ISSN 2078-502X 💿 🛈

2022 VOLUME 13 ISSUE 5 ARTICLE 0670

DOI: 10.5800/GT-2022-13-5-0670

PROVENANCES AND SEDIMENTATION SETTINGS OF THE VENDIAN TERRIGENIC ROCKS OF THE SOUTHERN PART OF NEPA-BOTUOBA ANTECLISE (SIBERIAN PLATFORM)

Z.L Motova ¹[×], A.V. Plyusnin ²

¹ Institute of the Earth's Crust, Siberian Branch of the Russian Academy of Sciences, 128 Lermontov St, Irkutsk 664033, Russia

² Irkutsk Oil Company LLC, 4 Bolshoy Liteiny Ave, Irkutsk 664007, Russia

ABSTRACT. This paper presents the results of petrographic, lithogeochemical, and U-Pb geochronological studies of detrital zircons in deep core sediments from the Vendian terrigenous sequences of the Nepa and Tira formations in the interior of the Siberian Platform. The section of the Nepa formation is characterized by a terrigenous sediment, the Tira Formation is composed mainly of carbonate rocks. The terrigenous rocks of the Nepa formation are composed of ill-sorted and poorly rounded clasts. Towards the higher part of the section of the Tira formation, there is observed an increase in the degree of sorting and roundness of detrital grains. It has been established that clastic rocks of the lower Nepa subformation are the products derived from rocks of mixed (acidic, basic) composition. The terrigenous rocks of the upper Nepa Subformation and the Tira formation accumulated mainly due to acid decomposition of rocks. The U-Pb (LA-ICP-MS) geochronological studies of detrital zircons from terrigenous rocks of the Nepa and Tira formations led to the conclusion that the sedimentary basin of these formations was contributed to by both the Archean-Early Proterozoic rocks in the basement of the Siberian Platform and the adjacent areas of the Central Asian foldbelt. It is assumed that the sediments of the lower Nepa subformation deposited in the residual basin, formed by joining of terrains and island arcs in the Paleoasian Ocean to the southern margin of the Siberian Platform during the Vendian accretionary-collisional events. This was followed by a transformation into a peripheral sedimentary basin and an occurrence of a transgression of the sea, which favored the accumulation of terrigenous-carbonate rocks of the Tira formation.

KEYWORDS: Nepa formation; Tira formation; Vendian; petrography; lithogeochemistry; detrital zircons; geodynamics; Nepa-Botuoba anteclise; Siberian Platform

FUNDING: The geological and geochronological studies were carried out under the financial support of the Russian Science Foundation (project 18-17-00101), and the geochemical studies were financed from the State budget (grant 075-15-2022-1100). The work was conducted using equipment and infrastructure of the Centre for Geodynamics and Geochronology at the Institute of the Earth's Crust, Siberian Branch of the Russian academy of Sciences (grant 075-15-2021-682).

RESEARCH ARTICLE

Correspondence: Zinaida L. Motova, motova@crust.irk.ru

Received: May 16, 2022 Revised: June 5, 2022 Accepted: June 14, 2022

FOR CITATION: Motova Z.L., Plyusnin A.V., 2022. Provenances and Sedimentation Settings of the Vendian Terrigenic Rocks of the Southern Part of Nepa-Botuoba Anteclise (Siberian Platform). Geodynamics & Tectonophysics 13 (5), 0670. doi:10.5800/GT-2022-13-5-0670

ИСТОЧНИКИ ВЕЩЕСТВА И УСЛОВИЯ СЕДИМЕНТАЦИИ ВЕНДСКИХ ТЕРРИГЕННЫХ ПОРОД ЮГА НЕПСКО-БОТУОБИНСКОЙ АНТЕКЛИЗЫ (СИБИРСКАЯ ПЛАТФОРМА)

З.Л. Мотова¹, А.В. Плюснин²

¹Институт земной коры СО РАН, 664033, Иркутск, ул. Лермонтова, 128, Россия

²000 «Иркутская нефтяная компания», 664007, Иркутск, Большой Литейный пр-т, 4, Россия

АННОТАЦИЯ. В работе представлены результаты петрографических, литогеохимических и U-Pb reoxpohoлогических исследований детритовых цирконов из вендских терригенных толщ непской и тирской свит внутренних районов Сибирской платформы, изученных по керну глубоких скважин. Разрез непской свиты характеризуется терригенным составом, тирская свита сложена преимущественно карбонатными породами. Для терригенных пород непской свиты характерна низкая степень сортировки и окатанности обломочного материала. Снизу вверх по разрезу тирской свиты наблюдается повышение степени сортировки и окатанности обломочных зерен. Установлено, что источником обломочного материала для отложений нижненепской подсвиты являлись породы смешанного (кислого и основного) состава. Терригенные породы верхненепской подсвиты и тирской свиты накапливались преимущественно за счет разрушения кислых пород. U-Pb (LA-ICP-MS) геохронологические исследования детритовых цирконов из терригенных пород непской и тирской свит позволили сделать вывод о том, что в качестве основных поставщиков обломочного материала в бассейн седиментации этих толщ выступали как архейско-раннепротерозойские породы фундамента Сибирской платформы, так и прилегающие области Центрально-Азиатского складчатого пояса. Предполагается, что седиментация нижненепской подсвиты происходила в остаточном бассейне, образованном в результате причленения террейнов и островных дуг, существовавших в акватории Палеоазиатского океана, к южной окраине Сибирской платформы в ходе реализации вендских аккреционно-коллизионных событий. Затем произошла трансформация в периферийный осадочный бассейн, имела место трансгрессия моря, что способствовало накоплению терригенно-карбонатных пород тирской свиты.

КЛЮЧЕВЫЕ СЛОВА: непская свита; тирская свита; венд; петрография; литогеохимия; детритовые цирконы; геодинамика; Непско-Ботуобинская антеклиза; Сибирская платформа

ФИНАНСИРОВАНИЕ: Геологические и геохронологические исследования выполнены при финансовой поддержке Российского научного фонда (проект №18-17-00101, геохимические исследования – за счет средств Правительства РФ (грант № 075-15-2022-1100). Работы выполнены с использованием оборудования и инфраструктуры Центра коллективного пользования «Геодинамика и геохронология» Института земной коры Сибирского отделения Российской академии наук по гранту 075-15-2021-682.

1. ВВЕДЕНИЕ

Всесторонние исследования вендских терригенных толщ Непско-Ботуобинской антеклизы (НБА) представляют особый интерес в связи с их нефтегазоносностью. Вещественные характеристики этого стратиграфического интервала, литогеохимический и геохронологический анализ имеют особую значимость. Результаты таких исследований вендских терригенных пород НБА (гравелиты, песчаники и алевролиты), позволят получить новые данные об их составе и возрасте, а также реконструировать геодинамические условия формирования этих отложений, что в дальнейшем может быть использовано как при прогнозировании залежей углеводородного сырья, так и при проведении широких палеогеографических реконструкций.

2. КРАТКИЕ СВЕДЕНИЯ О ГЕОЛОГИЧЕСКОМ СТРОЕНИИ

Район исследования приурочен к южной части НБА, одноименному фациальному району и к южной части Приленско-Непской внутренней фациальной зоны (рис. 1).

Согласно принятой стратиграфической схеме [Mel'nikov, Repina, 1989], в регионе были выделены следующие свиты: непская (непский горизонт), тирская (тирский горизонт), а также перекрывающая их катангская свита нижнего подгоризонта даниловского горизонта. На основании биостратиграфических исследований [Golubkova, Kuznetsov, 2014] возраст рассматриваемых толщ определен как поздний венд. Непская свита подразделяется на две подсвиты, каждая из которых снизу вверх представлена переходом от грубозернистых терригенных пород к мелкозернистым, до алевролитов и аргиллитов. Мощность свиты до 150 м. Тирская свита преимущественно карбонатная. Она также делится на две подсвиты, каждая из которых снизу вверх представлена переходом от терригенных к глинисто-сульфатно-карбонатным смешанным породам. Мощность свиты до 70 м [Mel'nikov et al., 2005; Shemin, 2007; Mel'nikov, 2018] (рис. 2). Подробное описание

Рис. 1. Район исследований (*a*) и фрагмент схемы структурно-фациального районирования Сибирской платформы (*б*) [Mel'nikov et al., 2005].

1 – граница Сибирской платформы; 2 – граница НБА; 3 – границы фациальных регионов; 4 – границы фациальных районов; 5 – границы фациальных зон; 6 – гидросеть; 7 – район исследования.

Fig. 1. A study area (*a*) and a fragment of the scheme of structural-facies zoning of the Siberian Platform (*6*) [Mel'nikov et al., 2005]. *1* – border of the Siberian platform; *2* – boundary of the Nepa-Botuoba anteclise; *3* – boundaries of facies regions; *4* – boundaries of facies regions; *5* – boundaries of facies zones; *6* – hydraulic network; *7* – study area.

свит рассматриваемого района приводится авторами в работе [Plyusnin, Gekche, 2020].

3. ФАКТИЧЕСКИЙ МАТЕРИАЛ И МЕТОДЫ ИССЛЕДОВАНИЯ

Работа посвящена исследованиям терригенных отложений венда НБА. В ходе работ были изучены терригенные породы непской и тирской свит по керну скважин и данным промысловой геофизики. Основой для работы послужили результаты геофизического исследования скважин, а именно гамма-каротаж (ГК) и нейтронный гамма-каротаж (НГК). Данный материал позволил разделить свиты на подсвиты и провести корреляцию скважин. В статье приведены результаты исследований восьми скважин, по которым производился отбор керна из терригенных пород для петрографических, литогеохимических и U-Pb (LA-ICP-MS) геохронологических исследований (рис. 3, 4, 5).

Петрографические исследования шлифов из осадочных пород были выполнены в АО «СНИИГГиМС» по методике НСОММИ МР № 184 (исполнители Н.А. Иванова,

https://www.gt-crust.ru

Н.С. Сентякова, А.В. Липянина, А.В. Левина). Аналитические работы проведены с использованием оборудования Томского регионального центра коллективного пользования Национального исследовательского Томского государственного университета. Определение основных петрогенных оксидов производилось по методике «HCAM 487-XC [Thompson, Walsh, 1988; Bings et al., 2010] (аналитики Е.И. Никитина, М.Ю. Власкина). Анализ выполнялся методом ИСП-АЭС на эмиссионном спектрометре с индуктивно связанной плазмой (Thermo Fisher Scientific, США) с использованием внутреннего стандарта (Sc Scandium Standard, Merck, Германия). Определение примесных и микропримесных элементов (с содержанием <5 %) проведено с использованием аттестованной методики определения элементов методом масс-спектрометрии с индуктивно связанной плазмой согласно методике СТО ТГУ 048-2012 [Khrushcheva et al., 2019] (аналитики Е.С. Рабцевич, Д.Е. Бабенков). Пределы обнаружения следовых количеств элементов составляют 0.001 г/т. Анализ выполнен методом ICP-MS на квадрупольном масс-спектрометре Agilent 7500cx (Agilent Technologies Inc., США)

Рис. 2. Сводный геолого-геофизический разрез южной части Приленско-Непской фациальной зоны [Plyusnin, Gekche, 2020]. Литологическое строение: 1 – аргиллиты; 2 – алевролиты; 3 – мелкозернистые песчаники; 4 – среднезернистые песчаники; 5 – крупнозернистые песчаники; 6 – гравелиты; 7 – глинисто-сульфатно-карбонатные породы; 8 – доломиты.

Fig. 2. Generalized geological and geophysical section of the southern part of the Prilensko-Nepskaya facies zone [Plyusnin, Gokche, 2020]. Lithological structure: 1 – argillites; 2 – siltstones; 3 – fine-grained sandstones; 4 – medium-grained sandstones; 5 – coarse-grained sandstones; 6 – gravelites; 7 – clay-sulfate-carbonate rocks; 8 – dolomites.

Рис. 3. Карта расположения изученных скважин с границами лицензионных участков (красный цвет) и нефтегазоконденсатных месторождений (НГКМ). *1* – скважины; *2* – НГКМ. Обозначение скважин: Кий – Кийская, Я – Ярактинская, ВТр – Верхнетирская, БТр – Большетирская, Мр – Марковская.

Fig. 3. A map of the location of the studied wells – with the boundaries of licensed areas (red color) and oil and gas condensate fields (НГКМ). 1 – wells; 2 – НГКМ. Well designations: Кий – Kiyskaya, Я – Yaraktinskaya, BTp – Verkhnetirskaya, БТр – Bolshetirskaya, Мр – Markovskaya.

