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Introduction: Clustering is usually the first exploratory analysis step in empirical

data. When the data set comprises graphs, the most common approaches focus

on clustering its vertices. In this work, we are interested in grouping networks with

similar connectivity structures together instead of grouping vertices of the graph.

We could apply this approach to functional brain networks (FBNs) for identifying

subgroups of people presenting similar functional connectivity, such as studying

a mental disorder. The main problem is that real-world networks present natural

fluctuations, which we should consider.

Methods: In this context, spectral density is an exciting feature because graphs

generated by di�erent models present distinct spectral densities, thus presenting

di�erent connectivity structures. We introduce two clustering methods: k-means

for graphs of the same size and gCEM, a model-based approach for graphs of

di�erent sizes. We evaluated their performance in toy models. Finally, we applied

them to FBNs ofmonkeys under anesthesia and a dataset of chemical compounds.

Results: We show that our methods work well in both toy models and real-

world data. They present good results for clustering graphs presenting di�erent

connectivity structures even when they present the same number of edges,

vertices, and degree of centrality.

Discussion: We recommend using k-means-based clustering for graphs when

graphs present the same number of vertices and the gCEM method when graphs

present a di�erent number of vertices.

KEYWORDS

clustering, graphs and networks, graph theory, spectral methods, electrocorticography,

complex networks

1. Introduction

Functional brain networks (FBNs) (Friston, 2011; Fukushima et al., 2011) are

connectivity structures derived from brain recordings such as functional magnetic resonance

imaging (fMRI), electroencephalogram (EEG), or electrocorticogram (ECoG) (Sporns et al.,

2004; van Straaten and Stam, 2013). The network’s vertices represent the brain’s regions.

The weight of an edge connecting two vertices represents the synchrony of the brain’s

vertices signals. The most commonly used measure is the Pearson correlation. We infer that

regions that activate together may be involved in similar functions. Thus, we assume the FBN

captures a functional organization of the brain (Lieǵeois et al., 2020).

It is common to use community detection strategies for identifying sub-networks in the

FBNs (Figure 1A). The community detection methods consider the highly interconnected

vertices of the same cluster. Examples of algorithms are graph partitioning (Kernighan and

Lin, 1970), hierarchical clustering (Friedman, 2017), k-means (MacQueen et al., 1967), and

spectral clustering (Spielman and Teng, 2007; von Luxburg, 2007) [for review of methods for

clustering a graph’s vertices, see Fortunato (2010)].
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FIGURE 1

Clustering network strategies. (A) Usual graph clustering methods:

cluster vertices of a graph into subgraphs. Highly connected vertices

form one cluster. (B) Our goal: cluster graphs into groups of similar

connectivity structures. In this example, we have graphs generated

by three di�erent random graph models. Graphs of the same model

and set of parameters belong to the same cluster.

Another possibility is to group whole FBNs (Figure 1B). The

classic approach would be graph kernel methods for measuring

the similarity between graphs and a supervised approach for graph

classification (Yanardag and Vishwanathan, 2015; Kriege et al.,

2019). This method depends on the considered graph centrality

measures, which can be a drawback depending on the graph

models involved. For example, the degree centrality is the most

straightforward measure. However, it does not consider different

types of paths involving the vertices. Thus, a method based solely

on the degree centrality would not differentiate between a Watts-

Strogatz and a k-regular graph because both present vertices with k

neighbors.

In this work, we are not interested in clustering vertices of

the graph (Figure 1A). We aim to group graphs based on the

similarity of their connectivity structure (Figure 1B). We propose

graph clustering methods to group whole graphs together based

on their graph connectivity structure instead of traditional graph

centrality measures.

We know that different random graph models generate

different graphs’ spectral densities (Bollobás and Béla, 2001;

Takahashi et al., 2012). Thus we propose using the graph spectral

density (Wilson and Zhu, 2008; Wills and Meyer, 2020) as a

resume measure of the graph capable of capturing its connectivity

structure. Another advantage of this measure is its independence

of vertex correspondence, which helps identify networks presenting

similar connectivity patterns (Demirci et al., 2008; Wilson and Zhu,

2008).

Based on the spectral density, we propose a measure of

distance and a k-means-inspired algorithm (MacQueen et al.,

1967; Lloyd, 1982) to cluster graphs based on the spectral density.

However, graphs generated by the same random graph model and

parameters, i.e., graphs belonging to the same cluster, may present

different sizes. In this case, the spectral densities’ supports differ,

leading to unreal distances between graphs. Therefore, we will use

a model-based approach to cluster graphs of different sizes. The

idea is based on the Gaussian mixture clustering approach (Celeux

and Govaert, 1992, 1995), where we represent each cluster by a

Gaussian distribution. Here we assume that two or more graph

models generate the networks. Thus, we assign networks generated

by the same model to the same cluster and networks generated by

different models to different clusters.

We can use the algorithms proposed here to study many

types of complex networks and help understand their connectivity

structure. We designed three simulation scenarios with varying

graph sizes and random graph models to assess the algorithms’

performance. Finally, we illustrate the application of our proposed

methods in two contexts: clustering the functional brain networks

during anesthesia procedure and clustering two sets of chemical

compounds.

2. Materials and methods

2.1. Goal

Our objective is to cluster graphs that present similar

connectivity structures. In other words, we want to group the

graphs generated by the same random graph model with the same

parameters.

Thus, let N and K be the number of graphs and clusters. Our

goal consists of grouping theN graphs intoK clusters so that graphs

generated by the same random graph model belong to the same

group.

