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Since there are complicated changes in the polar motion (PM) from sub-annual to
decadal, precisely predicting it is challenging. Here, we provide an advanced
multivariate algorithm by combining an iterative oblique singular spectrum
analysis (IOSSA) with pseudo data (IOSSApd) and consider more periodic and
quasi-periodic signals, especially long-period oscillations (Ding et al., Geophys.
Res. Lett., 2019, 46, 13765–13774) and multi-frequency Chandler wobble (Pan,
International Journal of Geosciences, 2012, 3, 930–951), than previous studies.
The IOSSA in oblique coordinates, due to its weak separability conditions, has a
better separation performance than general singular spectrum analysis (SSA), and
the IOSSApd approach further solved the shift problem. Upon using the IOSSApd
method, the PM data can be separated into deterministic and stochastic
components, extrapolated by the multiple-harmonic (MH) and autoregressive
integrated moving average (ARIMA) models, respectively. Based on the IERS
EOPC04 PM series, we produced multiple sets of PM predictions with a 1-year
leading time and reported the IERS Bulletin A predictions as a comparison. For 90-
day leading time predictions, the mean absolute errors (MAEs) of the x- and
y-components were 7.69 and 5.12 mas, respectively, while the corresponding
MAEs obtained by IERS Bulletin A were 9.45 and 5.69 mas, respectively. For up to
360 days, our algorithm obtains theMAEs of PM slowly accumulating to 12.98mas
on average, far better than the 19.14 mas for Bulletin A’s predictions (also
significantly superior to the corresponding results given by previous studies).
The prediction performance in the middle- and long-term prediction is further
compared against the general SSA predictor. By virtue of weak periodic error, our
results show that combining the IOSSApd + MH + ARIMA models improved the
prediction success rate up to 75.39% and 69.58% for the x- and y-component,
respectively.
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1 Introduction

Polar motion is the variation of the orientation of the Earth’s rotation axis relative to the
terrestrial reference frame, which has two components x and y (m = x‒iy), and x along the
Greenwich Meridian and y along the 90 °W longitude. There are two main periodic signals
contained in the PM, i.e., the Chandler wobble (CW, Chandler (1981)) with a ~432-day
period and the annual wobble (AW) with a 1-year period. The study of PM provides valuable
information for studying many geophysical and meteorological phenomena. They directly
link celestial and terrestrial reference frames (transformation between CRF and TRF), and an
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accurate PM model is a guarantee in high-precision space geodesy.
Many studies have focused on the PM short-prediction (1–30 days)
because their latency release hinders real-time applications (e.g.,
GNSS, spacecraft tracking, and astronomy observations) (Barnes
et al., 1983; Buffett et al., 1991; Gross et al., 2003; Chen and Wilson
2005; Seitz and Schuh 2010;Wahr 2010).When a satellite navigation
system is in autonomous navigation mode, however, the ground
station cannot upload the latest EOP, and the system can only rely
upon the mid- and long-term EOP prediction. The current forecast
data (such as Bulletin-A, the frequently-used product from IERS)
will cause an orbit determination error of over 10 m in a 1-year lead
(Jia et al., 2018). Therefore, it is equally important to have such
predictions available for a longer period, and accurate predictive
models are much required.

PM can be present by the sum of two statistically independent
parts: determination (trend and undulation) and residual
(stochastic). Most of the methods either extract (or estimate) the
parameters of harmonic functions and extrapolate into the future
(Kosek et al., 1998; 2007; Modiri et al., 2018) or use stochastic
methods (Schuh et al., 2002; Akyilmaz and Kutterer 2004; Liao et al.,
2012; Yao et al., 2013). Many comparison campaigns, e.g.,
(EOPPCC, Oct. 2005—Mar. 2008), (WGP, Apr. 2006—Oct.
2009), and (EOPCPPP, Oct. 2010—now), aimed to investigate
different strategies and techniques available for predicting EOP
data from the short-term to the long-term (Kalarus et al., 2010;
Kosek 2012). Among these methods, the combination of the least
square (LS) and the autoregressive (AR) processes is considered to
be one of the most effective for PM prediction (Kalarus et al., 2010;
Xu and Zhou 2015). Unfortunately, no particular method is superior
to others for all prediction intervals (Kalarus et al., 2010). A further
idea was to coordinate those working on EOP predictions to
compare their results using well-defined rules, which is different
from many previous (individual) studies. Thus, by weighting the
errors, the Bulletin-A files with contributed observations and
predictive methods were produced at 7-day intervals (Stamatakos
et al., 2011). However, due to the complexity of the PM excitation, it
cannot reproduce the time variation of the periodic terms that
influence the long-term predictive accuracy of PM (Chao and
Chung 2012).

The aforementioned idea led us to discover an interesting
fact: the critical factor of unsatisfactory performance in mid-term
and long-term predictions may relate to the effective separation
and extrapolation of deterministic components including CW,
AW, and long-period oscillations. It is well known that the time-
varying characteristics of the harmonics contained in PM are
very complicated (a famous case is that the Chandler wobble
changes from several mas to ~200 mas (Su et al., 2014)).
Extracting these deterministic components accurately has
become the foremost task. Other issues, including (non) linear
trend hypothesis, edge effects, and high-frequency remnants, also
need to be considered. We list some main disputes and their
specific descriptions are presented here. First, it is unreliable and
unscientific for the usual operation to consider the trend of the
PM as a simple (non) linear change. Our new finding on the AR-z
spectrum has revealed some long-period geophysical oscillations
from interdecadal to even century-scale (see Ding et al. (2019)),
such as the Markowitz wobble (~30 years) (Hinderer et al., 1987)
and solar-cycle (11 years) (Currie, 1981). We have identified that

after decomposition, these low-frequency signals can fit the trend
terms completely in the time–frequency domain, implying the
possibility of extrapolating non-stationary trends using long-
period fluctuations. In addition, various spectral analyses and
digital filtering have confirmed the Chandler wobble possesses
multiple frequencies regardless of the data lengths, time spans,
and intervals of the PM observations (Liu et al., 2000; Pan, 2007).
Such Chandler frequency splits respond to the coupled oscillators
in the triaxial or axially near-symmetrical Earth and are indeed
equivalent to amplitude or frequency modulation (Pan, 2012). In
routine practice, the CW was generally considered to have a fixed
or time-varying frequency; for high-precision prediction,
however, such choices may also introduce deviations (Malkin
and Miller 2010; Wang G. et al., 2016). Akyilmaz et al. (2011)
further showed that the quasi-periodic and irregular processes in
the PM residual need to be settled for prediction. Last, although
the edge effects at the end of the PM decomposition series are well
known, little attention has been paid to related forecasting (Zhao
and Lei 2020).

