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Challenges of soil degradation and changing climate pose major threats to food

security in many parts of the world, and new approaches are required to close yield

and nutrition gaps through enhanced agronomic efficiency. Combined use of

mineral fertilizers, organic inputs, improved germplasm and adaptation of these

practices to local contexts through improved agronomy can promote efficiency

whilst building stocks of soil organic matter (SOM). Within this framework, recent

attention has turned to the nature of plant-soil interactions to increase response to

mineral fertilizer inputs through utilisation of nutrients from SOM that are

replenished through management. This utilisation has been shown in barley and

maize to vary with genotype and to be related to root physiological traits associated

with rhizodeposition. The identification of candidate genes associated with

rhizodeposition takes this a step closer towards the possibility of breeding for

sustainability. Here we discuss this potential and feasibility in the context of maize

cropping systems, and explore the potential for a combined approach that optimises

utilisation of SOM nutrients together with enhanced biological nitrification inhibition

to further improve agronomic efficiency.

KEYWORDS

rhizodeposition, biological nitrification inhibition, maize breeding, root traits, plant-soil
interactions, sub-Saharan Africa
1 Introduction

Ongoing population growth and climate change represent major pressures on global

food security (1, 2), necessitating the development of cropping systems that are productive

(yield and nutritional value), are resilient to extreme and variable weather patterns, and

that minimise feedbacks to climate forcing via greenhouse gas (GHG) emissions. Sub-
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Saharan Africa (SSA) is on the frontline of climate change, and

technologies are urgently needed for this region that couple

sustainable crop production combined with greater soil fertility

and continuous protection of the soil resource, with enhanced

resilience to climate induced changes in local conditions (3). Soils

supporting food production in this region are often degraded, with

25% (350 million ha) of the total land area falling under this

category (4), and characterised by poor structure, light texture

and low (and declining) soil organic matter (SOM) content, often

resulting from continuous conventional agriculture practices

(tillage, crop residue removal, mono-cropping) (5, 6).

Increased inorganic fertilizer, in combination with organic

inputs and adaptive management, is generally seen as a core

enabler of sustainable productivity increases (7). Yet current rates

of nitrogen fertilizer usage are very low in most parts of SSA (8).

This has been attributed to low average (and highly heterogeneous)

agronomic and economic returns to fertilizer usage by smallholders

in these systems (9). Such low returns reflect multiple factors: high

fertilizer prices and last-mile transportation costs, low output

prices, and/or poor agronomic use efficiency. Under current

conditions, in many parts of the region, increased inorganic

fertilizer use may not be an economically viable way to raise
Frontiers in Soil Science 02
yields (10). This evidence suggests that there would be large and

widespread potential economic (and environmental) gains from

crop varieties with improved capacity for nutrient utilization

from SOM.

Fundamentally, the resources most limiting crop growth are

nutrients and water (11), each acquired by roots from soil, while the

aboveground resources of light and carbon (C) are effectively non-

limiting. Consequently, while it is possible to improve plant water

and nutrient use efficiencies to promote grain yields (12, 13), it is

logical that there should also be a specific focus on root-soil

interactions that mediate the acquisition and availability of these

resources (14). This emphasis is particularly relevant for

smallholder rain-fed maize systems in SSA, where increased

return on investment to fertilizer application alongside improved

soil management practices could sustainably increase yields whilst

minimizing increased soil N2O emissions (15, 16). Here we explore

the feasibility for approaches that optimise utilisation of nutrients

from soil, together with enhanced biological nitrification inhibition

(BNI) and restorative soil management, to further improve

agronomic efficiency tailored to local contexts in maize-based

systems (Figure 1); namely (a) harnessing root-soil interactions,

(b) advances in genetic approaches underpinning a root trait
A

B

C

FIGURE 1

Conceptual representation of our proposed circular nutrient economy and root trait approach to inform breeding for germplasm to enhance
agronomic efficiency, climate resilience, and food security. Discussion highlighted in this article is indicated as (A) harnessing root-soil interactions,
(B) advances in genetic approaches underpinning a root trait approach to breeding, and (C) deploying root-soil interactions into breeding programs.
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approach to breeding, and (c) deploying root-soil interactions into

