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Purpose: To analyze the effect of the physiological deformation of the vessel wall
on the hemodynamics in the abdominal aortic aneurysm (AAA), this paper
compared the hemodynamics in AAA based on the moving boundary (MB)
simulation and the rigid wall (RW) simulation.

Method: Patient-specific models were reconstructed to generate mesh based on
four-dimensional computed tomography angiography (4D CT) data. The dynamic
mesh technique was used to achieve deformation of the vessel wall, surfacemesh
and volume mesh of the fluid domain were successively remeshed at each time
step. Besides, another rigid wall simulation was performed. Hemodynamics
obtained from these two simulations were compared.

Results: Flow field and wall shear stress (WSS) distribution are similar. When using
the moving boundary method (MBM), mean time-averaged wall shear stress
(TAWSS) is lower, mean oscillatory shear index (OSI) and mean relative
residence time (RRT) are higher. When using the 10th and 20th percentile
values for TAWSS and 80th and 90th percentile values for RRT, the ratios of
areas with low TAWSS, high OSI and high RRT to the entire vessel wall are higher
than those assuming the vessel as rigid. In addition, one overlapping region of low
TAWSS, high OSI and high RRT by using the MBM is consistent with the location of
thrombus obtained from the follow-up imaging data.

Conclusion: The hemodynamics results by using the MBM reflect a higher blood
retention effect. This paper presents a potential tool to assess the risk of
intraluminal thrombus (ILT) formation based on the MBM.
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1 Introduction

Abdominal aortic aneurysm (AAA) is defined as permanent and
irreversible local dilation of the abdominal aorta (Chen et al., 2014).
At present, the pathogenesis of AAAs is not completely clear, but a
large number of studies have shown that the occurrence of AAAs is
related to degeneration in the media layer of the aorta (Salman et al.,
2019). Loss of elastin, deposition and remodeling of collagen fibers
lead to the formation and growth of AAAs (Gasser et al., 2006;
Valentin et al., 2013). AAAs rupture when the stress acting on the
vessel wall exceeds the strength of the vessel wall, and the mortality
rate for ruptured AAAs patients can be 65%–85% in China (Canchi
et al., 2018).

Recent studies have shown that hemodynamics plays an
important role in the progression of AAAs (Tanweer et al., 2014;
Boyd et al., 2016). The non-invasive method for hemodynamics
simulation, which combined the clinical medical image data with the
computational fluid dynamics (CFD) is needed. Notably, the
hemodynamics of AAA is considered to be a key factor in the
formation and growth of intraluminal thrombosis (ILT), for the ILT
could prevent rupture of the AAA by reducing the stresses acting
directly on the vessel wall (Arzani et al., 2014), and the prediction of
ILT formation in AAAs is important.

Zambrano et al. (2016) and Gharahi et al. (2015) collected CT
image data from different cases and analyzed the relationship
between wall shear stress (WSS) and thrombus aggregation and
AAAs growth based on the computational fluid dynamics (CFD)
simulation. Doyle et al. followed up a patient for up to 2.5 years and
analyzed the hemodynamics of AAA, they found that long-term low
time average wall shear stress (TAWSS) promoted the AAA wall
dilation and thrombus formation (Doyle et al., 2014). Suh et al.
(2011a) and Suh et al. (2011b) simulated the progression of AAAs,
calculated the oscillatory shear index (OSI) and particle retention
time (PRT) to quantify the recirculation effects of blood in
aneurysms, and found that platelet activation induced by
stagnant blood flow can induce thrombus formation. However,
these studies assumed the aorta as rigid and ignored the in vivo
deformation of aorta (which is caused by blood flow, peri-arterial
tissue, respiration, heartbeat, etc.)

