-hoc tests.

All statistical analyses were performed using the SPSS 17.0

software (SPSS, Inc.). P < 0.05 was considered to indicate

statistical significance.

Results

E�ects of CCT and CS supplementation on
growth performance and DR

Compared with the control group, dietary supplementation

with CCT and CS significantly decreased the DRs of

weaned piglets (Table 2). Neither CS nor CCT could

affect the average daily feed intake (ADFI), average

daily gain (ADG), and feed/gain (F/G) of weaned piglets

(Table 2).
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E�ects of CCT and CS supplementation on
blood biochemical parameters and
hematological parameters in weaned
piglets before LPS stimulation

Compared with the control group, dietary supplementation

with CCT significantly increased the activity of alanine

transaminase (ALT) and the concentrations of cholesterol

(CHOL), triacylglycerol (TG), blood urea nitrogen (BUN) and

blood chlorine (CL). While dietary supplementation with CCT

significantly decreased the concentration of glucose (GLU) and

the activity of alkaline phosphatase (ALP) in plasma compared

with those of the control group. Dietary supplementation with

CS significantly increased the concentration of CL in plasma

compared with that of the control group (Table 3). Moreover,

compared with the control group, dietary supplementation with

CCT significantly elevated the monocytic cell count (MONO),

mean platelet volume (MPV) and plateletcrit (PCT) levels in the

blood. Dietary CS supplementation significantly elevated (P <

0.05) PCT levels in the blood compared with that of the control

group (Table 3).

E�ects of CCT and CS supplementation on
blood biochemical parameters and
hematological parameters in weaned
piglets challenged with LPS

Compared with the control group, LPS challenge obviously

increased the concentrations of total bilirubin (TBLL), TG, BUN,

creatinine (Crea) and CL, and gamma-glutamyl transferase (GGT)

activity. LPS challenge significantly decreased the concentration

of GLU in the plasma compared with that of the control

group. However, dietary supplementation of CCT significantly

increased aspartate transaminase (AST) activity and TG level in

LPS-challenged weaned pigs. Dietary supplementation of CCT

significantly decreased GLU concentration, as well as the activities

of GGT and ALP in LPS-challenged weaned pigs (Table 4).

Compared with the control group, LPS challenge significantly

decreased the levels of white blood cell (WBC), neutrophil count

(NEU), lymphocyte count (LYM), MONO, eosinophile count

(EOS), basophilic leukocyte count (BASO), and platelet count

(PLT). However, dietary supplementation of CCT significantly

reduced the number of PLT in the blood in LPS-challenged weaned

piglets (Table 4).

E�ects of CCT and CS supplementation on
intestinal absorption function and stress
responses

Compared with the control group, LPS challenge significantly

reduced the concentrations of D-Xylose in the plasma. Dietary

supplementation with CS tended to reduce the decreased

content of D-Xylose in the plasma in LPS-challenged weaned

piglets. However, compared with the CS+LPS group, dietary

supplementation with CCT obviously increased the decreased

content of D-Xylose in the plasma in LPS-challenged weaned

piglets (Table 5). Compared with the control group, LPS challenge

obviously increased the concentrations of cortisol (COR) and

prostaglandin (PG) E2 in plasma. Dietary supplementation with

CS significantly reduced the increased concentration of COR

in plasma in LPS-challenged weaned piglets. However, dietary

supplementation with CCT significantly increased the content of

PGE2 in the plasma in LPS-challenged weaned piglets (Table 5).

E�ects of CCT and CS supplementation on
the activities of intestinal disaccharidases

Compared with the control group, LPS challenge significantly

increased the activity of sucrase in the duodenum (Figure 1A),

while significantly reducing the activities of sucrase and alkaline

phosphatase in the jejunum (Figure 1B), alkaline phosphatase in

the ileum (Figure 1C) and sucrase in the colon (Figure 1D). Dietary

supplementation with CS obviously reduced the activity of lactase

in the jejunum (Figure 1B) and significantly increased the activity

of sucrase in the ileum (Figure 1C). Dietary supplementation with

CCT obviously reduced the activity of lactase in the jejunum

(Figure 1B) andmaltase in the ileum (Figure 1C), and increased the

activity of sucrase in the colon (Figure 1D).