с использованием внутреннего стандарта (In Internal standard, Inorganic Ventures, США) и внешнего стандарта СГД-2А (ГСО 8670-2005). Геохронологические (U-Pb) исследования детритовых цирконов выполнены в лаборатории геохронологии и геодинамики Томского государственного университета методом лазерной абляции (LA-ICP-MS) на квадрупольном масс-спектрометре с индуктивно связанной плазмой Agilent 7900 с эксимерным (ArF) лазером Analyte Excite (Teledyne CETAC Technologies, США) (аналитики А.П. Корнева, Е.А. Агашева, А.С. Семиряков). Обработка выполненных измерений проводилась с использованием программного пакета Dezirteer [Powerman et al., 2021]. Произведена фильтрация значений по дискордантности. Был выставлен порог для положительных и отрицательных значений несоответствия (+10 %, –10 %). Кроме того, был сделан расчет «лучшего возраста» (Best age) из меньшей ошибки: Dezirteer использует изотопную систему (206 Pb/ 238 U или 207 Pb/ 206 Pb) с наименьшим процентом ошибки для каждого анализа. Для подсчета процентных содержаний возрастных популяций детритовых цирконов авторы использовали обычный математический прием – метод пропорций, где 100 % = общее количество конкордантых значений, х = количество конкордантных оценок возраста, соответствующее определенному возрастному интервалу. Далее производился подсчет по формуле.

Генетическая типизация терригенных пород проведена с использованием системы петрохимических модулей по методике [Yudovich, Ketris, 2000].

Рис. 4. Геолого-геофизические разрезы изученных скважин с точками отбора проб. Разрезы Кий_20, Я_821, ВТр_301, Я_609. **Fig. 4.** Geological and geophysical sections of the studied wells with sampling points. Sections Кий_20, Я_821, ВТр_301, Я_609.

Рис. 5. Геолого-геофизические разрезы изученных скважин с точками отбора проб. Разрезы BTp_16, Я_380, Я_202, Mp_730. **Fig. 5.** Geological and geophysical sections of the studied wells with sampling points. Sections BTp_16, Я_380, Я_202, Mp_730.

0				
Алевролит терригенных пород Геонаник (x/3 Гравелит Конгломерат Конгломерат	Точки отбора проб РФА и ICP MS	Точки отбора проб на детритовые цирконы	Подсвита	Свита
				Катангская
			верхняя	
 N⊵ 59 N⊵ 58		INK	ф нижняя	Тирская
			верхняя	Непская
я свита а бурением			нижняя	

4. РЕЗУЛЬТАТЫ ЛИТОГЕОХИМИЧЕСКИХ ИССЛЕДОВАНИЙ

Минеральный состав терригенных пород непской свиты, в соответствии с классификацией по Н.В. Логвиненко [Logvinenko, 1974], отвечает аркозам, аркозограуваккам, грауваккам и полевошпат-кварцевым песчаникам (рис. 6).

Снизу вверх по разрезу непской свиты отмечается смена степени сортировки и окатанности пород от плохой до средней, что указывает на низкую степень зрелости этих пород и свидетельствует о малой дальности переноса обломочного материала (рис. 7, а, б). Структура псаммитовая, псефитовая. Размер зерен изменяется от 0.05-0.25 мм до 10-5 мм. Среди обломков различаются полуокатанные (55%), неокатанные (35 %), изредка встречаются окатанные обломки (5-10%). Здесь отмечается наличие глинистого (гидрослюдистого) пленочного, регенерационного кварцевого, сульфатно-карбонатного, галитового и другого цемента (рис. 7, в, г). Средний минеральный состав пород нижненепской подсвиты: кварц (~54 %), полевые шпаты (~23 %), слюды (~1 %) и обломки пород (~22 %); верхненепской подсвиты: кварц (~83%), полевые шпаты (~12 %) и обломки пород (~5 %). Обломки пород в непской свите представлены микрокварцитами, кварцитами и кремнисто-слюдистыми сланцами. Преобладающие минералы тяжелой фракции для пород нижненепской и верхненепской подсвит разнятся. В породах нижненепской подсвиты диагностированы минералы, характерные для магматических пород кислого и основного состава: циркон, турмалин, рутил, амфиболы, пироксены, анатаз, сфен и магнетит. Для пород верхненепской подсвиты отмечено преобладание минералов гранитной специфики: циркон, турмалин и рутил.

Фигуративные точки изученных пород тирской свиты на классификационной диаграмме Н.В. Логвиненко расположились в поле значений граувакк и полевошпат-кварцевых песчаников (см. рис. 6). Снизу вверх по разрезу тирской свиты наблюдается увеличение степени сортировки и окатанности обломочного материала, что указывает на увеличение степени зрелости этих терригенных пород и увеличение дальности переноса обломочного материала в бассейн седиментации. Структура псаммитовая, псефитовая. Размер зерен изменяется от 0.01-0.05 до 1.00 мм и более. Среди обломков различаются окатанные (90 %), неокатанные (10 %), редко – угловато-окатанные обломки (1-5%). Здесь диагностируется глинистый (гидрослюдистый) пленочный, реже - регенерационный кварцевый, сульфатнокарбонатный, галитовый и другой цемент (рис. 7, д-3). Средний минеральный состав пород нижнетирской подсвиты: кварц (~81%), полевые шпаты (~8%) и обломки пород (~10%); верхнетирской подсвиты: кварц (~84 %), полевые шпаты (~13 %), слюды (~2 %) и обломки пород (~1%). Обломки пород в тирской свите представлены микрокварцитами и кремнисто-слюдистыми сланцами. В ходе петрографических исследований в породах тирской свиты были диагностированы минералы тяжелой фракции, характерные для кислых магматических пород: турмалин, циркон и рутил.

5. ПЕТРОГЕННЫЕ ОКСИДЫ

Содержания петрогенных оксидов и рассчитанные значения петрохимических модулей по [Yudovich, Ketris, 2000] приведены в табл. 1. Концентрации SiO₂ в породах нижненепской подсвиты изменяются от 52.91 до 80.23 мас. %. Значения гидролизатного модуля (ГМ) в породах нижненепской подсвиты варьируются в широком диапазоне (ГМ=0.08–0.56) и позволяют классифицировать их как гипо-, нормо- и суперсилиты. Все проанализированные образцы нижненепской подсвиты характеризуются пониженными значениями модуля

Рис. 6. Классификационные диаграммы для терригенных пород непской (*a*) и тирской (*б*) свит по Н.В. Логвиненко [Logvinenko, 1974].

Fig. 6. Classification diagrams for terrigenous deposits of the Nepa (a) and Tira (6) formations after [Logvinenko,1974].

Рис. 7. Микрофотографии шлифов терригенных пород тирской (*a*−*г*) и непской (*∂*−3) свит (николи скрещены). (*a*) – песчаник среднекрупнозернистый гравелитистый; (*б*) – зерна кварца и полевого шпата с регенерационными каемками, корродированные глинисто-гидрослюдистым и доломитовым цементом, обломки кварца частично замещаются кристаллами доломита; (*в*) – зерна кварца и полевого шпата с регенерационными каемками, корродированные сульфатным, карбонатным и глинистым цементом; (*г*) – песчаник мелко- крупно- и среднезернистый; (*д*) – зерна кварца и полевого шпата с регенерационными каемками, обломки, в разной степени корродированные сульфатным, карбонатным и глинистым цементом; (*г*) – песчаник мелко- крупно- и среднезернистый; (*д*) – зерна кварца и полевого шпата с регенерационными каемками, корродированные сульфатным и глинистым цементом; (*е*) – песчаник мелко- крупно- и среднезернистый; (*д*) – зерна кварца и полевого шпата с регенерационными каемками, корродированные сульфатным и глинистым цементом; (*е*) – песчаник мелко- крупно- и среднезернистый; (*д*) – зерна кварца и полевого шпата с регенерационными каемками, корродированные сульфатным и глинистым цементом; (*е*) – песчаник крупно-мелко- и среднезернистый, кварцевый, мелко-тонко- волнисто-прерывисто- неправильно-волнисто-слоистый, на глинистом порово-пленочном, сульфатном пойкилитово-поровом, карбонатном базально-пойкилитово-поровом цементе; (*ж*) – коррозия обломочного материала доломитом, гипсом и ангидритом; (*з*) – регенерация зерен полевого шпата, участками – корродирование сульфатным, карбонатным и глинистым цементом.

Fig. 7. Micrographs of thin sections of terrigenous deposits of the Tira (a-e) and Nepa (∂ -a) formations (crossed nicols).

(a) –medium-to-coarse-grained gravel sandstone; (b) – grains of quartz and feldspar with regeneration rims, corroded by clay-hydromicaceous and dolomite cement, with quartz fragments partially replaced by dolomite crystals; (b) – grains of quartz and feldspar, with regeneration rims; fragments corroded to varying degree by sulfate, carbonate and clayey cements; (c) – fine-, coarse- and mediumgrained sandstone; (d) – grains of quartz and feldspar with regeneration rims, corroded by sulfate and clay cements; (e) – coarse-, fine- and medium-grained quartz sandstone showing fine- thin-discontinuous-irregular-curly-bedding structure, on clay porous-film, sulfate poikilitic-porous, carbonate basal-poikilitic-porous cement; (\mathcal{H}) – dolomite, gypsum and anhydrite corrosion of clastic material; (g) – regeneration of feldspar grains, areas of sulfate, carbonate and clay cement corrosion.

№ п/п	1	2	3	4	5	6	7	8	9	10
Литология	Песчаник	Алевролит	Гравелит	Гравелит	Алевролит	Песчаник	Песчаник	Песчаник	Песчаник	Песчаник
Лабораторный №	69	114	115	116	118	27	66	85	102	136
Скважины		БТр	-16		Я-202	Я-821	БТр-16	Я-609	BTp-301	Кий-20
Компонент (мас. %)		Нижне	непская по	одсвита			Верхне	непская по	одсвита	
SiO ₂	80.23	52.91	79.81	76.13	54.84	92.26	81.12	87.78	51.47	95.40
TiO ₂	0.11	1.01	0.13	0.08	1.29	0.10	0.62	0.27	1.08	0.05
Al ₂ O ₃	3.25	22.02	5.39	4.33	18.76	0.28	6.84	3.55	18.55	0.19
Fe ₂ O ₃	3.47	6.68	1.88	1.74	6.61	1.51	2.59	1.88	10.76	1.21
MnO	0.05	0.00	0.01	0.04	0.04	0.01	0.01	0.01	0.01	0.01
MgO	1.14	2.33	1.74	2.94	5.86	0.20	0.47	0.47	1.22	0.34
CaO	3.09	1.03	2.48	4.17	1.13	2.61	1.16	0.80	1.12	0.48
Na ₂ 0	0.24	0.31	0.22	0.27	0.25	0.18	0.17	0.21	0.30	0.18
K ₂ 0	1.29	7.06	4.37	3.49	3.47	0.23	2.55	1.83	5.77	0.57
P ₂ O ₅	0.01	0.04	0.01	0.02	0.42	0.00	0.08	0.02	0.23	0.00
п.п.п	5.80	5.80	2.82	5.83	6.34	1.02	3.21	2.75	8.51	0.51
Сумма	98.67	99.20	98.85	99.05	99.01	98.41	98.82	99.58	99.01	98.94
ГМ	0.09	0.56	0.09	0.08	0.49	0.02	0.12	0.07	0.59	0.02
ФМ	0.06	0.17	0.05	0.06	0.23	0.02	0.04	0.03	0.23	0.02
НКМ	0.47	0.33	0.85	0.87	0.20	1.48	0.40	0.57	0.33	4.03
№ п/п	11	12	13	14	15	16	17	18	19	20
Литология	Песчаник	Песчаник	Песчаник	Песчаник	Песчаник	Песчаник	Песчаник	Песчаник	Песчаник	Песчаник
Лабораторный №	55	58	59	60	63	23	45	48	51	52
Скважины		Mp-	730		БТр-16	Я-821		Я-3	380	
Компонент, мас. %		Нижне	гирская по	одсвита			Верхнет	гирская по	одсвита	
SiO ₂	86.53	83.30	94.40	91.73	93.76	85.32	55.24	61.72	79.01	76.58
TiO ₂	0.20	0.25	0.08	0.10	0.12	0.32	0.69	0.59	0.12	0.16
Al ₂ O ₃	2.21	1.73	0.02	0.01	0.08	3.55	11.62	9.13	1.49	1.17
Fe ₂ O ₃	2.50	0.86	2.56	0.98	2.25	1.91	4.81	3.95	2.12	1.76
MnO	0.02	0.01	0.01	0.01	0.01	0.01	0.06	0.03	0.02	0.02
MgO	0.87	1.16	0.10	0.86	0.09	1.38	6.10	4.40	2.92	3.72
CaO	1.88	6.19	1.07	2.36	1.03	1.48	4.79	4.73	4.90	5.77
Na ₂ 0	0.10	0.10	0.09	0.22	0.08	0.21	0.19	0.28	0.25	0.25
K ₂ 0	0.81	1.28	0.14	0.08	0.25	2.16	4.80	5.62	1.31	1.09
P ₂ O ₅	0.01	0.03	0.00	0.00	0.00	0.04	0.09	0.12	0.01	0.01
п.п.п	3.84	2.65	0.79	3.09	2.22	2.58	10.00	8.23	6.39	8.22
Сумма	98.99	97.58	99.26	99.46	99.89	98.96	98.38	98.81	98.52	98.75
ГМ	0.06	0.03	0.03	0.01	0.03	0.07	0.31	0.22	0.05	0.04
ФМ	0.04	0.02	0.03	0.02	0.03	0.04	0.20	0.14	0.06	0.07
НКМ	0.41	0.80	14.64	31.31	4.22	0.67	0.43	0.65	1.04	1.14

Таблица 1. Петрохимический состав терригенных пород непской и тирской свит Table 1. Petrochemical composition of terrigenous rocks of the Nepa and Tira formations

Примечание. Петрохимические модули [Yudovich, Ketris, 2000]: ГМ (гидролизатный) = ($TiO_2+Al_2O_3+Fe_2O_3+FeO+MnO$)/ SiO_2 ; ФМ (фемический) = = ($Fe_2O_3+FeO+MnO+MgO$)/ SiO_2 ; модуль нормированной щелочности НКМ = (Na_2O+K_2O)/ Al_2O_3).