To overcome the above shortcomings, the fluid-structure
interaction (FSI) method was applied in the hemodynamics
simulation in AAAs. Bluestein et al. (2009) used the FSI
method to simulate the hemodynamics of two patients, with
varied AAA geometries and ILT structures and compare the AAA
rupture risk. Ong et al. (2018) presented evidence for one type of
flow dynamics within the aneurysm sac. They performed CTA
image-based patient-specific FSI modeling of three cases of aortic
aneurysms, their study showed that the formation of the ILT is
associated with vortex, and recirculation flow within the
aneurysm sac may lead to the formation of ILT. Drewe et al.
(2017) aimed to perform FSI simulations of an ideal AAA
geometry to determine the influence of proximal neck and
iliac bifurcation angles on AAA wall stress. They found that
AAAs can expand and rupture in areas with low WSS, and large
iliac bifurcation angles imply less likelihood of thrombus
development.

In the above studies, the settings of the material parameters of
the vessel wall were based on the previous studies that have been

used by Shi et al. (2021), Shang et al. (2013), and Di Martino et al.
(2001), respectively. However, for patients of different ages, the
material parameters such as the thickness and elastic modulus in
different regions (such as ascending aorta and abdominal aorta) are
quite different (Xiong et al., 2011). Therefore, hemodynamics
simulated by the FSI method may differ from physiological
conditions.

The moving boundary method (MBM) can reflect the effect
of the in vivo deformation of aorta on the hemodynamics
without setting specific material parameters. Some
researchers have used this method to calculate vessel wall
stiffness, WSS, etc. They demonstrated the potential of MBM
for clinical application (Piccinelli et al., 2013; Farzaneh et al.,
2019). Danilov et al. (2017) and Lozovskiy et al. (2018)
developed a stabilized finite element method and performed
simulation based on 4D-CT and collected hemodynamics
results of the left/right ventricle, the method of these studies
is proven to be stable and robust when deformation is large, and
without needing interpolation. Their work extended the
application of 4D CT in hemodynamics studies. However,
using the MBM to assess ILT formation risk in AAA was
rarely been reported.

In this study, 4DCT image data of one AAA patient at 21 cardiac
instants in one cardiac cycle were used to reconstruct the patient-
specific instantaneous geometries. After mesh generation, the
coordinates of each node at different time-instants were
calculated. Then the user-defined function (UDF) in Fluent was
used to control the movement of each node for achieving the
deformation of the vessel wall, surface mesh and volume mesh of
fluid domain at each time step were remeshed. After that, the
hemodynamics in AAA using the MBM combined with CFD
simulation were obtained.

In addition, we also reconstructed the rigid model and
performed the rigid wall simulation, the size of the rigid model
was set to be equal to the mean size of the models at 21-time points.
We analyzed the differences between the hemodynamics results by
performing these two simulations. In general, this paper explored
the influence of in vivo deformation of the abdominal aorta on
hemodynamics and evaluated the formation risk of thrombosis
in AAA.

2 Materials and methods

2.1 Image data acquisition

A 61-year-old male patient with a maximum AAA diameter of
32.99 mm was selected for the acquisition of 4D CT image data. All
imaging data were obtained from the Department of Vascular
Surgery, Zhongshan Hospital, Fudan University, and permission
were obtained from the ethics committee.

The CTA data was obtained by using a 320-row multidetector
CT scanner (Aquilion ONE, Toshiba Medical Systems, Irvine, CA,
United States). The view field ranged from at least 5 cm proximal to
the celiac trunk and the femoral artery bifurcation for each set of
CTA data, as shown in Figure 1A.

When scanning the patient, the slice thickness of CTA was
1.0 mm, and the patient was scanned every 5% cardiac cycle, as
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shown in Figure 1B. The original in-plane resolution matrixes
were 512 × 512 (the spatial resolution was 1.12 mm × 1.12 mm),
which was low and cannot be used for model reconstruction. By
using the B-Spline algorithm, which can be used to interpolate
and sharpen the original image data, we obtained the 1024 ×
1024 (the spatial resolution was 0.56 mm × 0.56 mm) in-plane
resolution matrixes at 21-time points. The deep learning
method based on the U-net technique was used for automatic
segmentation and to suppress the signal corresponding to the
tissue surrounding the aorta (Supported by Shenzhen Rui Xin
Intelligent Medical Technology Co., Ltd.). The image of
21 time-instants in one cardiac cycle was stored in DICOM
format, which was described in Module 1 of the Supplementary
Material.