E�ects of CCT and CS supplementation on
intestinal redox status

Compared with the control group, LPS challenge significantly

increased the concentration of malondialdehyde (MDA) in the

duodenum (Figure 2A) and the activities of total nitric oxide

synthase (tNOS) in the ileum (Figure 2C), inducible nitric oxide

synthase (iNOS) in the duodenum, jejunum and ileum (Figure 2D)

and catalase (CAT) in the ileum (Figure 2E). LPS challenge

obviously reduced the concentration ofmalondialdehyde (MDA) in

the colon (Figure 2A) and the activity of myeloperoxidase (MPO)

in the jejunum (Figure 2B) compared with those of the control

group. Dietary supplementation with CS significantly reduced

the concentration of malondialdehyde (MDA) in the duodenum

(Figure 2A) and the activities of tNOS in the ileum (Figure 2C)

and iNOS in the duodenum and ileum (Figure 2D) and CAT in

the ileum (Figure 2E) in LPS-challenged weaned piglets. Dietary

supplementation with CS obviously increased the activities of MPO

in the jejunum (Figure 2B) and CAT in the colon (Figure 2E)

in LPS-challenged weaned piglets. Dietary supplementation with

CCT significantly reduced the concentration of MDA in the

duodenum (Figure 2A) and the activities of iNOS in the duodenum

(Figure 2D) and CAT in the colon (Figure 2E) in LPS-challenged

weaned piglets. However, dietary supplementation with CCT

significantly increased the concentration of MDA in the jejunum

(Figure 2A) and the activities of MPO in the duodenum and

jejunum (Figure 2B).

Frontiers in Veterinary Science 05 frontiersin.org

https://doi.org/10.3389/fvets.2023.1098579
https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org


Zhang et al. 10.3389/fvets.2023.1098579

TABLE 4 E�ects of CCT supplementation on blood biochemical parameters and hematological parameters in weaned piglets after LPS challenge.

Item Control LPS CS+LPS CCT+LPS p-value

Blood biochemical parameters

ALT (U/L) 53.0± 11.70a 55.7± 7.45ab 63.3± 7.08ab 66.8± 6.70b 0.050

AST (U/L) 40.9± 3.41a 44.4± 9.15a 52.3± 10.1a 68.3± 14.2b 0.001

TBLL (µmol/L) 3.23± 0.71a 6.27± 1.73bc 5.28± 1.80b 7.86± 1.39c <0.001

TG (mmol/L) 0.49± 0.04a 0.85± 0.27b 0.68± 0.13ab 1.19± 0.29c <0.001

BUN (mmol/L) 1.87± 0.10a 2.37± 0.11b 2.35± 0.68b 2.53± 0.14b 0.034

Crea (µmol/L) 95.8± 6.14a 135± 14.0b 142± 33.6b 135± 20.7b 0.005

GLU (mmol/L) 5.36± 0.60c 3.20± 1.19b 3.72± 1.02b 1.98± 0.38a <0.001

CL (mmol/L) 104± 1.9a 107± 0.7b 107± 2.1b 107± 1.7b 0.007

ALP (U/L) 312± 47.2a 315± 19.2a 326± 41.1a 261± 19.3b 0.034

GGT (U/L) 36.5± 6.0a 53.1± 9.8b 49.5± 12.8b 35.5± 4.7a 0.006

Hematological parameters

WBC (109/L) 15.72± 2.17b 1.35± 0.38a 1.95± 0.88a 1.57± 0.44a <0.001

NEU (109/L) 4.99± 1.14b 0.50± 0.22a 0.98± 0.30a 0.73± 0.27a <0.001

LYM (109/L) 3.27± 0.85b 0.29± 0.14a 0.27± 0.14a 0.33± 0.10a <0.001

MONO (109/L) 3.13± 0.78b 0.43± 0.10a 0.37± 0.32a 0.36± 0.07a <0.001

EOS (109/L) 0.22± 0.10b 0.06± 0.02a 0.10± 0.08a 0.05± 0.02a 0.002

BASO (109/L) 0.62± 0.29b 0.17± 0.09a 0.40± 0.20ab 0.28± 0.09a 0.005

PLT (109/L) 571± 53.8c 371± 30.2b 332± 65.0b 221± 35.3a <0.001

Data are means ± SD, n = 6, CS, colistin sulfate; CCT, a complex of cinnamaldehyde, carvacrol and thymol; ALT, alanine transaminase; AST, aspartate transaminase; TBIL, total bilirubin;

TG, triacylglycerol; BUN, blood urea nitrogen; Crea, creatinine; GLU, glucose; CL, blood chlorine; GGT, gamma-glutamyl transferase; WBC, white blood cell; NEU, neutrophil count; LYM,

lymphocyte count; MONO, monocytic cell count; EOS, eosinophile count; BASO, basophilic leukocyte count; PLT, platelet count. Differences among treatment means were determined using

Duncan’s post-hoc tests. a−cMeans within rows with different superscripts differ (P < 0.05).

