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Abstract

The edge metric dimension was introduced in 2018 and since then, it has been extensively studied. In this paper, we present
a different way to obtain resolving structures in graphs in order to gain more insight into the study of edge resolving sets
and resolving partitions. We define the edge partition dimension of a connected graph and bound it for graphs of given order
and for graphs with given maximum degree. We obtain exact values of the edge partition dimension for multipartite graphs.
Some relations between the edge partition dimension and partition dimension/edge metric dimension are also presented.
Moreover, several open problems for further research are stated.
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1. Introduction

Let G be a connected graph with vertex set V (G) and edge set E(G). The number of vertices of G is called the order. The
degree of a vertex v ∈ V (G) is the number of vertices adjacent to v. The maximum degree of G is the degree of a vertex which
has the largest degree in G. We denote the path, cycle and complete graph with n vertices by Pn, Cn and Kn, respectively.

The distance dG(u, v) between two vertices u and v is the number of edges in a shortest path between u and v in G. A
vertex v ∈ V (G) is said to distinguish two vertices x and y if dG(v, x) 6= dG(v, y). A set S ⊂ V (G) is a resolving set for G if
any pair of vertices of G is distinguished by some element of S. A resolving set of minimum cardinality is called a metric
basis, and its cardinality is the metric dimension of G, denoted by dim(G). Resolving sets were defined separately in [8]
(where resolving sets were called locating sets), and in [3] (with the terminology of this article). The terminology of metric
generators is also used in some works, and this was first introduced in [7]. The recent survey [9] contains a fairly complete
compendium on the topic of metric dimension in graphs. The metric dimension was also considered in [6].

In concordance with the resolving sets for graphs, the concept of resolving partitions was presented in [2] and studied
in several other further investigations. The survey [5] contains the most interesting contributions and open problems on
this parameter. For any vertex v ∈ V (G) and any set W ⊂ V (G), the distance between v and W is defined as dG(v,W ) =

min{dG(v, w) : w ∈ W}. A set W ⊂ V (G) distinguishes two different vertices u, v ∈ V (G) if dG(u,W ) 6= dG(v,W ). An
ordered vertex partition Π = {U1, U2, . . . , Uk} of a graph G is a resolving partition for G if every two different vertices of
G are distinguished by some set of Π. The cardinality of a smallest resolving partition for G is the partition dimension
of G, which is denoted by pd(G). Clearly, if S = {v1, v2, . . . , vk} is a resolving set for a graph G, then the partition Π =

{{v1}, {v2}, . . . , {vk}, V (G)\S} forms a resolving partition for G, which leads to the relationship pd(G) ≤ dim(G)+1, already
known from [2].

On the other hand, in order to consider distinguishing the edges of a graph by using a set of landmarks standing on a
set of vertices of the graph, the notion of edge metric dimension was introduced in [4]. The concept has become popular
in the research area of metric dimension in graphs (see the survey [5] for more information on this fact). For a vertex
v ∈ V (G) and an edge e = uw ∈ E(G), the distance between v and e is defined as dG(e, v) = min{dG(u, v), dG(w, v)}. A
vertex w ∈ V (G) distinguishes two edges e1, e2 ∈ E(G) if dG(w, e1) 6= dG(w, e2). A set S of vertices in a connected graph G

is an edge resolving set for G if every two edges of G are distinguished by some vertex of S. The cardinality of a smallest
edge resolving set for G is called the edge metric dimension and is denoted by edim(G). An edge metric basis for G is an
edge resolving set for G of cardinality edim(G).
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In this paper, we present a different way to obtain resolving structures in graphs in order to gain more insight into the
study of edge resolving sets and resolving partitions. Some of the principal antecedents of this new study of resolving set
are the resolving partition defined in [2], the metric colorings presented in [1] and the strong resolving partitions described
in [10]. To the best of our knowledge the next concept has not been presented elsewhere, although it seems very natural
in concordance with several previous investigations on the topic.

For an edge e ∈ E(G) and a set W ⊂ V (G), the distance between e and W is defined as

dG(e,W ) = min{dG(e, w) : w ∈W}.