In this article, we introduce an iterative oblique SSA (IOSSA)
method (Golyandina and Shlemov 2013) as a powerful separator
for close-frequency components and non-stationary trends. This
method performs a new decomposition of a part in the SSA,
which corrected the eigenvalues to avoid their possible mixture
or disjointed sets of singular values in the group corresponding
to different components. It also considers orthogonality, with
respect to a non-standard Euclidean inner product, which
considerably weakens the separability conditions. Such
features will help to distinguish different periodic signals.
Through iterations, the IOSSA method can finally separate
inner products converging to a stationary point. To address
the phase shift issue, the classic LS + AR model is used to provide
the initial prediction as pseudo data. Hence, an enhanced IOSSA
with pseudo data (IOSSApd) can be established (Wang X. et al.,
2016). After precisely stripping the principal components using
IOSSApd, the MH (multiple-harmonic) model is introduced
next to fully match and extrapolate the deterministic
components in their frequency ranges or specific frequency
points. Given the shorter-period tidal signals contained in the
PM (Gross, 2007), the MH model will be further processed to fit
the prior tidal signals from residual (stochastic) components.
After those, we use the auto covariance autoregressive integrated
moving average (ARIMA) to consider the residual high-
frequency terms (sub-seasonal variations or other aperiodic
changes) (Sun et al., 2019).

In this study, we will predict the PM for up to 1 year for multiple
issues (2010–2021). We will also simultaneously predict the PM for
the same time span using the IERS Bulletin A, a general SSA, and
other methods for comparison, and this can confirm that our
approach will obtain better results with periodic error reduction.
In the following section, we will first introduce the used methods,
and then use them in the prediction.

2 Methodology

In this section, we will explain how to integrate the pseudo data
with the iterative oblique process. Here, the classical SSA and
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IOSSApd methods will be described in detail, while their
decomposed performance will be shown in Section 4.2.

2.1 Singular spectrum analysis

The singular spectrum analysis is a statistical technique that is a
particular application of the empirical orthogonal function (EOF)
determined from the dynamic reconstruction of a sequence (Modiri
et al., 2020). The SSA method consists of embedding, singular value
decomposition, grouping, and diagonal averaging (Vautard and
Ghil, 1989).

2.1.1 Embedding
In each daily PM training series, {xT} [for example, if we choose

the 1962–2010 time-span and the data-length T = 17,531 days
(~48 years)] is transformed into a multi-dimensional series
Xi � (xi, . . . , xi+L−1)T, i � 1, . . . , K. Here, the window length is
set as L = 2190 (the beat period of CW and AW oscillation) and
K = T - L + 1. The trajectory matrix X with Hankel structure is then
represented as follows:

X � X1 X2 . . . XK[ ] �
x1 x2 x3 . . . xK

x2 x3 x4 . . . xK+1
x3 x4 x5 . . . xK+2
..
. ..

. ..
.

1 . . .
xL xL+1 xL+2 . . . xT

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠. (1)

2.1.2 Singular value decomposition
In this step, the singular value decomposition (SVD) of the

trajectory matrix X is performed as

X � X1 + . . . + XL, (2)
where Xi � σ iUiVT

i , σ1 ≥ σ2 . . . ≥ σL ≥ 0 are the singular values, and
Ui and Vi are the left and right singular vectors, respectively. For
rank one, the Xi is regarded as an elementary matrix. In addition, we
named the elements (σi, Ui, Vi) the ith eigentriple of the SVD, which
will be used in the description of IOSSA.

2.1.3 Grouping
With the rth largest singular value, the trajectory matrix is

partitioned into separating signal and residual groups

X � X1 +/ + Xr

︷�����︸︸�����︷Signal (Principal)
+ Xr+1 +/ + XL

︷������︸︸������︷Noise (Remaining)
� ~X + X0, (3)

where the ~X and X0 is clean and noise subspace, respectively. We
divided the indices set 1, . . . , r{ } � ∐

i�1
Ji (for details, refer to Shen

et al., 2018) and it led to decomposition into m subsets as

~X � XJ1 + . . . + XJm. (4)

2.1.4 Diagonal averaging
By diagonal averaging, the resultant matrices XJi (i = 1, . . ., m)

are retransformed into a new reconstruction component (RC) series
with length T. Supposing these blocks as the ZL×K matrix structure
and zij (1 ≤ i ≤ L, 1 ≤ j ≤ K) as the elements of the ZL×K matrix, we
have L* =min (L, K), K* =max (L, K), and T = L + K—1. Let zij* = zij

if L < K and zij* = zji; otherwise, Z will transfer into the series z1, . . .,
zT according to

zk �

1
k
∑k
n�1

zn,k−n+1* , 1≤ k<L*

1
L*

∑L*
n�1

zn,k−n+1* , L*≤ k≤K*

1
T − k + 1

∑T−K*+1

n�k−k*+1
zn,k−n+1* , K*< k≤T

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
. (5)

2.2 Iterative oblique SSA with pseudo data

An enhanced version of SSA and IOSSA for weakening the
separation conditions is detailed in this section. The application of a
standard or restricted SVD is the main distinguishing feature
between both algorithms (Shaharudin et al., 2019). From the
beginning, let us consider a minimal decomposition of YεML,K

(of rank r) in the standard SVD form

Y � ∑r
i�1
σ iPiQi

T, (6)

where σ1 ≥ σ2 ≥ . . . ≥ σr > 0, Pi{ }ri�1 and Qi{ }ri�1 are linearly
independent. Eq. 6 can be expressed in the matrix form

Y � PΣQT, (7)
where P = [P1: . . .: Pr], Q = [Q1: . . .: Qr] and Σ = diag (σ1, . . ., σr).