2.2. Graph spectral density

Let G = (V ,E) be a graph composed of a set V of |V| vertices
and a set E of |E| edges where each edge in E connects two vertices

in V . Any undirected graph G can be represented by its |V| × |V|
adjacency matrix A where Aij = Aji = 1 (i, j = 1, . . . , |V|) if
vertices i and j are connected, and 0 otherwise.

The spectrum of G is the set of eigenvalues (λ1 ≥ λ2 ≥ . . . ≥
λ|V|) of the adjacency matrixA. Notice that sinceG is undirected,A

is symmetric and consequently (λ1, λ2, . . . , λ|V|) are real. Let λ be

the vector composed of all eigenvalues of a given graph G and δ be

the Dirac delta function. Then the spectral distribution of a random

graph G is defined as

ρG(λ) =
1

|V|

|V|
∑

j=1

δ(λ − λj). (1)

To estimate the spectral density (Santos et al., 2021), we use a

Gaussian kernel regression with the Nadaraya-Watson estimator

(Nadaraya, 1964; Watson, 1964). We set the bandwidth of the

Gaussian kernel by (λ1 − λ|V|)/number of bins, and the number

of bins by using the Sturges criterion (Sturges, 1926). Finally, we

normalize the area below the curve to one.
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2.3. Distance measures between graph
spectra

2.3.1. Kullback-Leibler divergence
As aforementioned, two different spectral densities indicate that

different random graph models or sets of parameters generated

the graphs. Thus, we can use the spectral density divergence to

measure dissimilarity between graphs. Here we use the Kullback-

Leibler divergence, hereafter called the KL divergence. Let ρG1 be

the spectral density of a given graph and ρG2 be the reference

spectral density. Then we define the KL divergence as

KL(ρG1 |ρG2 ) =
∫ +∞

−∞
ρG1 (λ) log

ρG1 (λ)

ρG2 (λ)
dλ, (2)

if the support of ρG1 contains the support of ρG2 and

KL(ρG1 |ρG2 ) = ∞ otherwise (Takahashi et al., 2012;

de Siqueira Santos et al., 2016). To solve this equation

computationally, we replace the integral with the Riemann

sum. Note that the KL divergence is not a symmetrical measure,

i.e., KL(ρG1 |ρG2 ) 6= KL(ρG2 |ρG1 ). Thus, the KL divergence is useful

in cases where the reference is clear.

2.3.2. Jensen-Shannon divergence
In cases where we wish to compare graphs, but it is unclear

which spectral density is the reference, we can use the Jensen-

Shannon divergence (JS). Let ρGm = 1
2 (ρG1 + ρG2 ). Then we define

the JS divergence between two spectral densities ρG1 and ρG2 as

JS(ρG1 , ρG2 ) =
1

2
KL(ρG1 |ρGm )+

1

2
KL(ρG2 |ρGm ). (3)

The JS divergence is symmetric, i.e., JS(ρG1 , ρG2 ) =
JS(ρG2 , ρG1 ), and non-negative. Also, the square root of the

JS divergence satisfies the triangle inequality. Thus, we can use
√

JS(ρG1 , ρG2 ) as a measure of the distance between spectral

densities ρG1 and ρG2 .

In the following sections, we will describe two clustering

algorithms for graphs based on Kullback-Leibler and Jensen-

Shannon divergences.

2.4. K-means-based graph clustering
algorithm

K-means is one of the most popular clustering algorithms due

to its simplicity. The algorithm consists of initializing K clusters’

centroids and iteratively assigning the items to the cluster with

the nearest centroid. To adapt k-means for our graphs clustering

problem, we will first represent each graph by its spectral density.

We define the K centroids as the arithmetic mean of all spectral

densities belonging to the cluster. The JS divergence gives the

distance between the graph and the cluster centroid (see Section

2.3.2). The Algorithm 1 describes the k-means procedure for

graphs.

The k-means is sensitive to the initial condition, i.e., results

may change depending on how the algorithm assigns the N graphs

1: Compute the spectral densities: For each graph Gi, compute

its spectral density ρGi .

2: Initialize the clusters: Let l
Gi

k
= 1 if graph Gi belongs to

the kth cluster, and l
Gi

k
= 0 otherwise ( k = 1, . . . ,K).

Initialize l
Gi

k
by randomly assigning each graph Gi

to one of the K clusters.

3: Compute the centroid:

ρGk
=

∑N
i=1 l

Gi

k
ρGi

∑N
i=1 l

Gi

k

.

4: Compute the distance of each graph to all clusters: For each graph

Gi, compute

d
Gi

k
=

√

JS(ρGi , ρGk
),

i.e., the distance between each graph Gi and the

kth cluster centroid.

5: Clustering step: Update l
Gi

k
by assigning each graph Gi

to the kth cluster, which provides the minimum

distance d
Gi

k
.

6: Recalculate the centroids: Update ρGk
for both clusters that

received and lost the graph Gi.

7: Test for convergence: Go to step 4 until no graph is

reassigned.

Algorithm 1. K-means graph clustering algorithm.

Input: The N graphs and the number of clusters K.

Output: The K clusters.

to the clusters in step 2. Moreover, it uses a greedy search (step

3), i.e., the solution depends on the order of the assignment of

graphs to the clusters. Consequently, this method may not find

the optimal global solution. Thus, we recommend running the k-

means algorithm several times with different initial conditions and

selecting the clustering result with the largest silhouette statistic

(Rousseeuw, 1987).

2.5. Model-based clustering algorithm

Graphs of a different number of vertices have a different

amount of eigenvalues. Thus their spectral densities are not directly

comparable. For example, suppose we want to classify two graphs

generated by an Erdös-Rényi model with p = 0.1. In this case, we

want to cluster both graphs since the same model generated them.