A set W distinguishes two different edges e, f ∈ E(G) if dG(e,W ) 6= dG(f,W ). An ordered vertex partition Π = {U1, . . . , Uk}
of a graph G is an edge resolving partition for G if every two distinct edges of G are distinguished by some set of Π. An
edge resolving partition of the smallest possible cardinality is called an edge partition basis, and its cardinality is the edge
partition dimension, which is denoted by epd(G).

The following terminology is also useful for our exposition. For an edge e ∈ E(G) and an ordered vertex partition
Π = {U1, U2, . . . , Uk}, the edge partition representation of e with respect to Π is the k-vector:

r(e|Π) = (dG(e, U1), dG(e, U2), . . . , dG(e, Uk)).

Clearly, a vertex partition Π of V (G) is an edge resolving partition for G if and only if for every pair of distinct edges
e, f ∈ E(G) it follows that r(e|Π) 6= r(f |Π). For a vertex v ∈ V (G), the open neighborhood NG(v) of v is the set of vertices u

of G such uv ∈ E(G). The closed neighborhood of v is NG[v] = NG(v) ∪ {v}.

2. Basic results and bounds

We first present a useful lemma that shall be applied in some situations. To see this, we say that two vertices u, v are
true twins if NG[u] = NG[v], and they are false twins if NG(u) = NG(v). Clearly, the property of being (true or false) twins
forms an equivalence relation in every graph G, where vertices that have no twins are singleton classes. From now on, we
consider RT as the twins equivalence relation in which each class is a set of vertices formed by either true twin vertices,
or false twin vertices, or a singleton vertex.

Lemma 2.1. Let Π = {U1, U2, . . . , Uk} be a partition of the vertices of a graph G of order at least 3. If there are two (true or
false) twins u and v such that u, v ∈ Uj for some j ∈ {1, 2, . . . , k}, then Π is not an edge resolving partition for G.

Proof. Let w be one of the common neighbors of u and v. It is clear that uw, vw ∈ E(G), and it follows that

r(uw|Π) = r(vw|Π).

Thus, we readily see that Π is not an edge resolving partition for G.

Corollary 2.1. For any graph G of order at least 3, epd(G) ≥ max{|S|, S is a class of the twins equivalence relation RT }.

Let us present basic bounds for graphs with given order.

Theorem 2.1. For any graph G of order n ≥ 3, 2 ≤ epd(G) ≤ n. Moreover, epd(G) = 2 if and only if G is Pn.

Proof. The bounds are straightforward to observe. In order to prove the second assertion, we first readily observe that
epd(Pn) = 2, by just taking a partition of two sets, one of them formed by one single leaf of Pn and the other one containing
the remaining vertices. On the other hand, assume G is a graph such that epd(G) = 2 and let {U1, U2} be an edge resolving
partition. If there are two edges e = uv and f = xy such that, w.l.g., u, x ∈ U1 and v, y ∈ U2, then dG(e, U1) = dG(e, U2) =

dG(f, U1) = dG(f, U2) = 0, which is not possible. Thus, since G is connected, there exists exactly one edge h = u1u2 such
that u1 ∈ U1 and u2 ∈ U2. Suppose now that the maximum degree of G is at least 3 and let w be a closest vertex to u1 of
maximum degree and assume w ∈ U1. Consider two vertices adjacent to w, say w1, w

′
1, belonging to U1 such that they are

not lying in the shortest path connecting u1 and w. So, the edges ww1 and ww′1 satisfy that dG(ww1, u1) = dG(ww′1, u1),
dG(ww1, U2) = dG(ww1, u1) + 1 and dG(ww′1, U2) = dG(ww′1, u1) + 1, which is a contradiction. So, the maximum degree of
G is at most 2. If G is a cycle, then any vertex partition into two sets produces at least two edges having one endpoint
in one set and the other endpoint in the other set, which is not possible. Therefore, G must be a path, and the proof is
complete.
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Corollary 2.2. For any graph G different from Pn, 3 ≤ epd(G) ≤ n.

With respect to the upper bound of Theorem 2.1, it is easy to see that epd(Kn) = n by using Corollary 2.1, which shows
the tightness of the bound. In contrast with its counterpart, the partition dimension (where the only graph of order n with
pd(G) = n is G = Kn; see [2]), there are several other graphs G satisfying that epd(G) = n, as we next show for the case of
complete multipartite graphs Kn1,n2,...,nk

with at least three partite sets (k ≥ 3).