Then, we extend the SVD algorithm into restricted SVD
(RSVD), named L and R, and the biorthogonal is given by the
triple (Y, L, R). Correspondingly, Cholesky decomposition for L and
R is first performed as

L � OT
LOL, (8)

R � OT
ROR. (9)

Here, OL is an orthonormalizing matrix of Pi{ }ri�1 and OR is an
orthonormalizing matrix of Qi{ }ri�1, and the (L, R)-SVD can be
finally expressed as

OLYO
T
R � ∑r

i�1

��
λi

√
UiV

T
i � ∑r

i�1
σ i OLPi( ) ORQi( )T. (10)

These procedures mean that a standard SVD OLYOT
RεMr, r is

executed to decompose into left singular vectors Ui(OLPi) ∈ Rr and
right singular vectors Vi(ORQi) ∈ Rr. Compared with the SVD of
the Y matrix, we can obtain σ i �

��
λi

√
, Pi � O†

LUi, and Qi � O†
RVi

where † denotes the pseudo-inverse. The result follows the fact that
any biorthogonal decomposition is an SVD. Oblique SSA is the
modification of SSA where the SVD step is changed to (L, R)-SVD.
However, due to the real pair (L, R) being unknown, an iterative
operation is necessary and the IOSSA will be processed, as shown in
Figure 1.

In the chart, T −1H denotes the diagonal averaging for the
submatrix YJi and Yk

(i) expresses the reconstruction component
(RCJi) for the kth iteration. It should be noted that we set L

0 andR0 as
identity matrices, meaning that oblique SSA coincides with classical
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SSA in its first iteration calculation. In this article, three sets of
eigentriple numbers in accordance with SSA (see Shen et al., 2017;
2018) are selected, and I = {1, 2, 3, 4, 5, 6, 7} for r = 7 is defined.
The chosen set of numbers automatically generates the partition
J1kJ2kJ3, representing the trend, Chandler, and Annual periodic
components. After a matrix decomposition X = XJ1 + . . . +XJm

obtained in the SSA grouping step, we denote YJi = XJi (the sub-
blocks for Y). By convergence results of (L, R) SVD, the refined RCJi

will be appointed as

RCtrend � RCJ1

RCChandler � RCJ2.

RCAnnual � RCJ3

⎧⎪⎨⎪⎩ (11)

As another SVD approach, the function of IOSSA to extract the
leading components like classical SVD is more appropriate for
decomposing the trend and periodic subspaces. In the case of
noise pollution, however, the slight edge effects (phase shift) still
need to be noteworthy. Furthermore, the IOSSApd with pseudo data
is used to address the phase shift issue. First, the original time series
PMti (1 ≤ i ≤ N) is expanded into PMtj (1 ≤ j ≤ N + l) by adding
pseudo data with a length of l = 365 (day) to the end of the original
time series. Expanded by applying the LS + AR model, the pseudo
data are assumed to contain a trend, the CW and AW components,
and residuals. Thus, the phase shift phenomenon is absorbed in the
pseudo data when the expanded time series PMtj is analyzed using
IOSSA. The final deterministic and stochastic components with

weak edge effects are obtained by intercepting the first N data (equal
length to the original PMti sequence).

2.3 Experimental verification

2.3.1 Separability property (case 1)
Here, an example of a short-time series (case 1) is simulated to

compare the separability of iterative orthogonal SSA and the
common SSA (data length of 10 years; window length: L =
6 years) as

xn � A1 sin 2πf1 × t( ) + A2 sin 2πf2 × t( ), (12)
where t∈[0: 10 years] with the sampling interval of 0.05-year. This
synthetic series consisted of two sinusoids. With the same
eigenfrequency and average amplitudes of Chandler and Annual
wobbles, the f1 = 1 cpy and f2 = 0.845 cpy, andA1 = 1 andA2 = 1.2 are
defined. Figure 2 depicts the result of the SSA decomposition
(marked in blue curves). With such close frequencies far from
being orthogonal, the SSA cannot separate them for the
considered window and series lengths. This completely destroys
the structures of periodic signals (e.g., frequency, amplitude, and
phase variations) which are clearly visible. The IOSSA algorithm is
further applied using two groups, RCJ1 and RCJ2. The iterative
operation will be undergone until the convergence result is
reached (iterations M = 55). The decomposed results (marked in

FIGURE 1
Flowchart for IOSSA. The trajectory matrix Y and the left- and right- orthogonal matrix (L, R) of the triple (Y, L, R) is updated by RSVD in left and right
panel, respectively.
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red curves) confirmed that the proposed method separates
harmonics exactly. Therefore, compared with the SSA which is
always limited to the components disorder, the application of IOSSA
means a higher possibility of such decomposition.

In reality, when the data-length and sample interval are enough,
the SSA can also complete the approximate separation of trend and
seasonal terms (Jin et al., 2021). The IOSSA approach, in contrast,
has better separation performance even for short-length data. Under
heavy noise pollution, the edge effect may become another puzzle,

and thus, we designed case 2 to further verify the enhanced IOSSA
decomposition with pseudo data.