Note. Petrochemical modules [Yudovich, Ketris, 2000]: GM (hydrolysate) = $(TiO_2 + Al_2O_3 + Fe_2O_3 + FeO + MnO)/SiO_2$; FM (femic) = $(Fe_2O_3 + FeO + MnO + +MgO)/SiO_2$; modulus of normalized alkalinity NKM = $(Na_2O + K_2O)/Al_2O_3$).

нормированной щелочности (НКМ=0.20–0.87). Для них отмечается положительная корреляция между ГМ и ФМ (r=0.92) и отрицательная между НКМ и ГМ (r=-0.81), что позволяет аттестовать их как петрогенные осадочные образования (рис. 8, а).

В терригенных породах верхненепской подсвиты содержания SiO_2 варьируются от 51.47 до 95.40 мас. %. Значения ГМ в исследуемых породах изменяются в широком диапазоне (ГМ=0.02–0.59), что позволяет классифицировать модули как гипо-, нормо- и суперсилиты.

Изученные образцы характеризуются различными значениями модуля нормированной щелочности (НКМ= =0.33–4.03). Для них отмечается положительная корреляция между ГМ и ФМ (r=0.99) и отрицательная между НКМ и ГМ (r=-0.47) (рис. 8, б).

В изученных породах нижнетирской подсвиты содержания ${\rm SiO}_2$ составляют от 83.30 до 94.40 мас. %. Значения ГМ в породах нижнетирской подсвиты изменяются от 0.01 до 0.06, что позволяет классифицировать их как силиты. Все проанализированные образцы

Рис. 8. Диаграммы НКМ-ГМ и ФМ-ГМ по [Yudovich, Ketris, 2000] для терригенных пород непскои и терской свит. (*a*) – нижненепская подсвита; (*б*) – верхненепская подсвита; (*в*) – нижнетирская подсвита; (*г*) – верхнетирская подсвита. **Fig. 8.** HKM-ГМ and ΦМ-ГМ diagrams according to [Yudovich, Ketris, 2000] for terrigenous rocks of the Nepa and Tira formations. (*a*) – lower Nepa subformation; (*б*) – upper Nepa subformation; (*в*) – lower Tira subformation; (*г*) – upper Tira subformation.

характеризуются различными значениями модуля нормированной щелочности (НКМ=0.41–31.31). Для этих пород характерна положительная корреляция между ГМ и ФМ (r=0.93) и отрицательная между НКМ и ГМ (r=-0.77) (рис. 8, в).

Терригенные породы верхнетирской подсвиты обнаруживают содержания SiO₂, изменяющиеся от 55.24 до 85.32 мас. %. Значения ГМ в исследуемых породах варьируются в широком диапазоне (ГМ=0.04–0.21) и позволяют классифицировать их как гипо- и нормосилиты. Для этих пород характерны низкие значения модуля нормированной щелочности (НКМ=0.43–1.14), положительная корреляция между ГМ и ФМ (r=0.95) и отрицательная между НКМ и ГМ (r=-0.83) (рис. 8, г).

6. РЕДКОЗЕМЕЛЬНЫЕ ЭЛЕМЕНТЫ

Содержание редкоземельных элементов (РЗЭ) в изученных образцах непской и тирской свит приведено в табл. 2. Для наглядного представления особенностей распределения этих элементов проведено их нормирование на хондрит [Boynton, 1984].

Для пород нижненепской подсвиты обнаруживаются фракционированные спектры распределения редкоземельных элементов (La_n/Yb_n=5.88–10.69) и обогащение легкими лантаноидами (La_n/Sm_n=2.25–5.62) относительно тяжелых (Gd_n/Yb_n=0.78–2.05). На спектрах распределения P3Э для пород нижненепской подсвиты фиксируется как отрицательная, так и положительная европиевая аномалия (Eu/Eu*=0.53–1.16) (рис. 9, а). Терригенные породы верхненепской подсвиты характеризуются фракционированными спектрами распределения редкоземельных элементов (La_n/Yb_n= =4.72–18.48) и обогащены легкими лантаноидами (La_n/Sm_n=3.20–10.96) относительно тяжелых (Gd_n/Yb_n= =1.08–1.59), отмечается наличие отрицательной европиевой аномалии (Eu/Eu*=0.53–0.63) (рис. 9, 6).

Терригенные породы нижнетирской подсвиты характеризуются фракционированными спектрами распределения редкоземельных элементов (La_n/Yb_n=7.73– 16.17), обогащены легкими лантаноидами (La_n/Sm_n= =3.31-6.41) относительно тяжелых (Gd_n/Yb_n=1.21-2.06), а также фиксируется наличие отрицательной европиевой аномалии (Eu/Eu*=0.41-0.66) (рис. 9, в). Проанализированные породы нижнетирской подсвиты обнаруживают фракционированные спектры распределения редкоземельных элементов (La_n/Yb_n=5.53-15.61), обогащение легкими лантаноидами (La_n/Sm_n=3.48-10.73) относительно тяжелых (Gd_n/Yb_n=0.91-1.78) и наличие отрицательной европиевой аномалии (Eu/Eu*=0.56-0.68) (рис. 9, г).

Таблица 2. Содержания редкоземельных элементов
Table 2. Contents of rare earth elements

№ п/п	1	2	3	4	5	6	7	8	9	10	
Литология	Песчаник	Алевролит	Гравелит	Гравелит	Алевролит	Песчаник	Песчаник	Песчаник	Песчаник	Песчаник	
Лабораторный №	69	114	115	116	118	27	66	85	102	136	
Скважины	БТр-16		Я-2	202		Я-821	БТр-16	Я-609	BTp-301	Кий-20	
ppm		Нижнен	непская по	дсвита		Верхненепская подсвита					
La	28.92	93.58	30.70	27.55	119.12	27.10	82.96	45.08	91.04	16.08	
Се	20.57	63.09	20.23	13.75	54.24	12.22	69.75	28.23	70.94	9.61	
Pr	15.68	47.08	16.51	9.47	56.60	8.61	51.30	20.61	47.57	6.88	
Nd	13.31	35.10	13.99	7.15	51.11	5.52	42.87	16.71	38.26	5.17	
Sm	12.84	16.65	8.72	5.37	38.92	2.47	25.89	9.73	24.44	2.66	
Eu	5.42	7.80	4.91	5.11	23.98	1.11	9.47	4.26	13.46	1.34	
Gd	8.25	12.44	4.38	3.59	22.71	1.79	12.27	5.10	20.81	1.72	
Tb	6.60	13.40	3.72	3.75	21.35	1.56	9.13	3.98	23.81	1.48	
Dy	4.35	11.63	2.94	3.32	16.88	1.25	6.48	2.99	18.89	1.19	
Но	3.99	12.93	2.71	3.08	15.92	1.26	5.94	2.88	19.01	1.11	
Er	3.51	12.93	2.73	3.02	16.04	1.22	5.89	3.10	17.36	1.09	
Tm	3.46	13.36	2.49	2.53	14.63	1.21	6.34	3.33	16.86	0.96	
Yb	4.03	15.92	2.87	2.70	16.21	1.47	8.58	4.03	19.27	1.09	
Lu	3.32	13.22	2.37	2.18	13.39	1.19	6.00	3.37	15.67	0.87	
Eu/Eu*	0.53	0.54	0.79	1.16	0.81	0.53	0.53	0.60	0.60	0.63	
(La/Yb) _n	7.18	5.88	10.69	10.20	7.35	18.48	9.67	11.20	4.72	14.80	
(La/Sm) _n	2.25	5.62	3.52	5.13	3.06	10.96	3.20	4.63	3.72	6.05	
(Gd/Yb) _n	2.05	0.78	1.53	1.33	1.40	1.22	1.43	1.27	1.08	1.59	

Таблица	а 2 (продолжение)
Table 2	(continued)

№ п/п	11	12	13	14	15	16	17	18	19	20		
Литология	Песчаник	Песчаник	Песчаник	Песчаник	Песчаник	Песчаник	Песчаник	Песчаник	Песчаник	Песчаник		
Лабораторный №	55	58	59	60	63	23	45	48	51	52		
Скважины		Mp-	730		БТр-16	Я-821		Я-3	380			
ppm		Нижне	тирская по	одсвита			Верхнетирская подсвита					
La	16.03	70.30	120.68	203.20	19.58	52.15	157.72	44.86	31.88	30.37		
Се	9.91	51.10	84.79	150.60	13.28	37.39	62.45	28.95	18.99	17.42		
Pr	7.57	39.33	60.85	121.49	10.21	30.58	38.40	22.86	14.60	13.37		
Nd	5.42	32.50	44.97	98.97	7.53	24.65	26.63	19.42	11.97	11.05		
Sm	2.50	18.31	23.73	61.32	4.64	14.01	14.70	12.89	7.78	7.31		
Eu	0.76	6.97	11.80	23.97	2.51	6.44	7.73	6.68	3.77	3.03		
Gd	1.40	9.31	15.47	32.39	3.08	7.47	9.34	7.41	4.23	4.05		
Tb	1.16	7.27	13.34	24.22	2.88	5.47	7.79	6.76	3.98	3.60		
Dy	0.87	5.21	10.28	15.91	2.11	3.74	5.97	5.14	3.10	2.67		
Но	0.88	5.03	10.47	14.38	2.14	3.53	6.43	5.55	3.23	2.56		
Er	0.86	5.15	10.36	13.71	2.06	3.43	6.92	5.76	3.34	2.47		
Tm	0.87	5.28	10.68	13.24	2.17	3.45	7.92	6.37	3.56	2.50		
Yb	0.99	6.61	12.82	15.71	2.53	4.19	10.11	8.11	4.47	3.07		
Lu	0.84	5.22	10.19	12.99	2.13	3.56	8.64	6.61	3.77	2.50		
Eu/Eu*	0.41	0.53	0.62	0.54	0.66	0.63	0.66	0.68	0.66	0.56		
(La/Yb) _n	16.17	10.63	9.41	12.93	7.73	12.46	15.61	5.53	7.13	9.89		
(La/Sm) _n	6.41	3.84	5.09	3.31	4.22	3.72	10.73	3.48	4.10	4.15		
(Gd/Yb) _n	1.41	1.41	1.21	2.06	1.22	1.78	0.92	0.91	0.95	1.32		

Примечание. Нормирование по хондриту (по [Boynton, 1984]); $Eu/Eu^* = (Eun)/((Sm)_n \cdot (Gd)_n)1/2$.

Note. Normalization by chondrite (after [Boynton, 1984]); $Eu/Eu^* = (Eun)/((Sm)_n (Gd)_n)1/2$.