Theorem 2.2. If n1, n2, . . . , nk are positive integers with k ≥ 3 and
∑k

i=1 ni = n, then epd(Kn1,n2,...,nk
) = n.

Proof. By Theorem 2.1, epd(Kn1,n2,...,nk
) ≤ n. From Lemma 2.1, it follows that any two vertices belonging to the same

partite set of Kn1,n2,...,nk
belong to different sets in any edge resolving partition for Kn1,n2,...,nk

.
On the other hand, consider two vertices u, v belonging to two different partite sets, say A,B, of Kn1,n2,...,nk

with u ∈ A

and v ∈ B, and such that u, v belong to a same set Ui of one edge resolving partition Π′ for Kn1,n2,...,nk
. Since k ≥ 3, there

exists another partite set, say C, of Kn1,n2,...,nk
such that the vertices u, v are adjacent to the vertices of C. Let w ∈ C.

Consider now the edges uw and vw. Clearly,

dKn1,n2,...,nk
(uw,Ui) = 0 = dKn1,n2,...,nk

(vw,Ui) and dKn1,n2,...,nk
(uw,Uj) = 0 = dKn1,n2,...,nk

(vw,Uj)

where Uj is a set of Π′ such that w ∈ Π′. Moreover,

dKn1,n2,...,nk
(uw,Uq) = 1 = dKn1,n2,...,nk

(vw,Uq)

for any other Uq ∈ Π′ with q 6= i, j. Thus, the edges uw and vw are not resolved by Π′, which is not possible. Consequently,
every two vertices of Kn1,n2,...,nk

belong to different sets in any edge resolving partition of it, which completes the proof.

The result above raises the question of characterizing the class of all graphs G for which epd(G) = n, and we indeed
wonder if there are graphs other than complete multipartite graphs Kn1,n2,...,nk

with at least three partite sets (k ≥ 3)
satisfying such equality. Thus, we state Problem 2.1.

Problem 2.1. Characterize all the graphs G of order n with epd(G) = n.

In order to settle the study of complete multipartite graphs completely, let us consider the complete bipartite graphs
Kn1,n2

since they are not covered by Theorem 2.2.

Proposition 2.1. If n1, n2 are positive integers, then epd(Kn1,n2
) = n1 + n2 − 1.

Proof. If n1 = n2 = 1, clearly epd(K1,1) = 1. So, assume that (n1, n2) 6= (1, 1).
Let V1 and V2 be the partite sets of Kn1,n2

such that |V1| = n1 and |V2| = n2. First observe that, by Lemma 2.1, any
two vertices of V1, as well as any two vertices of V2, belong to different sets in any edge resolving partition for Kn1,n2 . Now,
let Π = {U1, U2, . . . , Uk} be an edge resolving partition for Kn1,n2

. Suppose there are two pairs of vertices u, u′ ∈ V1 and
v, v′ ∈ V2 such that u, v ∈ Ui and u′, v′ ∈ Uj for some distinct Ui, Uj ∈ Π. Hence, the edges e = uv′ and f = u′v satisfy that
dKn1,n2

(e, U`) = 1 = dKn1,n2
(f, U`) for every ` 6= i, j, and dKn1,n2

(e, Uj) = dKn1,n2
(e, Ui) = 0 = dKn1,n2

(f, Ui) = dKn1,n2
(f, Uj),

and this is a contradiction. Consequently, there could be at most one pair of vertices u, v, with u ∈ V1 and v ∈ V2, belonging
to a same set of the partition Π. This means that Π must have at least n1+n2−1 sets, which leads to epd(Kn1,n2) ≥ n1+n2−1.
To obtain the equality, we only need to construct an edge resolving partition for Kn1,n2

of cardinality n1 +n2− 1 which can
be easily done.

Our next result provides a lower bound on the edge partition dimension for graphs with given maximum degree.

Theorem 2.3. For any graph G with maximum degree ∆ ≥ 2, epd(G) ≥ dlog2 ∆e+ 1.

Proof. Let Π = {U1, U2, . . . , Uk} be an edge partition basis for G. Let v be a vertex of degree ∆ in G. We denote the vertices
adjacent to v by v1, v2, . . . , v∆. We can assume that v ∈ U1. So, the first entry of r(vvi|Π) is 0 for every i = 1, 2, . . . ,∆.

