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Background: Acute exacerbation of chronic obstructive pulmonary disease

(AECOPD) is associated with high mortality rates. Viral and bacterial coinfection is

the primary cause of AECOPD. How coinfection with these microbes influences

host inflammatory response and the gut microbiota composition is not entirely

understood.

Methods: We developed a mouse model of AECOPD by cigarette smoke

exposure and sequential infection with influenza H1N1 virus and non-typeable

Haemophilus influenzae (NTHi). Viral and bacterial titer was determined using

MDCK cells and chocolate agar plates, respectively. The levels of cytokines,

adhesion molecules, and inflammatory cells in the lungs were measured using

Bio-Plex and flow cytometry assays. Gut microbiota was analyzed using 16S

rRNA gene sequencing. Correlations between cytokines and gut microbiota were

determined using Spearman’s rank correlation coefficient test.

Results: Coinfection with H1N1 and NTHi resulted in more severe lung injury,

higher mortality, declined lung function in COPD mice. H1N1 enhanced NTHi

growth in the lungs, but NTHi had no effect on H1N1. In addition, coinfection

increased the levels of cytokines and adhesion molecules, as well as immune

cells including total and M1 macrophages, neutrophils, monocytes, NK cells, and

CD4 + T cells. In contrast, alveolar macrophages were depleted. Furthermore,

coinfection caused a decline in the diversity of gut bacteria. Muribaculaceae,

Lactobacillus, Akkermansia, Lachnospiraceae, and Rikenella were further found
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to be negatively correlated with cytokine levels, whereas Bacteroides was

positively correlated.

Conclusion: Coinfection with H1N1 and NTHi causes a deterioration in COPD

mice due to increased lung inflammation, which is correlated with dysbiosis of

the gut microbiota.
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1. Introduction

Acute exacerbation is a catastrophic event during the course
of chronic obstructive pulmonary disease (COPD) and contributes
to COPD-related mortality (Hillas et al., 2016). In China, COPD
patients experience between 0.5 and 3.5 acute exacerbations
annually, which accounts for substantial economic burden.
Infection is the most common cause of AECOPD, accounting
for 70–85% of all cases (Leung et al., 2017). Approximately 50%
of these patients have bacterial infections, such as Haemophilus
influenzae (NTHi), Streptococcus pneumoniae, and Staphylococcus
aureus, while 30% have respiratory virus infections, such as
rhinovirus, parainfluenza virus, and influenza virus (Leung et al.,
2017). Viruses are more likely to be detected in AECOPD
patients with influenza-like symptoms (Biancardi et al., 2016).
Bacteria could colonize in lower airways of COPD patients,
which may stimulate a secondary infection after viral infection.
Coinfection with virus and bacteria is also common in COPD,
accounting for 6.5–27% of infection induced-AECOPD (Papi et al.,
2006; Hewitt et al., 2016). Patients with AECOPD who had a
coinfection had significantly worse lung function and required
longer hospitalizations (Papi et al., 2006).

Clinical and animal studies have revealed a synergistic
relationship between influenza virus infection and bacterial
infection (Jones et al., 1983; Lee et al., 2010; Bosch et al., 2013).
Influenza infection can increase susceptibility and severity to
secondary bacterial infection (Lee et al., 2010). However, it is still
unclear how coinfection influences host response in AECOPD. In
addition, there is growing evidence that the gastrointestinal and
respiratory tracts are inherently related, and that the interaction
between the gut microbiota and host immunity influences disease
progression (Budden et al., 2017; Qu et al., 2022). Patients with
COPD or viral infection have a disturbed gut microbiota, which
worsens pulmonary inflammation and disease severity (Yildiz et al.,
2018; Li et al., 2021). Despite good adherence to GOLD Class
D recommended anti-microbial therapy, many COPD patients
still experience exacerbation, and customized treatment for high
frequency exacerbators based on dynamic changes of microbiota
is still lacking (Brennan et al., 2022). This limitation highlights the
need for a better understanding of the host and microbial response
in COPD with influenza and bacterial coinfection. In this study, we
developed a COPD mouse model using an oral and nasal cigarette
smoking (CS) exposure system, and further induced exacerbation
by sequentially infecting the mice with influenza H1N1 virus and
NTHi. We also determined viral and bacterial growth, cytokine

response, adhesion molecule levels, the presence of inflammatory
cells, and gut microbiome.

2. Materials and methods

2.1. Preparation of virus and bacteria

The influenza A/Puerto Rico/8/34 (PR8, H1N1) virus was
obtained from the American Type Culture Collection (ATCC) and
propagated in the allantoic cavities of 10-day-old embryonated SPF
chicken eggs. The virus was tittered in MDCK cells (ATCC) using
TCID50 (50% tissue culture infectious dose) assay calculated by
Reed and Muench method (Reed and Muench, 1938).