2.2 Model reconstruction

The 4D CT image data was imported into the open-source
software: SimVascular 2018 (Stanford University, United States) for
preliminary smoothing (Lan et al., 2018), as shown in Figure 2A.
Since AAAs tend to occur in the infrarenal (IR) abdominal aorta
region (Amirbekian et al., 2009), the abdominal aorta and iliac
arteries under the renal arteries was selected as the computational
domain (Qiu et al., 2018), as shown in Figure 2B. Models at 21-time
points were smoothed and cropped in Geomagic Studio 2013
(Raindrop Corporation, United States). The model of the first
phase was chosen as the model of the initial moment when using
the MBM.

The surface with the largest cross-sectional area perpendicular to
the centerline of the AAA was chosen as the plane of interest (POI),
which was marked with red color, as shown in Figure 2B.

The effect of the area change ratio due to vessel wall deformation
(Eq. 1), the differences between the maximum and minimum areas
of POI before and after smoothing (Eq. 2), and the difference in the
area change ratio due to the smoothing treatment (Eq. 3) were
calculated to check whether the errors caused by smoothing affect
the accuracy of simulation and the results are summarized in
Table 1.

ratio � Amax − Amin

Amax
* 100% (1)

FIGURE 1
The process of obtaining the 4D CT image data. (A) The selected scanning range of AAA. (B) Parameters setting during scanning.

FIGURE 2
Models of the patient (A) before and (B) after smoothing and
cropping. POI is marked with red color.

TABLE 1 The difference between the maximum and minimum POI area in one
cardiac cycle before and after smoothing.

Amax(mm2) Amin(mm2) Ratio (%)

Before smoothing 910.32 887.32 2.53

After smoothing 901.43 876.37 2.78

Difference (%) 0.98 1.23 0.25
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DifferenceA � Aoriginal − Asmoothed

Aoriginal
* 100% (2)

Differenceratio � ratiosmoothed max.min( ) − ratiooriginal max, min( ){ } * 100%

(3)

where the Amax, Amin represent the maximum and minimum areas
of POI, Aoriginal and Asmoothed represent the POI area values of the
original and the smoothed models.

As shown in Table 1, the differences between the maximum and
minimum areas of POI are both less than 3%. The differences in area
change are less than 1.5% and the area change rate is only 0.25%
before and after smoothing. It indicates that the error caused by the
smooth operation is small and would not affect the numerical
simulation accuracy.

2.3 Mesh generation

The tetrahedral mesh was generated in HyperMesh 14.0 (Altair,
United States). The global mesh size of the model at the initial time
was set as 0.3 cm, and the wedge-shaped boundary layer mesh was
generated in the fluid domain. After the grid independence test (the
process is described inModule 2 of the Supplementary Material), the
mesh of the initial model is shown in Figure 3. The node number and
elements of the fluid mesh, and node number of the surface mesh of
the vessel wall at the initial moment were 30,750, 89,022, and 4,917,
respectively.

Global mesh densification was performed on models at other
20 time-instants, with the mesh size set as 0.02 cm. The node
number of the vessel wall for the subsequent 20 time-instants
was 144,650 ± 10,025 (mean ± SD). The process was described
detailed in Module 3 of the Supplementary Material. Note that these
surface meshes are not involved in computational fluid dynamics
simulations, but only store coordinate information of surface nodes
at different time points.

2.4 Calculation of nodal displacement at
different time-instants

As described in Section 2.3, the surface mesh of models was
densified at the next 20 time-instants to provide more optional
nodes for the grid nodes to move from the current time point to the
next (as shown in Figure 4), which can ensure that each node at the
current moment could move to its nearest node at the next moment.

As shown in Figure 4, PointiTrepresents the ith node at the
current moment, PointiT+1, Pointi′T+1 and Pointi″T+1 represent the
nodes that could be chosen for PointiT at next moment. It is
obvious that PointiT+1 is closest to PointiT, and other nodes which
are not selected will be deleted.

