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Background: Prostate cancer (PCa) is highly heterogeneous, whichmakes it difficult
to precisely distinguish the clinical stages and histological grades of tumor lesions,
thereby leading to large amounts of under- and over-treatment. Thus, we expect the
development of novel prediction approaches for the prevention of inadequate
therapies. The emerging evidence demonstrates the pivotal role of lysosome-
related mechanisms in the prognosis of PCa. In this study, we aimed to identify a
lysosome-related prognostic predictor in PCa for future therapies.

Methods: The PCa samples involved in this study were gathered from The Cancer
Genome Atlas database (TCGA) (n = 552) and cBioPortal database (n = 82). During
screening, we categorized PCa patients into two immune groups based on
median ssGSEA scores. Then, the Gleason score and lysosome-related genes
were included and screened out by using a univariate Cox regression analysis and
the least absolute shrinkage and selection operation (LASSO) analysis. Following
further analysis, the probability of progression free interval (PFI) was modeled by
using unadjusted Kaplan–Meier estimation curves and a multivariable Cox
regression analysis. A receiver operating characteristic (ROC) curve, nomogram
and calibration curve were used to examine the predictive value of this model in
discriminating progression events from non-events. The model was trained and
repeatedly validated by creating a training set (n = 400), an internal validation set
(n = 100) and an external validation (n = 82) from the cohort.

Results: Following grouping by ssGSEA score, the Gleason score and two
LRGs—neutrophil cytosolic factor 1 (NCF1) and gamma-interferon-inducible
lysosomal thiol reductase (IFI30)—were screened out to differentiate patients
with or without progression (1-year AUC = 0.787; 3-year AUC = 0.798; 5-year
AUC = 0.772; 10-year AUC = 0.832). Patients with a higher risk showed poorer
outcomes (p < 0.0001) and a higher cumulative hazard (p < 0.0001). Besides this,
our risk model combined LRGs with the Gleason score and presented a more
accurate prediction of PCa prognosis than the Gleason score alone. In three
validation sets, our model still achieved high prediction rates.

Conclusion: In conclusion, this novel lysosome-related gene signature, coupled
with the Gleason score, works well in PCa for prognosis prediction.
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1 Introduction

Prostate cancer (PCa) has been ranked first among newly
diagnosed cancers in men globally. Although early stage, primary
PCa cases can be treated effectively by surgery or radiation therapy, a
considerable portion of these patients unavoidably progress to
advanced PCa with a poor prognosis (Taitt, 2018; Siegel et al.,
2022). Therefore, it is vital to predict the probability of PCa
progression in order to guide treatment. The Gleason score, a PCa
grading systembased on histological patterns of biopsy specimens, has
been widely applied for evaluating PCa aggressiveness, predicting
prognosis and directing treatment (Gleason and Mellinger, 1974;
Epstein et al., 2005; 2016). However, the Gleason score system has
exhibited limitations upon distinguishing some aggressive tumors
from indolent tumors because of the strong heterogeneity in PCa,
resulting in over-treatment or inadequate therapy in clinics (Siegel
et al., 2021). Consequently, a novel and robust predictive model is
urgently needed for prognostic stratification for the purpose of
guiding treatment and ameliorating the outcome of PCa.

As key compartments of cellular homeostasis, lysosomes have been
found to be involved in multiple cellular processes including cell death,
immune response, energy metabolism, cell signaling and endocytic
receptor recycling (Hanahan and Weinberg, 2011; Appelqvist et al.,
2013). Recent studies have identified that some lysosome-associated
mechanisms play pivotal roles in PCa development and are closely
related to PCa prognosis (Zhang et al., 2014; Blessing et al., 2017; Zhu
et al., 2022). Although lysosome-related genes (LRGs) may be
promising biomarkers for the prediction of a PCa prognosis, few
studies have concentrated on building LRGs-based prognosis models.

Studies have increasingly shown that the immune
microenvironment plays a crucial role in carcinogenesis and the
development of cancer (Quail and Joyce, 2013; Zhang et al., 2013). A
strategy using immune scores can refine or even be superior to the
cancer staging system, based on the traditional TNM staging system,
to further assess overall prognosis (Pagès et al., 2018; Angell et al.,

2020). Interestingly, some studies have examined immune cell
densities in association with the prognosis of PCa. For example,
high levels of regulatory T cells, M1 macrophages and
M2 macrophage infiltration were associated with biochemical
recurrence (Chang et al., 2022; Choi et al., 2022; Sfanos, 2022).
Thus, novel approaches to using an immune scoring system for PCa
stratification will provide new insights into prognostic prediction.

