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Synaptic connectivity of the
TRPV1-positive trigeminal
afferents in the rat lateral
parabrachial nucleus
Su Bin An†, Yi Sul Cho†, Sook Kyung Park, Yun Sook Kim and
Yong Chul Bae*

Department of Anatomy and Neurobiology, School of Dentistry, Kyungpook National University, Daegu,
Republic of Korea

Recent studies have shown a direct projection of nociceptive trigeminal afferents

into the lateral parabrachial nucleus (LPBN). Information about the synaptic

connectivity of these afferents may help understand how orofacial nociception

is processed in the LPBN, which is known to be involved primarily in the

affective aspect of pain. To address this issue, we investigated the synapses of

the transient receptor potential vanilloid 1-positive (TRPV1+) trigeminal afferent

terminals in the LPBN by immunostaining and serial section electron microscopy.

TRPV1 + afferents arising from the ascending trigeminal tract issued axons and

terminals (boutons) in the LPBN. TRPV1+ boutons formed synapses of asymmetric

type with dendritic shafts and spines. Almost all (98.3%) TRPV1+ boutons formed

synapses with one (82.6%) or two postsynaptic dendrites, suggesting that, at

a single bouton level, the orofacial nociceptive information is predominantly

transmitted to a single postsynaptic neuron with a small degree of synaptic

divergence. A small fraction (14.9%) of the TRPV1+ boutons formed synapses

with dendritic spines. None of the TRPV1+ boutons were involved in axoaxonic

synapses. Conversely, in the trigeminal caudal nucleus (Vc), TRPV1+ boutons

often formed synapses with multiple postsynaptic dendrites and were involved in

axoaxonic synapses. Number of dendritic spine and total number of postsynaptic

dendrites per TRPV1+ bouton were significantly fewer in the LPBN than Vc. Thus,

the synaptic connectivity of the TRPV1+ boutons in the LPBN differed significantly

from that in the Vc, suggesting that the TRPV1-mediated orofacial nociception is

relayed to the LPBN in a distinctively different manner than in the Vc.
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Introduction

The synaptic connectivity of the primary sensory afferent terminals differs according to
the type of the parent primary afferent and its target (Park et al., 2016, 2019). For example,
the terminals of the Aδ and the peptidergic C fibers differ in the degree of synaptic divergence
and presynaptic modulation in the spinal dorsal horn (SDH; Alvarez et al., 1992, 1993).
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In addition, the terminals of the Aβ fibers have different synaptic
connectivity in the functionally different trigeminal principal and
oral nuclei (Bae et al., 1994, 2000). This suggests that the sensory
information conveyed via primary afferents is transmitted and
processed differently depending on the type of the primary afferent
and the particular target nucleus.

The lateral parabrachial nucleus (LPBN), located in the
dorsolateral pons, receives nociceptive input from the orofacial-
and other body areas, and relates it to several brain regions, such
as the central amygdala, the hypothalamus, and the bed nucleus of
stria terminalis, which are known to be involved in the control of
instinctual behavior and emotions (Rodriguez et al., 2017; Schier
and Spector, 2019). Multiple previous studies have revealed that
LPBN receives dense, indirect (polysynaptic) nociceptive input
relayed via second-order neurons in the trigeminal caudal nucleus
(Vc: medullary dorsal horn) and SDH (Feil and Herbert, 1995;
Saito et al., 2017). However, some more recent studies using
neural tracing and trigeminal rhizotomy also showed that LPBN
receives direct (monosynaptic) nociceptive input from the orofacial
area by way of the trigeminal primary afferents (Cavanaugh
et al., 2011; Panneton and Gan, 2014; Rodriguez et al., 2017;
Uddin et al., 2021).

We previously reported a distinct synaptic connectivity of
the transient receptor potential vanilloid 1-positive (TRPV1+)
axon terminals in the Vc, which is known to be involved in
the perceptual, discriminative, and autonomic aspects of pain
(Yeo et al., 2010). However, little is known about the synaptic
connectivity of the TRPV1+ axon terminals in the LPBN; this
may help understand how orofacial nociception is processed in the
LPBN, which is known to be involved primarily in the affective
aspect of pain (Han et al., 2015; Rodriguez et al., 2017).

