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Editorial on the Research Topic

Neuroscience, computing, performance, and benchmarks:Why itmatters

to neuroscience how fast we can compute

Introduction

At the turn of the millennium the computational neuroscience community realized that
neuroscience was in a software crisis: software development was no longer progressing as
expected and reproducibility declined. The International Neuroinformatics Coordinating
Facility (INCF) was inaugurated in 2007 as an initiative to improve this situation. The INCF
has since pursued its mission to help the development of standards and best practices. In
a community paper published this very same year, Brette et al. (2007) tried to assess the
state of the field and to establish a scientific approach to simulation technology, addressing
foundational topics, such as which simulation schemes are best suited for the types of models
we see in neuroscience.

In 2015, a Frontiers Research Topic “Python in neuroscience” by Muller et al. (2015)
triggered and documented a revolution in the neuroscience community, namely in the usage
of the scripting language Python as a common language for interfacing with simulation
codes and connecting between applications. The review by Einevoll et al. (2019) documented
that simulation tools have since further matured and become reliable research instruments
used by many scientific groups for their respective questions. Open source and community
standard simulators today allow research groups to focus on their scientific questions and
leave the details of the computational work to the community of simulator developers.
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A parallel development has occurred, which has been barely
visible in neuroscientific circles beyond the community of
simulator developers: Supercomputers used for large and complex
scientific calculations have increased their performance from ~10
TeraFLOPS (1013 floating point operations per second) in the early
2000s to above 1 ExaFLOPS (1018 floating point operations per
second) in the year 2022. This represents a 100,000-fold increase
in our computational capabilities, or almost 17 doublings of
computational capability in 22 years. Moore’s law (the observation
that it is economically viable to double the number of transistors
in an integrated circuit every other 18–24 months) explains a
part of this; our ability and willingness to build and operate
physically larger computers, explains another part. It should be
clear, however, that such a technological advancement requires
software adaptations and under the hood, simulators had to
reinvent themselves and change substantially to embrace this
technological opportunity. It actually is quite remarkable that—
apart from the change in semantics for the parallelization—this has
mostly happened without the users knowing.

The current Research Topic was motivated by the wish to
assemble an update on the state of neuroscientific software (mostly
simulators) in 2022, to assess whether we can see more clearly
which scientific questions can (or cannot) be asked due to our
increased capability of simulation, and also to anticipate whether
and for how long we can expect this increase of computational
capabilities to continue.

Larger brain and brain tissue models

A promising advance compared to the state of the field 15
years ago is that we now see an increase in the complexity of
network models. Earlier, the balanced random network model
composed of a population of excitatory neurons and a population
of inhibitory neurons was dominating the literature and few studies
reached beyond it. Today, biologically muchmore realistic network
models are in widespread use and have become the new de facto

standard (Albers et al.; Tiddia et al.; Awile et al.; Borges et al.).
These newer models represent the anatomy of the local circuitry
of the mammalian cortex at full scale, meaning with all the neurons
and synapses. As a consequence, neuron and synapse numbers have
increased by an order of magnitude compared to earlier models.
The ability to simulate at full scale is decisive because this removes
all uncertainties on the scaling of emerging network phenomena
with network size which have plagued and occupied theoreticians
for a long time (van Albada et al., 2015).

Expansion to the subcellular realm

Most articles in this collection concentrate on describing
models developed at the level of neurons and synapses. However,
some articles also show how our advances in computing and
simulation technology can be used to extend our modeling and
simulation capability to the membrane and subcellular biochemical
realm. Awile et al. show how subcellular dynamics can be
integrated into NEURON simulations. The works of Chen et al.
and McDougal et al. enable neuroscientists to study the biophysics

of synaptic plasticity and the processes in the spine in detail. As
generally accepted models of plastic processes have not yet been
established on a phenomenological level, the capability to simulate
on the level of subcellular processes is of high relevance.