To date, lysosomes have been found to influence innate and
adaptive immune responses of the body against tumor cells, serving as
a regulator in various immune cells, including dendritic cells (DCs),
macrophages and T cells (Zhang et al., 2021). A type of secreted
lysosome derived from tumor cells particularly dampened the intra-
tumoral infiltration of DCs, which undergo apoptosis due to uptake of
secreted lysosomes (Santana-Magal et al., 2020). A subset of DCs
expressing lysosomal-associated membrane protein 3 (LAMP3) was
identified as having the ability to steer effector T cells to migrate into
tumors, and showed a favorable prognosis (Zhang et al., 2019).

As noted above, lysosome-related pathways and tumor
stratification are of paramount importance in PCa. Given the
conclusions described in previous studies, that inclusion of the
Gleason score sum with a gene signature can improve the
accuracy and sensitivity of a PCa prognostic model (Chen et al.,
2012; Corradi et al., 2021), we screened differential expressed
lysosome-related genes between the high and low-immune groups
in PCa, and established a novel lysosome-related signature coupled
with Gleason score to forecast PCa patients’ prognoses, which may
provide a robust treatment option and predictive tool for PCa.

2 Materials and methods

2.1 Data acquisition

We downloaded the transcriptome data (read counts and
transcripts per million (TPM)) and corresponding clinical data of

TABLE 1 Demographics, clinical characteristics and progression status.

Non-Progression (N = 331) Progression (N = 69) p-value Test

Age(mean ± SD) 60.61 ± 6.952 61.8 ± 6.242 0.2234 Mann–Whitney test

Race

Asian 6 (1.81%) 3 (4.35%) 0.6412 Fisher’s exact test

Black or african american 42 (12.69%) 7 (10.14%)

White 272 (82.18%) 57 (82.61%)

American indian or alaska native 1 (0.30%) 0 (0.00%)

Other 10 (3.02%) 2 (2.90%)

Gleason score

6 31 (9.37%) 1 (1.45%) <0.0001 Fisher’s exact test

7 191 (57.7%) 18 (26.09%)

8 40 (12.08%) 10 (14.49%)

9 67 (20.24%) 39 (56.52%)

10 2 (0.60%) 1 (1.45%)

Abbreviation: SD, standard deviation
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PCa from the TCGA database using the R package
“TCGAbiolinks”, and randomly divided the tumor data (n =
500) into five parts using R package “Caret” and setting seed as
“1”, one of which was the internal validation set (n = 100) and the

rest (n = 400) the training set. The external validation set
EGAS00001002923 (Gerhauser et al., 2018) with RNA-seq
expression (reads per kilobase per million mapped reads
(RPKM)) and corresponding clinical data were obtained

FIGURE 1
Landscape of the tumor immunemicroenvironment in prostate cancer (A) The difference in the enrichment score of 28 immune cell types between
normal and tumor samples; (B) Boxplots showing overall immune scores between normal and tumor samples; (C) Volcano plot exhibiting DEGs based on
immune score classification; (D) Tree plots of the GO enrichment analysis of DEGs based on immune score classification.
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through the cBioPortal (Prostate Cancer (DKFZ, Cancer Cell
2018)). Data had to meet the following inclusion criteria at the
same time: the availability of RNA-seq sequencing data, clinical
progression-free survival data and BCR-related indicators. In the
aggregate, 552 TCGA-PRAD samples across 52 normal tissues
and 500 prostate cancer tissues, of which 400 were a training set
and 100 were an internal validation set, as well as 82 samples from
EGAS00001002923 used as an external validation set, were
collected for analysis. Furthermore, the gene signatures of
28 tumor-infiltrating lymphocytes were captured from the
TISIDB database (http://cis.hku.hk/TISIDB/), listed in
Supplementary Table S1. A total of 797 LRGs from
23 lysosome-related pathways were obtained from the
Molecular Signatures Database, listed in Supplementary
Table S2.