However, if the first graph has 100 vertices and the second has

20 vertices, they would have 100 and 20 eigenvalues, respectively.

Thus, their spectral densities would differ due to the number of

eigenvalues and not because different models generated them. We

know a normalization for some random graph models’ spectral

density allows comparing graphs of different sizes. For example,

we can compare two graphs’ spectral densities generated by an

Erdös-Rényi random graph model by dividing the eigenvalues

by
√
|V| (Farkas et al., 2001; Tran et al., 2013). However, the

spectral density’s normalization is unknown for most random

graph models. Thus, we cannot use our k-means-based clustering

method for graphs with a different number of vertices. To solve

this problem, we propose a model-based method that can cluster
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correctly even when graphs present a different number of vertices.

The idea is inspired by the classification expectation-maximization

algorithm. First, we will describe a parameter estimator for random

graph models, which will be helpful for the clustering algorithm.

2.5.1. Parameter estimator for graphs
Assuming that a given random graph model generated the

graph, we can use the KL divergence to build a parameter estimator.

Let M be a random graph model, ρG be the spectral density of

graph G, and {ρM(θ)} be a parametric family of spectral densities

of the model M indexed by a real vector θ of possible parameters

for the model. Assume that there is a value θ∗ of the parameter θ

that minimizes the KL(ρG|ρM(θ)). An estimator θ̂ of θ∗ is given by

Takahashi et al. (2012) and de Siqueira Santos et al. (2016)

θ̂ = argmin
θ

KL(ρG|ρM(θ)). (4)

The theoretical spectral density is unknown for most random

graph models. Thus, we estimate ρM(θ) using a Monte Carlo

approach that computes the average spectral distribution of

50 graphs generated by the random graph model M with

parameter θ .

The parameter estimator based on the KL divergence is

implemented in the function graph.param.estimator of the

R package statGraph (https://CRAN.R-project.org/package=

statGraph).

2.5.2. The expectation maximization-like
algorithm

One way to deal with the traditional clustering problem is by

applying a model-based method. In this approach, we represent

each cluster by a parametric distribution, usually Gaussian. We

thenmodel the entire dataset by amixture of Gaussian distributions

and group the items using the expectation-maximization (EM)

algorithm (Celeux and Govaert, 1992, 1995). Based on this idea,

we propose an EM-inspired method for graphs. We assume

that K random graph models generate the N graphs. Then,

we carry out a parameter estimation for each graph using the

method described in Section 2.5.1. First, we initialize each cluster’s

parameters. In the expectation step, we use the KL divergence to

measure the dissimilarity between the graph spectral density and

each cluster model spectral density. We compute the conditional

probability that a graph belongs to a cluster as the inverse of

the KL divergence normalized between 0 and 1. We label the

graph as belonging to the cluster with the highest conditional

probability. In the maximization step, we re-estimate the cluster

parameter as an average of the parameters estimated for each

cluster’s graphs. We repeat the expectation and maximization

steps until convergence. This algorithm’s outputs are the graph

clusters and the estimated model parameters for each cluster.

The Algorithm 2 describes the graph classification expectation-

maximization (gCEM) approach.

Note that this algorithmmay also assume that different random

graph models generate each cluster. However, in this case, we

1: Initialize the parameters θ̂k of the K random graph

models Mk ( k = 1, . . . ,K).

2: Expectation step: Compute

tk(Gi) =
1/KL(ρGi |ρMk

(θ̂k))
∑N

i=1 1/KL(ρGi |ρMk
(θ̂k))

,

i.e., the “conditional probability” that graph

Gi arises from the kth random graph model with

parameter θ̂k.

3: Clustering step: Let lk(Gi) be a variable where lk(Gi) = 1

if graph Gi belongs to the kth cluster, and

lk(Gi) = 0, otherwise. Update lk(Gi) by assigning

each graph Gi to the kth random graph model, which

provides the maximum current tk(Gi).

4: Maximization step: For each graph Gi in cluster k,

estimate the parameter θ̂Gi , assuming that the graph

Gi arises from model Mk, by using equation 4.

Compute

θ̂k = lk(Gi)

∑N
i=1 θ̂Gi

∑N
i=1 lk(Gi)

,

for k = 1, . . . ,K.

5: Go to step 2 until convergence of

tk(Gi)× KL(ρGi |ρMk
(θ̂k)).

Algorithm 2. Graph clustering expectation maximization - gCEM.

Input: The N graphs, the number of clusters K, and the K random graph

modelsM1,M2, . . . ,MK .

Output: The K clusters and the set of estimated parameters for each cluster

(random graph model).

propose to run a model selection approach (Takahashi et al., 2012)

for each graph.

2.6. Random graph models

We use random graph models mainly to study the structural

properties of real-world networks. We assume that all graphs are

unlabelled, undirected, and without self-loops. In the following

sections we briefly describe five random graphmodels: Erdös-Rényi

(Erdös and Rényi, 1959), geometric (Penrose, 1999), k-regular

(Bollobás and Béla, 2001), Watts-Strogatz (Watts and Strogatz,

1998), and preferential attachment (Barabási and Albert, 1999).

2.6.1. Erdös-Rényi random graph model
The Erdös-Rényi random graphmodel (Erdös and Rényi, 1959)

consists of generating a graph of |V| vertices and connecting each

pair of vertices by an edge with probability p. An alternative version

is uniformly sampling |E| edges among all possible edges in the

graph.

2.6.2. Geometric random graph model
The geometric random graph model (Penrose, 1999) first

generates a graph by uniformly placing |V| vertices in the Rd space.
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Then, it connects two vertices by an edge if their distance is smaller

than a radius r. In all our experiments, we set d = 2.

