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Introduction: Immunogenic cell death (ICD) is a sort of regulated cell death

(RCD) sufficient to trigger an adaptive immunological response. According to the

current findings, ICD has the capacity to alter the tumor immune

microenvironment by generating danger signals or damage-associated

molecular patterns (DAMPs), which may contribute in immunotherapy. It

would be beneficial to develop ICD-related biomarkers that classify individuals

depending on how well they respond to ICD immunotherapy.

Methods and results: We used consensus clustering to identify two ICD-related

groupings. The ICD-high subtype was associated with favorable clinical

outcomes, significant immune cell infiltration, and powerful immune response

signaling activity. In addition, we developed and validated an ICD-related

prognostic model for PDAC survival based on the tumor immune

microenvironment. We also collected clinical and pathological data from 48

patients with PDAC, and patients with high EIF2A expression had a poor

prognosis. Finally, based on ICD signatures, we developed a novel PDAC

categorization method. This categorization had significant clinical implications

for determining prognosis and immunotherapy.

Conclusion: Our work emphasizes the connections between ICD subtype

variations and alterations in the immune tumor microenvironment in PDAC.

These findings may help the immune therapy-based therapies for patients with

PDAC. We also created and validated an ICD-related prognostic signature, which

had a substantial impact on estimating patients' overall survival times (OS).

KEYWORDS

immunogenic cell death, pancreatic ductal adenocarcinoma, risk model, prognosis,
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Introduction

The immune system is crucial for tumor monitoring and

prevention as it plays a part in preventing carcinogenesis and

obstructing its growth (1). The concept of immunogenic cell

death (ICD) is brought up about chemotherapy for cancer. It is a

unique cell death method that can provide a particular immunity

against the fine cell antigens found in tumors. This immune

response will cause the number of T lymphocytes in tumor

tissues to grow following chemotherapy. After chemotherapy, the

prognosis of the cancer is strongly correlated with the quantity of

T cells. Damage-associated molecular patterns (DAMPs) might be

released by dying tumor cells due to ICD (2). High mobility group

box protein B1 (HMOB1), adenosine triphosphate (ATP), heat

shock protein (HSP), high mobility group box protein B1

(HMGB1), type I interferon (IFNI), and annexin 1 (ANXA1) are

a few of the more significant DAMPs. They have the capacity to

mobilize antigen-presenting cells (APCs) and activate T cells to

elicit adaptive immune responses against tumor antigens. Then,

tumor-specific immune responses may be triggered, directly

destroying tumor cells or triggering anti-tumor immunity,

increasing the long-term efficacy of anticancer drugs (3, 4). Due

to its immunogenicity, the immune system’s activation in tumors,

and the production of several tumor antigens, ICD is anticipated to

offer fresh concepts and approaches for anti-tumor immunotherapy

(5). Therefore, patients should be investigated further in a clinical

setting to evaluate the likelihood of ICD. It would be beneficial to

identify biomarkers that categorize individuals based on how likely

they are to respond to immunotherapy for ICD.