breeding programs.
2 Harnessing root-soil interactions

2.1 The rhizosphere - a dynamic
environment for nutrient supply

The rhizosphere, soil surrounding and under direct influence of

roots, has long been recognised as a dynamic environment for

microbial communities and the biogeochemical processes that they

mediate. In the last decade our understanding has extended to

recognition that impacts on microbial communities are plant

species and genotype specific, giving rise to the concept of the

plant microbiome, where the root-associated microbial community

is an intrinsic component of plant interactions with the soil

environment (17). Maize is known for its remarkable phenotypic

diversity, for example in root traits such as root length, root

diameter, and root mass that are influenced by genotype (14, 18);

therefore, we expect differences within maize, in terms of influence

on the soil microbiome.

This coupling of root and microbial processes (rhizodeposition

and biogeochemical fluxes) is critically important in the context of

soil nutrient cycling and plant productivity, particularly in low-

input agroecosystems prevalent in SSA, as plant nutrient supply is

dependent on microbial transformation of SOM into forms

available for root uptake (14, 19). Selecting maize varieties that

are best equipped to source N from SOMmineralization, whilst also

lowering the loss of N through BNI, could help ensure reliable and

timely N supply and reduce the low response to fertilizer inputs, a

key barrier to reducing the yield gap in SSA (Figure 1).
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2.2 Impacts of rhizodeposition on
microbial processes

A consequence of the rhizodeposition flux from roots is that it

shifts microbial communities in the rhizosphere from a state of C-

limitation that is dominant in bulk soil, to a condition where

nutrient elements are often limiting to their growth (Figure 2A).

Therefore, this can alter microbial community structure (20) and

activities (e.g., exo-enzyme production) directed to mobilisation of

nutrients from SOM (21). Such plant-mediated rhizosphere

priming effects (RPE, 22) function to couple plant growth with

microbial nutrient cycling (19). Several studies, across different crop

species, have demonstrated that the magnitude of RPE varies with

plant genotype (14, 23–26), and this variation is linked to the

magnitude and composition of rhizodeposition fluxes, and

consequently impacts on microbiome selection and activities (27).

Importantly, for barley and maize, this genotype variability in RPE

has been identified as representing traits that are heritable, and

consequently potential targets for plant breeding (28, 29). In this

context, Gowda et al. (28) showed root length, root diameter and

plant-derived C flux through soil to be strong predictors of SOM-C

mineralization (Figure 2C) and identified two candidate genes in

maize associated with enhanced SOM-C mineralization rates.

Similarly, it has been demonstrated that root branching, root hair

formation, and mucilage production (each under genetic control)

are key to rhizosheath development around roots (30),

underpinning drought tolerance and improved nutrient

acquisition of cultivars under drought conditions (23, 31;

Figure 2B). Although mucilage plays an important role in

rhizosphere functions, our understanding of how mucilage

amounts and polysaccharide composition are affected by maize

genotypes is still limited (32). There is potential to target genes for
FIGURE 2

Theoretical representation of processes and associated traits of different maize genotypes exhibiting (A) reliance on mineral and organic inputs to
alleviate nutrient limitation, (B) drought tolerance for enhanced water and nutrient uptake, (C) ability to source nutrients released from priming of
soil organic matter (SOM), and (D) ability to enhance biological nitrification inhibition (BNI) to retain these SOM-derived nutrients. T indicates the
maize traits we highlight in our text as potential targets for breeding.
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such beneficial root-soil interactions, with the specific aim of

improving the sustainability of maize cropping systems in SSA.