2.6.3. K-regular random graph model
K-regular random graph model (Bollobás and Béla, 2001)

generates graphs where all the |V| vertices present the same degree

k. We call vertex degree the number of edges incident to the vertex.

This model generates graphs randomly connecting vertices by trial

and error, with the vertices degree being the only constraint.

2.6.4. Watts-Strogatz random graph model
The Watts-Strogatz random graph model (Watts and Strogatz,

1998) generates graphs with |V| vertices according to a generative

algorithm as follows. First, create a ring lattice with |V| vertices
connecting each vertex with its k nearest neighbors, k/2 on each

side. Then, for every edge (i, j) (where i < j), with probability

p replace the edge by (i, l), where l 6= i 6= j is randomly

selected among all vertices. This model creates graphs with “small-

world” (high local vertex clustering and small average shortest path)

properties, which we observed inmany real-world networks. Notice

that as parameter p → 1, the Watts-Strogatz model approaches

an Erdös-Rényi model. Its spectral density also approaches the

semicircle distribution typical of the Erdös-Rényi model (Farkas

et al., 2001).

2.6.5. Preferential attachment random graph
model

Preferential attachment random graph models generate graphs

with a power-law (“scale-free”) degree distribution (Barabási and

Albert, 1999). New vertices in the network tend to connect

to the vertices with the highest degrees. This tendency creates

“hub” vertices, i.e., vertices with a very high degree. Preferential

attachment models have many implementations, of which the

most known is the Barabási-Albert model (Barabási and Albert,

1999). Below we describe the preferential attachment algorithm as

implemented in the igraph R package.

Start with m ≤ |V| vertices in a clique, i.e., all vertices are

connected. At each iteration, add a new vertex with m connections

to the graph’s previously added vertices. The probability that

the new vertex will choose a given vertex vi to connect with is

proportional to the degree of vertex vi and the scaling factor ps

as follows: P(vi) ∼ degree(vi)
ps. New vertices are added until the

graph contains |V| vertices.

2.7. Markov random switching algorithm

In simulation 2 scenario (b) described in section 2.8, we wish

to gradually disturb a ring lattice’s connectivity while preserving

network size, density, and degree sequence. To this end, we rewire

edges on the original network following the Markov random

switching algorithm (de Lange et al., 1995; Maslov and Sneppen,

2002) described as follows. Select a pair of edges (i1, j1), (i2, j2),

where i1 6= j1 6= i2 6= j2 and try to rewire the edges to become

(i1, j2), (i2, j1). Select a new pair of edges if any new edges already

exist in the network.

2.8. Simulations

To evaluate the performance of our algorithms, we designed

three simulations. In each simulation scenario, we defined the “true

cluster” as the set of graphs generated by the same random graph

modelM and the same set of parameters θ . We describe the set-up

of the simulations’ scenarios as follows:

1. Graphs of the same size. This simulation is composed of six

scenarios as follows:

(a) three Erdös-Rényi random graph models with parameters

p1 = 0.2, p2 = 0.25, and p3 = 0.3;

(b) three geometric random graph models with parameters r1 =
0.15, r2 = 0.25, and r3 = 0.35;

(c) three k-regular random graph models with parameters k1 =
2, k2 = 4, and k3 = 6;

(d) three Watts-Strogatz random graph models with parameters

p1 = 0.05, p2 = 0.10, and p3 = 0.15 and parameter k = 16

to all clusters;

(e) three preferential attachment random graph models with

parameters ps1 = 1, ps2 = 2, and ps3 = 3 and parameter

m = 10 to all clusters;

(f) and one geometric random graph model with parameter r =
0.1, one preferential attachment random graph model with

parameters ps = 1.5 and m = 10, and one k-regular random

graph model with parameter k = 2.

Notice that there are three clusters in each scenario. We set the

number of graphs as 10 per cluster, i.e., a total number of N =
30 graphs. To evaluate the graph size’s effect on the clustering

algorithm, we set |V| = 30, 60, 90, 120.

2. Graphs of the same size and number of edges. This simulation is

composed of two scenarios as follows:

(a) one Watts-Strogatz random graph model with parameters

k = 20 and p varying from 0 to 1, in steps of 0.1, and

one Erdös-Rényi random graph model with parameter |E| =
1 000. Notice that, as p increases, the Watts-Strogatz graphs

become more similar to an Erdös-Rényi graph. In the end,

the graphs should not be distinguishable.

(b) start with one Watts-Strogatz random graph model with

parameters p = 0 and k = 20 and one k-regular random

graph model with parameter k = 20. Then, carry out the

Markov random switching algorithm described in section

2.7 to rewire 100, 200, . . . , 1 000 pairs of edges of the Watts-

Strogatz graphs. Notice that, as the number of edges rewired

increases, the Watts-Strogatz graphs become more similar

to a k-regular graph. In the end, the graphs should not be

distinguishable.

For both scenarios, there are two initial clusters with different

connectivity structures. The first is composed of ring-lattice

graphs, and the second may be composed of either Erdös-Rényi

or k-regular graphs. We gradually increase perturbations in the

connectivity of the ring-lattice graphs while keeping the second
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cluster parameters fixed. This process makes the Watts-Strogatz

graphs approach the structure of the Erdös-Rényi or k-regular

graphs. Each cluster is composed of 10 graphs (N = 20) with

|V| = 100 vertices.

3. Graphs of different sizes. This simulation comprises six scenarios,

as described in simulation 1. The difference is that we sample

the size uniformly from the interval [30, 120] for each graph. In

other words, graphs belonging to the same cluster may present

different sizes.