To address this, we analyzed the synaptic connectivity of the
TRPV1+ trigeminal afferent terminals in the LPBN using light-
and electron microscopic (EM) immunohistochemistry and serial
section electron microscopy.

Materials and methods

Animal and tissue preparation

The laboratory animal care and all experimental procedures
were performed in accordance with the National Institute of
Health guidelines and were approved by the Kyungpook National
University Intramural Animal Care and Use Committee.

A total of eight 9-week-old male Sprague–Dawley rats weighing
300–320 g were used for this study: three and five rats were
used for light microscopic (LM) and EM immunohistochemistry,
respectively. The rats were deeply anesthetized with a mixture
of ketamine (80 mg/kg) and xylazine (10 mg/kg) administered
intraperitoneally and were perfused transcardially with 80 ml of
heparinized saline, followed by 300 ml of a freshly prepared fixative:
Fixative was 4% paraformaldehyde (PFA) in 0.1 M phosphate
buffer (PB, pH 7.4) for LM immunohistochemistry and was 0.01%
glutaraldehyde and 4% PFA in 0.1 M PB (pH 7.4) for EM
immunohistochemistry. The brainstem and the trigeminal ganglia
(TG) were removed and postfixed in the same fixative for 2 h
at 4◦C. Then, for LM, tissues were immersed in 30% sucrose in

PB at 4◦C overnight and 40-µm thick sections were cut on a
cryotome and collected in PB at 4◦C. For EM, 60-µm thick sections
were cut on a Vibratome and immersed in 30% sucrose in PB at
4◦C overnight.

Light microscopic
immunohistochemistry

For LM, sections were stained for TRPV1 with
immunoperoxidase. Briefly, sections of brain stem and TG
were treated with 50% ethanol for 30 min, to improve antibody
penetration into the tissue, with 3% H2O2 in PB for 10 min, to
block the endogenous peroxidases, and with 10% normal donkey
serum (NDS; Jackson ImmunoResearch, West Groove, PA, USA)
in PB for 30 min to mask secondary antibody binding sites.
Then, the sections were incubated with 10% NDS and with a goat
anti-TRPV1 antibody (AF3066, R&D systems, Minneapolis, MN,
USA) at a 1:200 dilution in phosphate-buffered saline (PBS; 0.01
M, pH 7.4) for 2 h at room temperature. Biotin-Avidin-Peroxidase
labeling was performed by incubation with ExtrAvidin peroxidase
(1:5,000 in PBS; Sigma-Aldrich, St. Louis, MO, USA) for 1 h.
Immunoperoxidase was revealed using the nickel-intensified 3,
3′-diaminobenzidine tetrahydrochloride (Ni-DAB) protocol. The
sections were mounted on slides, examined on a Zeiss Axioplan 2
microscope (Carl Zeiss, Gottingen, Germany) and digital images
were obtained with an Exi camera (Q-Imaging Inc., Surrey,
CA, USA).

Electron microscopic
immunohistochemistry

Sections of the LPBN, the Vc, and the TG were frozen on dry ice
for 20 min and rapidly thawed in 0.01 M phosphate-buffered saline
(PBS, pH 7.4) to enhance antibody penetration into the tissue,
and incubated with 3% H2O2 for 10 min to suppress endogenous
peroxidases. Then, the sections were incubated with 10% NDS for
30 min and with goat the anti-TRPV1 antibody at a 1:100 dilution
in PBS overnight. On the next day, the sections were incubated
with 2% NDS for 10 min and then with biotinylated donkey anti-
goat antibody (Jackson ImmunoResearch) at a 1:200 dilution in PBS
for 2 h. After washing in PBS, the sections were incubated with
ExtrAvidin peroxidase (1:5,000) for 1 h. The immunoperoxidase
was visualized by Ni-DAB.