TABLE 5 CCT and CS supplementation on the concentrations of D-xylose, COR (Cortisol), and PGE2 (Prostaglandin E2) in the plasma of LPS-challenged

piglets.

Item Control LPS CS+LPS CCT+LPS p-value

D-xylose 1.56± 0.15a 1.14± 0.21bc 1.31± 0.26b 0.89± 0.17c <0.001

COR 37.67± 6.47a 273.72± 31.17c 216.57± 24.37b 291.26± 54.28c <0.001

PGE2 109.47± 7.28a 293.86± 73.37b 280.29± 116.44b 424.77± 123.33c <0.001

Data are means± SD, n= 6, CS, colistin sulfate; CCT, a complex of cinnamaldehyde, carvacrol and thymol. Differences among treatment means were determined using Duncan’s post-hoc tests.
a−cMeans within rows with different superscripts differ (P < 0.05).

E�ects of CCT and CS supplementation on
the mRNA levels of mucosal
growth-related, immune and mucosal
energy metabolism-related genes in the
jejunum

Compared with the control group, LPS challenge significantly

decreased the mRNA levels of mucosal growth-related genes

[mammalian target of rapamycin (mTOR) and alkaline

phosphatase (ALP)], immune-related genes (IL-4, IL-6, IL-8,

IL-10 and TNF-α) in the jejunum. Dietary supplementation

with CS significantly increased the mRNA levels of mucosal

growth-related genes (insulin-like growth factors-1 (IGF-1),

mTOR and ALP), immune-related genes (IL-6 and IL-8) in

LPS-challenged weaned piglets. Dietary supplementation with

CS obviously reduced the mRNA levels of immune-related gene

(IL-4) in the jejunum in LPS-challenged weaned piglets. Dietary

supplementation with CCT significantly increased the immune-

related genes (IL-6 and IL-8) in LPS-challenged weaned piglets.

Dietary supplementation with CCT significantly reduced the

immune-related gene (IL-4) in the jejunum in LPS-challenged

weaned piglets. However, compared with the control group, dietary

supplementation with CCT increased immune-related gene (IL-6)

more than twice in the jejunum in LPS-challenged weaned piglets

(Table 6).

E�ects of CCT and CS supplementation on
the mRNA levels of immune related genes
in mesenteric lymph nodes

Compared with the control group, LPS challenge obviously

decreased the mRNA of immune-related genes (IL-4, IL-6, IL-8,
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FIGURE 1

E�ects of CCT and CS supplementation on the activities of intestinal disaccharidases in LPS-challenged piglets. The activities of maltase (p = 0.062),

lactase (p = 0.882), sucrase (p = 0.004) and alkaline phosphatase (p = 0.006) in duodenum (A), the activities of maltase (p = 0.440), lactase

(p = 0.002), sucrase (p = 0.003) and alkaline phosphatase (p = 0.006) in jejunum (B), the activities of maltase (p = 0.002), lactase (p = 0.922), sucrase

(p = 0.005) and alkaline phosphatase (p = 0.010) in ileum (C), and the activities of maltase (p = 0.741), lactase (p = 0.418), sucrase (p = 0.099) and

alkaline phosphatase (p = 0.417) in colon (D) in LPS-challenged piglets. Data are means ± SD, n = 6, CS, colistin sulfate; CCT, a complex of

cinnamaldehyde, carvacrol and thymol. Di�erences among treatment means were determined using Duncan’s post-hoc tests. a−cMeans within rows

with di�erent superscripts di�erent (P < 0.05).