We ran each simulation’s scenario 100 times. We generated

graphs independently for each scenario.

2.9. Real-world networks

To illustrate the applicability of our clustering algorithms to

real-world problems, we describe two datasets.

2.9.1. Functional brain networks
To evaluate the applicability of k-means to real-world data, we

used the “anesthesia task” data (Yanagawa et al., 1987) available

at the neurotycho project website (http://neurotycho.org/). The

goal was to determine when the functional brain network changes

its state between awake and under anesthesia. This dataset is

composed of 128 (channels) electrocorticogram (ECoG) time series

collected from a monkey (Macaca fuscata) at a sampling rate of 1

kHz and down-sampled to 200 Hz [see Nagasaka et al. (1911) for

further details]. We analyzed the data from experiments performed

on two days with the same monkey, Chibi, under the anesthetic

agent Medetomidine. To avoid misunderstandings, we call the data

from days 1 and 2 Chibi 1 and 2, respectively. First, ECoG data

was collected for a few minutes with the monkey awakened and

seated with the arms restrained. At the time points 2 581 seconds

for Chibi 1 and 2 955 seconds for Chibi 2, an anesthetic injection

was applied to the monkey. We defined the time point of loss of

consciousness (LOC) (4 292 seconds for Chibi 1 and 4 155 seconds

for Chibi 2) as the moment the monkey no longer responded to the

touch to its hand or the nostril with a cotton swab. A researcher

observed the monkey while under anesthesia and tested if there

was a response to physical stimuli. We defined the time point of

recovery (7 295 seconds for Chibi 1 and 6 533 seconds for Chibi

2) when the monkey responded to physical stimuli with the same

intensity as before the anesthesia. We divided the ECoG time series

into a one-second window to construct the monkey’s functional

brain networks (Rubinov and Sporns, 1910). We calculated the

Pearson correlation coefficient among each window’s time series,

thus obtaining a (128 × 128) correlation matrix per second. We

created an adjacency matrix of the graph based on the correlation

matrix. We assigned one in the adjacency matrix for correlations

greater than a cut-off of 0.5. We zeroed otherwise. We sampled

one graph every 10 seconds for our analysis, totaling a time

series of 876 and 794 graphs for Chibi 1 and 2, respectively. It

is essential to mention that other more powerful measures for

studying functional connectivity, such as coherence, phase lag

index, and Granger causality, could also be explored. We opted

for using correlation to illustrate the application of our clustering

algorithms on brain networks.

2.9.2. Chemical compounds
To verify whether gCEM can cluster empirical graphs, we

applied it to a dataset to which the clusters are known. We

combined two chemical compound datasets, MUTAG and BZR,

publicly available at http://graphkernels.cs.tu-dortmund.de. The

MUTAG dataset comprises 188 graphs with an average number

of vertices of 17.93 ± 4.58 [mean ± standard deviation (sd)], an

average number of edges of 39.58± 11.39, and an average diameter

of 8.21 ± 1.84 edges. The BZR dataset comprises 405 graphs with

an average number of vertices of 35.75 ± 7.26, an average number

of edges of 76.71 ± 15.40, and an average diameter of 11.65 ± 2.11

edges. The goal is to evaluate whether gCEM can obtain the two

clusters composed of graphs from the MUTAG dataset and BZR

dataset.

2.10. Clustering performance evaluation

The Jaccard index is a commonly used measure for clustering

comparison and is present in many packages (Gates and Ahn,

2019). It represents a measure of similarity between the expected

and obtained clustering (Levandowsky and Winter, 1971). A

Jaccard index close to 1 indicates most elements are in the correct

cluster (Tibshirani and Walther, 2005). We computed the Jaccard

index using Rpackage clusteval .

3. Results

3.1. Applications to simulated data

To evaluate the proposed clustering algorithms’ performance,

we apply the k-means algorithm to the simulation 1 scenarios

described in Section 2.8. In this simulation, each scenario is

composed of three clusters. The scenarios from (a) to (e) are

composed of three clusters generated by the same random graph

model but with different parameters. Scenario (f) is composed of

three clusters represented by different models. We designed the

simulation scenarios to show that our proposal works correctly

on many different types of graph structures. To evaluate if the

algorithm performs better as the number of vertices increases, we

ran each scenario with |V| = 30, 60, 90, and 120. We assume that

graphs generated by the same model and parameters belong to the

same cluster. Figure 2 shows the results obtained by the k-means

on simulation 1. The Jaccard indices increase with the number of

vertices in the graphs. In other words, we empirically show that

the larger the graph, the better the clustering performance of k-

means. It is an expected result because the graph’s spectral density

converges to an expected density when the number of vertices tends

to infinity (McKay, 1981; Farkas et al., 2001; Blackwell et al., 2007;

Dumitriu et al., 2012; Tran et al., 2013). Please notice that a dataset
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FIGURE 2

Each group of bars represents a scenario of simulation 1 repeated 100 times for graphs’ sizes 30, 60, 90, and 120. The scenarios are composed of the

following random graph models: Erdös-Rényi (ER), geometric (GRG), k-regular (KR), Watts-Strogatz (WS), Preferential Attachment (PA), and a mixture

of geometric, k-regular, and preferential attachment random graph models (MIX). The y-axis represents the average Jaccard index. Error bars

represent 95% confidence intervals. The proposed k-means performs better as the graph size increases.

of small graphs (|V| < 60) might be a limitation for applying the

method.