Matlab R2020b (MathWorks, United States) was used to
calculate the coordinate information of nodes at different time-
instants. As shown in Figure 4, the nodes’ displacements at different
time-instants were calculated according to the minimum distance
principle (Vahidkhah et al., 2017). For two adjacent time-instants,
the distance of different nodes and the coordinates at the next
moment were expressed as Eqs 4, 5:

di � min |XN
T+1 − Xi

T| (4)
xi
T+1 � xi

T + dxi

yi
T+1 � yi

T + dyi

ziT+1 � ziT + dzi

⎧⎪⎨⎪⎩ (5)

where Xi
T represents the coordinate of the ith node at time point T,

XN
T+1represent the coordinates of all nodes at the moment T+1, and

di represents the minimum distance value between the ith grid node
at moment T and all grid nodes at time phase T+1. Eq. 5 indicates
that the coordinates of the next moment in three directions are
obtained by adding the coordinates of the current moment to the
corresponding distances moved in each of the three directions.

FIGURE 3
Mesh information. (A) the global mesh information, (B) the mesh
at the inlet and the boundary layer mesh, (C) the mesh at the
bifurcation of iliac arteries.

FIGURE 4
Node displacement calculation between two adjacent time-
instants.
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Afterward, the grid node coordinates were interpolated for
21 time-instants [so that the Courant number was less than 1
(Khalafvand et al., 2017)], and 80-time steps were generated for
each interval of the 21-time-instants, resulting in 1600 (=20
0180) time steps for one cardiac cycle of computation. The
generated coordinate files of each grid node were invoked by the
user-defined function (UDF) in Fluent 2019 R3 (ANSYS,
Canonsburg, PA, United States). To avoid non-convergence
of calculation due to excessive mesh distortion, a remeshing
technique was used in Fluent to regenerate new surface mesh as
well as meshes in the fluid domain when the maximum mesh
skewness was greater than 0.7, the process of performing the MB
simulation was also described detailed in Module 4 of the
Supplementary Material.

2.5 Boundary conditions

The boundary conditions were all derived from another
volunteer, the velocity waveform at the inlet of the IR aorta
was measured by 2D phase-contrast magnetic resonance
imaging (PC-MRI, and the magnetic resonance System is
3.0 T Discovery MR750, GE Medical System, United States)
technique, and the pressure waveform at the outlets of the
iliac arteries was measured by the pressure guidewire, as
shown in Figure 5.

The UDF function in Fluent was used to specify the velocity of
each node at the aorta inlet and specify the pressure waveform of the
iliac artery outlets.

Based on the maximum velocity waveform at the inlet of the
IR aorta, four specific time points were selected to analyze the
hemodynamics in AAA: time of maximum acceleration of
velocity (time-point a, 0.14 s), time of maximum deceleration
of velocity (time-point c, 0.37 s), time of maximum velocity
(time-point b, 0.21 s) and time of minimum velocity (time-
point d, 0.78 s).

2.6 Solving settings

In the numerical simulation based on MBM, Arbitrary
Lagrangian-Eulerian (ALE) method was used to solve the
continuity and momentum equation, as shown in Eqs 6, 7:

z

zt
∫

V
ρdV + ∫

S
ρ �v − �vb( ) · �ndS � 0 (6)

∫
V

z

zt
ρ �v( )dV + ∫

S
ρ �v − �vb( ) · �ndS � −∫

S
pI · �ndS + ∫

S
τ · �ndS (7)

where �v represents the velocity vector of blood, �vb represents the
velocity vector of the grid nodes of the vessel wall, �n represents the
normal vector, ρ represents the blood density, p represents the
pressure, I represents the unit tensor, and τ represents the viscous
stress tensor. When assuming the vessel wall as rigid, the continuity
equation and the Navier-Stokes equation could be simplified into
Eqs 8, 9:

z

zt
∫

V
ρdV + ∫

S
ρ �v( ) · �ndS � 0 (8)

∫
V

z

zt
ρ �v( )dV + ∫

S
ρ �v( ) · �ndS � −∫

S
pI · �ndS + ∫

S
τ · �ndS (9)