Now, for every i, l, j such that 1 ≤ i < l ≤ ∆ and 2 ≤ j ≤ k, the edges vvi and vvl are incident, therefore the j-th entries
of r(vvi|Π) and r(vvl|Π) differ by at most 1. Thus, there are at most 2k−1 different possibilities for the representations of
the edges vv1, vv2, . . . , vv∆ with respect to Π. Thus, ∆ ≤ 2k−1 and therefore epd(G) ≥ dlog2 ∆e+ 1.

Let us present the class of trees Tk for k ≥ 3 which attain the lower bound presented in Theorem 2.3. Let v be a vertex
of maximum degree in Tk. One vertex in NTk

(v) is a pendant vertex, k − 1 vertices in NTk
(v) are each adjacent to one

pendant vertex,
(
k−1

2

)
vertices in NTk

(v) are each adjacent to two pendant vertices. In general, for j ∈ {0, 1, . . . , k − 1},(
k−1
j

)
vertices in NTk

(v) are each adjacent to j pendant vertices. See Figure 1 for a representative example, in which the
tree T3 is presented.
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Figure 1: The tree Tk for k = 3 with maximum degree ∆ = 2k−1 = 4, order 1 +
∑k−1

j=0 (j + 1)
(
k−1
j

)
= 9 and epd(T3) = 3

(vertices equally colored represent the set of an edge partition basis).

The maximum degree of Tk is ∆ =
∑k−1

j=0

(
k−1
j

)
= 2k−1 and the order of Tk is

1 +

k−1∑
j=0

(
k − 1

j

)
+

k−1∑
j=0

j

(
k − 1

j

)
= 1 +

k−1∑
j=0

(j + 1)

(
k − 1

j

)
.

Let us show that the edge partition dimension of Tk is k.

Theorem 2.4. For k ≥ 3, epd(Tk) = k.

Proof. By Theorem 2.3, since Tk has maximum degree ∆ = 2k−1, it follows epd(Tk)) ≥ dlog2 2k−1e+ 1 = k. We next present
an edge resolving partition Π = {U1, U2, . . . , Uk} for Tk to show that epd(Tk) = k.

Let us denote the vertices adjacent to the vertex v of maximum degree ∆ = 2k−1 by v1, v2, . . . , v∆. Let

U1 = {v, v1, v2, . . . , v∆}.

For j ∈ {0, 1, . . . , k − 1}, there are
(
k−1
j

)
vertices in NTk

(v), each adjacent to j pendant vertices. Those j vertices (adjacent
to the same vertex in NTk

(v)) belong to j different sets of Π. Moreover, the pendant vertices adjacent to vertices in NTk
(v)

of same degree belong to
(
k−1
j

)
different combinations of the sets U2, U3 . . . , Uk.

We now show that Π = {U1, U2, . . . , Uk} is an edge resolving partition for Tk. The first entry of r(e|Π) for any edge
e ∈ E(Tk) is 0, because every edge is incident with a vertex in U1. The distance between v and any other vertex is at most 2.
Therefore, all the other entries of r(vvi|Π) (for any i ∈ {1, 2, . . . ,∆}) are 1 or 2. Any vertex vi is adjacent to pendant vertices
belonging to a unique combination of sets from Π. Thus, any edge vvi has a unique representation in terms of Π.

Note that the edges vvi for i ∈ {1, 2, . . . ,∆} are the only edges of Tk having representations with only one entry equal to
0. The edges which are not incident with v have representations with two entries equal to 0. Such two edges cannot have
the same representations if they are incident with pendant vertices from different sets in Π.

Hence, we need to consider those edges not incident with v which are incident with pendant vertices from the same set
Up, where 2 ≤ p ≤ k. For any such edge viw, where w is a pendant vertex, it follows that vi is adjacent to pendant vertices
belonging to a unique combination of sets from Π, therefore the edge viw has a unique representation.

From Theorem 2.3, we obtain the following corollary.

Corollary 2.3. If G is a graph with edge partition dimension k and maximum degree ∆, then ∆ ≤ 2k−1.