IL-10, and TNF-α) in mesenteric lymph nodes in LPS-challenged

weaned piglets. Dietary supplementation with CS significantly

increased themRNA levels of immune-related genes (IL-4, IL-6, IL-

8, and IL-10) in mesenteric lymph nodes in LPS-challenged weaned

piglets. Dietary supplementation with CCT also significantly

increased the mRNA levels of immune-related genes (IL-4, IL-

6, IL-8, and IL-10) in mesenteric lymph nodes in LPS-challenged

weaned piglets. However, compared with the control group, dietary

supplementationwith CCT increased the immune-related gene (IL-

6) by more than 1.7 in the jejunum in LPS-challenged weaned

piglets (Table 7).

Discussion

To solve various problems encountered in weaned piglet

feeding, a variety of green, safe and efficient antibiotic substitutes

that can reduce the DR and increase the growth performance in

weaned piglets have been studied. Dietary supplementation with

50 mg/kg oleum cinnamomi could increase ADFI and reduce DR

in piglets (34). Yang et al. (16) found that 400 mg/d or 800 mg/d

cinnamic aldehyde could increase feed intake, but have no effect

on the average daily gain in feedlot cattle. Dietary supplementation

with Lactobacillus casei decreased the F/G and DR in weaned

piglets (35). N-Acetylcysteine supplemented in diet did not reduce

DR and affect the growth performance in weaned piglets, but

N-acetylcysteine improved intestinal function in LPS-challenged

piglets (33). Glutamate precursor α-ketoglutarate supplemented

in deity improved LPS-induced liver injury by improving

energy metabolism and increasing anti-oxidative capacity in LPS-

challenged young pigs (13). These studies suggested that potential

antibiotic substitutes supplementation may play different roles in

improving the growth performance of weaned piglets. In this study,

our results showed that dietary supplementation with CCT reduced

the DR of weaned piglets. Meanwhile, dietary supplementation

with CS (as positive control) also reduced the DR of weaned piglets

(Table 2). Previous study reported that CS probably will be the ’last-

line’ therapeutic drug against multidrug-resistant Gram-negative

pathogens in the 21st century (39). CS, as an antibiotic growth

promoter, had been broadly used as a growth-promoting agent in
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FIGURE 2

E�ects of CCT and CS supplementation on intestinal redox status in LPS-challenged piglets. Data are means ± SD, n = 6, CS, colistin sulfate; CCT, a

complex of cinnamaldehyde, carvacrol and thymol; malondialdehyde (MDA) in duodenum (p = 0.005), jejunum (p = 0.042), ileum (p = 0.077) and

colon (p = 0.046) (A); myeloperoxidase (MPO) in duodenum (p = 0.055), jejunum (p = 0.001), ileum (p = 0.649) and colon (p = 0.192) (B); total nitric

oxide synthase (tNOS) in duodenum (p = 0.914), jejunum (p = 0.099), ileum (p = 0.016) and colon (p = 0.965) (C); inducible nitric oxide synthase

(iNOS) in duodenum (p < 0.001), jejunum (p = 0.037), ileum (p = 0.016) and colon (p = 0.015) (D); catalase (CAT) in duodenum (p < 0.048), jejunum

(p = 0.049), ileum (p = 0.006) and colon (p = 0.001) (E); superoxide dismutase (SOD) in duodenum (p < 0.860), jejunum (p = 0.635), ileum (p = 0.640)

and colon (p = 0.120) (F). Di�erences among treatment means were determined using Duncan’s post-hoc tests. a,bMeans within rows with di�erent

superscripts di�er (P < 0.05).
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feed to improve growth performance and attenuate gastrointestinal

infections in weaned piglets (28, 29, 40). However, CS as a feed

additive has been banned to use in animal diets in China since

May 2017 (41). Therefore, it is feasible and meaningful to use

CS as a positive control to evaluate the effectiveness of novel

alternatives of antibiotic feed additives. Our results showed that

CCT supplementation exerted the same effect as CS in reducing

the DR in weaned piglets, suggesting that CCT may be a promising

alternative to antibiotic feed additives in piglets.

Although dietary supplementation with CCT reduced the

DR in weaned piglets, it is still unclear the effects of CCT

supplementation on physiological function and the ability to

respond to external stimuli in weaned piglets. It is an important

role for blood biochemical and blood cell indicators to reflect the

status of health, cell permeability, and the level of metabolism (2).

The changes in blood biochemical and blood cell indicators can

reflect the function of multiple tissues and organs in the body.