Pancreatic cancer is an aggressive malignancy in humans with a

5-year survival rate of only 5% (6). About 90% of pancreatic cancers

are ductal adenocarcinomas that arise from the ductal epithelium,

known as pancreatic ductal adenocarcinoma (PDAC). Currently,

radiation, conventional chemotherapy, and surgical resection are

the mainstays of pancreatic cancer treatment. Although radical

resection remains the preferred course of action for pancreatic

cancer, the postoperative recurrence rate can reach 85%, and more

than 80% of patients cannot have surgical resection because of local

or distant metastases (7). Nevertheless, radiotherapy, particularly

stereotactic body radiation therapy (SBRT), and chemotherapy,

such as gemcitabine monotherapy or combined with albumin-

bound paclitaxel and the FOLFIRINOX regimen (5-fluorouracil,

leucovorin, irinotecan, and oxaliplatin), have limited clinical

benefits for patients with advanced pancreatic cancer and can

only marginally improve their condition and prognosis. The

tumor microenvironment (TME) is the main mediator of tumor

development and resistance to drug therapy or immune checkpoint

inhibitors (ICIs). It plays a vital role in pancreatic cancer’s

occurrence, growth, and metastasis, but its exact mechanism is

unknown. Immunological cells and elements of the cell matrix

make up the majority of the pancreatic cancer immune

microenvironment. Among them, the immune cells mainly

include T cells such as CD4+ and CD8+, B lymphocytes, related

tertiary lymphoid structures (TLS), and a large number of

immunosuppressive cells such as T regulatory cells (T regulatory

cells), Treg cells, myeloid-derived suppressor cells (MDSCs) and
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tumor-associated macrophages (TAMs) (8). Immunotherapy has

become an increasingly essential treatment method for pancreatic

cancer in recent years as TME research has grown (9). The

sustainable development of cancer immunotherapy, a better

understanding of T cell responses to therapies targeting immune

checkpoints, and the efficacy of clinical studies of drugs that block

related immune checkpoints will lead to an increase in the number

of studies predicting and identifying accurate biomarkers for

PDAC immunotherapy.

This research intended to uncover ICD-associated biomarkers

and construct an ICD risk model to predict the immune

microenvironment and PDAC prognosis. In the future, this

method can assist physicians in making better treatment decisions.
Materials and methods

Data collection

For the training set, RNA-seq transcriptome information and

matched clinicopathology data of 176 PDAC patients were obtained

from TCGA (https://portal.gdc.cancer.gov/). Patients’ data for the

validation set were obtained from ICGC (https://dcc.icgc.org/). In

order to verify the effect of related genes on the prognosis of PDAC

patients, a total of 48 consecutive patients who underwent radical

resection for pancreatic ductal adenocarcinoma (PDAC) at the

Inner Mongolia Autonomous Region People’s Hospital from

January 1, 2015 to December 31, 2015 were collected in this study.
Consensus clustering

By using agglomerative pam clustering with 1-Pearson

correlation distances and resampling 80% of the samples for ten

iterations, ConsensusClusterPlus (Wilkerson and Hayes, 2010,

ConsensusClusterPlus: a class discovery tool with confidence

assessments and item tracking, DOI:10.1093/bioinformatics/btq170)

was used to perform the cluster analysis. The empirical cumulative

distribution function plot calculated the ideal number of clusters.
Reverse transcription quantitative PCR

48 PDAC specimens were received from Department of

Hepatobiliary-Pancreatic-Splenic Surgery, Inner Mongolia

Autonomous Region People’s Hospital (Hohhot, China) and

utilized to verify EIF2A expression in PDAC. The RT-PCR

method has been described in our previous study (10). GAPDH

served as the EIF2A control.
Identification of differentially
expressed genes

The Limma package (version: 3.40.2) of R software was used to

analyze the differential mRNA expression. The modified P values
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were looked at to correct TCGA results that were falsely positive.

The threshold for mRNAs with differential expression was set at |

fold change| >2 and adjusted P< 0.05.
Functional enrichment analysis

The differences in signal pathways and biological effects

between the ICD low and high cohorts were compared using

Gene Ontology (GO) and Kyoto Encyclopedia of Genes and

Genomes (KEGG) studies. To assess GO and KEGG pathways,

the R software’s “clusterProfiler” tool (11) and SangerBox (http://

sangerbox.com/) (12) were used. The q-value and p-value criteria of

<0.05 were used as the foundation for GO and KEGG

enrichment analysis.
Gene set enrichment analysis

The enrichment of the MSigDB Collection was evaluated using

GSEA to determine whether there were significant differences in the

set of genes expressed between the ICD low and high cohorts

(c2.cp.kegg.v7.4.symbols.gmt). SangerBox (12) was used to conduct

the analysis.
Immune landscape characterization
between two ICD subgroups

The expression data of 176 PDAC samples were put into

CIBERSORT (HTTPS://cibersort.stanford.edu/), which was then

used to calculate the relative percentage of 22 immune cell types

(13). The results are shown in a landscape map after we compared

the relative percentage of 22 immune cell types across the two

ICD groupings.
Prediction of immunotherapy effectiveness

Analyses of tumor immune dysfunction and exclusion (TIDE)