After washing in PB, sections were treated with 1% osmium
tetroxide in PB for 1 h, dehydrated in a serial dilution of ethanol,
flat-embedded in Durcupan ACM resin (Fluka, Buchs, Switzerland)
between strips of Aclar film (EMS, Hatfield, PA, USA), and
then cured at 60◦C. After 48 h, the film was stripped and the
embedded sections were observed under light microscope. Chips
of approximal size of 1× 1 mm containing many TRPV1+ boutons
in the LPBN and in the superficial lamina of the Vc were cut out
and glued onto blank resin blocks with cyanoacrylate. Thin sections
were cut and mounted serially on the Formvar coated single-slot
nickel grids. The grids were stained with uranyl acetate and lead
citrate, and examined with a Hitachi H-7500 electron microscope
(Hitachi, Tokyo, Japan) at 80 kV.
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For analysis of the synaptic connectivity of the
TRPV1+ boutons in the LPBN, electron micrographs were taken
from every serial thin section through individual TRPV1+ axon
terminals at a final magnification X30,000. Non-serial thin sections

of the TRPV1+ axon terminals in the Vc were also studied for
differences in the synaptic connectivity of the TRPV1+ axon
terminals in LPBN and in Vc. Images was captured with a Digital
Micrograph software driving a cooled CCD camera (SC1000;

FIGURE 1

Light micrographs showing immunostaining for TRPV1 in the lateral parabrachial nucleus (LPBN: A,B) and the trigeminal ganglion (TG: C,D), the
TRPV1+ axons and terminals in the LPBN arising from the ascending trigeminal tract (E–K), and examples of TRPV1+ axon terminals in the LPBN that
were further analyzed by electron microscopy (L,M). (A–D) Immunohistochemical staining for TRPV1 in the LPBN (A,B) and TG (C,D). The TRPV1
immunostaining in the axons in the LPBN and neurons in the TG was completely abolished by pre-adsorption with a blocking peptide (10 µg/ml),
confirming the specificity of the TRPV1 antibody. (E–K) Light micrographs showing that the TRPV1+ axons and terminals in the LPBN (E–G) arise
from the ascending trigeminal tract (Vtr: K). These axons (K) course along the medial edge of the middle cerebellar peduncle (mcp: J) and the dorsal
border of the trigeminal principal nucleus (Vp: H,I) and issue axon collaterals and terminals in the LPBN (F,G). (L,M) Examples of TRPV1+ axons and
terminals in the LPBN that were further studied by electron microscopy. (F–K,M) Are enlargements of the boxed areas in panels (E,L), respectively.
Arrowheads indicate TRPV1+ axons and terminals. scp, superior cerebellar peduncle. Scale bars = 10 µm in panels (A,B,F–K,M), 50 µm in panels
(C,D) and 500 µm in panels (E,L).
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Orius; Gatan, Pleasanton, CA, USA) attached to the microscope,
and saved as TIFF files. The brightness and contrast of the images
were adjusted in Adobe Photoshop CS5.1 (Adobe Systems Inc.,
San Jose, CA, USA). Inter-animal variability in frequency of
occurrence of different types of contacts per TRPV1+ bouton was
insignificant (one-way ANOVA), and the data could be pooled
for analysis. Values (mean ± SD) in the frequency of occurrence
(%) of TRPV1+ boutons according to the number of postsynaptic
dendrites were calculated from 5 animals (n = 5) in the LPBN and
3 animals in the Vc (n = 3, Yeo et al., 2010). Values (mean ± SD)
in the frequency of occurrence (numbers) of different types of
synaptic contacts per TRPV1+ bouton are were calculated from
43 (n = 43, in 5 animals) and 76 (n = 76, in 3 animals, Yeo et al.,
2010) boutons in the LPBN and Vc, respectively.

Immunohistochemical controls

To control for specificity of the TRPV1 antibody, sections
of LPBN and TG were incubated with the TRPV1 antibody,
which was pre-adsorbed with a TRPV1 blocking peptide
(PEP094, ThermoFisher Scientific, Waltham, MA, USA) at a
final concentration of 10 µg/ml. Specific immunostaining for
TRPV1 was completely abolished by pre-adsorption with the
TRPV1 blocking peptide (Figures 1A–D).