The NTHi ATCC49766, a reference strain, was kindly provided
by Professor Zhuo from our laboratory. Due to the infectivity
and virulence in mice (Kimura et al., 2020), we selected this
strain for studies of dual infection-induced AECOPD. NTHi stocks
were recovered in chocolate agar plates containing 0.33 mg/L
vancomycin (Guangdong Huankai, China) and grown in brain
heart infusion (BHI). 100 µL serial dilutions of NTHi in PBS
were inoculated in chocolate agar plates for 24 h in a 37◦C,
5% CO2 incubator, after which the colony-forming units (CFU)
were determined. All infections experiments were conducted in a
biosafety level 2 Plus (BSL-2 +) laboratory following the protocols
approved by Guangzhou Medical University.

2.2. Mouse model of
coinfection-induced AECOPD

Wild-type C57BL/6N male mice (6–8 weeks old), were
purchased from Beijing Vital River Laboratory Animal Technology
Co., Ltd. (Beijing, China). All the mice were housed in the
specific pathogen-free facilities and all experimental protocols were
approved by the Animal Care and Use Committee of Kunming
Medical University. All mice were allowed to acclimatize for a week
prior to cigarette smoke (CS) exposure.

The mice were randomly divided into 5 groups: CS exposure
(Group 1), air exposure (Group 2), CS exposure with PR8 infection
(Group 3), CS exposure with NTHi infection (Group 4), and
CS exposure with PR8 and NTHi coinfection (Group 5). The
experimental flow chart was shown in Figure 1. Briefly, group 1,
3, 4, and 5 were exposed to one cigarette (Hongtashan, China) per
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day for 14 weeks in an oral and nasal exposure system (Beijing
Huironghe Technology, China), as previously described (Xiao et al.,
2021). Each cigarette yielded 10 mg tar, 11 mg carbon monoxide,
and 1.0 mg nicotine. The parameters of exposure were as followed:
concentration of oxygen, (20 ± 0.5) %; dilution flow, 10 L/min; air
extraction flow, 13 L/min; air humidity, (60 ± 5)%. The cigarette
suction parameters were as followed: suction time, 2 s; time interval,
2 s; suction frequency, 10 s; suction volume, 35 mL. At week 14
post-CS exposure, mice from group 3 and 5 were anesthetized with
2.5% isoflurane and intranasally infected with 0.5 LD50 of PR8.
After 3 days, group 5 were sequentially challenged with 105 CFU of
NTHi. These infectious doses have been established in our previous
study of PR8-NTHi coinfection (Wu et al., 2021). At 24 h after
NTHi challenge, the invasive lung function was measured. The
mice were then sacrificed and the lungs were collected. The whole
lungs were weighted and the lung index (lung weight/body weight
ratio× 100) was calculated. Left lungs were then rinsed with HBSS
containing 2% FBS before flow cytometric analysis of immune
cells. Right lungs were homogenized in 1 mL PBS, and 100 µL
of homogenate was used for bacterial titer determination. The
remaining homogenates were further centrifugated at 3,000 rpm,
4◦C, for 10 min, and the resultant supernatant was subjected to
measurements of virus titer and cytokine levels. Also, whole lungs
were harvested for a hematoxylin and eosin (H and E) staining. In
addition, colon luminal content was collected for gut microbiota
analysis. In survival study, the body weight and survival of mice
were recorded daily for 15 days after PR8 infection.

2.3. Pulmonary function measurement

Pulmonary function in conscious mice was determined
once every 2 weeks from week 6 to 14 after initiation
of CS exposure using whole body plethysmography (EMKA
Technologies, Canada). The spirometric parameters included
frequency (F), tidal volume (TV), expiratory volume (EV), and
inspiratory time (Ti).

Invasive lung function of mice was measured by using
FlexiVent system (SCIREQ, Canada) according to the
manufacturer’s protocol. Briefly, after anesthetization with
tribromoethanol (Avertin, 240 mg/kg), mice were tracheotomized,
intubated, and placed in the chamber of the FlexiVent system. To
maintain muscular relaxation, mice were given intraperitoneal
injections of vecuronium bromide (6 mg/kg). Mechanical
ventilation was subsequently initiated to measure lung function
determined by the forced vital capacity (FVC), the forced
expiratory volume in 0.1 s (FEV0.1), respiratory resistance (Rrs),
tissue damping (G), and respiratory system compliance (Crs). Each
measurement was performed in triplicate. The data were analyzed
by the FlexiVent software (SCIREQ, Montréal, QC, Canada).

2.4. Histopathology

The lung histopathology was performed as previously described
(Shen et al., 2014). Briefly, the whole lungs of mice were removed
and fixed in 4% paraformaldehyde for 24 h. After dehydration and
embeddedness, lungs were sectioned to 3 µm thickness and stained

with H and E or Masson’s trichrome. The histopathological lesions
were observed and recorded under a light microscope. Trichrome
staining intensity of 4 randomly selected areas per mouse lung was
analyzed using ImageJ software.

2.5. Bacterial and viral titer determination

Haemophilus influenzae were quantified by incubating 100 µL
of 10-fold serial dilutions of lung homogenates in chocolate
agar plates containing vancomycin, as described above. After
centrifugation of the remaining lung homogenates, supernatants
were used to determine TCID50 in MDCK cells.