2.3.2 Edge effect (case 2)
Due to the RCs aliasing, the phase shift at the front/rear ends of

the reconstructed trend component will adversely affect the periodic
reconstructed component. In this case, the white noise and linear
term are added to the simulated case 1. Let us take the data-length as
10 years and L = 6 years again and then

FIGURE 2
Comparison of separation performance between SSA and IOSSA when in the decomposition of sum of sinusoids. (A) Synthetic short-time series (of
length 10 years); the extracted component 1 and 2 is shown in (B) and (C).

FIGURE 3
Comparison of separation performance between IOSSA and IOSSApd. (A) Synthetic series (of length 150) contained by Gaussian noise; the extracted
trend component, periodic component 1 and 2 is shown in (B–D), respectively. C1–D1 indicates the amplification to the rear end of periodic
reconstruction, where the light gray domains represent the moment corresponding to the peak or trough.
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xn � A1 sin 2πf1n( ) + A2 sin 2πf2n( ) + a + bn + εn. (13)

By treating sinusoidal amplitudes as A1 = 1 and A2 = 1.2,
frequencies f1 = 1 cpy and f2 = 0.845 cpy, and linear terms for
a = 0.8 and b = 0.004, the series is synthesized contained by noise (εn
variance = 0.35). To show the inhibition effect of the tail effect, the
ternary components in case 2 will be restored by IOSSA and
IOSSApd, respectively (see Figure 3).

Figure 3B shows the performance in separating linear
components. The unqualified approximation of IOSSA
decomposition to the linear term implies the tail effect heavily
existing in the trend components (Wang X. et al., 2016). In
contrast, we suppressed the phase shift well using the IOSSApd
method with extended data at the rear.

In Figure 3C, D, the influence of phase shift in the periodic
components is assessed. Under the noise pollution, the offset after
IOSSA decomposition and real fluctuation is recorded. At the rear
part, the prominent deviation of amplitude (>0.2) or even phase
delay (denoted by the gray domain) will contribute an undesirable
factor for restoring time series. By contrast, the separated
components by IOSSApd can accurately represent periodic
reconstructions. Considering their amplitude difference (around
0.06) and full phase-matching does not matter as the fitting
degree has increased to a large extent. The previous results show
that a more reliable principal component can be produced by solving
the phase shift problem with the IOSSApd method.

3 PM analysis

3.1 Data source

Covering 1 January 1962–31 December 2021, the EOP
14 C04 PM time series are provided by IERS. The IERS
supported the 1-day solution files by radio-positioning integrated
by DORIS, GNSS, VLBI, and SLR with a precision of 0.02 mas (Liu

et al., 2009; Bizouard et al., 2019). Consistent with the conventional
reference frame ITRF 2014, the PM dataset can be accessed at
https://www.iers.org/IERS/EN/DataProducts/
EarthOrientationData/eop.html.

3.2 Non-stationary trend

In the traditional LS-based forecast, the linear fitting for a non-
stationary trend was reconsidered as unscientific and will introduce
a predicted error of more than 10 mas. The visible secular variations
appear in the polar motion measured with multi-geodetic
techniques (e.g., SLR, VLBI, GNSS, and DORIS). The IOSSA
analysis gives the x and y components for PM from 1962 to
2021, which departs away from zero (see Figure 4). In Figure 4A,
the polar motion refers to the CIO frame (x for PM: south direction;
y for PM: west direction). The trend drift (PM secular rate (per year)
in polar-coordinate) rates in the decadal and centurial scales are
presented in the first and second quadrants, respectively. In the
decades scale, the trend rate of the PM varies from 2.56 ± 0.0714 mas
to 7.73 ± 0.0286 mas per year. The linear velocity of trend drift
narrates that the Earth’s polar motion speeds up in the latest decade
(2010–2019) (see Figure 4B), which is different from the slowing in
the geologic age. It reveals the long-term fluctuation in the Earth’s
polar motion (Guo and Han 2009). In the century-scale, the rate and
direction of PM from different authors were given (Markowitz 1968;
Wilson and Vicente, 1980; McCarthy and Luzum 1996). The trend
rate of pole motion is from 3.2 to 3.4 mas per year with the well-
known direction of Greenland. However, the trend rates of PM in
the X and Y directions in Figure 4B, covering over half of the
century, are 2.01 ± 0.1819 and 3.11 ± 0.2021mas per year. The North
Pole moves to 57.1 °E in the longitude direction concerning the crust.
The Barents Sea is fit in this direction. These different results also
implied that the non-linear drift contains some unmistakable low-
frequency signals, and the accurate separation of trend components
for fitting and extrapolating is necessary.

FIGURE 4
Drift trend of polar motion. (A) Variations of polar motion in the decade (red arrows) and century (blue arrows) scales in previous studies, (B) non-
stationary trend component decomposed by IOSSA, and (C) AR-z spectral analysis for interdecadal signals by Ding et al. (2019).
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The complex composition of PM oscillation from
interdecadal to even century-scale has been researched by
Ding et al. (2019). In Figure 4C, according to the AR-z
spectrum, a robust weak signal recognizer with high spectral
resolution than the conventional Fourier-based spectrum, the
complex time series (x + iy) in a low-frequency band is explored.
The nine spectral peaks in the –0.1~+0.1 cpy band, and the
corresponding periods are approximately –17.1 years,
–26.5 years, –50.8 years, –166.7 years, +73.5 years, +33.8 years,
+17.1 years, +13.8 years, and +11.4 years, meaning the trend
drifts with intense time-varying characteristics. Some of these
multi-spectral peaks in the frequency domain have been
identified as the consistent geophysical periodicities from,
e.g., the solar cycle (~11 years) (Currie, 1981), the Earth’s
nutation (~33 years and ~14 years) (Ding and Chao, 2018),
geomagnetic variations (~28 years, ~50 years, and ~70 years)
(Dickey and Viron, 2009; Dobrica et al., 2018), and others
perhaps induced from atmospheric or oceanic effects (Ding
et al., 2019). Integrating with the upgraded SSA separator
(iterative oblique SSA) and multiple-harmonic models, the
non-stationary trend-terms are first reconstructed and then
fit completely with these low-frequency signals (see
Figure 4B, fitting residual <1 mas). In the following context,
such long-period oscillation extrapolation is considered as the
initial trial.