have been carried out to assess the efficacy of immunotherapy. An

analytical method called TIDE (http://tide.dfci.harvard.edu/) allows

for the prediction of the immunotherapy response utilizing two key

tumor immune evasion mechanisms: T cell malfunction and T cell

infiltration that is suppressed in tumors with low CTL levels.
Analysis of somatic mutations

The TCGA GDC Data Portal provided somatic mutation

information for the PDAC samples in “maf” format. The

“Maftools” program in R software was then used to create

waterfall graphs, which made it easier to see and summarize the

altered genes.
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Survival evaluation

Using the survminer and survival packages in R, a Kaplan-

Meier (KM) analysis was performed to compare the overall survival

(OS) between the low and high ICD risk cohorts. The multivariate

Cox analysis was used to determine if the risk score is

an independent risk factor for OS in PDAC, whereas the

univariate Cox analysis was used to identify the prospective

prognostic indicators.
Construction of risk signatures related
to ICDs

In order to determine the precise coefficient values of each

detected relationship, a LASSO cox regression analysis was used for

the immune-associated genes that were shown to be statistically

significant in the univariate Cox regression study. A common

regression analysis technique called LASSO combines variable

selection and regularization to enhance the prediction capability

and interpretability of the resulting statistical model.
Results

Two ICD-associated subtypes were
identified via consensus clustering

A comprehensive literature review that discovered the ICD-

related genes earlier was published by Chiaravalli (4). To further

illuminate the relationships between these ICD-related genes, we

carried out protein-protein interaction (PPI) network analysis using

the STRING database (Figure 1A). We also examined the ICD gene

expression patterns in samples from normal and PDAC (Figure 1B).

Next, we used consensus clustering to identify the PDAC clusters

connected to ICDs. Following k-means clustering, two clusters with

distinct ICD gene expression patterns were found in the TCGA

cohort (Figures 1C, D). ICD-related gene expression levels were

generally high in cluster C2, indicating an ICD-high subtype.

Instead, cluster C1 showed low expression levels consistent with

an ICD-low subtype (Figure 1E). We classified clusters C1 as an

ICD-low subtype and C2 as an ICD-high subtype. Additionally,

survival analyses showed that these ICD-based subcategories had

varying clinical outcomes. The ICD-low subtype generally had a

poor prognosis, while the ICD-high subtype was linked to favorable

clinical results (Figure 1F).
Differentially expressed genes and signal
pathways in various ICD subtypes

We identified the major DEGs and signal pathways in each

subtype to understand the molecular mechanism in the modulation

of prognosis since the ICD high subtype presented with favorable

clinical outcomes and the ICD low subtype presented with a poor
frontiersin.org
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prognosis. We discovered a total of 527 dysregulated genes here

(Figures 2A, B). Among them, 23 genes were up-regulated in

expression. AC132186.1, AC091173.1 and AC068228.2 were top

up-regulated DEGs. A total of 496 genes expressing downregulated.

GZMAP1, CD300LG and AL162457.1 were top down-regulated

DEGs. The upregulated genes in the ICD high subtype were
Frontiers in Oncology 04
enriched in immune-related activities like cytokine and cytokine