The blood was assumed as an incompressible Newtonian fluid
with a density of 1060 kg/m3, and the viscosity was set as 0.0035Pa · s.
No-slip and no-flux conditions were applied at the vessel wall. The
pressure implicit with the splitting of operators (PISO) algorithm
was used to solve the continuity and the momentum equations to
obtain velocity and pressure. The second-order upwind scheme was
used to discrete the control equations at grid nodes of the fluid
domain (Khalafvand et al., 2017), the laminar solver was used for the
Reynolds number is small and fluid in the lumen of the vessel does
not develop turbulence (Peng et al., 2022). The cardiac cycle
was0.8 s, the time step size was 0.0005 s, at the end of each time
step, the surface mesh and the volumemesh of the fluid domain were
remeshed. The residual of continuity and velocity in three directions
were set as 1e-4 and each time step is iterated 50 times to ensure that

FIGURE 5
The velocity waveform at the inlet of the abdominal aorta and the pressure waveform at the outlets of the iliac arteries and four specific time points
were marked on the velocity profile.
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the results converge. The numerical simulations were performed for
cardiac cycles. The workstation AMD Ryzen Thread Ripper 3990X
64-core Processor was used. The time requirement was 36 h when
performing the MB simulation and 4 h when performing the RW
simulation, it should be noted that the size of the rigid model was set
to be equal to the mean size of the models at 21-time points so that
the comparison could more clearly demonstrate the effects of wall
deformation. The TAWSS, OSI, and relative residence time (RRT)
were calculated and compared based on the WSS obtained from the
simulation results, as shown in Eq. 10 (Peng et al., 2022):

TAWSS � 1
T
∫ |wss|dt

OSI � 1
2

1 −
|∫T

0
wssdt|

∫t

0
|wss|dt

⎧⎪⎪⎪⎨⎪⎪⎪⎩
⎫⎪⎪⎪⎬⎪⎪⎪⎭

RRT � 1
1
T
|∫T

0
wssdt|

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(10)

3 Results

The simulation results of the last cardiac cycle obtained using
both methods were post-processed in CFD Post 2019 R3 (ANSYS,
Canonsburg, PA, United States).

3.1 Verification of boundary continuity

To verify the boundary continuity when performing the MB
simulation, the coordinate information of the POI nodes at four
specific time points (time point a to time point d) was derived.
Matlab was used to extract the edge contours of the POI for
observation, as shown in Figure 6. As shown in Figures 6B, C,
the POI contours are continuous and undistorted at four specific
time points, indicating that the vessel wall of the abdominal aorta is
free of malformed bulges and depressions during the simulation, in
line with the requirements for computational quality.

In addition, the overall deformation information was shown in
AAA.gif of the Supplementary Material.

3.2 Flow fields

The results of the flow field simulated by these two methods are
visualized in Figure 7. We narrowed the range of color bar (change
the upper limit of velocity into 0–0.5 m/s, i.e.) to make the colors of
streamlines more distinct. Overall, the spatial distributions of the
flow field at the four specific time points are consistent.

As the blood flow accelerated from time point a to time point b,
the flow field within the vessel is stable and no vortex is formed.
During this process, the viscous force effect of the blood has little
influence on the flow field, while the effect of inertial force is
relatively significant. The acceleration effect of the flow is greater
than the convective deceleration effect caused by the widening of the
aorta. The flow field manifests itself mainly as an ordered laminar
flow. However, during the deceleration of the blood at the inlet, the
viscous effect of the blood is obvious. The flow state of the blood in
AAA gradually becomes disordered. At time point d, the blood flow
attaches to the bulging aneurysm wall, and the vortex and secondary
flow form within the AAA. In the area near the AAA wall, the
recirculation region appears.

3.3 Wall shear stress

The distribution of the WSS on the vessel wall is shown in
Figure 8. Overall, the WSS distributions at the four
corresponding specific time points are consistent using these
two methods. In the region close to the POI, the low WSS values
(20th percentile values) appear and indicated a weak shearing
effect of blood on the AAA. As the inlet blood velocity increases,
the high WSS values(80th percentile values) gradually appears at
the bifurcation of the abdominal aorta and iliac arteries, which
may lead to endothelial cell damage and destruction (Liu et al.,
2014). As the inlet blood flow velocity decreases, the regions with
high WSS values gradually reduce. At time point c, the high WSS
based on MB simulation is concentrated in the abdominal aortic