2.6. Cytokine and adhesion molecule
measurement

The supernatants of lung homogenates were also used
for the measurement of inflammatory cytokines, chemokines,
and adhesion molecules. The cytokines and chemokines were
determined by using the Luminex ProcartaPlex kit (Invitrogen,
Waltham, MA, USA) and the Mouse magnetic Luminex assays
kit (R&D, Santa Clara, CA, USA) in a Bio-Plex 200 Multiplex
Testing System (Bio-Rad, Hercules, CA, USA) following
manufacturer’s instructions. Mouse carcinoembryonic adhesion
molecule-1 (CEACAM-1) (MyBioSource, San Diego, CA, Canada),
intracellular adhesion molecules-1 (ICAM-1) (R&D), and
fibronectin (Fn) (Abnova, Walnut, CA, USA), were determined
by ELISA assays.

2.7. Flow cytometric analysis

The collected left lung was digested by the enzyme mixture in
the gentleMACS Dissociator (Miltenyi Biotec, Gaithersburg, MD,
USA). The resultant digested fluid was allowed to run through
a 70-micron cell strainer to obtain a single-cell suspension. The
erythrocytes were further lysed in a red blood cell lysis buffer
(Biolegend, San Diego, CA, USA). Cells were resuspended with
1 mL FACS buffer (PBS contained 2% FBS and 5 mM EDTA), and
the Fc receptors were blocked by anti-mouse CD16/32 (Biolegend,
San Diego, CA, USA) at 4◦C for 10 min. Cells were then
stained with special anti-mouse antibodies, including GhostDye510
(TONBO Biosciences, USA), FITC anti-mouse CD11b (Biolegend,
San Diego, CA, USA, Clone M1/70), PerCP-Cy5.5 anti-mouse Ly-
6C (Biolegend, San Diego, CA, USA, Clone HK1.4), PE anti-mouse
F4/80 (Biolegend, San Diego, CA, USA, Clone BM8), PE-Cy7 anti-
mouse CD86 (Biolegend, San Diego, CA, USA, Clone GL-1), APC
anti-mouse Ly-6G (Biolegend, San Diego, CA, USA, Clone 1A8),
APC-Cy7 anti-mouse CD45 (Biolegend, San Diego, CA, USA,
Clone 30-F11), BV421 anti-mouse CD11c (Biolegend, San Diego,
CA, USA, Clone N418), BV605 anti-mouse CD206 (Biolegend,
San Diego, CA, USA, Clone C068C2), FITC anti-mouse CD4
(Biolegend, San Diego, CA, USA, Clone RM4-5), PerCP-Cy5.5 anti-
mouse CD3 (Biolegend, San Diego, CA, USA, Clone 17A2), PE
anti-mouse CD19 (Biolegend, San Diego, CA, USA, Clone 6D5),
APC anti-mouse CD8 (Biolegend, San Diego, CA, USA, Clone
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FIGURE 1

Experimental flow chart. Mice were exposed to one cigarette per day for 14 weeks and then intranasally inoculated with non-lethal dose of PR8 or
PBS. At 3 days post-infection (dpi), mice were challenged with NTHi or PBS. After detecting invasive lung function at 24 h post-NTHi challenge, mice
were sacrificed and samples were collected for further analysis, including histopathology, lung index, replication of pathogens, inflammatory
mediators, immune cells, and gut microbiota. Survival rate was calculated at day 15 after PR8 infection.

53-6.7), and BV421 anti-mouse NK1.1 (Biolegend, San Diego,
CA, USA, Clone PK136). Flow cytometric analysis of stained cells
were performed using a flow cytometer (PARTEC CyFlow Space,
Germany). Acquired data were analyzed using FlowJo software.

2.8. Gut microbiota analysis

Colon luminal contents in mice were collected immediately
after euthanasia and were rapidly flash-frozen in liquid nitrogen
for 30 min before storing at −80◦C. Total bacterial DNA was
extracted by using a Magnetic soil and stool DNA kit (TIANGEN,
China). The V3-V4 region of 16S rRNA gene was amplified
using PCR assay with. The amplicon primer sequences were
as follows: forward primer 5′-(GTGCCAGCMGCCGCGGTAA)-
3′; reverse primer 5′-(GGACTACHVGGGTWTCTAAT)-3′. The
libraries were constructed using NEB next ultra-library prep
kit (Illumina, USA) and paired-end sequenced on Illumina
Novaseq6000 platform (Illumina, USA) of Novogene Co., Ltd.
(Beijing, China). The filtering of raw sequence and taxonomic
classification were performed as described previously (Li et al.,
2020). The diagrams of alpha and beta diversity and relative
abundance of microbiota were drawn using the R packages ggplot2
and vegan. The significance of beta diversity based on Weighted
UniFrac dissimilarity was tested by analysis of similarities (Anosim)
within the R package vegan.