Рис. 9. Спектры распределения РЗЭ, нормированные по хондриту [Boynton, 1984], для терригенных пород непской и тирской свит. (*a*) – нижненепская подсвита; (*b*) – верхненепская подсвита; (*b*) – верхненепская подсвита; (*b*) – верхнетирская подсвита. **Fig. 9.** The REE distribution spectra normalized to chondrite [Boynton, 1984], terrigenous deposits of the Nepa and Tira formations. (*a*) – lower Nepa subformation; (*b*) – upper Nepa subformation; (*b*) – lower Tira subformation; (*c*) – upper Tira subformation.

7. РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЙ ДЕТРИТОВЫХ ЦИРКОНОВ

Уран-свинцовые геохронологические исследования детритовых цирконов были проведены по четырем пробам, по одной пробе из песчаников нижне- и верхненепской подсвит и по одной пробе из песчаников нижне- и верхнетирской подсвит.

Нижненепская подсвита. Из пробы № INK-18 (скв. Ярактинская 202, глубина 3212 м) было выделено 127 зерен детритовых цирконов (Прил. 1, табл. 1.1), представленных призматическими агрегатами различной степени окатанности и обломками призм, иногда трещиноватыми, с включениями других минералов. Конкордантные значения были получены для 108 зерен. Возраст самого молодого детритового циркона составил 774±9 млн лет, самого древнего – 2735 ±7 млн лет. Архейскому возрасту соответствуют 34 зерна (31 %), 42 зерна (39 %) имеют раннепротерозойские оценки возраста, 32 обломочных циркона (30 %) обнаруживают позднепротерозойские оценки возраста. Архейские детритовые цирконы отвечают оценкам возраста в интервале от 2505 до 2735 млн лет, основной возрастной пик приходится на 2569 млн лет (12 зерен). Раннепротерозойские детритовые цирконы имеют возраст от 1660 до 2495 млн лет, основной возрастной пик приходится на 1915 млн лет (10 зерен). Позднепротерозойские оценки возраста детритовых цирконов охватывают возрастной интервал от 774 до 1265 млн лет с основным пиком на 981 млн лет (8 зерен) (рис. 10, а).

Верхненепская подсвита. Из пробы № INК-3 (скв. Ярактинская 821, глубина 3617 м) было выделено 136 зерен детритовых цирконов (Прил. 1, табл. 1.1), представленных призматическими, дипирамидальными зернами и их обломками различной степени окатанности. Конкордантные значения были получены для 122 зерна. Возраст самого молодого детритового циркона составил 635±3 млн лет, самого древнего – 2840±24 млн лет. Архейские оценки возраста получили 39 зерен (32 %), 60 зерен (49 %) отвечают раннепротерозойскому возрасту, возраст 23 детритовых цирконов (19 %) соответствует позднему протерозою.

Рис. 10. Гистограммы относительной вероятности возраста детритовых цирконов из терригенных пород нижненепской подсвиты (*a*), верхненепской подсвиты (*b*), нижнетирской подсвиты (*b*) и верхнетирской подсвиты (*c*). **Fig. 10.** Relative age probability histograms of detrital zircons from terrigenous rocks of the lower Nepa subformation (*a*), upper Nepa

subformation (δ), lower Tira subformation (δ), and upper Tira subformation (ϵ).

Архейские оценки возраста детритовых цирконов охватывают интервал от 2500 до 2840 млн лет с основным пиком на 2549 млн лет (14 зерен). Раннепротерозойские детритовые цирконы охватывают интервал от 1730 до 2495 млн лет с основным пиком на 1911 млн лет (12 зерен). Позднепротерозойские детритовые цирконы охватывают возрастной интервал от 635 до 1605 млн лет с основным пиком на 893 млн лет (8 зерен) (рис. 10, б).

Следует отметить, что полученные нами оценки возраста детритовых цирконов согласуются с ранее опубликованными данными по аналогичным исследованиям возраста детритовых цирконов из терригенных пород непской свиты [Izyurova et al., 2020].

Нижнетирская подсвита. Из пробы № INК-6 (скв. Марковская 730, глубина 3410 м) было выделено 101 зерно детритовых цирконов (Прил. 1, табл. 1.1), представленных призматическими, дипирамидальными зернами и их обломками различной степени окатанности. Конкордантные значения были получены для 92 зерен. Возраст самого молодого детритового циркона составил 647±7 млн лет, самого древнего - 2700 ±17 млн лет. Архейские оценки возраста получили 15 зерен (16 %), 31 зерно (34 %) отвечает раннепротерозойскому возрасту, 46 зерен детритовых цирконов (50 %) обнаруживают позднепротерозойские оценки возраста. Архейские оценки возраста отвечают интервалу от 2505 до 2700 млн лет, основной возрастной пик приходится на 2561 млн лет (шесть зерен). Раннепротерозойские детритовые цирконы имеют возраст от 1784 до 2470 млн лет с основным пиком на 1935 млн лет (шесть зерен). Преобладающая популяция детритовых цирконов позднепротерозойского возраста охватывает интервал от 647 до 1606 млн лет с основными пиками на 901 млн лет (10 зерен) и 781 млн лет (9 зерен) (рис. 10, в).

Верхнетирская подсвита. Из пробы № INК-2 (скв. Ярактинская 821, глубина 3527.5 м) было выделено и проанализировано 105 зерен детритовых цирконов (Прил. 1, табл. 1.1), представленных призматическими, дипирамидальными зернами и их обломками различной степени окатанности. Конкордантные значения были получены для 95 зерен. Возраст самого молодого циркона составил 702±15 млн лет, самого древнего -3045±20 млн лет. Архейские оценки возраста получили 8 зерен (8%), 50 зерен (53%) соответствуют раннепротерозойским оценкам возраста, для 37 обломочных зерен цирконов (39 %) установлен позднепротерозойский возраст. Архейский возраст отвечает интервалу от 2525 до 3045 млн лет, основной возрастной пик приходится на 2909 млн лет (2 зерна). Раннепротерозойские детритовые цирконы являются преобладающей популяцией и имеют возраст от 1650 до 2450 млн лет, основной возрастной пик приходится на 1771 млн лет (11 зерен). Позднепротерозойская популяция детритовых цирконов охватывает возрастной интервал от 702 до 1635 млн лет (37 зерен - 39 %) с основным пиком на 867 млн лет (7 зерен) (рис. 10, г).

8. ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Генетическая типизация терригенных пород непской и тирской свит, проведенная с использованием системы петрохимических модулей по [Yudovich, Ketris, 2000], позволила аттестовать их как петрогенные осадочные образования, т.е. породы, образованные за счет разрушения первично-магматических и метаморфических пород.

По результатам проведенных исследований изученные породы разделились на две группы.

К первой группе относятся породы нижненепской подсвиты, которые характеризуются плохой степенью сортировки и окатанности. Эти породы преимущественно полевошпат-кварцевого состава с повышенным содержанием обломков пород (более 20 %). Анализ обломочной части и минералов тяжелой фракции показал, что в области источника разрушались магматические и метаморфические породы кислого и основного состава. Для этой группы пород фиксируется как наличие отрицательной европиевой аномалии, так и ее отсутствие. Таким образом, характер распределения спектров РЗЭ подтверждает сделанные выводы по результатам петрографических исследований о смешанном составе пород в области источника.

Ко второй группе относятся породы верхненепской подсвиты и тирской свиты, для них характерна средняя и хорошая степень сортировки и окатанности обломочного материала. Породы этой группы также обнаруживают преимущественно полевошпат-кварцевый состав, однако здесь отмечается относительно небольшое количество обломков пород (от 1 до 10 %), которые представлены преимущественно микрокварцитами и кремнисто-слюдистыми сланцами. Анализ обломочной части и минералов тяжелой фракции показал, что в области источника сноса разрушались магматические и метаморфические породы кислого состава. Для всех пород этой группы характерно наличие отрицательной европиевой аномалии. Таким образом, можно сделать вывод о том, что в области источника верхненепской подсвиты и тирской свиты разрушались преимущественно породы кислого состава.

В результате проведенных U-Pb (LA-ICP-MS) геохронологических исследований детритовых цирконов для всех изученных стратиграфических подразделений были получены как архейские, так и ранне- и позднепротерозойские оценки возраста детритовых цирконов (см. рис. 7; Прил. 1, табл. 1.1). На рис. 11 приведено сопоставление результатов U-Pb (LA-ICP-MS) исследования детритовых цирконов из терригенных отложений нижне- и верхненепской и нижне- и верхнетирской подсвит с опубликованными данными о возрасте магматических и метаморфических пород, слагающих террейны, входящих в структуру северного сегмента Центрально-Азиатского складчатого пояса (ЦАПС) (по [Donskaya et al., 2017; и ссылки в этой работе], а также с оценками возраста пород, слагающих фундамент южной окраины Сибирской платформы (по [Rojas-Agramonte et al., 2011]).

В результате сопоставления можно сделать вывод о том, что в непское время в бассейн седиментации обломочный материал поступал как за счет разрушения архейских (32 % оценок возраста детритовых цирконов) и раннепротерозойских (44 % оценок возраста) магматических и метаморфических пород фундамента Сибирской платформы, так и при участии позднепротерозойских (24 % оценок возраста) пород северного сегмента ЦАСП. В тирское время в области источника наблюдается существенное уменьшение количества

Рис. 11. Сопоставление возрастных спектров для обломочных цирконов непского и тирского горизонта внутренних районов Сибирской платформы со спектрами по террейнам ЦАПС и фундаменту южной окраины Сибирской платформы.

Fig. 11. Comparison between the age spectra for detrital zircons from the Nepa and Tira horizons in the interior of the Siberian platform and the spectra for terranes of the Central Asian foldbelt and the basement of the southern margin of the Siberian platform.

архейских пород фундамента (12 % оценок возраста детритовых цирконов), при этом отмечается увеличение вклада раннепротерозойских (43 % оценок возраста детритовых цирконов) и позднепротерозойских источников (45 % оценок возраста детритовых цирконов).

Согласно современным представлениям, в позднем рифее пассивная континентальная окраина Сибирской платформы была преобразована в активную с образованием форландового бассейна (обзор в работе [Gladkochub et al., 2019]). В это время происходило закрытие Палеоазиатского океана вдоль южной окраины Сибири, была сформирована серия прогибов, снос обломочного материала в которые происходил как с территории Сибирской платформы, так и с орогена [Powerman et al., 2015; Gladkochub et al., 2019; и ссылки в этих работах].

Поздняя фаза закрытия океанического бассейна, связанного с субдукцией океанической коры и формированием орогенного пояса, обычно характеризуется переходом от остаточных бассейнов к периферийным осадочным бассейнам. При этом в остаточных бассейнах обычно накапливаются преимущественно континентальные (непская свита) и мелководно-морские (тирская свита) молассы. Моласса включает отложения крупных пролювиальных конусов выноса, фэн-дельт, речных, озерных и мелководно-морских обстановок [Einsele, 2000], которые как раз и характеризуют разрез непской и тирской свит [Plyusnin, Gekche, 2020; Plyusnin et al., 2020].

Предполагается, что седиментация нижненепской подсвиты происходила в остаточном бассейне, при этом снос обломочного материала осуществлялся как с Сибирского континента, так и с орогена. Далее происходила трансформация в периферийный осадочный бассейн, накапливались породы верхненепской подсвиты, затем имела место трансгрессия моря, что способствовало седиментации преимущественно карбонатных пород тирской свиты. Данный вывод согласуется с мнением предшественников. В частности, Ю.К. Советов [Sovetov, 2018] на основании седиментологических и стратиграфических исследований осадочных толщ юго-западной окраины Сибирской платформы предположил, что в позднем венде на юге Сибири седиментация происходила в два этапа. На первом этапе формировались терригенные полимиктовые породы. На втором этапе имела место трансгрессия моря, что способствовало формированию смешанных - терригенных и карбонатных - пород. Приведенные в работе вещественные характеристики подтверждают вывод о геодинамической природе исследованных терригенных пород. Так, большинство фигуративных точек непской и тирской свит на палеогеодинамической

Fig. 12. Paleogeodynamic discrimination diagram DF₁ – DF₂ [Verma, Armstrong-Altrin, 2013].

$$\begin{split} & \text{DF}_1 = (-0.263 \cdot \ln(\text{TiO}_2/\text{SiO}_2)_{adj}) + (0.604 \cdot \ln(\text{Al}_2\text{O}_3/\text{SiO}_2)_{adj}) + (-1.725 \cdot \ln(\text{Fe}_2\text{O}_3\text{OGU}/\text{SiO}_2)_{adj}) + (0.660 \cdot \ln(\text{MnO}/\text{SiO}_2)_{adj}) + (2.191 \cdot \ln(\text{MgO}/\text{SiO}_2)_{adj}) + (-1.44 \cdot \ln(\text{CaO}/\text{SiO}_2)_{adj}) + (-1.304 \cdot \ln(\text{Na}_2\text{O}/\text{SiO}_2)_{adj}) + (0.054 \cdot \ln(\text{K}_2\text{O}/\text{SiO}_2)_{adj}) + (-0.330 \cdot \ln(\text{P}_2\text{O}_5/\text{SiO}_2)_{adj}) + (-0.436 \cdot \ln(\text{MnO}/\text{SiO}_2)_{adj}) + (0.838 \cdot \ln(\text{MgO}/\text{SiO}_2)_{adj}) + (-0.407 \cdot \ln(\text{CaO}/\text{SiO}_2)_{adj}) + (-0.261 \cdot \ln(\text{P}_2\text{O}_5/\text{SiO}_2)_{adj}) + (-0.126 \cdot \ln(\text{P}_2\text{O}_5/\text{SiO}_2)_{adj}) + (0.436 \cdot \ln(\text{MnO}/\text{SiO}_2)_{adj}) + (0.838 \cdot \ln(\text{MgO}/\text{SiO}_2)_{adj}) + (-0.407 \cdot \ln(\text{CaO}/\text{SiO}_2)_{adj}) + (1.021 \cdot \ln(\text{K}_2\text{O}/\text{SiO}_2)_{adj}) + (-0.126 \cdot \ln(\text{P}_2\text{O}_5/\text{SiO}_2)_{adj}) - 1.068. \text{ adj} \text{ and } \text{ and }$$

дискриминационной диаграмме для высоко- и низкокремнистых пород DF₁ – DF₂ [Verma, Armstrong-Altrin, 2013] расположились в поле значений, характерных для коллизионных обстановок (рис. 12).