3. Edge partition dimension versus edge metric dimension

It is natural to think that the edge metric dimension and the edge partition dimension are closely related. For instance, if
S = {v1, v2, . . . , vr} is an edge metric basis of G, then it is straightforward to observe that the partition
Π = {{v1}, {v2}, . . . , {vr}, V (G) \ S} represents an edge resolving partition for G. Thus, the following primary relation-
ship is deduced.

Theorem 3.1. For any graph G, epd(G) ≤ edim(G) + 1.

The bound above is tight. A trivial example can be seen by just considering a path Pn for which epd(Pn) = 2 = edim(Pn)+

1 (see [4]). Also, the complete graph Kn has the edge partition dimension equal to edim(Kn) + 1. Let us present some other
examples attaining such equality. For instance, if G is a graph such that edim(G) = 2, then by Theorem 3.1 and Corollary
2.2, we obtain Proposition 3.1.

Proposition 3.1. If G is a graph with edim(G) = 2, then epd(G) = 3.
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There are several classes of graphs G such that edim(G) = 2, thus by Proposition 3.1, epd(G) = 3. We mention some of
them in Corollary 3.1. Note that for n ≥ 3, the corona graph Pn �K1 is obtained from Pn by joining each vertex of Pn to a
new vertex. So, Pn �K1 has 2n vertices. For n, s ≥ 2, a grid graph Pn�Ps is the Cartesian product of Pn and Ps.

Corollary 3.1. For n ≥ 3,

• epd(Cn) = 3,

• epd(Pn �K1) = 3,

• epd(Pn�Ps) = 3 for s ≥ 2.

After having Proposition 3.1 for edim(G) = 2, we consider graphs G for which edim(G) > 2. We are interested in
finding graphs G such that edim(G) > 2 and epd(G) = 3, or more generally, in finding graphs G for which epd(G) = k and
edim(G) > k − 1 where k ≥ 3. We use the graph Tk (previously defined) to study this relation.

In the proof of Theorem 3.2, we use pendant paths. A pendant path is a path in G such that all its internal vertices
have degree 2 in G and its two terminal vertices have degree 1 and at least 3 in G. If v is that vertex of degree at least 3,
then we call that path a pendant path of v. We denote the number of pendant paths of v by lv.

Theorem 3.2. For k ≥ 3, edim(Tk) = 2k−2(k − 3) + k.

Proof. From [4], edim(T ) =
∑

v∈V (T ),lv>1(lv − 1) for any tree T that is not a path. In order to show our result, we need to
show that for Tk, we have ∑

v∈V (Tk),lv>1

(lv − 1) = 2k−2(k − 3) + k.

From the definition of Tk, we know that the vertex v which has maximum degree in Tk is adjacent to(
k − 1

0

)
+

(
k − 1

1

)
+ · · ·+

(
k − 1

k − 1

)
vertices. There are

(
k−1

1

)
+ 2
(
k−1

2

)
+ · · ·+ (k − 1)

(
k−1
k−1

)
at distance 2 from v in Tk. It follows that

edim(Tk) =
∑

v∈V (Tk),lv>1

(lv − 1) = k − 1 +

(
k − 1

2

)
+ 2

(
k − 1

3

)
+ · · ·+ (k − 2)

(
k − 1

k − 1

)
= 2k−2(k − 3) + k.

By Theorems 2.4 and 3.2, we have epd(Tk) = k and edim(Tk) = 2k−2(k− 3) + k, respectively. Thus, edim(Tk)− epd(Tk) =

2k−2(k − 3) ≥ 0 for k ≥ 3. This means that there is a graph G with epd(G) = 3 and edim(G) > 2. For k = 3, we have
epd(T3) = 3 = edim(T3). Notice that, the construction of Tk allows us to claim that if k ≥ 4, then there is a graph G such
that epd(G) = k and edim(G) > k. Now we raise the following question.

Problem 3.1. Is it true that if epd(G) = 3 for a given graph G, then 2 ≤ edim(G) ≤ 3?

4. Edge partition dimension versus partition dimension

It would be natural to think that the edge partition dimension and the partition dimension of graphs are somehow related.
However, to deduce such a relationship does not appear to be a simple task. For instance, it is known that for any tree
T , we have dim(T ) = edim(T ), but for the partition case, an analogous result does not follow. We show that epd(T ) is not
necessarily equal to pd(T ). Let us consider double stars Sn1,n2 with n1 + n2 pendant vertices.