2.2 Assessment of tumor immune cell
infiltration

To compare the composition and differences among
28 kinds of tumor-infiltrating immune cells between cancer

samples and normal samples from TCGA-PRAD, we quantified
the ssGSEA scores by using an ssGSEA algorithm and R package
“GSVA”. Of note, the ssGSEA scores were normalized to a
0–1 interval and processed by the mean value. RNA
expression was expressed as TPM.

2.3 Immune-related differentially expressed
gene (IRG) screening and enrichment
analysis

PCa samples from the TCGA database were divided into
high-immune and low-immune groups based on the median
ssGSEA score. Next, R package “DESeq2” was used to screen out
differentially expressed genes (DEGs) between two immune
groups; 1,093 IRGs with the adjusted p-value < 0.05 and the
absolute value of Log2FoldChange >1 was considered as
statistically significant and were visualized by a volcano plot.
After that, a gene ontology (GO) enrichment analysis and its
visualization were applied for IRGs by using R packages
“topGO” and “clusterProfiler”. RNA expression was
expressed as read counts.

FIGURE 2
Identification of LIRGs between high and low-immune groups and its prognostic relevance (A) Venn diagram showing shared genes between IRGs
and LRGs; (B) Heatmap of 49 LIRGs; (C) PFI analysis of 29 LIRGs associated with the prognosis.
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2.4 Lysosome-related IRG (LIRG) screening

We generated a Venn diagram to show LIRGs, which were
categorized as the shared gene between IRGs and LRGs. Next, we
performed a heat map to compare levels of LIRGs between low and
high-immune groups. In order to explore the correlation of individual
LIRGs and PCa prognosis, the patient progression-free interval (PFI)
was determined by the Kaplan–Meier (KM) method and Log-rank
test between the high- and low-expression groups based on the
scanning cut points with R package “survival” and “survminer”.

2.5 Construction and validation of the
prognostic model

A univariate Cox regression analysis was used to screen out
progression-associated factors among the training set and was
shown in a forest plot using R package “forestplot”. Moreover,
we used the least absolute shrinkage and selector operation (LASSO)
algorithm to further narrow down candidate factors. Then, a
multivariate Cox regression analysis was performed to select the
factor with independent prognostic value and determine the

coefficients of a linear risk score formula. The linear risk score
formula of the whole PCa can be calculated as follows:

Risk score � ∑
n

i�1
Xi × βi( )

In this equation, n represents the number of prognostic factors, X
represents the expression of genes or the Gleason score and ß
represents the regression coefficients of prognostic factors. The
proportional hazards (PH) assumption can be checked using R
package “survival”. Meanwhile, the training set was grouped into
high and low-risk groups based on the cut point of the risk score using
R package “timeROC”. A KM curve by log-rank test and a time-
dependent receiver operating characteristic (ROC) curve were
performed to evaluate the prognostic ability and performance of
the prognostic model. According to the results of the multivariate
analysis, we applied R package “rms” to establish a nomogram for
visualizing the model, which contributes to the guideline of clinical
decision-making. The area under the curve (AUC) by R package
“timeROC”, the concordance index (C-index) and the calibration
curve by R package “rms” were used to assess the model’s predictive
accuracy. Furthermore, the performance of the model was verified in
the internal and external validation set using the samemethods. In the

FIGURE 3
Construction of two LIRG prognostic signatures based on Gleason score as a risk model in the training set (A) Forest plot of the Gleason score and
49 candidate LIRGs ex-pression by a univariate Cox regression analysis; (B) Lasso regression of the 49 candidate LIRGs; (C)Cross-validation in the LASSO
regression; (D)Multivariable Cox regression analysis of the selected factors; (E) Time-dependent ROC curves for the prognostic signatures of 1, 3, 5 and
10-year PFI of PRAD in the training set; (F) Distribution of the risk score.
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external validation set, we used biochemical recurrence (BCR) to
represent progression. The RNA-seq expressionmentioned above was
processed by Log2 (TPM+1).

2.6 Statistical analysis

All statistical analyses were performed under R environment (R
version 4.2.1). The unpaired two-sample Wilcoxon test (also known
as the Mann–Whitney test) was utilized to compare two
independent groups. Comparison of categorical variables was
evaluated by Fisher’s exact test. R packages “ggplot2”, “ggpubr”
and “pheatmap” were applied for different plots. p < 0.05 was set as
statistically significant in our study.