The identification of potential candidate genes for traits

influencing rhizosphere processes paves the way for breeding to

achieve more resilient and sustainable maize production. As our

understanding of the functional roles and genetic bases of secondary

metabolite exudation from roots develops, it is likely that these traits

will be exploitable to increase crop resistances to abiotic and biotic

stresses (33). Also important is the reorientation of maize breeding to

leverage microbial-maize interactions, for example, arbuscular

mycorrhizal fungi (AMF)-maize and dark septate endophyte

symbioses, which improve nutrient uptake from the rhizosphere

(34, 35). This can be achieved by breeding for maize genotypes that

exude more strigolactones that initiate root colonization by AMF,

and hence improving nutrient acquisition (36). However, nutrients

from SOM need to be replenished through management, otherwise

there is a risk of soil N mining (37), especially in maize monoculture

cropping systems that lack N return and result in a negative N

budget/balance of the system. Introducing maize varieties with

higher N uptake potential is therefore a promising sustainable

solution when combined with strategies to maintain soil N status

and improve plant N-use efficiency (NUE), such as BNI and

appropriate crop rotations, or intercropping.
2.3 Biological nitrification inhibition

SOM mineralization mobilises ammonium, which is subject to

subsequent nitrification. Whilst this supplies N for crop uptake,

nitrate can be readily lost through leaching and emission of nitrous

oxide. Secondary root-derived substances can also directly regulate

key soil N processes through BNI (38–40). BNI is triggered by

ammonium concentrations and favoured by low soil pH (41, 42). It

can lead to a more balanced plant N uptake, higher yields (43),

mitigate nitrous oxide emissions (44) and reduce soil nitrate

leaching (45).

BNI has been shown to have a positive impact on maize yields

due to a residual BNI effect by a previous Brachiaria humidicola

pasture under a rotated cropping system (46). Apart from rotating

crops with BNI grasses, another strategy is to further screen

promising genotypes of cereals for the BNI trait. Recently an active

BNI compound called “zeanone” has been identified in a maize line.

This isolated hydrophobic inhibitor has been shown to have a major

BNI effect on Nitrosomonas europaea (47). Furthermore, zeanone

was present in a set of maize lines characterized for hydrophobic BNI

capacity, where there was a large phenotypic variation for both

zeanone-intensity, and hydrophobic-BNI-activity (CIMMYT,

unpublished results). It is very likely that BNI plays a key role

within maize for improved NUE (Figure 2D). However, it is

unknown how widespread the phenomenon is among maize lines

used in SSA. It is likely that the BNI trait survived the selection

process in maize and that it even plays a key role for maize lines that

perform well under low soil pH and low N input systems. Since BNI

activity has been identified for some genotypes of Sorghum bicolor

and Brachiaria humidicola, it is probably an evolutionary strategy for

survival in low fertile soils in SSA (48).
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Maize selection for southern African countries has been

conducted under low N and low pH soils. Such soils have a high

ammonium-to-nitrate ratio and genotypes that perform well are

likely to be adapted to ammonium-N nutrition and even benefit

from it (49). These edaphic factors represent the perfect

environment where sourcing nutrients from SOM and BNI

achieve beneficial effects in terms of plant N nutrition.

The prevalence of acidic soils in SSA represents an important

constraint on crop productivity (50). Low soil pH (< 5.0) promotes

the solubilisation of aluminium (Al) into Al3+ ionic forms that are

highly rhizotoxic, strongly inhibiting root elongation and

development (51). Consequently, root traits conferring tolerance

to soluble Al in soil are required, in parallel with those mediating

efficient use of soil nutrient sources. Resistance mechanisms,

underlying substantial variation in Al tolerance (52, 53), include

root exudation of organic acids as a means of chelating Al3+ in soil

solution, preventing entry into roots. As this mechanism is

understood to be regulated by specific genes encoding malate and

citrate membrane transporters, there is strong potential to

incorporate this exclusion-based resistance into breeding

programmes (54).
3 Advances in genetic approaches
underpinning a root trait approach
to breeding

To date, maize genetic improvement strategies in SSA have

focused on yield potential and yield defending traits. Over the last

decade advances have been made in conventional and molecular

breeding in SSA, targeting traits for abiotic and biotic stress

tolerances such as nitrogen use efficiency, maize streak virus and

drought tolerance (55). Successful adoption of improved maize

cultivars has already demonstrated the strong potential of breeding

approaches to address specific constraints on productivity in

SSA (56).