The role of simulators and workflows

The number of codes targeting the same level of description has
decreased somewhat and remaining codes like NEURON (Awile
et al.) and NEST (Albers et al.; Pronold et al.) have increasingly
embraced and advanced community-based development models
and incorporated ideas of the emerging field of research software
engineering (RSE). At the same time, it is remarkable that after
15 years of intense research the seemingly fundamental question
of whether an event-driven or a clock-driven approach to the
simulation of spiking neuronal networks is more efficient, does not
seem to have found a consensus (Mo and Tao; Hanuschkin et al.,
2010; Krishnan et al., 2018). A reason for this could of course be
that there is simply no general answer for any model and hardware,
and that in practice simulation codes such as NEURON and NEST
employ hybrid approaches.

Furthermore, various variants of language interfaces were
developed for the traditional simulation codes (Borges et al.;
Herbers et al.). Also new simulation codes were developed
expressing network models entirely in Python or implementing
code generators for performance critical sections (Dinkelbach
et al.; Alevi et al.). Of similar importance to the advances of
individual tools is the progress in the digitalization of scientific
workflows (Albers et al.; Awile et al.; Feldotto et al.; Herbers
et al.) and the observation that not only the source codes but also
executable model descriptions of simulation engines are available
in publicly curated repositories.

Keeping innovations
around—Sustainability of scientific
software

Software codes that have been around for 15 years, are still
in widespread use by the community today. Neuroscience must
therefore acknowledge, as other scientific fields already have, that
scientific software can easily have life spans of 40 years or more.
Sustainability and portability are consequently of high relevance
for software tools that serve a whole community rather than a
specific scientific goal as showcased in Chen et al. and Awile et al..
While often new features or increased performance (especially in
the case of simulators) are the milestones of such projects, the
authors observed that a focus on software sustainability can be
an important driver for innovations. Both publications show how
the modernization of complex scientific software can be made
more tractable by first focusing on putting in place a robust
continuous integration, testing, and documentation workflow. As
the software developed in the field is becoming more complex
to satisfy the scientific needs (e.g., supporting multiple numerical
methods, multiphysics simulations, and heterogenous hardware
platforms), the implementation of software modularity and
composability is concurrently becoming increasingly important.
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These methodologies feature prominently in Feldotto et al.. The
authors focus here on container technologies to enable complex
software setups and workflows for embodied simulations of spiking
neural networks.

If simulator engines are on track, how
about analysis packages?

Only one paper in this series discusses the performance of a data
analytics problem (Porrmann et al.). This may reflect the possibility
that the availability of HPC methods is not the most pressing
problem in the analysis of neuroscientific data. There is certainly
considerable activity in processing pipelines for neuroimaging, but
this field finds other forums (Halchenko et al., 2021). Maybe the
discrepancy also reflects the fact that in the research field concerned
with the spiking activity of neuronal networks, researchers doing
simulations have always been somewhat advanced in embracing
new hardware and software technologies compared to those
involved in analysis.

Embracing the course of computing
architecture evolution

A thread running through many of the articles in this
collection is how to make the best of the currently available but
rapidly changing hardware systems. Since clock frequencies for
processors flattened out in the mid-2000s, processor architectures
have become progressively more parallel. This applies to latency-
optimized CPUs which have become moderately parallel (<100
superscalar cores/CPU) as well as GPUs (>1000s of simple
cores/GPU). It is heartening to see that the community is
embracing this opportunity and challenge. Alevi et al. present
new software for exploiting NVIDIA GPU hardware to accelerate
simulation with the popular Brian simulator (Stimberg et al., 2019),
complementing the existing Brian2GeNN software (Stimberg
et al., 2020). Awile et al. show how code generation can be
used to run the NEURON simulator on GPUs. In a similar
vein, Tiddia et al. present work on how to efficiently run a
large spiking neural network model on a GPU cluster and
Dinkelbach et al. describe work on one specific aspect of efficient
simulations of spiking neural networks on GPU hardware in
their ANNarchy simulation software. Ladd et al. furthermore
present an evolutionary algorithm able to run on GPUs that
accelerates the building of multi-compartment neuron models.
Challenges of how to handle massive parallelism and distributed
computing also arise in the context of classical HPC clusters,
and Pronold et al. describe how one key bottleneck can
be overcome.