Plasma ALT, AST, TBIL, ALP and GGT activities are considered to

be non-specific and specific markers for hepatic injury (42). Plasma

Crea, CL and BUN levels can be associated with renal function

(43). CHOL is involved in the stability of many cell membranes in

the body, including the synthesis of sex hormones and vitamin D

(44). Serum glucose concentrations can reflect hormone secretion

levels in the body (2). Blood MONO can respond to the body’s

immune levels (2). BloodMPV and PCT are indicators that respond

to hematologic diseases. In this study, compared with the control

group, CCT supplementation significantly changed multiple blood

biochemical parameters (ALT, CHOL, TG, BUN, CL, GLU and

ALP) and hematological parameters (MONO, MPV and PCT),

however, CS supplementation only changed blood biochemical

parameters (CL) and hematological parameters (PCT) (Table 3).

These results suggested that CCT supplementation may not be as

good as CS in improving physiological function in weaned piglets.

The effects of CCT supplementation on blood biochemical

and hematological parameters in LPS-challenged piglets were

further evaluated. Consistent with previously reported results (2,

33, 35, 45) that LPS challenge changed the blood biochemical

and hematological parameters in piglet, our results showed that

blood biochemical parameters (TBLL, TG, BUN, CL, Crea, GLU,

and GGT) and hematological parameters (WBC, NEU, LYM,

MONO, EOS, BASO, and PLT) were significantly changed in

LPS-challenged weaned piglets. Previous studies showed that the

porcine liver function may be impaired based on the elevations

in the activities of plasma AST and GGT under LPS stimulation

(33, 35). The increases in AST and GGT activity in plasma may

indicate liver damage by LPS challenge. TG is an important source

of energy for the body, and when the TG in the body is too

high, it will continue to accumulate fat in the liver, resulting in

fatty liver (46). Blood GLU is the most direct source of energy

for various life activities, the level of blood GLU concentration

directly reflects the vitality of animals in the normal blood GLU

range (47). LPS stimulation can cause the liver to be suppressed in

the gluconeogenesis pathway, resulting in persistent hypoglycemia

in vivo. The main function of PLT is coagulation and hemostasis,

and it play an important role in the process of hemorrhagic

coagulation (48). Our results showed that CS supplementation

did not significantly alter the blood biochemical indicators

and hematological parameters in piglets challenged with LPS

stimulation (Table 4). While CCT supplementation significantly

reduced the increase in GGT activity in LPS-challenged weaned

piglets, CCT supplementation exacerbated changes in multiple

indicators in LPS-challenged weaned piglets, including the decrease

in GLU and PLT and the increase in ALT activity and TBLL levels.

These results suggested that CCT supplementation may increase

the susceptibility of weaned piglets to LPS challenge.

The above findings suggested that CCT supplementation may

have a negative effect on body homeostasis in weaned piglets.

However, how CCT supplementation reduced the DR in weaned

piglets remains to be further studied. Consistent with previous

reports that LPS challenge can induce intestinal oxidative stress in

weaned piglets (2, 33, 35, 45), these results in this study showed

that LPS challenge significantly increased the activities of tNOS

and iNOS in the ileum and iNOS in the duodenum and jejunum

and the concentration of MDA in the duodenum. MDA is usually

used to assess the degree of damage to the cell membranes (2).

MPO is an important iron-containing lysosome in neutrophils and

monocytes, and plays an important role in the body’s immune

defense process (2). Inducible nitric oxide synthase (iNOS) delivers

a great amount of NO compared to the constitutive isoforms of

NOS (49). Physiological concentrations of NO play a crucial role

in the maintenance of intestinal mucosal integrity, but pathological

levels are detrimental to the gut (50, 51). CS supplementation

ameliorated the adverse effects of LPS challenge on intestinal

oxidative responses in weaned piglets (Figure 2). Furthermore,

CCT supplementation also ameliorated the adverse effects of LPS

challenge on intestinal oxidative responses in weaned piglets.

These results suggested that CCT supplementation improved

the antioxidant capacity in LPS-challenged weaned piglets. CCT

supplementation may reduce the DR in piglets by increasing the

antioxidant capacity.