Root traits to improve crop stress tolerance and yield potential

have been extensively studied over the past century (57). Under

rapidly changing climatic scenarios, plant root traits which have a

critical role in improving crop nutrition and root-soil interactions

are gaining importance in the development of more sustainable and

resilient varieties. Improving root ideotypes through architectural,

anatomical and physiological traits is a best optimal way to access

rhizosphere resources, which paves the way to develop more resilient

varieties. Difficulty in phenotyping belowground root traits and lack

of high throughput phenotyping tools has often been cited for the

absence of selection for root traits in breeding programs (58). Given

the scale (in terms of geographic and pipeline size) that breeding

programs work on, even with improved low-cost, high throughput

phenotyping methods, routine selection for root traits within a

conventional breeding program is unlikely in the near future. For

example, in CIMMYT’s southern Africa maize breeding pipeline the

number of entries in stages 1, 2, 3 and 4 are 1,800, 800, 220 and 30,

respectively (59). To obtain robust estimates of the genetic value of

each entry, particularly for low heritable traits, multi-location data is
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required. Thus, even high throughput phenotyping options for

specific root traits would require a significant budget. Breeding

programs operate within fixed, and generally limited, budgets.

Within a conventional breeding scheme, this would require a

reallocation of budget from current selection targets towards root

phenotyping and/or a reduction in population size which would

reduce overall genetic gain in key traits required by farmers.

Modern tools offer new opportunities to deploy complex traits

within a breeding program. Several studies have been conducted to

dissect the genetic basis of root-soil interactions. Nested association

mapping comprising 5000 maize lines derived from 27 founder

parents has extensively been used to dissect multiple agronomic

traits. Peiffer et al. (60) used these 27 founder lines to study the

rhizosphere microbiome and observed substantial variation in

bacterial richness, diversity and relative abundances of taxa

between bulk soil and the maize rhizosphere. The rhizospheres of

maize inbreds exhibited both a small but significant proportion of

heritable variation in total bacterial diversity across fields, and

substantially more heritable variation between replicates of the

inbreds within each field. The association between maize genotype

and microbial diversity using 16S rRNA gene microarrays supports

bacterial diversity being related to plant genotype (61, 62). Variation

in rhizosphere microbiome composition is likely controlled by plant

genetic factors (i.e. heritable) in maize (60), and sorghum (63).

However, it remains unclear to what extent these heritable microbes

are affected by the plant host and contribute to variation in the crop

phenotype. Like any other trait under heritable genetic control,

rhizosphere microbiome traits can be targeted in selective breeding

experiments. This potential has been exemplified in barley and

maize, for which genome wide association studies and quantitative

trait loci analyses have revealed several, small effect single nucleotide

polymorphisms (SNPs) and potential candidate genes associated

with traits related to increased microbial mineralization of SOM,

root-derived microbial biomass C and dissolved organic C (28, 29).

Genome-wide association studies with 196 world-wide

accessions of Arabidopsis thaliana successfully revealed

associations between plant genes and rhizosphere microbiome

traits at high-level measures of rhizosphere community (64), or at

order level (derived from operational taxonomic units [OTUs]) in a

sorghum diversity panel (63). A genome-wide association study

with 230 diverse maize lines was conducted using 150 microbial

groups which are abundant and consistently reproducible (65).

These microbial groups were used as rhizobiome traits and

identified 622 plant loci that are linked to 104 microbial groups

in the maize rhizosphere. Among these 104 microbial groups as

traits, 62 were correlated with variation in plant vigour indicators

derived from high throughput phenotyping of the same field

experiment. This study revealed that microbial communities are

actively and vigorously formed by host plant genetic variation

which can be used as the foundation for future research on plant-

microbe interactions and ultimately to increase crop productivity

and resilience to abiotic stress.