Results

At light microscopy, multiple TRPV1-immunopositive (+)
axons apparently arising from the ascending trigeminal tract,
coursed along the medial edge of the middle cerebellar peduncle,
the dorsal border of the trigeminal principal nucleus, and issued
many fibers and en passant and terminal boutons, in the LPBN,
indicating that the TRPV1+ axon terminals in the LPBN arise from
ascending trigeminal tract that is mostly composed of trigeminal
primary sensory afferents (Figures 1E–M).

At electron microscopy, the TRPV1+ axons and terminals
(boutons) could be easily identified by the presence of electron-
dense immunoreaction product within their axoplasm. The section
profiles of the TRPV1+ boutons were usually round or slightly
elongated in shape and those with glomerular or scalloped shape
were rare. They contained round vesicles and typically formed
synaptic contacts of asymmetric type with small- or medium-
sized dendritic shafts and/or spines which could be identified
by the presence of fuzzy cytoplasm and no mitochondria or
no microtubule; those forming synaptic contacts with somata or
proximal dendrites were rare (Figure 2).

In the present study, we analyzed the synapses of a total of
43 TRPV1+ boutons in the LPBN reconstructed from serial thin
sections: The large majority (82.6 ± 9.3%, mean ± SD) of the
TRPV1+ boutons formed a synaptic contact with a single dendrite
(Figures 2A, B), and a few (15.7 ± 5.7%) with two dendrites
(Figures 2C, D). Only one of the 43 terminals studied (1.7± 3.7%)
formed synaptic contacts with three dendrites. Most (86.8± 10.6%)
TRPV1+ boutons formed synaptic contact with dendritic shafts.
Only a small fraction (14.9 ± 10.3%) of the TRPV1+ boutons
formed synaptic contacts with dendritic spines (Figures 2E, F).

FIGURE 2

Electron micrographs of adjacent thin sections (A and B, C and D, E
and F, each pair about 200 nm apart) in the lateral parabrachial
nucleus (LPBN) showing TRPV1+ boutons (asterisks) forming
synapse with one dendrite (d in panels A,B), two dendrites (d1 and
d2 in panels C,D) and with a dendritic spine (ds in panels E,F). The
TRPV1+ bouton (asterisk) can be identified by the presence of
electron-dense immunoreaction product (arrow) within the
axoplasm. Arrowheads indicate synapses. Scale bars = 500 nm in
panel (B) (also applies to panel A) and (F) (also applies to
panels C–E).

TRPV1+ boutons receiving contacts from other terminals (typically
axoaxonic synapses of symmetric type from boutons containing
pleomorphic vesicles) were not observed (Figure 2 and Table 1).

We also examined the ultrastructure of the TRPV1+ boutons
in the Vc in non-serial thin sections and confirmed our previous
findings (Yeo et al., 2010) in the Vc, thus, TRPV1+ boutons
frequently formed complex synaptic arrangements with three or
more dendrites and those receiving axoaxonic synapses were
frequently observed (Figure 3). In addition, we compared synaptic
connectivity of the TRPV1+ boutons in the LPBN with that in
the Vc which was reported in our previous study (Yeo et al.,
2010): Frequency of TRPV1+ boutons that form synapse with
one postsynaptic dendrite was significantly higher in the LPBN
than Vc (82.6 ± 9.3 vs. 51.3 ± 3.0, p < 0.05, unpaired student
t-test). Whereas frequency of TRPV1+ boutons forming synapse
with 3 dendrites is significantly lower in the LPBN than Vc
(1.7 ± 3.7 vs. 7.9 ± 0.2, p < 0.05, unpaired student t-test).
Furthermore, a considerable fraction (18.4%) of TRPV1+ boutons
in the Vc, but none in the LPBN, formed complex synaptic
arrangement with 4 or more postsynaptic dendrites. Number
of dendritic spine per TRPV1+ bouton was significantly fewer
in the LPBN than Vc (0.2 ± 0.4 vs. 0.6 ± 0.8, p < 0.05,
unpaired student t-test). Total number of postsynaptic dendrites
per TRPV1+ bouton was also significantly fewer in the LPBN than
Vc (1.2 ± 0.5 vs. 2.1 ± 1.5, p < 0.05, unpaired student t-test,
Table 1).
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Discussion