4 Prediction procedure

One limitation of SSA is the significant biases in the beginning
and end of its model fitting to a time series called phase
phenomenon (Wang X. et al., 2016). To address the phase shift
phenomenon and improve the PM forecast, we proposed the
IOSSApd method in the frame of a two-step strategy. By
adhering to the predictions of the LS + AR (initial) model to the
end of the PM series, the IOSSA (enhanced version of SSA) will give
a formidable oscillation separation. After the MH + ARIMA model
(terminal) triggered the second cycle forecast, the final RC
predictions (RCPs) will be produced. By this proposed hybrid
method, 11 years of PM predictions were made at 12-month
intervals from 1 January 2010, and the main steps (see Figure 5)
are as follows:

i. Pseudo data (-pd). In pseudo prediction, the LS + AR model is
commonly used to predict the Earth’s orientation parameters
with simple construction and lower accuracy (Kalarus et al.,
2010). Here, we fit and forecast the linear and periodic terms
(L = 365 days), including Chandler wobble and annual wobble,
and the AR model matches semi-annual periodic terms in PM
and their remnants. The predicted series by LS + AR is attached
to the end of PM observations as pseudo data with a total length
of N + L.

FIGURE 5
Flowchart of the IOSSApd + MH + ARIMA method for PM prediction.
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ii. IOSSA decomposition. By high-precision observation (1962), the
long-term PM series (of length N + L) with LS + AR predictions
at the end is separated by IOSSA. According to the partition of
J1kJ2kJ3 and chosen window of 2190 points, the deterministic
components of trend (RCJ1), the Chandler wobble (RCJ2), and
the annual wobble (RCJ3) are obtained with the stochastic
component remaining. For each component, a hybrid model
of MH or ARIMA is adopted under different coverage to make a
precise extrapolation.

iii. Final prediction. The PM series has been recognized as
multifrequency modes from the interannual, short-term (e.g.,
seasonal) oscillations to the long-term trend. The time-varying
oscillation can be precisely approximated and extrapolated by
the sinusoids in frequency-amplitude modulation. A modified
LS model, a multiple-harmonic (MH) model, is creatively
proposed in the system of equations as

PMAnnual t( ) � aA +mAt( ) sin 2πfAt + wA( ),
PMChandler t( ) � ∑M

i�1
bCi sin 2πfCit + wCi( ),

PMTrend t( ) � ∑N
i�1
bTi sin 2πfTit + wTi( ),

PMTide t( ) � ∑P
i�1
bTDi sin 2πfTDit + wTDi( ).

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(14)

In Eq. (14), the aA andmA are the constants of the annual linear
amplitude (Shen et al., 2018), fA = 1/365.25 is the annual frequency,
and wA is the un-estimated phase. Instead of the assumption of an
initial constant period (e. g., 428 days) in the biaxial rigid Earth
(Becker, 1954), the later double-periods motion (e.g., 428 and
438 days) with the beat model (Colombo and Shapiro, 1968) or
the recent variable period (e.g., from 392 to 441 days) under the
sustained excitation (Wang G. et al., 2016), the MH fitting for CW
was postulated as 5-period channels (namely, M = 5, Pan. 2007;
Zhang et al., 1986) of Tmain {432 days}, T1,0 and T1,1 {symmetrical
peaks: 429 and 435 days}, and T2,0 and T2,1{symmetrical peaks:
406 and 447 days}. These multiple Chandler frequencies correspond
to the parameter fC1–fC5, respectively, and consist of a fundamental
frequency attributable to the Earth’s triaxiality, a series of small
feedback frequencies arising from the Earth’s instantaneous inertia,
relative angular momentum, and inertia variation. In the triaxial
Earth model, the Chandler wobble may behave like a multiple-
coupling differential oscillation with the mantle as the major and
permanent coupler. Such a multiple-frequency model can explain
the Chandler amplitude and frequency variations with time (for
more details about the observed CW frequency-splitting and
validation, please see Pan (2007; 2012)). According to Xu (2013),
the sampling for both components covers 9 years (7.6 Chandler
periods or 9 annual terms). In addition, the MH model was applied
for the first time in forecasting non-stationary trends as long-period
oscillations (N = 9) and tidal harmonics as seasonal oscillations (p =
7). The dominant frequency (fT1–fT9, please refer to Figure 4) and
(fTDi) parameter (fTD1–fTD7, please refer to Chin et al. (2004)). In
addition to these multiple deterministic components, the stochastic
components (containing quasi-periodic signals) are also considered.
In this article, for the stochastic sequence, a more stable and robust
sequence is obtained by ARIMA than an AR or ARMAmodel in the
case of the modeling of a seasonal differential operator as

yt � θ0 + ϕ1yt−1 + ϕ2yt−2 +/ + ϕpyt−p + εt − θ1εt−1 − θ2εt−2 −/ − θqεt−q.

(15)

The model is usually described as ARIMA (p, k, q). The ternary
orders of p, k, and q offsetting the tide effect (Chin et al., 2004) are
estimated using the least squares method. Combining the
predictions from the multi-harmonic and ARIMA (p, q, k) model
will yield the final results. When the adjacent period changes, their
time-varying characteristics can be fully reflected in 1-year PM
predictions.