3 Results

3.1 Landscape of the tumor immune
microenvironment in prostate cancer

We obtained data from 500 prostate cancer samples and
52 normal samples from the TCGA-PRAD cohort.
Demographics, clinical characteristics and progression status

are presented in Table 1. Compared to the non-progression
group, mean age is higher in progression group. Besides, the
Gleason score shows the most significant difference between the
two groups by univariate comparisons of the demographic and
clinical characteristics. To assess the unique immune cell
infiltration of prostate cancer, which is distinct from normal
tissues, we applied the ssGSEA algorithm based on the RNA-
sequencing data. The ssGSEA score of 28 immune-related cells
in both normal and tumor samples is presented in Figure 1A.
The results show that the infiltration of most immune cells (20/
28, 71.4%), especially most subtypes of T cells, macrophages,
mast cells, plasmacytoid dendritic cells, monocytes and
myeloid-derived suppressor cells (MDSC), was significantly
different between the normal and tumor samples (p < 0.05),
which had high potential relativity between the immune
microenvironment and prostate cancer. Additionally, the
boxplot demonstrated that prostate cancer samples had a
lower ssGSEA score, indicating a suppressed immune
environment in prostate cancer (Figure 1B). Prostate cancer
samples (n = 500) were thereafter divided into two immune
subgroups based on the median ssGSEA score; the DEGs are
listed in Supplementary Table S3. Compared to the high-
immune group, the mRNA expression of most genes in the
low-immune group was downregulated (Figure 1C). Of note,

FIGURE 4
Accuracy for predicting PCa prognosis by using this riskmodel in the training set (A)Gleason scores and the expression of NCF1 and IFI30 in different
risk groups; (B) PFI curves between two risk groups in the training set; (C)Cumulative hazard analysis of two risk groups in the training set; (D)Nomogram
for predicting the progression-free rate of PRAD patients based on the novel signature; (E) Calibration curve showing that the predictive PFI fit the actual
PFI well at 3 and 5 years in the training set; (F) ROC curves showing the PFI prediction of the novel signature versus the Gleason score; (G) Plot of AUC
curve and its confidence interval at different time.

Frontiers in Genetics frontiersin.org06

Huang et al. 10.3389/fgene.2023.1135365

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.1135365


these differentially expressed genes in two immune subgroups
were considered as IRGs (n = 1,093). The GO enrichment
analysis of 1,093 IRGs is shown in Figure 1D. After
clustering the GO cellular component enriched pathways,
some could be classified into the primary lysosome azurophil
cytoplasmic, indicating that some of the IRG products are
located in lysosomes or are related to lysosomes when they
perform their function.

3.2 Identification of LIRGs between high and
low-immune groups and their prognostic
relevance

As shown in the Venn diagram, a total of 49 (49/1841, 3%)
shared genes between IRGs and LRGs were screened out and
regarded as LIRGs (Figure 2A). Figure 2B demonstrates the
49 LIRG expression patterns between two immune subgroups.
To assess the prognostic relevance of the 49 candidate LIRGs, we
utilized the KM method and found that more than half of the

LIRGs (29/49, 59.2%) were associated with the prognosis (all p <
0.05) as shown in Figure 2C. As we can see, the high expression of
most LIRGs (23/29) predicted a poor prognosis.

3.3 Construction of two LIRG prognostic
signatures based on gleason score as a risk
model in the training set

A univariate Cox regression analysis was performed with the
Gleason score and the expression profiles of 49 candidate LIRGs
in the training set (Figure 3A). In addition to the Gleason score,
15 candidate LIRGs were found to have a significant correlation
with progression free interval (all p < 0.05, marked in red); the
baseline is shown in Supplementary Table S4. Of note, these
16 prognostic signatures were risk factors (HR > 1). To further
narrow down candidate prognosis signatures, three candidates,
including Gleason score (coefficient = 0.6509428), NCF1
(coefficient = 0.3190647) and IFI30 (coefficient = 0.4826147),
were identified based on the optimum λ value 0.02010609 using a