Fifty to eighty percent of the ingredients in the animal diet

are carbohydrates, and the energy required for animal growth

mainly comes from carbohydrates (52–54). The carbohydrates

in the diet are composed of polysaccharides, oligosaccharides,

and monosaccharides (52). Only monosaccharides can be directly

absorbed by the intestine (55). However, polysaccharides and

oligosaccharides need to be decomposed into disaccharides by a

series of enzymes, and then the disaccharides are then decomposed

into monosaccharides by disaccharidases in the mucous membrane

before they can be absorbed and utilized (33, 52–54, 56, 57).

Therefore, disaccharidases play a key role in the absorption

and utilization of carbohydrates. In this study, LPS challenge

decreased the activities of sucrase in the jejunum and colon and

the activities of alkaline phosphatase in the jejunum and ileum

(Figure 1). These results suggested that LPS challenge reduced

the intestinal function of piglets by reducing the activity of

disaccharidases. CS supplementation increased the activities of

sucrase in the jejunum and colon, suggesting that CS may improve

intestinal function in LPS-challenged piglets. However, although

CCT supplementation ameliorated the adverse effects of LPS

challenge on sucrase activity in the colon, CCT supplementation

exacerbated the LPS-induced decrease in the activity of maltase
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TABLE 6 E�ects of CCT supplementation on the mRNA levels of mucosal growth-related genes, immune-related genes and mucosal energy

metabolism-related genes in the jejunum in piglets after LPS challenge.

Item Control LPS CS+LPS CCT+LPS p-value

Mucosa growth related genes

IGF-1 1.000± 0.213b 0.724± 0.091ab 2.642± 0.512c 0.488± 0.161a <0.001

mTOR 1.000± 0.157a 0.583± 0.104b 0.999± 0.178a 0.641± 0.124b <0.001

ALP 1.000± 0.155a 0.674± 0.125b 1.092± 0.159a 0.581± 0.055b <0.001

Immune related genes

IL-4 1.000± 0.134a 0.764± 0.095b 0.537± 0.076c 0.357± 0.051d <0.001

IL-6 1.000± 0.109b 0.561± 0.089a 1.295± 0.256c 2.022± 0.264d <0.001

IL-8 1.000± 0.154a 0.473± 0.069d 0.655± 0.117c 0.831± 0.164b <0.001

IL-10 1.000± 0.168a 0.717± 0.077b 0.885± 0.169ab 0.861± 0.149ab 0.026

TNF-α 1.000± 0.140a 0.499± 0.067b 0.584± 0.102b 0.497± 0.051b <0.001

Data are means± SD, n= 6, CS, colistin sulfate; CCT, a complex of cinnamaldehyde, carvacrol and thymol; IGF-1, insulin-like growth factors-1; mTOR, mammalian target of rapamycin; ALP,

alkaline phosphatase. Differences among treatment means were determined using Duncan’s post-hoc tests. a−dMeans within rows with different superscripts differ (P < 0.05).

TABLE 7 E�ects of CCT supplementation on the mRNA levels of immune related gene in mesenteric lymph nodes in piglets after LPS challenge.

Items control LPS CS+LPS CCT+LPS P-value

IL-4 1.000± 0.242a 0.184± 0.048c 0.447± 0.205b 0.425± 0.196b <0.001

IL-6 1.000± 0.139b 0.618± 0.084a 1.193± 0.296b 1.772± 0.388c <0.001

IL-8 1.000± 0.230c 0.455± 0.157a 0.704± 0.089b 0.996± 0.287c <0.001

IL-10 1.000± 0.092b 0.692± 0.065a 1.098± 0.200b 1.618± 0.403c <0.001

TNF-a 1.000± 0.116a 0.606± 0.121b 0.596± 0.188b 0.704± 0.105b <0.001

Data are means± SD, n= 6, CS, colistin sulfate; CCT, a complex of cinnamaldehyde, carvacrol and thymol. Differences among treatment means were determined using Duncan’s post-hoc tests.
a−cMeans within rows with different superscripts differ (P < 0.05).

in the ileum. These results suggested that the effect of CCT

supplementation on intestinal absorptive function needs to be

further investigated.

The plasma D-xylose absorbed from the intestinal lumen is

a useful indicator for intestinal absorption capacity and mucosal

integrity (58, 59). D-xylose is readily absorbed by the jejunum in

healthy piglets. However, under LPS stimulation or malabsorption,

D-xylose is not absorbed by the intestine, thus reducing the

D-xylose content in plasma (30). In this study, LPS challenge

decreased the concentration of D-xylose in plasma, suggesting

that LPS challenge reduced the intestinal absorption function

(Table 5). Zhou et al. (60) found that cinnamaldehyde can improve

absorption capacity in grass carp. Consistent with previously

reported results, CS supplementation had a tendency to increase the

content of D-xylose in plasma in LPS-challenged weaned piglets.