FIGURE 6
The POI at four-time points is outlined. (A) the POI of abdominal aortic aneurysms. (B) the boundary contours at the four specific time points (C) local
magnification of (B).
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bifurcation and the iliac arteries, and the high WSS obtained by
assuming the vessel wall as rigid occurs in these locations as well
as in localized regions of the aneurysm wall. At time point d, most

of the WSS values obtained by using the MBM were lower than
20th percentile values. When performing the RW simulation, a
small number of high WSS values still appears in parts of the

FIGURE 7
Comparison of the flow fields at four specific time points by using two methods. (A) Time moment of maximum acceleration of velocity, (B) Time
moment of maximum velocity, (C) Time moment of maximum deceleration of velocity and (D) Time moment of minimum velocity.

FIGURE 8
Comparison of the wall shear stress distribution at four specific time points by using two methods. (A): Time moment of maximum acceleration of
velocity, (B): Time moment of maximum velocity, (C): Time moment of maximum deceleration of velocity and (D): Time moment of minimum velocity.
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abdominal aortic bifurcation, in the region where the iliac
arteries join the AAA and in the distal neck of the AAA.

Notably, the distribution region of high WSS obtained by
assuming the vessel wall as rigid is more extensive than that of
MBM. The ratios of high WSS area to the whole vessel wall are
0.54%, 14.33%, 8.57%, and 0.15% at four specific time points by
using MBM, and these ratios obtained from the RW simulation are
2.41%, 28.62%, 15.32%, and 2.18%, respectively.

3.4 TAWSS, OSI, RRT

TAWSS, OSI and RRT were calculated using Eq. 10 to assess the
blood stagnation status and to further predict the risk of thrombus
formation.

As shown in Figure 9A, the TAWSS simulated by using MBM
fluctuates slightly throughout the vessel wall, with distribution in
most regions of less than 10th percentile values. In contrast, the
TAWSS obtained from the RW simulation differs significantly
across regions. Low TAWSS is mainly concentrated on the
aneurysm wall, but in the downstream region of the AAA
neck and the iliac artery bifurcation, TAWSS are larger than
20th values.

Besides, the ratios of the area where the low TAWSS located to
the entire vessel wall area are 37.85% and 11.71% by usingMBM and
assuming the vessel wall as rigid, respectively.

As shown in Figure 9B, the high OSI (larger than 80th
percentile values) obtained by using MB simulation is
distributed over most of the aneurysm wall, AAA’s neck, and

the iliac arteries, whereas the higher OSI obtained by assuming
rigid vessel wall is relatively concentrated in the proximal neck of
AAA and the bifurcation of the iliac arteries. In general, the
region of high OSI obtained by using MBM is more widespread.
Moreover, the percentage of the area with high OSI to the whole
vessel wall obtained by using MBM is higher than that obtained
from the RW simulation (69.32% and 21.72%, respectively). It
implies the direction of the shear stress has a faster change
frequency when using the MBM, since the direction of the
blood velocity near the aorta changes constantly when
applying the no-slip conditions. High OSI produces an
oscillatory effect on the vessel wall and reflects a higher risk of
damage to aorta compared to the rigid wall.

RRT obtained using the two methods are shown in
Figure 9C. The high RRT (larger than 80th percentile values)
obtained using MBM are distributed in the region of the
proximal neck of AAA and adjacent to the POI. For results
obtained from RW simulation, high RRT are relatively
concentrated in the region of aneurysms’ proximal neck.
High RRT obtained by using MBM spreads more widely on
the vessel wall than those obtained from RW simulation. The
ratios of the area of the region where high RRT locates to the
whole vessel wall area obtained from these two methods are
24.12% and 6.37%, respectively. Moreover, the distribution
regions with high RRT are generally consistent with the
distribution regions of high OSI.

Furthermore, when comparing the flow field and RRT
distribution obtained by using MBM, high RRT tends to
be concentrated near the recirculation region of the

FIGURE 9
Comparison of (A) TAWSS, (B) OSI, and (C) RRT distributions by using two methods.
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flow field. When the blood flow velocity is low and the streamline
takes on a spiral shape, the substances in the blood may
stagnate for a long time near the aneurysm wall. Leukocytes,
platelets and other substances may have stronger migration and
adhesion effects in such a hemodynamic environment. This
suggests that the effect of prolonged high RRT and
recirculation region may increase the risk of thrombosis near
the AAA.