2.9. Statistical analysis

Statistical analysis was performed by using GraphPad Prism
8.0 and SPSS 16.0 software. The differences among groups were
compared by using the unpaired two-tailed student’s t-test, welch’s
t-test or non-parametric test. Correlations between cytokines and
gut microbiota were assessed by using Spearman’s rank correlation.
The value of p < 0.05 was considered statistically significant.

3. Results

3.1. Coinfection with PR8 and NTHi
results in higher mortality in COPD mice

To replicate COPD in humans, we first developed a mouse
model by CS exposure for 14 weeks. Mice exposed to CS had
impaired lung function, as indicated by an increase in F and
a decrease in Ti, TV, and EV (Figures 2A–D). Besides, CS-
exposed mice gained weight significantly slower than control
mice (Figure 2E). These results suggested that COPD mice
were successfully established. We further developed the AECOPD
model by sequentially infecting COPD mice with PR8 and NTHi.
Coinfected mice exhibited 100% lethality (p < 0.001), but PR8
or NTHi alone had no effect on mortality, indicating that
the combination of two pathogens caused synergistic mortality
(Figure 3).

3.2. Coinfection results in declined lung
function in COPD mice

As expected, CS exposure significantly impaired lung function,
as shown by a decline in FEV0.1/FVC and Crs, and a increase in
Rrs and G compared to control mice (Figures 4A–D), but PR8
or NTHi alone did not result in further impairment (Figures 4A–
D). Interestingly, coinfection deteriorated the impairment of lung
function in COPD mice (Figures 4A–D).

3.3. PR8 enhances NTHi growth in lungs
of COPD mice

The combination of PR8 and NTHi resulted in significant
higher levels of NTHi load in mice lungs at 24 h post-NTHi
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FIGURE 2

Lung function and body weight changes in conscious mice during CS exposure. Inspiratory time (Ti) (A), tidal volume (TV) (B), expiratory volume (EV)
(C), frequency (F) (D), and body weight changes (E) in control (n = 21) and CS-exposed (n = 16) group. Data was expressed as means ± SD.
*p < 0.05, **p < 0.01, and ***p < 0.001, compared with air exposure group.

FIGURE 3

Lethal synergistic effect of PR8-NTHi coinfection in COPD mice. Three days following intranasal infection with 1 LD50 of PR8, COPD mice were
challenged with 105 CFU of NTHi. Survival (n = 5) was recorded for 15 days. **p < 0.01 compared with CS-exposed group.

challenge (Figure 5A), but the PR8 titer in coinfected mice did not
differ from that in PR8-infected mice (Figure 5B).

3.4. Coinfection aggravates lung injury in
COPD mice

Mice exposed to CS had emphysema-like pathological changes,
including bronchial wall thickening, alveolar wall thinning and
destruction, and alveolar enlargement below the pleura, as
compared with control group (Figures 6A–D). Mild inflammation
was observed in COPD mice infected with NTHi, as shown by the
recruitment of neutrophils into bronchial lumen (Figures 6E, F).
In PR8-infected COPD mice, lymphocytic inflammation was

present in peribronchial alveolar (Figures 6G, H). In addition,
coinfected mice had more severe lung injury, as evidenced
by infiltration of neutrophils into bronchiolar cavity, profuse
hemorrhage and edema, and destruction of ciliated columnar
epithelium (Figures 6I, J). In accordance with histopathological
findings, a single pathogen resulted in a higher lung index than
CS exposure alone, and coinfection resulted in the highest lung
index (Figure 6K). In addition, mild collagen deposition was
observed in smooth muscle layer of trachea and lung blood vessels
of normal control mice (Figures 6L, Q). Compared to control
group, mice exposed to CS exhibited bronchial wall thickening
and significantly increased collagen deposition (Figures 6M, Q).
Collagen expression was not significantly different between the CS,
CS + NTHi, and CS + PR8 groups (Figures 6M, N, O, Q), but it was
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FIGURE 4

Coinfection with PR8 and NTHi impaired invasive lung function in AECOPD mice. At 24 h after NTHi challenge, invasive lung function was measured
by forced expiratory volume in 0.1 s/forced vital capacity (FEV0.1/FVC) (A), respiratory resistance (Rrs) (B), tissue damping (G) (C), and respiratory
system compliance (Crs) (D). Data are expressed as mean ± SD (n = 10–15). *p < 0.05, **p < 0.01, and ***p < 0.001.

more extensive and significant in coinfected mice (Figures 6P, Q).
These findings indicate that coinfection significantly increases the
collagen deposition in lungs of COPD mice.