However, CCT supplementation had a tendency to reduce the

concentration of D-xylose in plasma in LPS-challenged weaned

piglets. Meanwhile, CCT supplementation had no effect on the

morphology and structure of the jejunum in LPS-challenged

weaned piglets (data not shown). These results suggested that

CCT supplementation exacerbated the decrease of intestinal

absorption function in LPS-challengedweaned piglets, however, the

mechanism remains unclear.

Combined with the above results, we speculated that CCT

supplementation aggravated the decline in intestinal absorption

function in LPS-challenged weaned piglets by altering the intestinal

stress responses. Stress response, including activation of the

sympathetic nervous system, glucocorticoid secretion, and changes

in emotional behaviors, is a state of physiological or psychological

stress caused by adverse stimuli (61). COR is a glucocorticoid

that is widely used as a biomarker for the detection of stress

responses in pigs (62). PGE2 is involved in these stress responses

mentioned above and it is released from various cell types

depending on the type of stressors present and acts in the

vicinity of its synthesis (61). Previous studies reported that LPS

challenge significantly increased the concentrations of COR and

PGE2 in plasma (54, 63). Consistent with previous reports, our

results showed that LPS challenge increased the concentrations

of COR and PGE2 in plasma in pigs, suggesting that LPS

challenge elicited a stress response in piglets (Table 5). CS

supplementation reduced the concentration of COR in plasma of

LPS-challenged weaned piglets. However, CCT supplementation

increased the concentration of PGE2 in plasma of LPS-challenged

weaned piglets. These results indicated that CS supplementation

alleviated the stress response in LPS-challenged weaned piglet,

whereas CCT supplementation exacerbated the stress response

in LPS-challenged weaned piglet by increasing the concentration

of PGE2.

PGE2 is involved in various aspects of inflammation and

immunity stress (61). PGE2, as a mediator, functions in immune

inflammation (64). PGE2 as a key molecule regulates the activation,

maturation, migration, and cytokine secretion of innate immune
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cells including natural killer cells, dendritic cells, neutrophils,

and macrophages (65). In this study, CCT supplementation

significantly increased the levels of pro-inflammatory factor

IL-6 in the jejunum and mesenteric lymph nodes in LPS-

challenged weaned piglets, suggesting that CCT supplementation

may exacerbate the intestinal dysfunction by altering the immune

stress response in LPS-challenged weaned piglets.

In addition, ALP in the intestine tract is associated with

the proliferation and differentiation of intestinal epithelial cell,

so ALP is regarded as a critical biomarker enzyme for changes

in the primary digestive and absorptive functions of the small

intestine (66). The mTOR signaling pathway plays a vital role in

enterocyte growth, proliferation, and regeneration (67, 68), and

thereby being conducive to the recovery of the small intestinal

mucosa after damage (69, 70). The IGF-I plays a prominent role

in regulating cell metabolism, proliferation, and differentiation

(71, 72). Consistent with the previous study by Yi et al. (23),

gene expressions of ALP, mTOR, and IGF-I in the jejunum

were dramatically decreased by LPS challenge. In the study, CS

significantly increased the mRNA levels of ALP, mTOR, and IGF-

I in the jejunum in LPS-challenged weaned piglets, whereas CCT

didn’t affect mRNA levels for ALP, mTOR, and IGF-I in LPS-

challenged piglets. These results indicated that CS improved jejunal

mucosal growth in LPS-challenged weaned piglets, whereas CCT

did not.

Conclusions

In conclusion, dietary supplementation with CCT reduced the

DR in weaned piglets and alleviated intestinal oxidative stress in

LPS-challenged weaned piglets. However, CCT supplementation

tended to aggravate the intestinal absorption dysfunction in LPS-

challenged weaned piglets by altering the immune stress response.

Furthermore, CCT was less effective than CS in improving

intestinal function in LPS-challenged weaned piglets. Therefore,

our results suggest whether CCT can be as an effective feed additive

still needs further study for weaned piglets.
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