To quantitatively compare the TAWSS, OSI, and RRT of each
case simulated by these two methods, the mean values of the three
parameters on the vessel wall were calculated, which are
summarized in Table 2. The mean value of TAWSS obtained
from the RW simulation is 18.18% higher, while the mean OSI
value and mean RRT value are 42.31% and 11.61% lower than the
results obtained from the MB simulation, respectively. It may
indicate that results obtained from the MBM reflect a higher
effect of blood stagnation.

3.5 The comparison between the MB
simulation results and follow-up image data

To investigate whether there is an association between the
simulation results when using the MBM and the risk of
thrombosis and the growth of AAA, the follow-up data from the
same patient was collected after 2 years in this study. As shown in
Figure 10, the ILT forms in the region near the POI but the
maximum diameter of the AAA increases by only 2.36 mm.
There is an overlapping region with low TAWSS, high OSI and
high RRT when using the MBM. (Notably, there is no overlapping
region when performing the RW simulation.) Although the ratio of
the area of the overlapping region to the entire vessel wall is only
4.92%, the thrombus almost occupies the anterior wall of the
aneurysm near the overlapping region after 2 years. It indicates a
higher likelihood of thrombosis when all three factors (low TAWSS,
high OSI and high RRT) mentioned above work together, and the
ILT may prevent the further growth of AAA.

4 Discussion

The combination of CFD and medical imaging data has been
widely used for hemodynamics simulation in the clinical assessment
of cardiovascular disease in patients. However, the traditional RW
simulation does not consider the deformation of the vessel wall,
which does not conform to the actual physiological conditions
(Vergara et al., 2017). Although the FSI method can simulate the
interaction of the vessel wall with blood, the results may differ from
the real hemodynamics due to the difficulty of obtaining patient-
specific vessel wall material parameters quickly and accurately
(Shamloo et al., 2020).

In this paper, the 21-time phases models in one cardiac cycle of
one AAA patient were reconstructed and the mesh was generated.
After that, the spatial coordinates of each mesh node at different
time-instants were calculated, then the UDF was used to control the
displacement of each node without considering the material
properties of the vessel wall. We also assumed the vessel wall as
rigid for another simulation, and the differences between the results
of these two simulations were compared to analyze the influence of
the vessel wall deformation on hemodynamics in AAA.

The spatial distribution of flow fields simulated by using the
MBM and assuming the vessel wall as rigid is similar. Notably, at
time-point d, the flow field near the AAA is very disorganized with a
large number of vortexes. It may indicate that aneurysm formation
may have undesirable effects on laminar flow patterns of blood,
which has the potential to damage the endothelial cells (Hsu et al.,
2001).

The TAWSS was calculated as the tangential component of
traction on the vessel wall through the cardiac cycle. Zambrano et al.
(2016) found that the ILT accumulated in areas of low TAWSS.
Once ILT initially gathered near the lumen wall, it enhanced the
effect of aggregation of new thrombus at regions where TAWSS was
low. In regions of low TAWSS, red blood cells, platelets, and other
substances within the blood were transported in a smaller area near
the wall, which indicated a stronger stagnation effect in the near-wall
region (Bilgi and Atalık, 2019).

TABLE 2 Comparison of the mean value of three parameters on the vessel wall
by using two methods.

Methods TAWSS(Pa) OSI RRT(Pa−1)

Moving Boundary 1.35 0.26 2.24

Rigid wall 1.65 0.15 1.98

FIGURE 10
(A) The initial cross-section of the maximum diameter of AAA. (B)
The cross-section of the maximum diameter of AAA was obtained
from the follow-up image data. (C) The overlapping region of low
TAWSS, high OSI, and high RRT obtained from theMB simulation:
is marked in red color. (D) The location of the thrombus was
reconstructed from the follow-up image data.
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The results of OSI, and RRT distribution on the vessel wall are quite
different using these two methods. We speculated these parameters
related to WSS strongly correlated with the deformation of the vessel
wall, according to Gallo et al., we selected the 10th and 20th percentile
for TAWSS, 80th and 90th values forOSI andRRT, which can provide a
more complete and proper analysis of the difference between the rigid
wall and moving boundary simulations.