FIGURE 5
Validations of prediction of the risk prognostic signature: calibration curve showing that the predictive PFI fit the actual PFI well at 3 and 5 years in (A)
the internal validation set, (B) thewhole TCGA-PRAD and (C) the external validation set. ROC curves showing the PFI prediction of the riskmodel in (D) the
internal validation set, (E) the whole TCGA-PRAD and (F) the external validation set. Univariate regression analysis of the risk score in (G) the internal
validation set, (H) the whole TCGA-PRAD and (I) the external validation set.
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LASSO regression analysis (Figures 3B, C). Then, a multivariate
Cox regression analysis further screened out the prognosis-
associated signature and established a linear risk score
formula. As shown in Figure 3D, the risk score was calculated
as follows:

Risk score � 0.7470 × Gleason score + 0.4020
× Log2 TPMNCF1 + 1( ) + 0.6365
× Log2(TPMIFI30 + 1)

To evaluate the performance of the predictive model constructed
by using the risk score, four time-dependent ROC curves were
drawn, where the AUC values at 1, 3, 5 and 10 years were 0.790,
0.779, 0.779 and 0.894, respectively (Figure 3E), indicating excellent
predictive ability. Patients with prostate cancer were subsequently
divided into high and low-risk groups based on the risk score of
6.275728; the cutoff value of the risk score was determined by the
ROC analysis (Figure 3F).

As shown in the box plot, Gleason scores increased and the
expression of NCF1 and IFI30 were upregulated, along with the
increasing risk score (Figure 4A). On the basis of the progression
free interval analysis, patients in the high-risk group were
substantiated to have poorer prognoses by the log-rank test
(p < 0.0001; Figure 4B). Likewise, in the cumulative hazard
analysis, patients with higher risks showed a higher cumulative
hazard (Figure 4C). Meanwhile, in order to demonstrate the
evaluation of patients’ PFI probability, the nomogram model
was established by combining the three prognosis-associated
features mentioned above (Figure 4D). Moreover, both 3- and
5-year PFI predictions by nomogram were highly consistent with
the actual observation of patients with prostate cancer, as
confirmed in the calibration plots (Figure 4E). These results
verify that this model, constructed by three prognosis-associated
features, is predictive of poor prognoses. Interestingly, the AUC of
this risk model was greater than that of the model for which only
the Gleason score was considered, whether at 1, 3, 5 or 10 years
(Figures 4F, G), suggesting that NCF1 and IFI30 can refine the
abilities of prognostic prediction by using the Gleason score alone,
which has been the most well-accepted and strongest prognostic
predictive tool in prostate cancer.

3.4 Validation of prediction of the risk
prognostic signature

Asmentioned in the Methods section, except for the training set,
the remaining 100 cases from TCGA-PRAD were used as the
internal validation set (Supplementary Table S5), while 82 cases
from EGAS00001002923 were used as the external validation set
(Supplementary Table S6). In addition, we also considered the entire
TCGA-PRAD database (n = 500) as a kind of data cohort for the
internal validation set (Supplementary Table S7). First, the
calibration curves based on three validation sets showed good
agreement between the actual and predicted 3- and 5-year PFI,
which illustrated that the risk model was an excellent predictor
(Figures 5A–C). Further analysis of AUC by ROC curves ranged
from 0.658 to 0.812 (Figures 5D–F), and proved the robust
predictive capacity of our model. Meanwhile, a univariate
regression analysis was also used to verify the prognostic role of

risk score in prostate cancer (Figures 5G–I), revealing that patients
with a higher risk score had a poor prognosis.

4 Discussion

Lysosomes are a key component of the inner membrane system
involved in various biological cell processes, including intracellular
transport (Rink et al., 2005), autophagy (Itakura et al., 2012; Yu
et al., 2018), metabolic pool (Polishchuk et al., 2014; Lyu et al.,
2020), cell proliferation (Bar-Peled et al., 2013), cell migration/
adhesion (Lawrence and Zoncu, 2019) and gene expression
regulation (Eskelinen, 2006; Ballabio, 2016), as well as having
robust prospects as novel anticancer therapeutics, given their
emerging role in cancer development and progression. The role
of lysosome-related pathways in tumorigenesis and progression of
PCa are bidirectional (Levine and Kroemer, 2019). For instance,
Wac, an activator of autophagy, heterozygous deletion leads to an
increase in cancer progression in PCa, whereas its complete loss
constrains it. In other words, it suppresses tumor initiation and
promotes the growth of a formed cancer (de la Rosa et al., 2017).
Despite the emerging role of lysosomes known in cancer
development and progression, its precise effect in predicting
PCa outcomes is still unclear.