receptor interaction, chemokine signaling pathway, hematopoietic

cell lineage, viral protein interaction with cytokine and cytokine

receptor, T cell receptor signaling pathway, cell adhesion molecules,

natural killer cell-mediated cytotoxicity, and Ras signaling pathway,

among others (Figure 2C). These findings suggested a link between
A B

D

E F

C

FIGURE 1

Consensus clustering for the identification of subtypes related to ICD. (A) PPI (Protein-protein interactions) among the genes related to ICD; (B) The
TCGA database heatmap displays 37 ICD gene expression patterns in normal and PDAC samples; (C) The consensus clustering solution (k = 2) for 23
genes in 176 PDAC samples is represented by a heatmap; (D) Consensus clustering’s delta area curve showed the change in area under the
cumulative distribution function (CDF) curve for k = 2 to 10; (E) Heatmap of 37 ICD-associated genes’ expression levels across various subtypes. Blue
symbolized low expression, whereas red denoted high expression; (F) ICD-high and ICD-low subtype OS Kaplan-Meier curves.
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the immune-active microenvironment and the ICD high subtype.

By assessing the ICD high and low groups, we used GSEA to further

identify the relevant signaling pathways engaged in the ICD high

subgroup. Gene sets associated with immunological pathways, such

as the T cell receptor signaling pathway, natural killer cell-mediated

cytotoxicity, and leukocyte trans-endothelial migration were

differentially enriched in the ICD groups (Figure 2D).
The landscape of the tumor
microenvironment and somatic mutations
in ICD-high and ICD-low subtypes

Among these subgroups, we identified distinctive somatic

mutation patterns (Figure 3). Although the most frequent
Frontiers in Oncology 05
mutations were KRAS, TP53, SMAD4, CDKN2A, and TTN, the

proportional frequency varied among the various subtypes. KRAS

and TP53 mutations were more common in ICD-low subtypes than

in ICD-high subtypes, accounting for 86.4 percent and 71.4 percent

of the total, respectively, compared to just 72.2 percent and 59.7

percent (p < 0.001).

ICD may significantly affect the activation of several anticancer

immune responses, according to growing data. This study examined

the differences in the tumor microenvironment between two

subtypes. Overall, the immunological score was greater and the

tumor purity was lower in the ICD-high subtype compared to the

ICD-low subtype (Figure 4A), however, the differences were not

significant (p=0.08, p=0.26, respectively). The LM22 signature

matrix and the CIBERSORT method were then used to compare

the immunological infiltration of 22 different immune cell types
A B

D

C

FIGURE 2

Identifying differentially expressed genes (DEGs) and underlying signaling pathways in various subtypes. (A) The volcano figure depicted the
distribution of DEGs measured between ICD-high and ICD-low subgroups in the TCGA cohort, with a threshold of |log2 Fold change| > 1 and P
0.05. (B) The heatmap depicted the expression of DEG in various subtypes. (C) The KEGG and GO signaling pathway enrichment analyses were
shown by dot and circle plots. The dot size reflected gene count, and the dot color denoted - log10 (p. adjust-value); (D) GSEA analysis identified
the fundamental signal pathway that differentiated ICD-high and ICD-low subgroups.
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between two subtypes. The findings from 176 PDAC patients in the

TCGA were summarized in Figure 4B. Exceptionally high

percentages of CD8 T cells and resting CD4 T cell memory were

seen in individuals with the ICD-high subtype with low rates of

macrophage M0 (Figure 4C). In addition, the ICD-high subtype

showed upregulation of some of the human leukocyte antigen

(HLA) genes and immunological checkpoints. On the other hand,

the ICD-low subtype showed the reverse tendency (Figures 4D, E).

These revealed a relationship between the immune-hot phenotype

and the ICD-high subtype and a link between the immune-cold

phenotype and the ICD-low subtype.
ICD risk signature development
and validation

We then developed a prognosis model based on genes related to

ICD. The Cox multivariate analysis revealed that 3 ICD-related

genes were strongly associated with patients’ OS (Figure 5A). The

LASSO regression analysis investigated and identified 10 ICD-

related genes for the prediction model (Figure 5B). The following

algorithm serves as the foundation for the risk-score model: Risk

rating=(0.1835)*ANXA1+(-0.1996)*IL10+(0.1059)*IDO1+(0.0669)

*CD40+(-0.1518)*TNF+(0.3163)*IFNG+(-0.2802)*TPP1+(0.2445)

*NT5E+(-0.2086)*MAP1LC3B+(0.6976)*EIF2A. Furthermore, we

focused on the link between survival status and risk score. Our

findings revealed that the number of alive statuses in the low-risk

group was much higher than in the high-risk cohort (Figure 5C).