3.5. Coinfection results in increased
inflammation in lungs of COPD mice

Since pathological inflammation was pronounced in AECOPD
mice, we further determined the expression levels of inflammatory
cytokines and immune cells in the lungs. NTHi alone induced

increased levels of cytokines, including IL-1β, IL-6, TNF-α, IL-
22, IL-17, KC, and MIG, as compared with non-infected COPD
mice (Figures 7B–H). Besides, PR8 infection alone also triggered
significantly higher expression of inflammatory cytokines and
chemokines, including CRP, IL-1β, IL-6, TNF-α IL-22, IL-17, KC,
and MIG (Figures 7A–H). Furthermore, coinfected mice had
significant higher levels of CRP, IL-1β, IL-6, TNF-α, IL-22 and KC
as compared with PR8 or NTHi alone (Figures 7A–E, G). We also
found that the levels of the adhesion molecules, including ICAM-
1 and CEACAM-1, as well as the extracellular matrix Fn, were
significantly higher in coinfected mice than the CS group (Figures
7I–K).
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FIGURE 5

Replication of PR8 and NTHi in AECOPD mice. At 24 h post-NTHi
infection, lung homogenates were added to chocolate agar plates
containing vancomycin to determine bacterial CFU (A), and the
supernatants of lung homogenates were added to MDCK cells to
determine viral TCID50 (B). Data are expressed as mean ± SD
(n = 6). ***p < 0.001.

We further performed flow cytometric analysis of inflammatory
cells, including macrophages (CD45 + /CD11b + /F4/80 + /Ly6G-),
M1 macrophages (CD45 + /CD11b + /F4/80 + /Ly6G-/CD86 +),
M2 macrophages (CD45 + /CD11b + /F4/80 + /Ly6G-/CD206 +),
alveolar macrophages (CD45 + F4/80 + CD11c + CD11b-),
neutrophils (CD45 + /Ly6C + /Ly6G + /CD11b +), monocytes
(CD45 + Ly6C + Ly6G-CD11b +), NK cells (NK1.1 + CD3-), T cells
(CD45 + /CD3 +), CD4 + T cells (CD45 + /CD3 + /CD4 + /CD8-
), CD8 + T cells (CD45 + /CD3 + /CD4-/CD8 +), and B
cells (CD45 + /CD3-/CD19 +). COPD mice infected with NTHi
alone had significantly increased M1 and M2 macrophages but
decreased alveolar macrophages as compared with non-infected
COPD mice (Figures 8B, C, E). PR8 infection alone resulted
in an increase in the number of M1 and M2 macrophages,
neutrophils, monocytes, and NK cells in the infected COPD mice
(Figures 8B, C, F–H). In coinfected mice, total macrophages,
M1 macrophages, neutrophils, monocytes, and NK cells were
significantly increased (Figure 8A, B, F–H), whereas the alveolar
macrophages were significantly decreased (Figure 8E). We also
showed that coinfection resulted in a significant increase in the
ratio of M1/M2 (Figure 8D). Regarding adaptive immune cells,
coinfection significantly reduced the levels of CD4 + T cells and
B cells (Figures 8J, L), but had no effect on total number of T cells
or CD8 + T cells (Figures 8I, K).

3.6. Coinfection results in the gut
microbiota dysbiosis in COPD mice

It has been reported that exposure to CS or biofuels disrupts
the gut microbiota of COPD mice, which may influence disease
progression (Li et al., 2021). Infection with IAV can also alter the
gut microbiota, which increases susceptibility to viral infection
and bacterial superinfection, exacerbates lung injury, and even
increases mortality (Yildiz et al., 2018). However, the alteration
of gut microbiota in AECOPD individuals remained unknown.
Hence, we sequenced the 16S rRNA gene of colon contents to
further investigate the effect of coinfection on the gut microbiota in

COPD mice. After removing low-quantity data, 1,810,199 effective
sequence reads from 30 samples were utilized for analysis and 9,403
operational taxonomic units (OTUs) were identified. The number
of OTUs was significantly higher in mice exposed to CS than in the
control group, but COPD mice infected with NTHi or PR8 alone
had a slightly lower number of OTUs, and the decrease was even
more pronounced in coinfection (Figure 9A). Chao 1 indices also
showed a similar pattern of decline in alpha diversity (Figure 9B).
In addition, PCoA results revealed varying degrees of shift across
all groups, with the most significant shifts occurring between CS
and CPN (p = 0.0149) and between CN and CPN (p = 0.0049)
(Figure 9C).

We then analyzed the taxonomic level of microbial
communities that may have contributed to the changes in
alpha and beta diversity. At the phylum level, all colon contents
contained four major bacterial phyla: Bacteroidetes, Firmicutes,
Proteobacteria, and Actinobacteria. Mice exposed to CS for
14 weeks had a greater relative abundance of Actinobacteria,
which was decreased when COPD mice were infected with
NTHi (p < 0.05) or PR8 (p > 0.05) (Figure 9D). COPD mice with
coinfection exhibited more pronounced decreases in Actinobacteria
and Firmicutes, and an increase in Bacteroidetes (Figure 9D). In
comparison to COPD mice, coinfected mice had lower abundance
of Muribaculaceae, Lactobacillus, and Lachnospiraceae, and higher
abundance of Bacteroides (Figures 9E, F).