In this study, we screened out two genes, NCF1 and IFI30,
associated with lysosome-related pathways, and illustrated their
prognostic role in PCa based on immunoscore classification.
Unlike former prognosis predictions, our risk model, consisting
of these two genes and the Gleason score, yielded better performance
during clinical prognosis prediction than the Gleason score alone.
As the Gleason score was defined as an independent hazard factor,
NCF1 and IFI30 were identified as risk-related factors.
Kaplan–Meier curves substantiated the finding that patients with
a higher risk score had a worse PCa outcome.

NCF1, used to denote NOXO2 and p47PHOX, is a cytosolic
subunit of the NADPH oxidase 2 (NOX2) complex and is
associated with reactive oxygen species (ROS) production (Zhao
et al., 2017). It has also been documented as exhibiting the
capability of functional ROS induction and IL-1 β signaling,
and thus enhancing lung colonization of B16F10 melanoma
cells (Zhong et al., 2021). Likewise, in our study, patients with
higher NCF1 expression showed worse prognoses in PRAD.
However, previous studies have revealed that autophagy can be
suppressed by interfering with autophagosome-lysosome fusion
and lysosomal proteolytic activity via the NCF1-ROS axis (Zheng
et al., 2016). Meanwhile, NCF1 also played critical roles in multiple
immune-associated pathways [1; 2], thereby influenced functional
activities of many immune cells. It is reported that NCF1 may
positively correlate with pro-tumor M2 macrophages by
promoting macrophages differentiating toward M2 macrophages
[8]. Natural killer cells and T cells, the major fighters in anti-tumor
immune, are prone to apoptosis upon NCF1 acting [4]. NCF1 can
also dampen adaptive immunity through preventing the
maturation of DCs [5]. Based on previous studies, we speculate
that NCF1 might be a promising marker for guiding
immunotherapy. However, there is no research indirectly or
directly illustrating the correlation between NCF1 and PCa.
IFI30, also known as GILT, is the only enzyme known to
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reduce protein disulfide bonds in the endocytic pathway (Rausch
and Hastings, 2015). Besides, the most well-known function of
IFI30 is considered to be the promotion MHC class II-restricted
processing and presentation in antigens, which is essential for the
activation of CD4+ T lymphocytes (Phan et al., 2000; Hastings and
Cresswell, 2011; West and Cresswell, 2013). Modulation of
IFI30 expression to break off the pathway for MHC-restricted
tumor antigen presentation has been proven to contribute to
malignant cells evading T-cell surveillance of the immune
system (Seliger et al., 2000; Haque et al., 2002). Further studies
have verified that IFI30 functions as an indispensable factor in the
immune response of cancers, such as glioma (Chen et al., 2019),
melanoma (Buetow et al., 2019) and breast cancer (Fan et al., 2021,
30). In prostate cancer, IFI30 expression has been confirmed to be
associated with its progression, which is consistent with our results
(Bao et al., 2011). Non-etheless, its regulatory pathway and
biological function have not been well reported. Herein, we
elucidated the point that IFI30 may play a predictive role in
PCa prognosis via the lysosome-immune pathway.

Following a comparison of the ROC curve and nomogram
model, our model showed high predictive accuracy and
robustness in internal and external validation sets besides the
training set. Accordingly, these two LIRGs, coupled with the
Gleason score, play an indispensable role as potential
biomarkers for predicting PCa outcomes.

There are also several limitations in this study. The data included in
this study are all from a public database. That means that more
information needs to be collected from more prospective clinical
data to prove its practicality. Additionally, more research on the
specific mechanisms of this model in PCa is required to clarify
in vitro and in vivo verifications.

5 Conclusion

We collectively first identified novel LIRG signatures coupled
with the Gleason score to calculate the risk score in PCa, which could
measure its risk stratification and predict prognoses. Our results
may provide a novel insight on the mechanism of LIRGs in PCa
initiation and progression, and offer more robust biomarkers for
therapeutic targets for PCa.
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