9. ЗАКЛЮЧЕНИЕ

Новые данные, полученные в ходе проведенных исследований, позволили сделать следующие выводы:

1. Терригенные породы непской и тирской свит являются осадками первого цикла седиментации, т.е. образованными преимущественно за счет первично-магматических и метаморфических пород.

2. Для ранненепских осадочных пород установлены источники смешанного (кислого и основного) состава, а для поздненепских пород – кислого состава. Предполагается близость источника сноса. Тирские терригенные образования сформированы преимущественно за счет разрушения кислых пород. Предполагается удаление от источника сноса.

3. U-Pb (LA-ICP-MS) геохронологические исследования детритовых цирконов позволили установить архейские, раннепротерозойские и позднепротерозойские возрастные популяции. В породах непской свиты преобладают раннепротерозойские и архейские популяции детритовых цирконов над позднепротерозойскими. Для пород тирской свиты обнаруживается преобладание ранне- и позднепротерозойских популяций детритовых цирконов.

4. Совокупность вещественных характеристик непской и тирской свит, а также результаты изучения возраста детритовых цирконов, с учетом опубликованных данных о литолого-фациальных особенностях этих пород, позволили предположить, что седиментация нижненепской подсвиты происходила в остаточном бассейне при поступлении обломочного материала как с Сибирского континента, так и с орогена, сформированного в результате вендских аккреционно-коллизионных событий вдоль южной части Сибири и в настоящее время входящего в структуру северного сегмента ЦАПС. Затем имела место трансформация в периферийный осадочный бассейн, при этом накапливались породы верхненепской подсвиты. Далее произошла трансгрессия моря и накапливались преимущественно карбонатные породы тирской свиты.

10. ЗАЯВЛЕННЫЙ ВКЛАД АВТОРОВ / CONTRIBUTION OF THE AUTHORS

Авторы внесли эквивалентный вклад в подготовку публикации.

The authors contributed equally to this article.

11. КОНФЛИКТ ИНТЕРЕСОВ / CONFLICT OF INTERESTS

Авторы заявляют об отсутствии у них конфликта интересов. Авторы прочитали рукопись и согласны с опубликованной версией.

The authors have no conflicts of interest to declare. The authors have read and agreed to the published version of the manuscript.

12. ЛИТЕРАТУРА / REFERENCES

Bings N.H., Bogaerts A., Broekart J.A.C., 2010. Atomic Spectroscopy: A Review. Analytical Chemistry 82, 4653–4681. https://doi.org/10.1021/ac1010469.

Boynton W.V., 1984. Cosmochemistry of the Rare Earth Elements: Meteorite Studies. Rare Earth Element Geochemistry. Developments in Geochemistry 2, 63–114. https://doi.org/10.1016/B978-0-444-42148-7.50008-3.

Donskaya T.V., Gladkochub D.P., Fedorovsky V.S., Sklyarov E.V., Cho M., Sergeev S.A., Demonterova E.I., Mazukabzov A.M., Lepekhina E.N., Cheong W., Kim J., 2017. Pre-Collisional (>0.5 Ga) Complexes of the Olkhon Terrane (Southern Siberia) as an Echo of Events in the Central Asian Orogenic Belt. Gondwana Research 42, 243–263. https://doi.org/ 10.1016/j.gr.2016.10.016.

Einsele G., 2000. Sedimentary Basins: Evolution, Facies, and Sediment Budget. Springer, New York, 792 p. https://doi.org/10.1007/978-3-662-04029-4.

Gladkochub D.P., Donskaya T.V., Stanevich A.M., Pisarevsky S.A., Zhang S., Motova Z.L., Mazukabzov A.M., Li H., 2019. U-Pb Detrital Zircon Geochronology and Provenance of Neoproterozoic Sedimentary Rocks in Southern Siberia: New Insights into Breakup of Rodinia and Opening of Paleo-Asian Ocean. Gondwana Research 65, 1–16. https:// doi.org/10.1016/j.gr.2018.07.007.

Golubkova E.Yu., Kuznetsov A.B., 2014. Taxonomic Variety and Correlation of the Ediacarian Complexes of the Global Acanthomorphic Palynoflora. In: S.V. Rozhnov (Ed.), Algae in the Biosphere Evolution. Series Geo-Biological Processes in the Past. PIN RAS, Moscow, p. 119–140 (in Russian) [Голубкова Е.Ю., Кузнецов А.Б. Таксономическое разнообразие и корреляция эдиакарских комплексов акантоморфной палинофлоры мира // Водоросли в эволюции биосферы. Серия Гео-биологические процессы в прошлом / Ред. С.В. Рожнов. М.: ПИН РАН, 2014. С. 119–140].

Izyurova E.S., Postnikova O.V., Postnikov A.V., Zueva O.A., 2020. Facies and Paleogeographic Reconstructions of Vendian Postglacial Deposits in the Southeastern Nepa–Botuoba Anteclise. Lithology and Mineral Resources 55 (5), 355– 371. https://doi.org/10.1134/S0024490220050053.

Khrushcheva M.O., Tishin P.A., Chernyshov A.I., 2019. Geochemical Characteristics of Brines and Modern Evaporites in the Taloe Lake Tract (Republic of Khakassia). The Bulletin of Irkutsk State University. Series Earth Sciences 30, 130–140 (in Russian) [Хрущева М.О., Тишин П.А., Чернышов А.И. Геохимическая характеристика рассолов и современных эвапоритов урочища Талое Озеро (Республика Хакасия) // Известия Иркутского государственного университета. Серия Науки о Земле. 2019. Т. 30. С. 130–140]. https://doi.org/10.26516/2073-3402.2019. 30.130.

Logvinenko N.V., 1974. Petrography of Sedimentary Rocks. Vysshaja Shkola, Moscow, 400 p. (in Russian) [Логвиненко Н.В. Петрография осадочных пород. М.: Высшая школа, 1974. 400 с.].

Mel'nikov N.V., 2018. Vendian-Cambrian Salt-Bearing Basin of the Siberian Platform: Stratigraphy, History of Development. Siberian Research Institute of Geology, Geophysics and Mineral Resources, Novosibirsk, 177 p. (in Russian) [Мельников Н.В. Венд-кембрийский соленосный бассейн Сибирской платформы: Стратиграфия, история развития). Новосибирск: СНИИГГиМС, 2018. 177 с.].

Mel'nikov N.V., Repina L.N. (Eds), 1989. Decisions of the Fourth Interdepartmental Regional Stratigraphic Meeting on Refining and Supplementing the Vendian and Cambrian Stratigraphic Schemes of the Inner Siberian Platform. SNIIGGiMS, Novosibirsk, 64 p. (in Russian) [Решения Четвертого межведомственного регионального стратиграфического совещания по уточнению и дополнению стратиграфических схем венда и кембрия внутренних районов Сибирской платформы / Ред. Н.В. Мельников, Л.Н. Репина. Новосибирск: СНИИГГиМС, 1989. 64 с.].

Mel'nikov N.V., Yakshin M.S., Shishkin B.B., Efimov A.O., Karlova G.A., Kilina L.I., Konstantinova L.N., Kochnev B.B. et al., 2005. Stratigraphy of Oil and Gas Basins of Siberia. Riphean and Vendian of the Siberian Platform and Its Folded Frame. GEO, Novosibirsk, 438 p. (in Russian) [Мельников Н.В., Якшин М.С., Шишкин Б.Б., Ефимов А.О., Карлова Г.А., Килина Л.И., Константинова Л.Н., Кочнев Б.Б. и др. Стратиграфия нефтегазоносных бассейнов Сибири. Рифей и венд Сибирской платформы и ее складчатого обрамления. Новосибирск: Гео, 2005. 438 с.].

Рlyusnin A.V., Gekche M.I., 2020. Composition and Structure of the Nepa and Tira Suites of the Prilensky-Nepa Structural Facies Zone of the Nepa-Botuoba Anteclise Based on Core Study Results. Proceedings of Higher Educational Establishments. Geology and Exploration 1 (1), 75–89 (in Russian) [Плюснин А.В., Гёкче М.И. Состав и строение непской и тирской свиты Приленско-Непской структурно-фациальной зоны Непско-Ботуобинской антеклизы по результатам изучения кернового материала // Известия высших учебных заведений. Геология и разведка. 2020. Т. 1. № 1. С. 75–89]. DOI:10.32454/0016-7762-2020-63-1-75-89.

Plyusnin A.V., Ibragimov R.R., Gekche M.I., 2020. The History of Geological Development of the Southern Part of the Nepa-Botuoba Anteclise in the Nepa and Tira Times. Oil Industry 9, 21–25 (in Russian) [Плюснин А.В., Ибрагимов Р.Р., Гёкче М.И. История геологического развития юга Непско-Ботуобинской антеклизы в непское и тирское время // Нефтяное хозяйство. 2020. № 9. С. 21–25]. https://doi.org/10.24887/0028-2448-2020-9-21-25.

Powerman V.I., Buyantuev M., Ivanov A.V., 2021. A Review of Detrital Zircon Data Treatment, and Launch of a New Tool "Dezirteer" along with the Suggested Universal

Workflow. Chemical Geology 583, 120437. https://doi.org/ 10.1016/j.chemgeo.2021.120437.

Powerman V., Shatsillo A., Chumakov N., 2015. Interaction between the Central Asian Orogenic Belt (CAOB) and the Siberian Craton as Recorded by Detrital Zircon Suites from Transbaikalia. Precambrian Research 267 (1), 39–71. https://doi.org/10.1016/j.precamres.2015.05.015.

Rojas-Agramonte Y., Kröner A., Demoux A., Xia X., Wang W., Donskaya T., Liu D., Sun M., 2011. Detrital and Xenocrystic Zircon Ages from Neoproterozoic to Palaeozoic Arc Terranes of Mongolia: Significance for the Origin of Crustal Fragments in the Central Asian Orogenic Belt. Gondwana Research 19 (3), 751–763. https://doi.org/10.1016/j.gr. 2010.10.004.

Shemin G.G., 2007. Vendian and Cambrian Geology and Oil and Gas Potential of the Central Siberian Platform (Nepa-Botuobin and Baikit Anteclises and Katanga Saddle). IGG SB RAS, Novosibirsk, 467 p. (in Russian) [Шемин Г.Г. Геология и перспективы нефтегазоносности венда и нижнего кембрия центральных районов Сибирской платформы (Непско-Ботуобинская, Байкитская антеклизы и Катангская седловина). Новосибирск: ИГиГ СО РАН, 2007. 467 с.].

Sovetov Yu.K., 2018. Sedimentology and Stratigraphic Correlation of Vendian Deposits in the Southwestern Siberian Platform: Major Contribution of an Exocratonic Clastic Source to Sedimentary Systems. Lithosphere 18 (1), 20–45 (in Russian) [Советов Ю.К. Седиментология и стратиграфическая корреляция вендских отложений на юго-западе Сибирской платформы: выдающийся вклад внешнего источника кластического материала в образование осадочных систем // Литосфера. 2018. Т. 18. № 1. C. 20–45]. https://doi.org/10.24930/1681-9004-2018-18-1-020-045.