In simulation 2, we are interested in verifying whether the k-

means-based method can cluster correctly even when the graphs

have the same number of edges. In scenario (a), we start with

two clusters: one composed of Erdös-Rényi graphs and the other

composed of Watts-Strogatz graphs, all with a fixed number of

vertices (|V| = 100) and edges (|E| = 1 000). The Watts-Strogatz

parameter started at p = 0 (regular ring lattice). In every run, we

increased the Watts-Strogatz parameter p by 0.1 to increase the

edge rewiring until its structure becomes similar to the Erdös-Rényi

random graph (p = 1). Figure 3A illustrates scenario (a). Figure 3B

shows the mean Jaccard index of 100 repetitions for each p and the

95% confidence interval. We can see that from p = 0 to p = 0.3,

the k-means correctly clustered all the graphs (Jaccard index = 1).

When p = 0.4, it misplaces some graphs as represented by the lower

Jaccard index. The algorithm classifies the graphs by chance from

p = 0.5 to p = 1. Therefore, this result shows that our proposed

k-means for graphs can correctly cluster graphs of the same size

and number of edges. However, as the structure becomes similar, it

misclassifies as expected.

Besides the number of vertices and edges, another important

graph feature is the degree distribution, which may provide enough

information to distinguish between clusters. Thus, in simulation 2,

we propose scenario (b) that keeps these three features fixed. We

start with two clusters: one composed of Watts-Strogatz graphs

and the other composed of k-regular random graphs, all with the

same number of vertices (|V| = 100), edges (|E| = 1 000), and

vertex degree (d = 20). In every run, we generate Watts-Strogatz

graphs with parameter p = 0 and rewire the edges using the

Markov random switching algorithm described in Section 2.7. We

increase the number of rewires by 100 every run, so the Watts-

Strogatz graphs approach k-regular random graphs structure as

the number of rewires increases. Figure 3C illustrates the design

of simulation 2 scenario (b). Figure 3D shows the mean Jaccard

indices of 100 repetitions for each number of rewires on the Watts-

Strogatz graphs and the 95% confidence interval. From 0 to 300

rewires, the clustering algorithm could cluster all graphs correctly.

At 400 rewires, it misplaced some graphs in some of the 100

repetitions, showing a mean Jaccard index lower than 1. Between

500 and 700 rewires, the algorithm often misplaced some graphs

showing lower Jaccard indices. From 800 rewires, the algorithm

clustered the graphs by chance.

Results in Figure 3 show that our proposed k-means-based

method for graphs using the spectral distribution as a resume

measure could correctly classify graphs with a different connectivity

structure. The question of whether we could achieve the same

results using graph centralities more commonly adopted in

the literature remains. Thus, we ran simulation 2 using four

graph centrality measures: betweenness, closeness, degree, and

eigenvector centrality. In Figure 4A, with results from scenario

(a), we can see that closeness centrality had the best performance,

correctly classifying all graphs from p = 0 to p = 0.2. In

panel (B), with results from scenario (b), closeness centrality again

had the best performance, correctly classifying all graphs with the

number of rewires from 0 to 200. In Figure 4B, neither degree nor

eigenvector centrality distinguished the clusters. In other words, the

method classified all graphs in the same cluster.

Now we want to test whether the spectral density is a better

feature for clustering than centrality measures. We performed

ANOVA to compare (Figures 3B, D, 4A, B). We plot the points

with a p-value < 0.05 after Bonferroni correction for multiple

tests in red. The spectral distribution obtained greater classification

accuracy in both cases than the centrality-based method. It

happened mainly in the interval of approximately [0.2, 0.5] for

the Watts-Strogatz parameter and [200, 600] for the number of

rewires. The graphs are entirely different for small Watts-Strogatz

parameters or fewer rewires. In other words, most clustering
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methods can correctly group them. On the other hand, for high

Watts-Strogatz parameters or a high number of rewires, the graphs

become very similar. Thus, most of the clustering algorithms fail.

Empirical graphs rarely present the same size. Therefore, we

propose the gCEM algorithm, described in Section 2.5.2. We

evaluated gCEM using simulation 3 described in Section 2.8. This

simulation comprises the same scenarios used in simulation 1.

However, we sample the graphs’ number of vertices uniformly

between 30 and 120. Figure 5 shows that gCEM presents a good

performance in all evaluated scenarios. Since the graph’s sizes varied

from 30 to 120, the expected mean number of vertices is 75. Notice

that the results are similar to ours obtained when the graph’s sizes

are between 60 and 90 in Figure 2.

3.2. Applications to empirical data

3.2.1. Functional brain networks
In the anesthesia task dataset, we are interested in identifying

when the monkey’s functional brain network (FBN) state changes

from awake to anesthetized (or vice-versa). In clinical practice, the

loss of consciousness (LOC) time point is usually established by

responsiveness to auditory or touch stimuli (An et al., 2018). Here

we propose to cluster the monkey FBNs into awake or anesthetized

groups and identify the monkey’s mental state transition points.

Since all the FBNs present the same number of vertices, we

applied the proposed k-means. Notice that we have a biological

duplicate, i.e., two datasets collected on different days for the same

monkey. Thus, we carried out the same analysis on the second

day. For each FBN, we obtained a label defining which cluster it

belongs to. We adopted label 1 to represent the awakened state

and label 0 to represent the anesthetized state. To identify the

mental state transition point, we divided the FBNs into two subsets:

one referring to the transition from awake to anesthetized (LOC

point) and the other referring to the transition from anesthetized

to awake (recovery point). We included the FBNs obtained from

the experiment’s beginning until the anesthetic injection time point

for the first subset. We included the same amount of FBNs after the

anesthetic injection to keep it as a central reference. For the second

subset, we included the FBNs obtained from the time point the

researcher certified that the monkey was awake to the experiment’s

end. We included the same amount of FBNs before the researcher

verified that the monkey was awake to keep this point as a central

reference. Since the transition between mental states is smooth,

we expected to see a time window where the graphs are randomly

classified until the transition stabilizes. We estimated the LOC and

recovery time points by computing a centered moving average of

50 points on each subset’s labels. We predicted LOC and recovery

time points as the central point of the window that first resulted in

an average lower and higher than 0.5, respectively.