Emerging computing architectures

The unsure future of CMOS scaling will present the neural
simulation community with an even broader set of architectures
beyond CPUs and GPUs. There is an increasing trend toward more

specialized components, particularly those that enable artificial
intelligence applications such as artificial neural networks (Reed
et al., 2022). We hope that such specialization may also
enable simulations of biological neural networks without too
many adaptations. Looking beyond ANN accelerators, it is also
reasonable to expect to see even more diversity through platforms,
such as neuromorphic hardware, obtaining widespread use in
HPC systems, particularly since they are proving suitable for
conventional computing applications (Aimone et al., 2022). Beyond
exploiting specific characteristics of biological neural networks,
today’s neuromorphic computing systems such as SpiNNaker,
BrainScales, and Loihi attempt an integration at scale. As a result
they enable complexmodels to be programmed, with biologically fit
neurons shown to be realizable on Intel Loihi (Dey and Dimitrov),
BrainScaleS-2 (Müller et al.), and SpiNNaker (Peres and Rhodes;
Ward and Rhodes).

Rethinking the underlying algorithms

Not only is the computational neuroscience community
embracing the challenges of rapidly developing processor
architectures but it is also capitalizing on the additional computing
power to explore different simulation algorithms and schemes.
For instance, Osborne and de Kamps extend the population
density technique for neural network simulations to higher-
dimensional neuron models and Chen et al. improve on memory
efficiency and simulation speed for detailed molecular simulations
of neurons. Similarly, McDougal et al. describe the efficient
simulation of 3D reaction-diffusion processes in neuronal
networks extending on more traditional 1D simulations for
dendrites and axons.

Time

While GPUs and large, massively-parallel HPC clusters were
not built for the purpose of brain simulations, the inherently
parallel nature of how brains operate, makes such systems
reasonably well-suited to simulating brain models. However, we
must not forget that while computers have become more powerful
(i.e., they are able to do more things in parallel), they have
not become much faster—ever since frequency scaling (Dennard
Scaling) had to stop due to limits in how much heat can be
dissipated from an integrated circuit. This puts in question certain
scientific problems which require the simulation of long time
durations such as needed, for example, in plasticity studies, or
extensive training runs in the emerging field of neuro-inspired
machine learning. While algorithmic innovations may help us to
rethink the supposedly critical sequential paths of computational
problems (e.g., AlphaFold applied these to the problem of
protein folding), an alternative approach may be the acceleration
factors that can be achieved from mapping the computational
problem to physical instantiations of the computation such
as done by Brainscales-2 (Müller et al.) or as indicated by
Trensch and Morrison through spatial computations using SoCs
and FPGAs.
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Benchmarking as the compass

As the diversity of hardware architectures grows, it will be
increasingly important to quantify the suitability of those platforms
for actual brain tissue model simulations. It is thus necessary to
develop benchmarks (models) and benchmarking (measuring) to
objectively quantify the performance of such platforms.While HPC
systems have often varied in components and configurations, there
have long been standards for linear algebra such as Linpack that
allowed rigorous, even if not perfect, comparisons. Herbers et al.,
Albers et al., and Schmitt et al. make a step toward generic and
simulator agnostic frameworks for benchmarking and simulation.
However, as we look toward a future with specialized neural
network accelerators and general purpose von Neumann systems,
the challenge in benchmarking will become more pronounced.
This is especially a challenge with neuromorphic hardware, which
is both rapidly evolving and exhibits a diversity of approaches
with mixed advantages in speed and energy, resulting in a
complex basis for evaluation (Trensch and Morrison; Müller
et al.). Furthermore, the concept of a FLOP or matrix multiply
operation is less meaningful in spiking neural simulations which
may be event-driven and sparse. One proposed approach is to
develop concrete benchmark spiking networks that can be tested
on both neuromorphic systems and conventional processors, which
is proving useful in obtaining an early assessment of the relative
efficiency of neuromorphic systems compared to both conventional
systems and real brains (Ostrau et al.; Kurth et al., 2022).
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