Thompson M., Walsh J.N., 1988. A Handbook of Inductively Coupled Plasma Spectrometry. Nedra, Moscow, 288 p. (in Russian) [Томпсон М., Уолш Д.Н. Руководство по спектрометрическому анализу с индуктивно-связанной плазмой. М.: Недра, 1988. 288 с.].

Verma S.P., Armstrong-Altrin J.S., 2013. New Multi-Dimensional Diagrams for Tectonic Discrimination of Siliciclastic Sediments and Their Application to Precambrian Basins. Chemical Geology 355, 117–133. https://doi.org/ 10.1016/j.chemgeo.2013.07.014.

Yudovich Ya.E., Ketris M.P., 2000. Fundamentals of Lithochemistry. Nauka, Saint Petersburg, 497 p. (in Russian) [Юдович Я.Э., Кетрис М.П. Основы литохимии. СПб.: Наука, 2000. 497 с.].

ПРИЛОЖЕНИЕ 1 / APPENDIX1

	Возраст, млн лет										
помер точки анализа	Th/U	²⁰⁶ Pb/ ²³⁸ U	±1σ	²⁰⁷ Pb/ ²³⁵ U	±1σ	²⁰⁷ Pb/ ²⁰⁶ Pb	±1σ	Best age	±1σ	D, %	
Нижненепская подсвит	а. Скваж	ина Ярактин	іская 20	2, глубина 3	212 м						
INK-18-11	0.595	873	13	910	26	1000	11	1000	11	4	
INK-18-12	0.262	889	11	899	24	920	8	920	8	1	
INK-18-13	0.413	1071	13	1122	38	1220	9	1220	9	4	
INK-18-14	0.396	1138	16	1180	45	1255	9	1255	9	3	
INK-18-15	0.667	1058	18	1129	51	1265	9	1265	9	6	
INK-18-16	0.714	743	28	809	58	995	11	995	11	8	
INK-18-17	0.645	2359	53	2443	239	2510	8	2510	8	3	
INK-18-18	0.692	2310	44	2446	224	2560	8	2560	8	5	
INK-18-19	0.568	2426	47	2492	228	2545	7	2545	7	2	
INK-18-20	0.778	2535	38	2554	217	2565	8	2565	8	0	
INK-18-23	0.564	801	10	837	23	930	11	801*	10	4	
INK-18-24	0.386	680	11	724	27	860	9	860	9	6	
INK-18-31	0.424	1860	30	1879	104	1900	9	1900	9	1	
INK-18-36	0.569	1850	31	1941	117	2040	8	2040	8	4	
INK-18-36	0.529	933	15	1017	52	1200	9	1200	9	9	
INK-18-37	0.561	930	13	943	30	970	11	970	11	1	
INK-18-38	0.417	947	17	963	43	1000	11	1000	11	1	
INK-18-39	0.440	908	13	906	30	900	8	900	8	0	
INK-18-42	0.383	1895	29	1881	93	1865	9	1865	9	0	
INK-18-43	0.519	1779	30	1844	96	1915	9	1915	9	3	
INK-18-44	0.477	1895	31	1894	101	1890	9	1890	9	0	
INK-18-45	0.470	1976	29	1931	101	1880	9	1880	9	-2	
INK-18-47	0.801	2080	37	2028	137	1970	8	1970	8	-2	
INK-18-48	0.674	1816	31	1913	120	2020	8	2020	8	5	
INK-18-49	0.368	2376	32	2491	175	2585	8	2585	8	4	
INK-18-50	0.248	1021	14	1021	33	1020	11	1020	11	0	
INK-18-51	0.415	913	12	921	32	935	11	935	11	0	
INK-18-52	0.711	2665	42	2670	319	2670	8	2670	8	0	
INK-18-53	0.503	2605	41	2605	209	2605	8	2605	8	0	
INK-18-55	0.982	2355	44	2505	238	2625	8	2625	8	6	
INK-18-57	0.219	1520	19	1635	65	1785	8	1785	8	7	
INK-18-58	0.467	1989	26	1966	91	1940	9	1940	9	-1	
INK-18-59	0.539	2609	41	2610	212	2610	8	2610	8	0	
INK-18-60	0.890	864	11	906	25	1010	11	1010	11	4	
INK-18-61	0.840	2325	28	2357	129	2385	8	2385	8	1	
INK-18-63	1.245	967	31	1027	78	1155	10	1155	10	6	
INK-18-64	0.497	2003	30	1966	108	1925	9	1925	9	-1	
INK-18-65	1.104	1593	32	1741	95	1920	9	1920	9	9	
INK-18-66	0.789	2131	29	2114	122	2095	9	2095	9	0	
INK-18-67	0.516	1829	25	1877	89	1930	9	1930	9	2	
INK-18-68	0.590	2514	41	2560	225	2595	8	2595	8	1	
INK-18-69	0.635	1963	26	1972	96	1980	8	1980	8	0	

Таблица 1.1. Результаты LA-ICP-MS U-Pb исследования детритовых цирконов **Table 1.1.** Results of LA-ICP-MS U-Pb dating of detrital zircons

Номер точки знализа -	Возраст, млн лет										
помер точки анализа	Th/U	²⁰⁶ Pb/ ²³⁸ U	±1σ	²⁰⁷ Pb/ ²³⁵ U	±1σ	²⁰⁷ Pb/ ²⁰⁶ Pb	±1σ	Best age	±1σ	D, %	
INK-18-71	0.774	1874	22	1894	80	1915	9	1915	9	1	
INK-18-72	0.618	1854	27	1891	105	1930	9	1930	9	2	
INK-18-74	0.314	1796	19	1809	66	1820	9	1820	9	0	
INK-18-75	0.737	899	11	929	28	1000	11	899*	11	3	
INK-18-76	0.585	2522	38	2565	190	2595	8	2595	8	1	
INK-18-78	0.665	889	13	923	30	1000	11	1000	11	3	
INK-18-79	0.576	2001	28	2042	110	2080	8	2080	8	2	
INK-18-80	0.962	2483	34	2514	173	2535	7	2535	7	1	
INK-18-81	0.651	2652	44	2631	223	2615	8	2615	8	0	
INK-18-82	0.671	2570	38	2571	217	2570	8	2570	8	0	
INK-18-83	0.655	2253	28	2382	139	2495	8	2495	8	5	
INK-18-85	0.660	1906	33	2002	155	2100	9	2100	9	5	
INK-18-87	0.672	920	13	949	32	1015	11	1015	11	3	
INK-18-88	0.990	2033	31	2089	148	2145	9	2145	9	2	
INK-18-89	0.897	2549	38	2570	183	2585	8	2585	8	0	
INK-18-90	0.154	1012	15	1012	31	1010	11	1010	11	0	
INK-18-93	0.318	1535	23	1590	65	1660	9	1660	9	3	
INK-18-95	0.512	2152	32	2142	125	2130	9	2130	9	0	
INK-18-97	0.645	618	9	658	17	795	9	795	9	6	
INK-18-98	0.401	879	11	893	25	930	11	879*	11	1	
INK-18-99	0.433	2470	41	2512	192	2545	7	2545	7	1	
INK-18-100	0.638	1724	23	1732	72	1740	8	1740	8	0	
INK-18-101	1.170	1934	34	2039	164	2145	9	2145	9	5	
INK-18-102	0.291	1946	25	1985	94	2025	8	2025	8	2	
INK-18-103	0.820	1776	23	1753	84	1725	8	1725	8	-1	
INK-18-105	0.929	2435	38	2492	189	2540	7	2540	7	2	
INK-18-106	0.571	2483	38	2498	190	2510	8	2510	8	0	
INK-18-107	0.706	2527	38	2553	188	2570	8	2570	8	1	
INK-18-108	0.382	1971	30	1981	128	1990	8	1990	8	0	
INK-18-109	1.179	2043	34	1955	150	1860	9	1860	9	-4	
INK-18-110	1.109	2323	41	2495	199	2635	8	2635	8	7	
INK-18-111	0.498	780	9	784	25	795	9	795	9	0	
INK-18-112	0.587	1781	29	1815	109	1850	9	1850	9	1	
INK-18-114	0.648	2518	47	2557	237	2585	8	2585	8	1	
INK-18-115	0.426	2328	38	2446	179	2545	7	2545	7	5	
INK-18-116	1.106	2028	32	2062	132	2095	8	2095	8	1	
INK-18-117	0.478	774	9	820	24	945	11	774*	9	5	
INK-18-118	0.952	2395	41	2467	193	2525	8	2525	8	3	
INK-18-119	0.152	877	14	916	29	1010	11	1010	11	4	
INK-18-120	0.378	899	12	909	29	930	11	930	11	1	
INK-18-121	0.569	839	12	888	28	1010	11	1010	11	5	
INK-18-122	0.677	2367	34	2434	162	2490	8	2490	8	2	
INK-18-124	1.038	2479	38	2623	215	2735	7	2735	7	5	
INK-18-126	0.874	2535	44	2581	227	2615	8	2615	8	1	
INK-18-127	0.718	1815	27	1855	103	1900	9	1900	9	2	

Номер точки анализа					Возрас	т, млн лет				
	Th/U	²⁰⁶ Pb/ ²³⁸ U	±1σ	²⁰⁷ Pb/ ²³⁵ U	±1σ	²⁰⁷ Pb/ ²⁰⁶ Pb	±1σ	Best age	±1σ	D, %
INK-18-128	0.678	1811	28	1856	107	1905	9	1905	9	2
INK-18-129	2.519	2465	47	2546	236	2610	8	2610	8	3
INK-18-130	0.929	2426	41	2464	212	2495	8	2495	8	1
INK-18-131	0.920	919	11	938	27	980	11	980	11	2
INK-18-132	0.600	958	12	965	32	975	11	975	11	0
INK-18-133	0.560	770	9	795	21	865	9	865	9	3
INK-18-135	0.908	2605	47	2656	267	2695	8	2695	8	1
INK-18-136	0.614	2228	34	2385	173	2520	8	2520	8	7
INK-18-137	0.559	882	12	906	32	965	11	965	11	2
INK-18-138	0.468	1603	27	1677	91	1770	8	1770	8	4
INK-18-140	0.996	2328	65	2531	313	2695	8	2695	8	8
INK-18-141	0.779	2301	41	2413	186	2505	8	2505	8	4
INK-18-142	0.963	2355	62	2492	312	2605	8	2605	8	5
INK-18-143	1.006	2639	69	2622	361	2610	8	2610	8	0
INK-18-144	0.761	1874	29	1907	97	1940	9	1940	9	1
INK-18-145	0.824	1725	36	1811	115	1910	9	1910	9	4
INK-18-146	0.792	2066	52	2105	223	2140	9	2140	9	1
INK-18-147	0.929	2435	41	2417	187	2400	8	2400	8	0
INK-18-148	0.824	2399	41	2484	206	2550	7	2550	7	3
INK-18-149	0.464	930	12	934	30	940	11	940	11	0
INK-18-150	0.569	2368	47	2447	218	2510	8	2510	8	3
Верхненепская подсвит	га. Скваж	хина Ярактин	нская 82	21, глубина 3	617 м					
INK-3-10	0.804	861	7	925	38	1080	38	861*	7	7
INK-3-11	0.729	945	8	966	40	1015	40	945*	8	2
INK-3-12	3.226	2518	165	2497	269	2480	25	2480	25	0
INK-3-13	0.471	1842	54	1830	96	1815	23	1815	23	0
INK-3-14	0.530	3013	314	2898	414	2815	25	2815	25	-3
INK-3-15	0.810	1897	61	1905	108	1910	24	1910	24	0
INK-3-16	0.711	2654	226	2734	257	2790	20	2790	20	3
INK-3-17	0.485	813	5	818	25	830	31	813*	5	0
INK-3-18	0.405	1949	66	1947	109	1940	22	1940	22	0
INK-3-19	0.583	2057	76	2012	150	1965	30	1965	30	-2
INK-3-20	0.950	875	6	889	27	920	29	875*	6	1
INK-3-21	0.918	1920	63	1927	116	1930	25	1930	25	0
INK-3-22	0.422	1950	67	1955	127	1960	26	1960	26	0
INK-3-24	0.533	2540	174	2539	202	2535	20	2535	20	0
INK-3-25	0.838	2283	132	2406	296	2510	33	2510	33	5
INK-3-26	0.465	693	3	723	25	815	40	693*	3	4
INK-3-27	1.005	2068	80	2061	145	2050	26	2050	26	0
INK-3-28	1.012	1992	70	1985	120	1975	24	1975	24	0
INK-3-29	0.798	2557	179	2561	240	2560	23	2560	23	0
INK-3-30	0.673	1951	62	1902	110	1850	23	1850	23	-2
INK-3-31	0.569	2483	163	2503	215	2515	20	2515	20	0
INK-3-32	0.441	2008	74	2022	128	2035	25	2035	25	0
INK-3-33	1.420	1872	56	1848	103	1820	24	1820	24	-1