The main finding of the present study is that virtually all
TRPV1+ boutons in the LPBN establish simple synaptic contacts
with 1–2 postsynaptic dendrites, and do not participate in complex
synaptic arrangements with 4 or more dendrites and other synaptic
terminals, which are frequently observed in the Vc, suggesting that
TRPV1-mediated orofacial nociception is relayed in the LPBN in a
distinctly different manner than in the Vc.

All TRPV1+ boutons in the LPBN show
simple synaptic connectivity

That TRPV1+ fibers apparently arising from the ascending
trigeminal tract terminated in the LPBN (indicating that the
TRPV1+ terminals in the LPBN are of primary sensory origin)
is consistent with the studies using TRPV1-Cre mice (Cavanaugh
et al., 2011; Rodriguez et al., 2017), trigeminal rhizotomy (Panneton
and Gan, 2014), and neural tracing (Uddin et al., 2021) that report
a direct projection of trigeminal primary nociceptive afferents to
the LPBN. Studies using intra-cellular and intra-axonal injections
of neural tracer showed that a single presynaptic axon terminal
does not simultaneously contact two or more dendrites of the same
neuron, suggesting that when a single axon terminal contacts two
or more dendrites, each postsynaptic dendrite belongs to a separate
neuron (Yabuta et al., 1996; Yoshida et al., 2001).

All TRPV1+ boutons in the LPBN formed simple synaptic
contacts with one, rarely two, dendrites. This suggests that, at
a single bouton level, TRPV1-mediated orofacial nociception is
transmitted to one or two postsynaptic neurons that may project
to specific brain regions with a small degree of synaptic divergence.
This pattern of connectivity is very different from that in the Vc.
Thus, a considerable fraction (∼26%) of TRPV1 + boutons form
complex synaptic contacts with 3–7 dendrites in the Vc, and total
number of postsynaptic dendrites per TRPV1 + bouton is also 1.8
times higher in the Vc (Yeo et al., 2010) than LPBN, suggesting
that the TRPV1-mediated orofacial nociceptive signal may spread
to multiple postsynaptic neurons in the Vc thus giving rise to a
divergent afferent system to multiple brain regions. The different
synaptic connectivity of the TRPV1+ boutons in the LPBN and
the Vc can be related with the functional differences of these two
regions: Neurons in the LPBN project to the central amygdala, the
hypothalamus, and the bed nucleus of the stria terminalis, which
are involved primarily in the affective aspect of pain (Rodriguez
et al., 2017; Schier and Spector, 2019), whereas Vc, via various types
of neurons including neurons projecting to thalamus and LPBN
and interneurons, is connected to various brain regions, which are
involved in pain perception as well as the emotional, the autonomic,
and the reflexive motor responses to pain (Shigenaga et al., 1983;
Iwata et al., 1992; Spike et al., 2003; Al-Khater et al., 2008).

Under certain pathological conditions, dendritic spines exhibit
dynamic plastic changes in their size, and the number and size of
their postsynaptic densities containing neurotransmitter receptors,
leading to alterations of synaptic strength (Baczynska et al., 2021;
Meldolesi, 2022). For example, following peripheral inflammation
and nerve injury, the density and size of the dendritic spines of
SDH neurons increase, which contributes to their hyperexcitability
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FIGURE 3

Electron micrographs of adjacent thin sections (A and B, C and D,
each pair about 200 nm apart) in the trigeminal caudal nucleus (Vc).
(A,B) A TRPV1+ bouton (asterisk) makes a synaptic contact with 3
dendritic shafts (d1–d3) and one dendritic spine (ds). (C,D) A
TRPV1+ bouton (asterisk) makes a synaptic contact with one
dendritic shaft (d) and receives an axoaxonic synapse from a
presynaptic ending containing pleomorphic vesicles (p). Arrows
indicate electron dense TRPV1 immunoreaction product.
Arrowheads indicate synapses. TRPV1+ boutons and presynaptic
ending are outlined with a dashed line. Scale bar = 500 nm in panel
(D) (also applies to panels A–C).