The left panels of Figure 6 represent the first subset of graphs

for the transition from awake to anesthetized. The two panels

on the right represent the transition from anesthetized to awake

graphs. The x and y-axes represent the time and the clustering label,

respectively. Each time point contains a corresponding FBN for

the monkey represented by a black circle indicating its predicted

mental state at that moment. The solid green vertical lines on the

FIGURE 3

Graphical representation and results of simulation 2. (A) Graphical

representation of scenario (a), i.e., varying Watts-Strogatz (WS)

graphs parameter until it approaches an Erdös-Rényi (ER) graph. (B)

Results of scenario (a). Each point represents the average Jaccard

index of 100 runs. The shaded area represents the 95% confidence

interval. (C) Graphical representation of scenario (b), i.e., rewiring

Watts-Strogatz (WS) graphs edges until it approaches a k-regular

(KR) graph. (D) Results of scenario (b). Each point represents the

average Jaccard index of 100 runs. The shaded area represents the

95% confidence interval. The Jaccard index of 0.32 corresponds to

50% accuracy for both scenarios.

left panels represent the moment of the anesthetic injection. The

blue solid vertical lines represent when the researcher certified the

monkey stopped responding to physical stimuli. The dashed blue

vertical lines represent our predicted LOC time point. We observe

that the estimated LOC time point is after the anesthetic injection

point and before the researcher certifies themonkey is anesthetized.

The predicted LOC time point precedes the moment the researcher

indicated that the monkey did not respond to external stimuli by 22

minutes for Chibi 1 and 14minutes for Chibi 2. On the right panels,

the solid orange vertical lines represent the moment the researcher

certified the monkey started responding to physical stimuli again

with the same intensity before the anesthetic injection. The orange

dashed lines represent our predicted time point of recovery from

the anesthesia. The predicted time point precedes the moment

the researcher indicates the monkey was awake by 3.8 minutes

for Chibi 1 and 2.5 minutes for Chibi 2. Our results align with

expectations and estimate when the monkey’s brain state’s change

occurs before the researcher’s observations.
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FIGURE 4

Results of clustering graphs in simulation 2 using betweenness, closeness, degree, and eigenvector centrality measures. (A) Results of scenario (a). (B)

Results of scenario (b). Each point represents the average Jaccard index of 100 runs for both scenarios. The shaded area represents the 95%

confidence interval. The Jaccard index of 0.32 corresponds to 50% accuracy. The points in red represent a p-value < 0.05 for the ANOVA after

Bonferroni correction for multiple tests. In both scenarios, all centrality measures presented a Jaccard index < 1 for lower Watts-Strogatz parameters

and fewer rewires compared to results in Figure 3.

To verify whether our results are robust to the adopted cut-off

in constructing the adjacency matrix (Garrison et al., 2011) (the

cut-off was 0.5, as described in section 2.9), we experimented with a

cut-off of 0.45 and 0.55. Our results and conclusions did not change

(see Supplementary Figure S1).

3.2.2. Chemical compounds
Here we combined two different chemical compound datasets,

namely MUTAG and BZR. For further details about these

datasets, see Section 2.9. We aim to evaluate whether the

clustering algorithm can identify from which dataset each chemical

Frontiers inNeuroscience 09 frontiersin.org

https://doi.org/10.3389/fnins.2023.926321
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Ramos et al. 10.3389/fnins.2023.926321

FIGURE 5

Each bar represents a scenario of simulation 3 in 100 repetitions. We

sampled the sizes of the graphs uniformly between 30 and 120. The

scenarios are composed of the following random graph models:

Erdös-Rényi (ER), geometric (GRG), k-regular (KR), Watts-Strogatz

(WS), preferential attachment (PA), and a mixture of geometric,

k-regular, and preferential attachment random graph models (MIX).

The y-axis represents the average Jaccard indices obtained in 100

repetitions. Error bars represent 95% confidence intervals. The

gCEM algorithm clustered graphs correctly, even when the sizes of

the graphs are di�erent.

compound came. Since the compounds’ graphs present different

vertices, we used gCEM. To define which random graph model

best fits the chemical compounds, we applied the model selection

approach described in Takahashi et al. (2012). The model selection

approach consists of choosing the model that minimizes the KL

divergence between the spectral densities of the graph and the

model. The model selection approach chose the Watts-Strogatz

random graph model for 96.12% of the chemical compounds (the

model selection approach classified the remaining 23 compounds

as Erdös-Rényi). This result does not mean that the Watts-Strogatz

model is the one that generated the molecular networks, but

instead that it is the best one among the options evaluated.

We analyzed the spectral densities obtained by our adjusted

network and the actual chemical compound to verify whether the

Watts-Strogatz model is a good representation of the chemical

compounds. Figure 7 presents an illustrative sample of 20 chemical

compounds and the adjusted spectral densities. The gray zone

is the 95% confidence interval for the adjusted spectral density.

Notice that the Watts-Strogatz model presents a good fit for actual

data.

Since we know the true labels, i.e., from which dataset came

from each graph, we can measure the clustering performance.