Theorem 4.1. If n1 ≥ n2 ≥ 1 and n1 ≥ 3, then pd(Sn1,n2
) = n1 and epd(Sn1,n2

) = n1 + 1.

Proof. Assume the pendant vertices adjacent to the two non-pendant vertices u and v are u1, u2, . . . , un1
and v1, v2, . . . , vn2

,
respectively.

We show that pd(Sn1,n2
) = n1. First, any two pendant vertices adjacent to u must be in different sets of some vertex

resolving partition Π, for otherwise they cannot be resolved by Π. So, pd(Sn1,n2) ≥ n1.
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Let Π = {U1, U2, . . . , Un1}, where ui ∈ Ui for i = 1, 2, . . . , n1, vi ∈ Ui for i = 1, 2, . . . , n2, u ∈ U1 and v ∈ U3. There are
three vertices u, u1, v1 in U1. We have

r(u|{U2, U3}) = (1, 1),

r(u1|{U2, U3}) = (2, 2),

r(v1|{U2, U3}) = (x, 1),

where x = 2 if n2 ≥ 2, and x = 3 if n2 = 1. For the vertices in U3, we have

r(u3|{U1, U2}) = (2, 2),

r(v3|{U1, U2}) = (2, 1) for n2 ≥ 3,

r(v|{U1, U2}) = (1, y),

where y = 1 if n2 ≥ 2, and y = 2 if n2 = 1. For i = 2 and i = 4, 5, . . . , n2, Ui = {ui, vi} and we obtain

dSn1,n2
(ui, U1) = 1 and dSn1,n2

(vi, U1) = 2.

Thus, ui and vi are resolved by Π. There is only one vertex in Ui for i = n2 + 1, n2 + 2, . . . , n1, and so Π is a vertex resolving
partition for Sn1,n2

. Therefore, pd(Sn1,n2
) = n1.

We now prove that epd(Sn1,n2) = n1 + 1. First, we show that epd(Sn1,n2) ≥ n1 + 1. Suppose to the contrary that
epd(Sn1,n2) = k ≤ n1. Let Π′ = {U1, U2, . . . , Uk} be an edge resolving partition for Sn1,n2 . By Lemma 2.1, the vertices
u1, u2, . . . , un1

are in different sets of Π′, say ui ∈ Ui where i = 1, 2, . . . , n1 (so k ≥ n1). Without loss of generality, we
assume that u ∈ U1. Then for v ∈ Ui where 1 ≤ i ≤ n1, we obtain r(uui|Π′) = r(uv|Π′) which is a contradiction. Thus,
epd(Sn1,n2

) ≥ n1 + 1.
Let Π = {U1, U2, . . . , Un1+1}, where ui ∈ Ui for i = 1, 2, . . . , n1, vi ∈ Ui+1 for i = 1, 2, . . . , n2, u ∈ U1 and v ∈ Un1+1. Hence,

the first and (n1 +1)-th entry of r(uv|Π) is 0, only the first entry of r(uu1|Π) is 0, while only the (n1 +1)-th entry of r(vvn2
|Π)

is 0. For i = 2, 3, . . . , n1, the first and i-th entry of r(uui|Π) is 0. Also, for i = 1, 2, . . . , n2 − 1, the (i + 1)-th and (n1 + 1)-th
entry of r(vvi|Π) is 0. Thus, Π is an edge resolving partition for Sn1,n2

, and so epd(Sn1,n2
) = n1 + 1, as required.

Double stars are the only trees of diameter 3. We suggest studying relations between epd(T ) and pd(T ) for trees T with
greater diameters.

Problem 4.1. Study relations between epd(T ) and pd(T ) for trees T with diameter at least 4.

For double stars Sn1,n2
, we have epd(Sn1,n2

) > pd(Sn1,n2
). It would be interesting to know if there is any tree T with

epd(T ) < pd(T ).

Problem 4.2. Is there any tree T such that epd(T ) < pd(T ) or is it true that epd(T ) ≥ pd(T ) for every tree T ?

A similar question can be asked about general graphs.

Problem 4.3. Is there any graph G with epd(G) < pd(G) ?
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