5 Predictions of the polar motion

5.1 The predicted results and precision
comparison

In this study, EOP 08 C04 PM data from 1962 to 2021 were
selected for the validation of SSApd + MH + ARIMA predictions.
The PM from 1 January 1964 to the predicted start time was used as
the original PM series. After IOSSApd decomposition, the principal
components of 1-year lead time PMs (denoted as PCP) were
predicted using the MH (5-period channels CW + linear AW +
non-stationary trend, see Eq. 14) and the LS model (sinusoid CW/
AW + linear trend, refer to Shen et al., 2017), respectively. We
produced multiple sets of predicted PMs in 1-year-leading (of
2010–2021 years). Decomposition of the original PM series
concerning the prediction period was also performed by
IOSSApd to obtain the real principle components (denoted by
PC). The predictive errors (PC-PCP) for all prediction periods
are shown in Figure 6.

Figure 6 shows that the PCP series obtained by the MH
model are more consistent with the original PCs over multiple
prediction periods than the conventional LS model (errors:
±40 mas in random variations. vs. ±70 mas in periodic
fluctuation). The trend, annual, and Chandler terms
contribute most of the energy of polar motion; therefore, the
MH predictor will produce the satisfied principle components
that accurately represent the original series, ARIMA.
Concerning the residual IOSSApd series, we mainly used the
ARIMA to extrapolate them (see Figure 5). The extrapolation
results of the ARIMA model were combined with the principle
component predictions of the MH (ARIMA + MH) to yield the
whole 1-year PM predictions.

The predictions of Bulletin A including PM parameters for
1 year into the future were provided by IERS and are currently
recognized as the official forecasts, which relied on the history
observations (Stamatakos et al., 2011). To verify the reliability
of the IOSSApd + MH + ARIMA method, the accuracy of the
predicted series was compared with the accuracy of the IERS
Bulletin A predictions (http://datacenter.iers.org/eop/-/somos/
5Rgv/getTX/6). As shown in Figure 7, the systematic prediction
of both methods can be seen. With a relatively high precision in
the 180-day forecast, the IOSSApd + MH + ARIMA’s prediction
is even more accurate in the 365-day forecast than the Bulletin
A. It indicated the proposed solution predicting the PM
parameters precisely and effectively. As the comparable
results from the IERS Bulletin A, the combination of the
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IOSSApd and ARIMA produced PM series with a higher
consistency of observations in most cases. The better
performance of the IOSSApd + MH + ARIMA prediction was

attributed to the modeling of frequency- and amplitude-
modulation for the Chandler, the annual oscillation, and the
superposition of non-stationary trend.

FIGURE 6
Predictive errors of PM principle components (Chandler + annual + trend) using (A) MH model and (B) LS model in both the x/y poles.

FIGURE 7
From the epoch of 2010 to 2021 years, the polar motion series (gray line), the IERS “Bulletin A” predictions (blue line), and the IOSSA + MH + ARIMA
predictions (the red line) in 1-year leading.
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Figures 8A,C indicate that in the leading 1-year predictions, the
mean absolute errors (MAEs) of our proposed two-step forecast
were lower since the 50th day than the predictions reported
routinely in Bulletin A. In particular, the IOSSApd + MH +
ARIMA’s predictive accuracy at forecast horizons of 180-day to
360-day was significantly higher over the Bulletin A. Corresponding
to improvements of 28.89% for y-pole, the remaining prediction

errors for x-pole are even more minor with the advancements of
35.60%. TheMAEs are shown in Table 1. In the 180-day predictions,
the MAEs of IOSSApd + ARIMA for the x and y components are
10.85 and 8.78 mas, respectively, smaller than those of 14.83 and
11.31 mas for the Bulletin A predictions. In the 360-day predictions,
the MAEs for x and y components from IOSSApd + MH + ARIMA
were 12.03 and 13.93 mas, respectively, much smaller than those of
18.68 and 19.59 mas for Bulletin A. The MAE of IOSSApd + MH +
ARIMA increased slowly with the increase in the forecasting time,
and the prediction accuracy of 360 was several mas more than that of
180 days. This implied that the forecasting errors in the
180–360 days are limited to a small range. The IOSSA can
reliably reconstruct the stable principal components fitting by
multispectral peak or time-varying amplitude harmonics. It
enables the IOSSApd + MH + ARIMA to be particularly suitable
for long-term prediction. Moreover, at the entire forecast horizons,
the mean absolute error of IOSSApd + MH + ARIMA prediction
was generally less than 12 mas and 15 mas for x and y components,
respectively; while in the Bulletin A predictions, the time interval at
equal accuracy only covers 1–130 days and 1–260 days, respectively.
As for the short-term prediction within 50 days, high-frequency
oscillation (or quasi-periodic oscillations) and random residual are
still tricky because this article mainly refined the mid-term and long-
term prediction of x/y-pole and the ultra-to fast-forecast is not
discussed.

The MAE of the 180-day and the 360-day leads were also
compared with the results of other methods (see Figures 8B,D).
We classified these methods into two categories: the LS-based
methods (marked in purple) and time-variant methods (marked
in green). The former include the LS + AR, LS + AR + AF, and LS +

FIGURE 8
MAE of the IERS Bulletin A (red) and IOSSA + ARIMA predictions (blue) in x-component (A) and y-component (C). MAE of the predictions by other
methods in 180-day (B) and 360-day (D) leading. The shadows represent the error domain.

TABLE 1 Comparison of the MAE of IERS Bulletin A and IOSSApd +MH + ARIMA
predictions.