Inflammatory cytokine production induced by acute viral
respiratory infections is an important cause of gut microbiota
changes (Sencio et al., 2021). We further analyzed the correlation
between gut microbiota and the expression of lung cytokines. The
Mantel test revealed a positive correlation between the diversity
of gut microbiota and multiple inflammatory cytokines, including
KC, IL-1β, IL-6, and TNF-α, which were significantly elevated
in coinfected COPD mice (Figure 9G). We then investigated
the association between lung cytokines and individual microbes.
Interestingly. the abundance of commensal bacteria, including
Muribaculaceae, Lactobacillus, Akkermansia, Lachnospiraceae, and
Rikenella, were negatively correlated with most of cytokines. On
the contrary, the higher levels of lung cytokines were correlated
with increased abundance of Bacteroides, Alistipes, Parabacteroides,
and Ruminococcus (Figure 9H), but the last three genus did not
significantly differ among all groups.

4. Discussion

Respiratory viral and/or bacterial infection are the most
frequently cited causes of AECOPD, and coinfection with these
pathogens accounts for 25% of severe AECOPD; this percentage
is likely to increase as more sensitive diagnostic tests are
developed (Papi et al., 2006). Coinfection is associated with
longer hospitalization and more severe lung injury in COPD
patients (Papi et al., 2006). However, it is unknown precisely how
viral and bacterial coinfection affects the progression of disease
during an exacerbation. By exposing mice to cigarette smoke
followed by viral and bacterial coinfection, it is advantageous to
replicate the development and progression of AECOPD, investigate
the interaction between two pathogens, and explore potential
therapeutic interventions. In this study, we demonstrated that
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FIGURE 6

Coinfection aggravates lung injury in AECOPD mice. Pathological changes of control group (A,B), CS-exposed group (C,D), CS + NTHi group (E,F),
CS + PR8 group (G,H), and CS + PR8 + NTHi group (I,J) were observed in H and E-stained sections. Original magnification, × 4 and × 20. Lung
index was calculated as lung weight/body weight × 100 (K). Collagen fibers of control (L), CS-exposed (M), CS + NTHi (N), CS + PR8 (O), and
CS + PR8 + NTHi (P) groups were stained with Masson’s trichrome and quantified using ImageJ (Q). Data are representative images (n = 3 in each
group) or expressed as mean ± SD (n = 12 for lung index, n = 3 for percentage of collagen fibers). ∗∗p < 0.01 and ∗∗∗p < 0.001.

COPD mice succumbed when exposed to both influenza virus
and NTHi, and that influenza virus markedly increased the host
susceptibility to NTHi replication, whereas NTHi had no effect on

influenza virus growth, which was consistent with our previous
findings in coinfected mice without cigarette smoke exposure (Wu
et al., 2021). These results suggest that a prior infection with PR8
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FIGURE 7

Cytokine and adhesion molecule expression in lung homogenates of AECOPD mice. The levels of CRP (A), IL-1β (B), IL-6 (C), TNF-α (D), IL-22 (E),
IL-17 (F), KC (G), MIG (H), ICAM-1 (I), CEACAM-1 (J), and Fn (K) were measured by the Bio-Plex Mouse Cytokines assay or ELISA. Data are expressed
as mean ± SD (n = 6 in each group). *p < 0.05, **p < 0.01, and ***p < 0.001.

could promote NTHi growing in the lungs of COPD mice, and
the uncontrolled growth of NTHi may be one of the causes of
lethality in COPD mice. It has also been reported that influenza
infection increases susceptibility to and decreases elimination of
other bacteria, including S. aureus and S. pneumoniae (McCullers
and Rehg, 2002; Zhao et al., 2021). In addition, our AECOPD
mice model not only had pathologic features of viral and bacterial
pneumonia, which was consistent with our previous finding in
coinfected normal mice (Wu et al., 2021), but also had emphysema,
which resulted in decreased lung function.

At present, there are numerous mechanisms underlying
the increased susceptibility to infections due to exposure to
cigarette smoking. Firstly, cigarette exposure dampens anti-
infective mechanism, such as antiviral signaling (Modestou
et al., 2010; Duffney et al., 2018), pulmonary pathogen clearance

(Sussan et al., 2015), and pathogen-dependent endocytosis
(Duffney et al., 2020). In addition, viral infection may compromise
the epithelial barrier, alter the mucosal surface environment,
degrade antimicrobial peptides, and expose adhesion receptors,
such as ICAM-1, CEACAM-1, platelet-activating factor receptor
(PAFr), and Fn, thereby facilitating bacterial adhesion and growth
(McCullers and Rehg, 2002; Bosch et al., 2013; Su et al., 2018).
Therefore, higher levels of ICAM-1 and CEACAM-1 in our
coinfected mice may contribute to enhanced NTHi growth.