(Matsumura et al., 2015; Benson et al., 2020). Similarly, under
pathological conditions, the nociceptive neurons in the Vc show
extensive neuroplastic changes, such as increase in neuronal activity
and decrease in activation threshold, which may contribute to
central sensitization and hyperalgesia (Chiang et al., 1999, 2005;
Wang et al., 2018). In the present study, about 14% of the
TRPV1+ boutons in the LPBN formed synapses with dendritic
spines, a much smaller fraction than that of TRPV1+ boutons
(∼43%) and of nociceptive tooth pulp afferent boutons (∼60%)
that form synapses with dendritic spines in the Vc (Bae et al.,
2003; Yeo et al., 2010). In addition, number of dendritic spines
per TRPV1+ bouton was much fewer in the LPBN than Vc. This
difference between LPBN and Vc is analogous to the difference
between the frequency of synapses of the tooth pulp afferents
and the rostral nucleus of solitary tract afferents with dendritic
spines in their respective functionally different target nuclei (Bae
et al., 2003; Park et al., 2022). It is consistent with the idea that
under pathological conditions, the change in synaptic strength
and postsynaptic neuron excitability through spine plasticity can
be less pronounced in the LPBN than in the Vc, thus affecting
the emotional aspect of pain less than the pain perception per se.
Further functional study in the LPBN and Vc during pathologic
condition is needed to support the idea.

TRPV1+ boutons in the LPBN do not
participate in axoaxonic synapses

Multiple EM studies have shown that the frequency of
axoaxonic synapses involving the same type of axon differs among
functionally different target nuclei. For example, we reported that
the terminals of large myelinated Aβ afferents (Bae et al., 1994)

and the tooth pulp afferents (Bae et al., 2003) participate more
frequently in axoaxonic synapses in the trigeminal principal
nucleus than in the trigeminal oral and caudal nuclei. In the present
study, none of the TRPV1+ boutons in the LPBN participated in
axoaxonic synapses, in contrast to the considerable fraction (13%)
of TRPV1+ boutons that participated in axoaxonic synapses in the
Vc (Yeo et al., 2010). This suggests that, in the LPBN, TRPV1-
mediated orofacial nociceptive information is relayed directly to
the postsynaptic neurons whereas in the Vc, it is presynaptically
modulated for a considerable number of TRPV1+ boutons before
transmission to the postsynaptic neurons, and ultimately that it
may be processed differently in the LPBN than in the Vc.

The lack of axoaxonic synapses on the TRPV1+ boutons in
the LPBN is analogous to that on the boutons of peptidergic C
afferents in the SDH (Knyihar-Csillik et al., 1982; Alvarez et al.,
1993) but at odds with that on boutons of most primary sensory
afferent types, such as non-peptidergic C afferents (Gerke and
Plenderleith, 2004; Kim et al., 2008), Aδ high threshold- and Aβ

low threshold-mechanoreceptive afferents (Alvarez et al., 1992,
1993; Moon et al., 2008), which frequently receive axoaxonic
synapses from GABA + presynaptic axon terminals in the Vc
and SDH. Considering together with (1) lack of axoaxonic
synapses on the TRPV1+ boutons in the LPBN in the present
study, (2) coexpression of CGRP and/or substance P in the
TRPV1+ TG neurons (Bae et al., 2004) and (3) direct projection
of CGRP + trigeminal afferent to the LPBN (Rodriguez et al., 2017),
it is possible to assume that only peptidergic TRPV1+ trigeminal
neurons may project directly to the LPBN.
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