Lead time/day x-component/mas y-component/mas

Bulletin A IOSSApd Bulletin A IOSSApd

10 3.26 3.07 1.93 2.15

30 4.80 5.11 3.20 3.07

60 7.38 6.98 4.60 3.96

90 9.49 7.69 5.69 5.12

120 11.58 9.54 7.26 6.41

150 13.50 10.53 9.47 7.52

180 14.83 10.85 11.31 8.78

210 16.10 11.11 12.90 9.85

240 17.32 11.17 14.38 10.92

300 18.76 11.64 16.94 13.00

360 18.68 12.03 19.59 13.93
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ANN methods (Kosek et al., 2007; Liao et al., 2012; Jia et al., 2018;
Sun et al., 2019), which relied upon the fixed-frequency and linear
trend, and another group consisted of NTFT, MSSA + ARMA, and
SSA + ARMA methods (Su et al., 2014; Shen et al., 2018; Jin et al.,
2021), the algorithm dominated by decomposed non-stationary
components. Evidently, the MAEs of PM with the time-variants
method were significantly less than those of LS-based methods,
either in the middle- or long-prediction. Notably, the SSA + LS +
ARMA predictive model [marked in gray, Shen et al. (2017)] adopts
a similar strategy to the IOSSApd + MH + ARIMA method, i.e., the
decomposition from polar motion observations first and fitting-
extrapolation (but in single Chandler harmonic at Tcw = 432 days)
second to achieve a high-precise prediction (MAE<15 mas in
middle-term, and <20 mas in long-term for x/y-poles).
Compared with these methods, we examined the multi-frequency
points/band in IOSSApd’s reconstructed components and, hence,
improved the predictive performance to a large extent.

5.2 The periodic errors analysis

When the PM predicted errors are accumulated with leading
time, they are always clustered and manifested in the pattern of
periodic errors. These periodic errors can be used as indicators for

analyzing the forecast accuracy of periodic/quasi-periodic
components. In this section, the absolute error (AE) comparisons
against the general SSA-based method (SSA + MH + ARIMA, the
same window of 6 years, and the predictive component of the first
7th RC as IOSSA) for the 1-year-leading PM prediction are further
conducted in the same span of 2010–2021. In Figure 9, a typical
high-error presentation with different patterns, e.g., from 2014 to
2016, which was heavily affected by the super El Niño action, is
analyzed. As the NOAA National Centers for Environmental
Information’s State of the Climate report states, the El Niño
recorded was the most prolonged in duration and the most
vigorous in intensity since the comprehensive observations
emerged in September 2014 and dissipated in May 2016. The
circulation pattern and temperature anomaly promote the
amplitude variations of the annual wobble (Coulot and Pollet,
2010). Correspondingly for SSA + MH + ARIMA, the predicted
error increased with –6–65 mas (July–December 2014), –23–50 mas
(September–December 2015), and −10–41 mas (February–June
2016) for the y-pole prediction. Advanced by ~120 days phase
lead-lag, the predicted error in the x-pole also spread
within ±50 mas, implying the prominent periodic residuals. Such
error clusters covering even over half a year are a widespread
occurrence in the 12-year PM predictions. Failure to trace the
time-variant periodic term (annual and Chandler wobbles), here

FIGURE 9
Absolute errors of the predicted x-component (A2) and y-component (B2) for the 2010–2021 years, comparedwith those of the SSA +MH+ARIMA
model [(A1) and (B1)]. The black box represents the El Niño event as an epoch example when the error cluster is piled up with periodic residuals. The right
panels show the improvement of x/y-pole prediction using the IOSSApd + MH + ARIMA model compared with the SSA + MH + ARIMA in x-component
(A3) and y-component (B3), where the progress (red), no change (white) and failure (blue) reflects the difference of both predicted error >5 mas,
within ±5, and <5 mas, respectively. The darker the color, the greater their difference is.
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for SSA, is evidenced adequately. In contrast, the IOSSApd + MH +
ARIMA’s reduction ability is excellent, either in error clusters
timespan or its intensity. Based on the amplitude–frequency
modulation, the extended conditions of the x/y-pole multi-
components in high separation play a crucial role in the
successful forecast.

The heat maps are drawn (Figure 9A3 and B3) to better
understand such a periodic error in the mid- and long-term
forecast to demonstrate the predicted improvement in the IOSSApd
+MH+ARIMA solution compared to SSA +MH+ARIMA. For each
prediction epoch, if the difference between predicted errors of
IOSSApd + MH + ARIMA and SSA + ARMA is within ±5 mas, it
cannot be regarded as an improvement in prediction. As illustrated in
the white blocks in Figures 9B and D, the error amounted to the same
level for both PM prediction techniques. If the difference >5 mas, the
IOSSA-pd + MH + ARIMA prediction was considered to have a
smaller error than SSA + ARMA and marked by red blocks. In other
cases, the failure in the prediction process was denoted by blue blocks.
The large improved areas (red) demonstrated that the behavior of PM
prediction is progressed by IOSSA-pd + MH + ARIMA, especially in
long time intervals.

TABLE 2 Success rate for PM (no change + progress).

Prediction year x-component y-component Average

2010 70.56 96.11 83.34

2011 61.39 48.33 54.86

2012 84.45 72.78 78.62

2013 88.61 83.89 86.25

2014 88.89 91.67 90.28

2015 85.56 93.33 89.45

2016 74.72 47.78 61.25

2017 73.61 38.33 55.97

2018 80.83 72.78 76.81

2019 84.17 61.11 72.64

2020 64.17 60.83 62.50

2021 47.50 67.50 57.50

Sum (2010–2020) 75.39 69.58 72.49

FIGURE 10
Distributions of the IOSSA +MH+ARIMA (gray) and SSA +MH+ARIMA (white) prediction residuals with the best-fitted normal distributions in x-pole
(A1) and y-pole (A2).
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By the ratio of the colored area (white + red) to the total area
(white + red + blue) in each epoch, we introduced the success rate of
PM prediction. Table 2 shows the success rate of 2010–2021 using
the IOSSApd + MH + ARIMA algorithm. On average, the success
rate of the x and y components surged to 70.82% and 74.02%,
respectively, and the improvement in the PM prediction reached
approximately 73%. Therefore, our predicted PM results reflect
weaker and smoother periodic errors in mid- and long-term
predictions, and this is largely because the IOSSApd separator
performs better in reconstructing the PC series than the general SSA.

Based on the experiments covering the years 2010–2021,
comprehensive prediction errors were collected by additional
statistics to verify the compliance of the normal distribution. In
Figure 10, the error distribution features by IOSSApd + MH +
ARIMA and SSA + MH + ARMA are shown, and their error curves
are also drawn.