Acute exacerbations of COPD are episodes of worsening
respiratory symptoms that are always associated with increased
airway and system inflammation (Wedzicha and Seemungal,
2007). Airway neutrophilia is a common feature of COPD
patients and correlated with airway obstruction, decline in FEV1,
and development of emphysema (Jasper et al., 2019). Although
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FIGURE 8

Flow cytometric analysis of innate and adaptive immune cells in AECOPD mice lungs. Following digestion of lungs, the collected cells were analyzed
by flow cytometry for monocyte-derived macrophages (A), M1 macrophages (B), M2 macrophages (C), M1 macrophages to M2 macrophages ratio
(D), alveolar macrophages (E), neutrophils (F), monocytes (G), NK cells (H), T cells (I), CD4 + T cells (J), CD8 + T cells (K), and B cells (L). Data are
expressed as mean ± SD (n = 6). *p < 0.05, **p < 0.01, and ***p < 0.001.

neutrophils traps pathogens and control overwhelming infections
by casting neutrophil extracellular traps (NETs), massive formation
of NETs may result in respiratory epithelial and endothelial cell
death and accelerates disease progression, which is commonly
seen in COPD (Trivedi et al., 2021). In addition, the increased
migration of neutrophils in the lungs of COPD patients was
frequently accompanied by decreased migration accuracy, resulting
in increased “bystander” tissue damage caused by proteinase
released from these cells (Sapey et al., 2011; Tregay et al., 2019).
Therefore, the increased neutrophils in our CS-exposed mice and
its further elevation following coinfection might contribute to the
severity of AECOPD in mice. Oxidative stress-induced impairment
of alveolar macrophage (AM) function reduces phagocytosis of
bacteria and efferocytosis of apoptotic cells, which has been linked
to increased susceptibility to AECOPD (Vlahos and Bozinovski,
2014). Although CS exposure did not affect the number of
macrophages, M1 and M2 macrophages, or alveolar macrophages
in our model, it is possible that the capability of macrophages

to eliminate invading microbes was impaired. Our results also
showed that a single NTHi or PR8 infection reduced alveolar
macrophages by 25 and 15%, respectively, when compared to CS
mice without infection, and that alveolar macrophages were further
reduced when these two microbes were combined (Figure 8E).
This was comparable to the findings of Ghoneim et al. (2013),
who demonstrated that coinfection during the AM depletion phase
led to significant body weight loss and mortality, and that the
depletion of alveolar macrophages during influenza virus infection
promoted bacterial superinfections. Macrophage can be polarized
into classically activated (M1) and alternatively activated (M2)
macrophages. M1 macrophages play an important role in the
early stages of inflammation by phagocytosing and eliminating
foreign pathogens as well as producing pro-inflammatory cytokines
(Huang et al., 2018). In contrast, M2 macrophages are associated
with inflammation resolution and tissue repair by reducing levels
of pro-inflammatory cytokines in the cellular space (Huang et al.,
2018). Balanced polarization of M1/M2 macrophage determines
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FIGURE 9

Coinfection alters gut microbiota in COPD mice. Alpha diversity indices, including observed OTUs (A) and Chao 1 (B), for control group, CS group,
CS + NTHi group (CN), CS + PR8 group (CP), and CS + PR8 + NTHi group (CPN). (C) PCoA of weighted UniFrac distances, with R and p-values
calculated by Anosim. The average relative abundance of the gut microbiota at phylum (D) and genus (E) levels analyzed by Bar-plot. (F) Comparison
of the relative abundance at the genus levels. (G) Correlations between cytokines and gut microbiota identified by (CCA), with mental test displayed
on the lop-left corner. (H) Correlation between each bacteria genus and cytokine analyzed by spearman correlation tests. *p < 0.05 and **p < 0.01.
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the lung inflammation or injury. At the stage of severe infection
and inflammation, macrophages first polarized to M1 phenotype
by producing TNF-α, IL-1β, IL-12, and IL-23 against the stimulus
l (Shapouri-Moghaddam et al., 2018). Our findings followed a
similar pattern, with coinfection causing higher M1/M2 ratio and
release of TNF-α and IL-1β. Although total T cells and CD8 + T
cells were not significantly different between groups, CD4 + T cells
were significantly diminished in our coinfected mice compared to
CS-exposed mice without infection. It has been demonstrated that
CD4 + T cells play a role in the development and progression of
AECOPD, and that a decrease in CD4 + T cells may be one of the
contributing factors to the deterioration of COPD (Xue et al., 2022).
In addition, multiple subsets of CD4 + T cells, such as regulatory
T cells (Tregs), T helper 17 cells (Th17), type 1 T helper (Th1)
cells, and Th2 cells, have been implicated in the pathogenesis of
AECOPD (Guan et al., 2018; Wei and Sheng Li, 2018), which needs
to be investigated further in our study.