Номер точки знализа -			Возраст, млн лет										
помер точки анализа	Th/U	²⁰⁶ Pb/ ²³⁸ U	±1σ	²⁰⁷ Pb/ ²³⁵ U	±1σ	²⁰⁷ Pb/ ²⁰⁶ Pb	±1σ	Best age	±1σ	D, %			
INK-3-34	0.781	1893	65	1964	124	2035	27	2035	27	3			
INK-3-35	0.649	1775	53	1860	142	1955	31	1955	31	4			
INK-3-36	0.886	1877	63	1954	135	2035	24	2035	24	4			
INK-3-37	0.425	2613	186	2573	255	2540	25	2540	25	-1			
INK-3-38	0.711	2883	285	2860	339	2840	24	2840	24	0			
INK-3-39	0.851	1758	48	1783	89	1810	23	1810	23	1			
INK-3-40	0.964	890	7	910	33	955	30	890*	7	2			
INK-3-41	0.521	1975	69	1976	123	1975	23	1975	23	0			
INK-3-42	0.966	1805	54	1855	114	1910	28	1910	28	2			
INK-3-43	1.055	889	6	888	40	885	48	889*	6	0			
INK-3-44	0.482	739	3	735	24	720	38	739*	3	0			
INK-3-45	0.255	2395	164	2550	308	2675	28	2675	28	6			
INK-3-46	0.158	2665	219	2703	288	2730	24	2730	24	1			
INK-3-48	0.944	2673	197	2600	236	2540	21	2540	21	-2			
INK-3-49	1.043	2692	207	2635	246	2590	23	2590	23	-2			
INK-3-50	0.732	2133	88	2109	142	2085	24	2085	24	-1			
INK-3-51	0.759	2737	213	2643	271	2570	26	2570	26	-3			
INK-3-52	3.239	2932	275	2807	302	2715	21	2715	21	-4			
INK-3-53	1.508	2728	226	2704	278	2685	21	2685	21	0			
INK-3-54	2.890	2063	74	1988	114	1910	22	1910	22	-3			
INK-3-55	0.909	865	6	872	28	890	31	865*	6	0			
INK-3-56	1.272	1965	60	1860	114	1745	27	1745	27	-5			
INK-3-57	0.571	2025	68	1940	118	1850	26	1850	26	-4			
INK-3-58	1.091	2650	194	2590	219	2540	20	2540	20	-2			
INK-3-59	1.060	1896	59	1893	100	1885	22	1885	22	0			
INK-3-60	3.112	1719	46	1773	90	1835	21	1835	21	3			
INK-3-61	1.056	2123	82	2054	122	1985	23	1985	23	-3			
INK-3-62	0.622	2040	74	2009	122	1975	24	1975	24	-1			
INK-3-63	0.684	1944	58	1847	158	1740	47	1740	47	-4			
INK-3-64	0.892	2603	189	2590	227	2575	22	2575	22	0			
INK-3-65	1.131	2643	219	2708	268	2755	22	2755	22	2			
INK-3-66	0.555	2622	208	2670	287	2705	24	2705	24	1			
INK-3-67	0.305	2501	173	2551	227	2590	20	2590	20	1			
INK-3-68	1.318	1769	52	1855	117	1950	24	1950	24	4			
INK-3-69	0.477	2635	193	2594	256	2560	22	2560	22	-1			
INK-3-70	0.614	2487	161	2494	255	2500	28	2500	28	0			
INK-3-71	0.947	2549	175	2545	272	2540	28	2540	28	0			
INK-3-72	0.546	2331	126	2341	201	2345	28	2345	28	0			
INK-3-73	0.935	2613	190	2590	264	2570	26	2570	26	0			
INK-3-74	0.513	2635	190	2580	237	2535	23	2535	23	-2			
INK-3-75	0.907	2465	165	2521	301	2565	28	2565	28	2			
INK-3-76	0.990	2707	219	2684	325	2665	28	2665	28	0			
INK-3-77	0.895	948	8	993	48	1090	45	948*	8	4			
INK-3-78	0.839	2733	213	2644	281	2575	24	2575	24	-3			
INK-3-79	0.662	1676	38	1645	90	1605	28	1605	28	-1			

	Возраст, млн лет										
помер точки анализа	Th/U	²⁰⁶ Pb/ ²³⁸ U	±1σ	²⁰⁷ Pb/ ²³⁵ U	±1σ	²⁰⁷ Pb/ ²⁰⁶ Pb	±1σ	Best age	±1σ	D, %	
INK-3-80	1.669	1618	41	1729	109	1865	27	1865	27	6	
INK-3-81	0.785	878	7	945	37	1100	38	878*	7	7	
INK-3-82	0.964	931	8	984	49	1100	48	931*	8	5	
INK-3-84	0.923	763	4	771	33	795	49	763*	4	1	
INK-3-85	0.799	726	3	731	21	745	30	726*	3	0	
INK-3-86	2.188	2677	235	2763	305	2825	22	2825	22	3	
INK-3-87	1.109	2540	175	2546	279	2550	26	2550	26	0	
INK-3-88	1.359	2461	160	2499	226	2530	23	2530	23	1	
INK-3-89	1.453	1920	68	1993	301	2065	64	2065	64	3	
INK-3-90	0.822	2766	241	2746	298	2730	23	2730	23	0	
INK-3-92	0.699	1915	63	1926	151	1935	33	1935	33	0	
INK-3-93	0.806	2113	92	2161	313	2205	54	2205	54	2	
INK-3-94	1.335	2600	184	2565	382	2535	30	2535	30	-1	
INK-3-95	0.736	1915	61	1897	108	1875	23	1875	23	0	
INK-3-96	0.372	1811	52	1819	131	1825	33	1825	33	0	
INK-3-97	1.377	1910	64	1949	159	1990	32	1990	32	2	
INK-3-98	1.767	904	7	914	39	935	41	904*	7	1	
INK-3-99	1.321	666	3	681	22	730	38	666*	3	2	
INK-3-100	0.282	1818	57	1890	120	1970	27	1970	27	3	
INK-3-101	0.972	1948	65	1941	161	1930	34	1930	34	0	
INK-3-102	1.054	2278	138	2446	269	2585	27	2585	27	7	
INK-3-103	0.662	2386	165	2559	277	2700	26	2700	26	7	
INK-3-104	0.983	1203	14	1195	50	1180	31	1203*	14	0	
INK-3-105	0.527	1876	58	1883	107	1890	24	1890	24	0	
INK-3-106	0.652	1784	51	1823	147	1865	37	1865	37	2	
INK-3-107	0.607	1831	52	1812	121	1790	29	1790	29	-1	
INK-3-109	0.387	1894	58	1873	111	1850	25	1850	25	-1	
INK-3-110	1.193	1840	56	1865	125	1890	30	1890	30	1	
INK-3-111	0.526	2015	76	2046	194	2075	35	2075	35	1	
INK-3-112	0.840	1845	63	1974	140	2110	27	2110	27	6	
INK-3-113	0.819	1887	58	1876	123	1860	29	1860	29	0	
INK-3-114	1.531	2027	72	1991	144	1950	31	1950	31	-1	
INK-3-115	0.998	943	7	937	35	920	34	943*	7	0	
INK-3-116	1.379	1631	43	1762	149	1920	35	1920	35	8	
INK-3-117	1.064	635	3	688	29	865	48	635*	3	8	
INK-3-118	0.488	1919	63	1930	114	1940	24	1940	24	0	
INK-3-119	0.451	2639	192	2591	301	2550	26	2550	26	-1	
INK-3-120	0.484	1566	36	1649	97	1755	29	1755	29	5	
INK-3-121	0.687	2246	126	2381	216	2495	25	2495	25	6	
INK-3-122	0.346	2187	92	2126	169	2065	28	2065	28	-2	
INK-3-123	1.199	2648	194	2591	244	2545	22	2545	22	-2	
INK-3-124	0.207	1901	59	1888	151	1870	36	1870	36	0	
INK-3-125	0.777	1744	48	1800	121	1865	30	1865	30	3	
INK-3-126	0.656	2141	85	2074	172	2005	29	2005	29	-3	
INK-3-127	0.538	858	5	855	36	845	45	858*	5	0	

					Возрас	т, млн лет				
помер точки анализа	Th/U	²⁰⁶ Pb/ ²³⁸ U	±1σ	²⁰⁷ Pb/ ²³⁵ U	±1σ	²⁰⁷ Pb/ ²⁰⁶ Pb	±1σ	Best age	±1σ	D, %
INK-3-128	0.446	1908	59	1885	116	1860	26	1860	26	-1
INK-3-129	0.447	1921	61	1902	115	1880	26	1880	26	0
INK-3-130	1.969	1797	48	1766	111	1730	29	1730	29	-1
INK-3-131	0.251	1958	69	1990	181	2020	34	2020	34	1
INK-3-132	0.410	2372	148	2469	288	2545	32	2545	32	4
INK-3-133	0.456	2952	302	2884	388	2835	26	2835	26	-2
INK-3-134	0.770	1389	21	1363	65	1320	32	1389*	21	-1
INK-3-135	0.531	1787	53	1850	119	1920	29	1920	29	3
INK-3-136	0.168	893	7	925	46	1000	51	893*	7	3
Нижнетирская подсвита. (Скважина	Марковская 7	30, глуб	ина 3410 м						
INK-6-10	0.727	1833	43	1919	153	2010	31	2010	31	4
INK-6-11	0.472	2622	44	2612	213	2605	17	2605	17	0
INK-6-12	0.359	908	11	912	27	920	28	908*	11	0
INK-6-13	1.274	1606	46	1728	166	1875	47	1606*	46	7
INK-6-14	0.900	2010	26	2015	98	2020	18	2020	18	0
INK-6-15	0.571	1725	43	1881	159	2055	34	2055	34	9
INK-6-16	0.894	1445	18	1427	50	1400	21	1445*	18	-1
INK-6-17	1.006	2426	38	2451	182	2470	20	2470	20	1
INK-6-18	0.515	1834	25	1858	91	1885	22	1885	22	1
INK-6-19	1.068	2375	32	2480	157	2565	15	2565	15	4
INK-6-20	0.523	1828	21	1878	87	1930	22	1828*	21	2
INK-6-21	0.694	2553	41	2534	196	2515	18	2515	18	0
INK-6-22	0.636	940	11	937	25	930	24	940*	11	0
INK-6-23	0.412	962	13	981	27	1020	21	962*	13	1
INK-6-24	0.141	868	24	864	54	855	62	868*	24	0
INK-6-25	0.356	1901	28	1938	101	1975	21	1975	21	1
INK-6-26	0.517	791	10	794	22	800	29	791*	10	0
INK-6-27	0.508	2618	38	2667	207	2700	17	2700	17	1
INK-6-28	0.391	1856	30	1876	114	1895	27	1895	27	1
INK-6-29	0.983	2359	35	2457	190	2535	22	2535	22	4
INK-6-30	1.126	1949	26	1903	91	1850	21	1850	21	-2
INK-6-31	0.475	760	9	805	19	930	20	760*	9	5
INK-6-32	0.469	775	8	786	21	815	30	775*	8	1
INK-6-33	0.620	1836	29	1857	99	1880	22	1880	22	1
INK-6-34	0.878	1963	26	2015	99	2065	18	2065	18	2
INK-6-35	0.919	1891	28	1916	98	1940	20	1940	20	1
INK-6-36	1.391	1924	25	1931	90	1935	19	1935	19	0
INK-6-37	2.123	891	13	922	34	995	37	891*	13	3
INK-6-38	0.998	724	10	746	20	810	25	724*	10	2
INK-6-39	1.342	1915	22	1923	79	1930	16	1930	16	0
INK-6-40	0.914	2575	35	2619	192	2650	17	2650	17	1
INK-6-41	1.149	1673	19	1727	63	1790	17	1790	17	3
INK-6-42	1.064	1891	37	1937	118	1985	20	1985	20	2
INK-6-43	1.325	694	8	716	25	785	44	694*	8	3
INK-6-44	2.710	647	7	652	16	665	29	647*	7	0