KM analysis was used to further establish the prognostic value of

this risk profile in PDAC (Figure 5D). A high-risk score was

discovered to correlate with poor OS in the TCGA cohort, further

supported by equivalent outcomes in the ICGC cohort (Figure 5E).

To verify the relationship between ICD-related gene EIF2A and

prognosis, we collected data of 48 PDAC patients from Inner

Mongolia Autonomous Region People’s Hospital, of whom 24

were EIF2A high expression and 24 were low expression. The

correlation between EIF2A expression and clinicopathologic

characteristics of PDAC patients was shown in Table 1. EIF2A

expression in PDAC tissues and normal pancreatic tissues was

examined using qRT-PCR as a possible risk factor. EIF2A
Frontiers in Oncology 06
expression was shown to be higher in PDAC tissues when

compared to normal pancreatic tissues (Figure 6A). High-

expression of EIF2A was discovered to correlate with poor OS

and DFS in the these patients (Figures 6B, C).
The relationship between tumor
microenvironment and ICD risk signature

Given that ICD plays essential biological functions in antitumor

immune responses, the relationship between ICD risk score and the

tumor microenvironment was carefully investigated. The findings

revealed that whereas CD8 and activated CD4 memory cells showed

an undesirable link in people with higher risk scores, activated NK

cells showed a positive correlation in those with higher risk scores

(Figure 7A). These findings were confirmed by the ICGC

cohort (Figure 7B).

The predictive significance of the ICD risk signature in the

prospective therapeutic effectiveness of immunotherapy was then

assessed using TIDE. According to our findings, patients with low

ICD risk scores may benefit more from immunotherapy since their

ICD risk scores were greater in the group that had no response to

immunotherapy (Figure 7C).

To assess the independent prognostic significance of the

ICD risk signature, multivariate Cox analyses were undertaken.

The multivariate study demonstrated that the ICD risk score

might be an independent prognostic factor for patients

withPDAC (Figure 7D). Based on these results, the AUCs for 1-,

3-, and 5-year overall survival were 0.76, 0.86, and 0.84,

respectively (Figure 7D).

Based on the TCGA cohort, we also discovered that patients

with low-risk scores tended to have much longer overall survival

than patients with high-risk scores (Figure 7E). Additionally,

the ICGC cohort showed similar AUCs and prognostic

differences (Figure 7F).
Discussion

Since chemotherapy is now the only approved treatment,

pancreatic ductal adenocarcinoma (PDAC) is widely recognized

for its poor prognosis, poor response to chemotherapy, and

resistance to immunotherapy. In fact, it is characterized by an

immunosuppressive TME and a robust desmoplastic reaction,

which not only physically obstructs the delivery of drugs to the

tumor site but also significantly impacts the homeostasis and

aggressiveness of the tumor, interacting strongly with pancreatic

cancer cells (PCC). Immunotherapy has drawn increasing interest

because traditional therapies for chemotherapy were unable to

significantly improve the overall survival rates of PDAC patients.

Due to the distinct tumor microenvironment and limited cancer

immunogenicity of PDAC, it is still not the breakthrough cure (14).

It has been suggested that a fresh approach involves reshaping the

TME by inducing innate and adaptive antitumor immunity (15).

The concept of “immunogenic cell death” was defined as a

particular sort of “regulated cell death” that can release “danger
FIGURE 3

Somatic mutations in distinct ICD classes are investigated. The
waterfall map showed the top ten most often altered genes in ICD-
high and ICD-low subtypes. A total of 175 samples with identified
mutations were included, with mapping samples including 156
(89.1%).
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signals” or “DAMPs” to cause complete antigen-specific adaptive

immune responses (16). For the treatment of cancer, the

combination of immunogenic therapy and innovative

immunotherapeutic regimens offers considerable potential (17).