The gCEM algorithm correctly classified 536 out of 593 molecules

FIGURE 6

Mental state transition time point. The x and y axes represent the time (in 10 seconds) and the monkey’s state. The green line represents the moment

of the anesthetic injection. The solid blue line represents when the researcher certifies the monkey stops responding to physical stimuli. The solid

orange line represents when the researcher certifies the monkey starts responding again. The black circles are the k-means clustering predictions for

the monkey’s mental state. We estimate the moment the monkey changes its mental state using a centered moving average. On the left panels, it is

the time point where the moving average is less than 0.5 (blue dashed line), and on the right panels, it is the time point with a moving average greater

than 0.5 (orange dashed lines). The predicted changing points occur before the researcher certifies the transition state, suggesting a better prediction

from the ECoG signal than the empirical test.
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FIGURE 7

The adjusted Watts-Strogatz spectral densities for 20 randomly selected chemical compounds. The black line represents the compound’s spectral

density. The shaded area represents the 95% confidence interval for the average spectral densities generated by the Watts-Strogatz model and

estimated parameters. The indicated KL represents the divergence between the adjusted Watts-Strogatz model and the chemical compound. Notice

that most of the chemical compounds’ spectral densities (black line) belong to the gray area, indicating that the Watts-Strogatz model has a good fit

for these graphs.

(90.38% accuracy, Jaccard index = 0.7255). The estimated

parameters were p1 = 0.122 for the MUTAG dataset and

p2 = 0.368 for the BZR dataset. The Watts-Strogatz random

graph model parameter is not associated with the number of

vertices nor the graph’s number of edges. Rather, it indicates the

randomness of the edges’ disposal. The smaller the parameter,

the more likely the graph will exhibit small-world properties.

Based on the obtained results, we can infer that the MUTAG

molecules present more small-world properties than BZR. In

contrast, the BZR molecules present a more random configuration

than MUTAG.

4. Discussion

We propose a method capable of clustering graphs based on

their connectivity structure. For this, we first discussed spectral

density as a resume measure of the graph. Then, we showed two

metrics of the distance between spectral densities: the Kullback-

Leibler (KL) and the Jensen-Shannon (JS) distance. Having a

distance measure between the graphs, we adapted the traditional

k-means clustering algorithm for using the JS as a distance measure

and the mean spectrum of all the graphs in each cluster as the

cluster centroid.
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The spectral distribution shape changes according to the

number of eigenvalues. A graph will have the same number

of eigenvalues as the number of its vertices. Because of this,

we can not generate a mean spectral distribution with graphs

of a different number of vertices. Thus, our proposed k-means

for graphs have the limitation that all graphs must present the

same number of vertices. Then, we proposed the model-based

gCEM algorithm as an adaptation of the expectation-maximization

clustering algorithm. We used the KL as the distance measure.

Also, we generated the model spectrum as the mean spectrum of

50 graphs of the model with the same size as the one we wish to

compare with the model.

We designed some simulation scenarios to verify our proposed

algorithms’ performance. In simulation 1, we showed that the k-

means for graphs could correctly cluster graphs with different

connectivity. In simulation 2, we showed that the algorithm

could correctly cluster graphs even when they present the same

number of vertices, edges, and degree distribution. This second

simulation scenario is essential to confirm that the spectral

distributions capture information about the connectivity structure

of the graph and is more powerful than more commonly

used graph centrality measures (e.g., betweenness, closeness,

degree, and eigenvector centralities). In simulation 3, we show

that gCEM can separate graphs with different numbers of

vertices.

Finally, we applied our k-means for graphs algorithm to

an anesthesia task dataset. We showed that our algorithm

separated most awake brain networks from the anesthetized brain

networks. To cluster networks of different sizes, we used gCEM

to discriminate between two sets of chemical compounds. The

networks presented different sizes within and between the groups.

As expected, gCEM correctly separated most networks into their

original sets.

Our results show that spectral density is a sound graph resume

measure for capturing the connectivity structure of graphs. The

KL and JS distance measures effectively compare graphs, and

our clustering methods work well on multiple graph models.

In this way, we recommend considering spectral density as a

graph measure in studies aiming to characterize graphs based on

connectivity structure. Regarding applying our clustering methods

to study FBNs, we recommend using k-means-based clustering

for graphs presenting the same number of vertices and gCEM

clustering when the networks present a different number of

vertices.

Comparing our methods with the classic kernel methods for

graph classification (Yanardag and Vishwanathan, 2015; Kriege

et al., 2019), our methods have the advantage of not defining

the kernel to be used. Both our methods always rely on the

spectral density that showed to capture information about the

graph structure. Comparing our two methods against each other,

the advantages of k-means include being faster and independent

of graph model estimation. The disadvantage is not being able to

cluster graphs of different sizes. On the other hand, the gCEM

advantage is clustering graphs of different sizes and providing

estimations for each cluster’s parameters, which aids in interpreting

the graphs’ structural changes among clusters. One limitation

is defining one or more random graph models that fit the

data.

Although both algorithms tend to converge in a few iterations,

the computational time for computing the spectral density

distribution for each graph is O(|V|3). Moreover, the parameter

estimator (see Section 2.5.1) used in gCEM relies on a Monte Carlo

approach. Finally, the gCEM initialization step can be very time-

consuming due to computing the spectral density of each graph.

Considering all these bottlenecks, applying gCEM is limited to

graphs composed of thousands of vertices. One way to run gCEM

inmore extensive graphs would be to parallelize the spectral density

and parameter estimation processes. Also, it is crucial to notice that

we are not considering the eigenvectors of the graph in our analysis.

However, they also contain essential information. Investigating the

relationship between eigenvectors and graph structure in the future

might be interesting.

The clustering codes are available at the R package

statGraph (https://CRAN.R-project.org/package=statGraph),

functions kmeans.graph and gCEM, under the GNU GPL.
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