Respiratory infections could result in an impaired microbiota
phenotype (De Steenhuijsen Piters et al., 2016; Ferreira et al., 2020).
Furthermore, it is believed that gut microbiota may increase gut
permeability, allowing bacteria and toxins to enter the circulatory
system and exacerbate the systemic inflammation (Mizutani et al.,
2022). Our and other studies have demonstrated that altered
gut microbiota composition correlated with higher levels of
inflammatory cytokines (Yeoh et al., 2021; Mizutani et al., 2022).
Clinical studies have demonstrated that the gut microbiota of
COPD patients differs from that of healthy individuals, with fewer
Bacteroides and more Firmicutes (Li et al., 2021; Chiu et al., 2022),
which is similar to our finding in COPD mice. In contrast, viral
infection could result in an increase in the level of Bacteroides
and a decreased level of Firmicutes (Al Khatib et al., 2021), which
is also similar to our finding in AECOPD mice. It has also
been suggested that dysbiosis of Bacteroidetes and Firmicutes is
a potential inflammatory trigger (Li et al., 2021). Changes in the
Firmicutes/Bacteroidetes (F/B) ratio caused inflammatory bowel
disease (IBD), and single or combined use of probiotic from the
phylum Firmicutes were effective in restoring the gut microbial
balance by influencing the F/B ratio, thereby alleviating intestinal
inflammation (Stojanov et al., 2020). Actinobacteria have been
found to colonize on the surface of respiratory mucosa of healthy
individuals (Rigauts et al., 2022). We also revealed a dynamic
pattern of Actinobacteria that increased with CS exposure but
decreased after infection with PR8, NTHi, or both microbes.
This could be explained by Li et al. (2022) who demonstrated
a negative correlation between Actinobacteria and the frequency
of AECOPD. Lachnospiraceae are the most common Firmicutes
families that have been shown to decrease in patients with IBD
and ulcerative colitis (UC) (Nagao-Kitamoto and Kamada, 2017;
Vacca et al., 2020). This finding was consistent with our result in
AECOPD mice. A study led by Chen found that NLRP12 could
promote beneficial strains of Lachnospiraceae, thereby reducing
intestinal inflammation (Chen et al., 2017). Bacteroides spp. are
“friendly” commensals when they are in the gut, but when
they are located elsewhere in the body, they tend to transform
into opportunistic pathogens (Zafar and Saier, 2021). Bacteroides
level increased in the gut of our coinfected mice, and this was
positively correlated with cytokine expression in the lungs. It
was unknown whether Bacteroides moved from the gut to the
lung and became pathogenic. In our study, coinfected COPD

mice also had decreased level of Muribaculaceae in the guts,
which were negatively correlated with pulmonary inflammatory
cytokines. This bacteria has been shown to be effective in the
treatment of IAV infection (Zelaya et al., 2016). Lactobacillus
was found to be negatively correlated with most of cytokines in
our coinfected mice, and oral administration of heat-killed or
plant-derived Lactobacillus was effective in protecting against IAV
infection by enhancing T-cell factor production and IFN response
(Kobayashi et al., 2011; Waki et al., 2014). According to clinical
studies, Lactobacillus was also the most commonly used probiotic
that reduced the risk of viral respiratory tract infections (Shi et al.,
2021). Therefore, dysbiosis of the gut microbiota correlates with
deterioration in gut and lung inflammation, and development of
mono- or poly-microbial intervention may prevent the progression
of gut and lung injury.

Lung microbiota is variable and distinct of those from guts
(Dumas et al., 2018), and nasally infection with microbes could
directly alter the lung microbiota. Bacteria colonization is observed
in stable COPD patients, and respiratory viral and/or bacterial
infection further leads to the development of AECOPD. It is
interesting that AECOPD may be caused by new strains of bacteria
rather than new families or genera; specifically, new strains of
Haemophilus influenzae were implicated (Brennan et al., 2022).
Patients with stable COPD were reported to have Firmicutes
(31.63%), Bacteroidetes (28.94%), and Proteobacteria (19.68%) in
lungs, whereas those with AECOPD had a dominant bacterial
phylum of Proteobacteria (30.29%), Firmicutes (29.85%), and
Bacteroidetes (14.02%) (Russo et al., 2022). In a Chinese cohort
study, Streptococcus was found to be the most predominant
genus in sputum of AECOPD patients (Wang et al., 2020).
Pasteurellaceae, Fusobacterium, Solobacterium, Haemophilus,
Atopobium, Corynebacterium, and Streptococcus were also found
to be enriched in the sputum microbiomes of eosinophilic
AECOPD (Wang et al., 2020). By sampling endotracheal aspirates
from AECOPD individuals, Firmicutes and Proteobacteria
was also found to be the most abundant bacterial phyla, and
Streptococcus was the most abundant bacterial species (Sun
et al., 2020). In an emphysema mouse model, elastase induces a
decline in microbiota richness and diversity, with Pseudomonas
and Lactobacillus genera increasing and Prevotella decreasing
(Wang et al., 2017). IAV causes subtle, transient changes in the
microbial composition of the lower respiratory tract of mice, with
Lactobacillus dominating (Yildiz et al., 2018). Mice infected with
S. pneumoniae after 6 months of exposure to cigarette smoke
had decreased pulmonary microbiota diversity and increased
Lactobacillaceae levels in the upper respiratory tract (Hilty
et al., 2020). However, it remains unclear how changes in the
composition of lung microbiome in COPD mice with NTHi
infection or IAV-NTHi coinfection. Furthermore, the underlying
mechanism driving these changes in lung microbiota observed
in patients and animals should be investigated further in our
coinfection model.

5. Conclusion

Coinfection with H1N1 and NTHi increases disease severity
in COPD mice due to increased lung inflammation, which is
correlated with a dysbiosis of gut microbiota.
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