Genome editing technologies are used to target accurately any

gene of interest and efficiently introduce them into a new

population (66). Genome editing is successfully used on root

traits in different crops like in rice for confirmation of DRO1-
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related genes which are associated with root growth angle (67).

Through CRISPR/Cas9 technology, gene/s responsible for more

root hairs which improves nodule formation and nitrogen fixation

were introduced in to cultivated soyabean (68). In cotton, arginase

genes (GhARG) were knocked out to enhance the lateral root

formation (69). Nevertheless, CRISPR is more effective on traits

controlled by a single or few genes but most of the root traits are

polygenic in nature which limits its application on root traits

improvement. Since the target genes must be known prior to

CRISPR application, it is necessary to improve our understanding

of genes affecting root traits, to enable effective use of genome

editing technologies in this respect.
4 Deploying root-soil interactions into
breeding programs

Genotypic information can be deployed within a breeding

pipeline in several ways, primarily depending on the trait

architecture and genotyping cost. Forward breeding is a simple

form of population enrichment where markers tightly linked to

genomic regions of importance are selected prior to field

phenotyping. Early research suggests root traits associated with

root-soil interactions are polygenic, controlled by many small effect

loci and are therefore not amenable to forward breeding. Genomic

selection offers the ability to select lines for advancement based on

the genomic estimated breeding value (GEBV) of each line and has

been successfully used to select for complex traits in animal and

plant breeding over the past decade (70). Genomic selection is

already deployed in maize breeding in SSA for grain yield under

drought, heat tolerance and optimal conditions. All stage 1 entries

are genotyped with mid-density makers and advancing individuals

to the next stage of testing is based on GEBVs and GBLUPs. In

theory, this genomic selection could be extended to traits associated

with SOMmineralization and BNI if high quality phenotypic data is

available to train models. To date, most phenotyping for SOM

mineralization and BNI has been conducted in semi-controlled

environments and/or under a limited range of environments.

Further work is required to dissect the genotype x environment x

management interactions of traits associated with SOM

mineralization and BNI before deployment.
5 Discussion

Here we present the potential for consideration of plant-soil

interactions as a frontier approach to plant breeding for enhanced

agronomic efficiency. Specifically we outline the possibility of

selection for enhanced nutrient utilisation in maize, through

sourcing of nutrients from SOM and BNI to lower loss of this

mineralized N. We highlight the potential of modern breeding

approaches to enrich populations for markers linked with key traits

associated with SOM mineralization and BNI prior to field

phenotyping. Together with the development of improved

agricultural practices to promote a circular nutrient economy

with replenishment of SOM, this approach promises to contribute
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to food security in SSA through alleviating low nutrient availability

in degraded soils and enhancing the return from mineral fertilizer

inputs. Acquisition of nutrients is equally important to reduce their

loss, and coupling traits associated with SOM mineralization and

BNI with nutrient acquisition traits is an important advancement in

breeding programs. Breeding for traits that improve plant-microbial

interactions such as maize-AMF associations will serve to improve

the acquisition of mineralized N. The example we give here is

focused on maize cropping systems in SSA, but there is potential for

this approach of harnessing plant-soil interactions to be applied to

other crops and for other local contexts as a new frontier within

integrated soil fertility management. Molecular breeding

approaches are now being deployed in SSA maize breeding

pipelines for improving complex traits, opening up new

opportunities to expand breeding target traits beyond the current

focus on yield to increase traits associated with the acquisition of

mineral N, and ultimately make fertilizer use more viable.

Improvement of SOM mineralization and BNI with nutrient

acquisition traits has significant positive impact on both host

plant performance and soil health. Therefore, although

phenotyping these traits is challenging and may be slow in terms

of demonstrable impact on the environment, their improvement

provides immediate benefits for underpinning sustainable

production, justifying prioritisation.
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