By reducing the effect of the phase shift in each prediction
epoch, the two-step solutions might be superior and then in the
presentation of a Gaussian-like rule. To exactly describe the time
series as reasonably Gaussian, four statistical parameters were
introduced, including mean value (μ), standard deviation (σ),
skewness (s), and excess kurtosis (k). As for the μ and σ

parameters, they provided the quantitative reference defining
the location and aggregation of the error distribution. Else, for
the s and k estimators, they indicate the state or quality of
asymmetry and peakedness (or flatness), describing the normal
distribution error in the region about its mode. According to
Tabachnick et al. (2007), these parameters are formulated as
follows:

μ̂i �
1
np

∑np
j�1
εi,j, σ̂ μ̂i �

σ̂ i��
np

√ , (17)

σ̂ i �

�����������∑np
j�1

εi,j − μ̂i( )2
np − 1

√√
, σ̂ σ̂i �

σ̂ i���
2np

√ , (18)

ŝi � ∑np
j�1

εi,j − μ̂i( )2
np − 1( )σ̂2i , σ̂ ŝi �

��
6
np

√
, (19)

k̂i � ∑np
j�1

εi,j − μ̂i( )4
np − 1( )σ̂4i − 3, σ̂ k̂i �

��
24
np

√
. (20)

Next, the prediction error distribution of the PM time series
is characterized in detail. As listed in Table 3, the μ value
(−1.5 mas and −2.0 mas for the x/y pole) of IOSSApd + MH
+ ARIMA evidenced that this algorithm offers a solution
approximating the unbiased estimation, meaning the

prediction errors are close to zero. The second parameter σ

plays another vital role in the quality of the prediction and is
related to the error range and limits. Regarding the estimator,
the IOSSApd (σ = 14.1 mas on average) is still more competitive
than SSA (σ = 21.3 mas on average).

Using the skewness and the kurtosis parameters, other
interesting explorations can be performed. On one hand, the
s parameter in both methods all have a positive value (the right
tail is stronger than the left one) for the x-pole and a negative
value for the y-pole (the right tail is weaker than the left one). On
the other hand, the positive value of the k parameter for each
pole implies that the distribution is peaked relative to a normal
one. Specific to each method, the periodic signals of predicted
error by IOSSApd + MH + ARIMA decreased rapidly. When
compared with SSA + MH + ARIMA (|s| = 0.34, k = 3.4 on
average), these errors (|s| = 0.21, k = 3.0 on average) are more
statistically normal significant because of their smaller
parameter values (except for the skewness in y-pole).

6 Conclusion

In this article, we introduce a newly improved separator
(iterative oblique SSA) used in the decomposition of
deterministic components. The Chandler wobble, annual
wobbles, or even the non-stationary trend of the Earth’s polar
motion can be considered as quasi-harmonic processes, as
indicated by the IOSSA. To reduce the phase shift, a two-step
strategy (pseudo date in initial prediction by LS + AR) is
preliminarily established, called IOSSApd. Based on the
IOSSApd decomposition, many periodic/quasi oscillations in
interdecadal and decadal (trend term), as well as inter-to sub-
annual (CW, AW, tidal, and seasonal) scales, were involved in
obtaining a routinely high-accuracy PM prediction for up to 1-
year into the future. When compared to other forecast products,
the main advantages of IOSSApd + MH + ARIMA predictions
are listed as follows:

• The extended separation conditions than classical SVD
decomposition.

• The generation of pseudo data (PD) to address the tail effect.
• Long-period superposition of interdecadal oscillations instead
of conventional (non) linear trend.

• Amplitude and frequency modulation by multispectral peaks
for Chandler and annual wobbles.

• Robust process for high-frequency residuals by seasonal
difference operator.

TABLE 3 Statistical index of Gaussian distribution in Figure 10.

Method Mean μ) Std σ) Skewness s) Kurtosis k)

x-component SSA 2.5 21.2 0.52 3.5

IOSSApd −1.5 14.7 0.01 2.8

y-component SSA 3.9 21.4 0.15 3.3

IOSSApd −2.0 13.5 −0.42 3.2
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Using the Bulletin A published in IERS as a reference
(predictions set to 1 year into the future, 2010–2021 on
experiments), multiple sets of the predicted performance were
elaborated. The forecasts of IOSSApd + MH + ARIMA were
almost equal to the IERS Bulletin A within the 50th-day
projections, while after that, notable promotions were recorded.
As forecast time increased, the prediction error accumulated slowly
until the 1-year lead time. At the entire forecast horizon, the
remaining prediction errors were approximately 12 mas and
14 mas for PM, respectively, corresponding to significant
improvements of 35.60% and 28.89% for x and y poles over
Bulletin A. Some common patterns, e.g., the El Niño effect or
geomagnetic jerk events, might excite the time-variant Chandler
and annual wobbles and cause high cluster errors. Interestingly,
whether it is the time span or the intensity of the periodic remaining,
the inhibition capability of IOSSApd + MH + ARIMA is pretty
impressive. In terms of the daily improvement for the x and y poles,
our multivariate algorithm was found to reach up to 75.39% and
69.58% in the 1-year leading predictions, respectively. These results
exhibit the excellent consistency of the predicted and original PM
periods’ periodic and trend terms. Based on the collected prediction
error, the PM predictions were finally evaluated by normal
distribution statistics. The Gaussian-like distribution further
implies by the IOSSApd + MH + ARIMA method; the PM
principal components can be sufficiently extracted and
extrapolated with tiny oscillatory residuals (interannual or
interdecadal). Therefore, our proposed method has good
reliability and high precision for this PM prediction. Finally,
although the IOSSApd + MH + ARIMA method developed in
the study is most suitable for middle- and long-term PM
forecasts, one can also extend our multivariate algorithm to
forecast other EOP parameters by considering the different
multiple periods in it.
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