Therefore, it may be helpful to discover ICD-related biomarkers

contributing to differentiating PDAC patients based on the

advantages they experience after immunotherapy. We have shown

that the expression of genes related to ICD is highly correlated with

the tumor microenvironment and prognosis of PDAC. By

consensus clustering based on the expression of ICD-related

genes, we discovered two ICD subgroups. Positive clinical

outcomes and a high degree of immune cell infiltration were

linked to the ICD high subtype. Using 10 chosen ICD-related
Frontiers in Oncology 07
genes, we also developed and validated a predictive risk signature

that divided PDAC patients into high- and low-risk groups.

Additionally, this risk profile demonstrated a high level of OS

predictive value and may serve as an independent prognostic

predictor for patients with PDAC.

Chiaravalli et al. (4) have previously detailed the genes

associated with ICD that were examined in our investigation. In

summary, ICD parameters were found by doing a thorough

literature search (using Scopus, Web of Knowledge, and PubMed

for relevant research studies conducted in vitro using primary

human immune cells and/or in vivo using mice). The final results

revealed that the survival of patients with PDAC was correlated

with 37 ICD-related genes. In our investigation, 10 of the 37 ICD-
A B

D

C

E

FIGURE 4

Immune landscape of ICD-low and ICD-high subtypes. (A) The median and quartile estimates for each immunological score and tumor purity score
are shown in box plots. (B) Immune infiltration percentage in ICD-high and ICD-low subgroups; (C) The violin plot depicted considerably diverse
immune cells across distinct subtypes. (D, E) Box and violin plots showed the expression of numerous immunological checkpoints (D) and HLA
genes (E) differing between ICD-high and ICD-low subgroups. *P < 0.05, **P < 0.01, and ****P < 0.0001.
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related genes—including ANXA1, IL10, IDO1, CD40, TNF, IFNG,

TPP1, NT5E, MAP1LC3B, and EIF2A—were significantly

associated with the prognosis of PDAC patients. Recent research

revealed that when exposed to diverse microenvironmental stimuli

during tumorigenesis, cancer cells suffered reduced canonical

translation and switched their translational machinery to EIF2A-

dependent translation (18). Dai et al (19) identified the pertinent

PUM1 molecular mechanism in PDAC. PUM1 knockdown

stimulated the PERK/EIF2/ATF4 signaling pathway in PDAC

cells, inhibiting cell growth, invasion, and metastasis and

promoting apoptosis.

Some chemical drugs, radiotherapy, photodynamic therapy,

lysing virus, and other therapies act on tumor cells, causing

endoplasmic reticulum (ER) stress and the production of reactive

oxygen species (ROS), as well as releasing immune signaling
Frontiers in Oncology 08
molecules from the cell, increasing tumor immunogenicity and

enhancing the recognition and presentation ability of dendritic cells

(DCs), activating tumor-specific cytotoxic T cells (cytotoxic T cells),

and stimulating the release of IL-2, IL This mechanism results in

apoptosis, which is known as ICD in cancers (20). When a tumor

develops ICD, a series of immune signal molecules are upregulated

on the cell membrane’s surface and recognized by some receptors,

promoting the synthesis and release of immune effectors and

inducing the body’s immune response to kill the tumor cells;

these immune signal molecules are known as DAMPs (21). These

include endoplasmic reticulum calcium reticulum protein (CRT)

exposed early on the cytosolic surface, extracellularly secreted

adenosine triphosphate (ATP), heat shock protein (HSP)-antigen

peptide complexes, and high mobility group protein B1 (HMGB1)

released late (22). DAMPs and recognition receptors secreted
A B

D

E

C

FIGURE 5

Developing and validating the ICD risk signature. (A) Multivariate Cox analysis assesses the prognostic value of ICD genes in terms of OS; (B) Lasso
Cox analysis identified ten genes most associated with OS in the TCGA dataset; (C) Distribution of risk scores, survival status of each patient, and
heatmaps of prognostic 10-gene signature in the TCGA database; (D, E) Kaplan-Meier analyses demonstrate the prognostic significance of the risk
model in the TCGA and ICGC cohort.
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TABLE 1 Correlation between EIF2A expression and clinicopathologic characteristics of PDAC patientsa.