High OSI indicates that during the movement of the blood vessel
wall, the direction changes the frequency of the shear stress near the
vessel wall is fast. This may be because when using the no-slip boundary
condition, the blood flow velocity at the near-wall surface changes
continuously during the cardiac cycle, as does the vessel wall. High OSI
damage to the endothelial cells is serious. Prolonged high OSI may
exacerbate changes in the orientation of endothelial cell alignment in
these regions (Bilgi and Atalık, 2019), cause inflammation in the intima
layer of the vessel wall and degeneration of elastin in the media layer of
aorta, and lead to an increased risk of thrombus formation (Meng et al.,
2014; Soldozy et al., 2019).

Besides, the high/low OSI is usually accompanied by high/low
RRT (Liu et al., 2021). Since high OSI causes damage to the
endothelium, which is accompanied by the release of clotting
factors, platelets, lipids and other substances, the blood
undergoes a deposition effect and adheres to the vessel wall
(Chen et al., 2018). A high RRT indicates the blood stays in the
low-velocity recirculation region of the aneurysm for a long time,
prolongs the contact time between blood substances and the low-
velocity layer near the vessel wall, and creates conditions for the
migration and aggregation of platelet white blood cells and
coagulation factors into the aneurysm wall (Zambrano et al.,
2016; Kelsey et al., 2017; Yeow and Leo, 2018).

In general, the ILT formation is associated with low TAWSS,
high OSI, and high RRT, which may cause damage to the intima of
the vessel wall in AAA, promote the inflammatory reaction on the
vessel wall, and release the coagulation factors and lead to the
formation and growth of thrombus.

The diameter of the maximum cross-section of AAA only
increases by 2.36 mm, while there is a large amount of ILT
formation in the anterior wall of the AAA. The ILT effectively
reduced wall stress in AAAs, which provided AAAs from rupture
(Lindquist Liljeqvist et al., 2020). A large strain constitutive relation
into patient-specific AAA simulations and demonstrated that the
presence of the ILT can significantly reduce wall stress by up to 38%
(Piechota-Polanczyk et al., 2015). Our results also suggested to some
extent that ILT could prevent AAA growth and rupture, so that the
diameter of the AAA does not increase significantly.

There is still considerable potential for improvements in this study.
We used the physiological data of the previous volunteer as the
boundary conditions for numerical simulation. The PCMRI and
ultrasound techniques can be used to set individual boundary
conditions for each patient (Peng et al., 2022). In addition, due to
the limitation of spatial resolution, it is difficult to accurately obtain the
deformation information of the visceral arteries. Therefore, this paper
only selected the AAA and iliac arteries to reconstruct patient-specific
models. The visceral arteries (such as the renal arteries, and the trunk
celiac artery) also needed to be considered in the numerical simulation.
Assuming the blood as Newtonian fluid and ignored its viscoelastic was
also the limitation of our study. We also consider collecting 4D CT
image data of more AAA patients for MB simulation.

In general, this paper has demonstrated the feasibility of
applying the MBM to the hemodynamics simulation within
AAA. It could describe the vessel wall deformation, and provide
effective reference information for clinical evaluation of the ILT
formation risk in AAA.

5 Conclusion

We simulated the hemodynamics in this paper under the in vivo
deformation of vessel wall based on 4D CTmedical image data, proved
the feasibility of the MBM, and compared the simulation results with
those assuming a rigid vessel wall. The overall spatial distributions of
flow fields andWSS by using theMBM and assuming a rigid vessel wall
are similar. Besides, deformation of the vessel wall leads to the lower
TAWSS, higher OSI and higher RRT distributions. The simulation
results obtained from the MBM reflect a higher blood stagnation effect
inAAA.And the combination of theMBMwith 4DCT image datamay
provide a new idea for the clinical prediction of the ILT formation risk
in AAA.
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