Variable Total High expression of EIF2A Low expression of EIF2A P value

Total case 48 24 24

Age (year) 0.082

≤60 23 8 15

>60 25 16 9

Gender 0.999

Male 29 14 15

Female 19 10 9

CA-199 0.667

≥37 42 22 20

<37 6 2 4

Pathology Grade 0.046*

Well 11 2 9

Moderately 25 14 11

Poor 12 8 4

T Stage 0.470

T1 19 10 9

T2 17 7 10

T3 7 3 4

T4 5 4 1

LN metastasis 0.002*

N0 25 6 19

N (N1&N2) 23 18 5

TNM Stage(AJCCb) 0.038*

I (IA&IB) 18 6 12

II (IIA&IIB) 22 11 11

III 8 7 1
F
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a*:Chi-square(and Fisher’s exact) test, *P value <0.05.
b: American Joint Committee on Cancer (AJCC), patients were staged in accordance with the 8th Edition of the AJCC Cancer’s TNM Classification.
c: Bold values: There were significant differences between the two groups.
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FIGURE 6

The correlation between EIF2A expression and prognosis of PDAC patients. (A) The relative amount of EIF2A expression in PDAC tissues and normal
pancreatic tissues as determined by RT-qPCR. (B, C) Kaplan–Meier curves of OS and DFS in EIF2A-high and EIF2A-low subtypes. *P < 0.05.
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extracellularly are required for the expression of ICD activity,

promote DC maturation and nuclear factor-kB (NF-kB)
activation through IFN-regulatory factors as well as MAPK and

Akt pathways, facilitate migration and proliferation in local lymph

nodes, enhance tumor antigen uptake and presentation, and

produce IFN-g, perforin-1, and granzyme B to trigger a direct

cytotoxic response to kill residual tumor cells. Our study used

consensual clustering to split the ICD sample into two categories in

line with this findings. It was stated that the ICD-high subgroup had
Frontiers in Oncology 10
an immune-cold phenotype while the ICD-high subgroup had an

immune-hot phenotype.

In this work, the risk model was verified in a different dataset

and demonstrated appropriate survival prediction. Although this

model is effective in predicting the prognosis of PDAC, the current

study has a number of drawbacks. First, because the model was

constructed utilizing a public database, we should proceed with

caution when extending our findings to local patients. Second,

additional research on the in vivo and in vitro functions and
A

B

D

E F

C

FIGURE 7

The relationship between the tumor microenvironment and the ICD risk profile. (A, B) Scatter plots demonstrate the relationship between risk score
and activated CD4 memory cells, T cells CD8 and activated NK cells infiltration (A), which was further supported by the ICGC cohort (B); (C) The
violin plot depicted the relationship between ICD risk score and immunotherapy response. (D) multivariate Cox analyses assessed the independent
prognostic value of the ICD risk signature in PDAC patients. (E, F) Survival analysis was used to construct a risk model in the TCGA dataset (E) and
ROC curve (F).
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regulatory processes of these ten genes is required. Further

prospective trials are also required to confirm the treatment

implications of this risk model.
Conclusion

Our findings demonstrate the relationship between ICD

subtype variations and changes in the immunological tumor

microenvironment in PDAC. These findings could help with

immunotherapy-based PDAC treatment. We also developed and

validated a predictive signature linked to ICD, which has a

significant impact on forecasting patients’ overall survival

time (OS).
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