Номер точки анализа	Возраст, млн лет										
	Th/U	²⁰⁶ Pb/ ²³⁸ U	±1σ	²⁰⁷ Pb/ ²³⁵ U	±1σ	²⁰⁷ Pb/ ²⁰⁶ Pb	±1σ	Best age	±1σ	D, %	
INK-6-45	0.856	2587	38	2590	187	2590	16	2590	16	0	
INK-6-46	0.516	1760	23	1867	90	1985	21	1985	21	6	
INK-6-47	1.385	1940	32	1965	130	1990	29	1990	29	1	
INK-6-48	0.573	978	12	988	28	1010	25	978*	12	1	
INK-6-49	0.577	953	12	935	25	890	24	953*	12	-1	
INK-6-50	1.135	1938	26	1943	100	1945	22	1945	22	0	
INK-6-51	0.545	752	9	759	19	775	26	752*	9	0	
INK-6-52	0.330	1541	24	1571	82	1610	31	1541*	24	1	
INK-6-53	0.994	836	14	850	28	885	27	836*	14	1	
INK-6-54	1.408	691	10	723	27	820	45	691*	10	4	
INK-6-55	0.872	1994	22	2022	88	2050	17	2050	17	1	
INK-6-56	0.618	1907	28	1914	94	1920	19	1920	19	0	
INK-6-57	0.773	2587	41	2580	223	2575	22	2575	22	0	
INK-6-58	1.189	2465	35	2505	166	2535	15	2535	15	1	
INK-6-59	0.787	2421	38	2502	181	2565	17	2565	17	3	
INK-6-60	0.876	2522	41	2550	245	2570	27	2570	27	1	
INK-6-61	0.583	960	12	988	34	1050	34	960*	12	2	
INK-6-62	1.361	1914	25	1890	84	1860	18	1860	18	-1	
INK-6-63	0.575	897	14	902	28	915	25	897*	14	0	
INK-6-64	1.163	795	12	833	29	935	35	795*	12	4	
INK-6-65	0.784	874	10	878	24	885	29	874*	10	0	
INK-6-66	1.121	997	12	1009	30	1035	26	997*	12	1	
INK-6-67	1.370	894	10	894	21	890	20	894*	10	0	
INK-6-68	0.456	1069	14	1058	37	1035	31	1069*	14	0	
INK-6-69	0.769	872	13	902	27	975	24	872*	13	3	
INK-6-70	0.996	1689	28	1741	90	1805	23	1805	23	3	
INK-6-71	0.639	2265	37	2417	170	2545	16	2545	16	6	
INK-6-72	0.281	1794	23	1822	76	1855	18	1855	18	1	
INK-6-73	1.079	1847	28	1852	94	1855	21	1855	21	0	
INK-6-74	0.329	1372	15	1401	45	1445	21	1372*	15	2	
INK-6-75	0.450	2058	23	2061	89	2060	16	2060	16	0	
INK-6-76	0.526	665	9	659	31	640	67	665*	9	0	
INK-6-77	1.131	806	9	828	27	885	37	806*	9	2	
INK-6-78	1.200	767	8	799	30	885	47	767*	8	4	
INK-6-79	0.643	812	10	817	19	830	20	812*	10	0	
INK-6-80	0.394	907	11	913	22	930	20	907*	11	0	
INK-6-81	0.921	2435	38	2524	197	2595	20	2595	20	3	
INK-6-82	1.156	1730	43	1775	125	1825	26	1825	26	2	
INK-6-83	0.508	708	7	729	17	795	27	708*	7	3	
INK-6-84	0.654	752	8	756	18	765	26	752*	8	0	
INK-6-85	1.166	885	10	860	24	795	30	885*	10	-2	
INK-6-86	0.514	758	9	766	22	790	33	758*	9	1	
INK-6-87	0.115	2656	42	2680	228	2695	19	2695	19	0	
INK-6-88	0.140	795	9	799	19	805	24	795*	9	0	
INK-6-89	0.829	1830	24	1913	84	2000	16	2000	16	4	

Номер точки знализа –	Возраст, млн лет									
помер точки анализа	Th/U	²⁰⁶ Pb/ ²³⁸ U	±1σ	²⁰⁷ Pb/ ²³⁵ U	±1σ	²⁰⁷ Pb/ ²⁰⁶ Pb	±1σ	Best age	±1σ	D, %
INK-6-90	0.898	956	11	958	28	960	27	956*	11	0
INK-6-91	0.580	1845	27	1889	107	1935	25	1935	25	2
INK-6-92	1.209	955	13	960	36	970	37	955*	13	0
INK-6-93	0.559	866	10	867	24	870	27	866*	10	0
INK-6-94	0.668	686	8	685	16	680	26	686*	8	0
INK-6-95	1.513	1775	28	1795	95	1815	24	1815	24	1
INK-6-96	0.629	893	10	868	24	805	30	893*	10	-2
INK-6-97	0.565	969	12	1003	28	1075	23	969*	12	3
INK-6-98	0.138	1784	24	1855	114	1935	32	1784*	24	3
INK-6-99	0.314	719	10	732	21	770	31	719*	10	1
INK-6-100	0.918	900	10	888	22	855	23	900*	10	-1
INK-6-101	0.998	2355	38	2437	168	2505	16	2505	16	3
Верхнетирская подсвит	а. Скваж	кина Ярактин	іская 82	21, глубина 3	527.5 м					
INK-2-10	0.10	991	18	1002	42	1025	35	991*	18	1
INK-2-11	0.15	2038	42	1923	123	1800	21	1800	21	-5
INK-2-12	0.17	1843	49	1844	157	1845	34	1845	34	0
INK-2-13	0.07	1088	25	1089	54	1090	35	1088*	25	0
INK-2-14	0.09	1514	27	1540	75	1575	24	1575	24	1
INK-2-15	0.09	2920	55	2922	307	2920	15	2920	15	0
INK-2-16	0.09	1851	32	1863	106	1875	23	1875	23	0
INK-2-17	0.07	2163	36	2163	126	2160	15	2160	15	0
INK-2-18	0.17	1227	23	1228	49	1230	22	1230	22	0
INK-2-19	0.07	1740	36	1773	99	1810	17	1810	17	1
INK-2-20	0.20	852	15	886	31	970	27	852*	15	4
INK-2-21	0.02	1925	39	1881	111	1830	19	1830	19	-2
INK-2-22	0.17	1770	33	1758	100	1740	24	1740	24	0
INK-2-23	0.03	1504	32	1647	117	1835	38	1504*	32	9
INK-2-24	0.09	835	14	874	30	975	30	835*	14	4
INK-2-25	0.03	1862	31	1869	100	1875	20	1875	20	0
INK-2-26	0.08	2850	55	2898	304	2930	16	2930	16	1
INK-2-28	0.09	853	14	876	30	930	31	853*	14	2
INK-2-29	0.18	2779	59	2938	372	3045	20	3045	20	5
INK-2-30	0.05	737	12	794	26	955	29	737*	12	7
INK-2-31	0.09	1712	30	1746	85	1785	18	1785	18	1
INK-2-32	0.20	883	14	872	27	845	26	883*	14	-1
INK-2-33	0.10	2058	38	2027	127	1995	20	1995	20	-1
INK-2-34	0.03	1922	29	1854	86	1780	17	1780	17	-3
INK-2-35	0.09	1107	17	1043	34	905	24	1107*	17	-5
INK-2-36	0.09	2035	37	1893	103	1740	18	1740	18	-6
INK-2-37	0.21	1956	34	1845	96	1720	19	1720	19	-5
INK-2-38	0.12	2099	43	2015	133	1925	21	1925	21	-4
INK-2-39	0.03	1953	37	1893	120	1825	26	1825	26	-3
INK-2-40	0.06	1139	18	1119	50	1080	39	1139*	18	-1
INK-2-41	0.05	2085	93	2021	331	1955	62	1955	62	-3
INK-2-42	0.07	1656	37	1655	97	1650	22	1650	22	0

	Возраст, млн лет									
помер точки анализа	Th/U	²⁰⁶ Pb/ ²³⁸ U	±1σ	²⁰⁷ Pb/ ²³⁵ U	±1σ	²⁰⁷ Pb/ ²⁰⁶ Pb	±1σ	Best age	±1σ	D, %
INK-2-43	0.07	1877	44	1805	138	1720	34	1720	34	-3
INK-2-44	0.12	1759	31	1675	82	1570	22	1570	22	-4
INK-2-45	0.08	895	13	836	24	680	24	895*	13	-6
INK-2-46	0.12	1277	22	1229	45	1145	21	1145	21	-3
INK-2-47	0.09	1386	47	1425	112	1480	35	1480	35	2
INK-2-48	0.09	2052	62	2132	243	2210	36	2210	36	3
INK-2-49	0.23	1807	37	1760	119	1705	32	1705	32	-2
INK-2-50	0.20	1753	30	1713	83	1660	20	1660	20	-2
INK-2-51	0.27	2509	46	2422	184	2345	17	2345	17	-3
INK-2-52	0.07	2474	44	2503	200	2525	18	2525	18	1
INK-2-53	0.14	1770	29	1745	86	1715	21	1715	21	-1
INK-2-54	1.20	1815	32	1793	95	1765	21	1765	21	-1
INK-2-55	0.12	2036	34	2036	117	2035	19	2035	19	0
INK-2-56	0.14	2435	56	2443	241	2450	23	2450	23	0
INK-2-57	0.10	1779	76	1761	227	1735	55	1735	55	-1
INK-2-58	0.12	868	14	870	31	870	35	868*	14	0
INK-2-59	0.07	1783	32	1755	96	1720	24	1720	24	-1
INK-2-60	0.09	1898	32	1849	92	1790	18	1790	18	-2
INK-2-61	0.22	1868	32	1847	98	1820	20	1820	20	-1
INK-2-62	0.20	921	14	909	31	875	32	921*	14	-1
INK-2-63	0.06	1960	35	1972	106	1980	15	1980	15	0
INK-2-64	0.07	1905	30	1923	97	1940	17	1940	17	0
INK-2-65	0.26	1817	30	1817	93	1815	20	1815	20	0
INK-2-66	0.08	1847	33	1859	108	1870	23	1870	23	0
INK-2-67	0.11	1939	34	1877	99	1810	18	1810	18	-3
INK-2-68	0.05	1448	25	1427	61	1390	23	1390	23	-1
INK-2-69	0.12	872	13	884	27	910	25	872*	13	1
INK-2-70	0.02	1572	28	1565	79	1555	26	1555	26	0
INK-2-71	0.09	2762	59	2833	316	2880	17	2880	17	2
INK-2-72	0.07	1566	48	1668	132	1800	27	1800	27	6
INK-2-73	0.02	1626	37	1683	101	1750	22	1750	22	3
INK-2-74	0.05	1600	33	1617	89	1635	23	1635	23	1
INK-2-75	0.06	1844	36	1812	111	1775	26	1775	26	-1
INK-2-76	0.12	1550	54	1516	130	1465	39	1465	39	-2
INK-2-77	0.07	2845	60	2765	284	2705	16	2705	16	-2
INK-2-78	0.07	702	15	737	28	840	31	702*	15	4
INK-2-79	0.03	2754	105	2781	614	2800	46	2800	46	0
INK-2-80	0.06	1841	33	1747	88	1635	19	1635	19	-5
INK-2-81	0.07	881	15	825	26	675	26	881*	15	-6
INK-2-82	0.10	1696	46	1723	153	1755	44	1755	44	1
INK-2-83	0.08	1835	30	1738	90	1620	24	1620	24	-5
INK-2-84	0.08	2057	84	1962	292	1860	61	1860	61	-4
INK-2-85	0.26	957	20	1050	44	1245	26	957*	20	9
INK-2-86	0.08	1867	36	1703	92	1505	24	1505	24	-8
INK-2-87	0.08	2587	66	2449	267	2335	26	2335	26	-5

	Возраст, млн лет									
	Th/U	²⁰⁶ Pb/ ²³⁸ U	±1σ	²⁰⁷ Pb/ ²³⁵ U	±1σ	²⁰⁷ Pb/ ²⁰⁶ Pb	±1σ	Best age	±1σ	D, %
INK-2-88	0.03	1881	36	1727	96	1540	24	1540	24	-8
INK-2-89	0.07	1545	33	1496	79	1425	26	1425	26	-3
INK-2-90	0.08	1886	80	1784	242	1665	62	1665	62	-5
INK-2-91	0.06	1848	38	1727	104	1580	26	1580	26	-6
INK-2-92	0.10	1446	29	1365	72	1240	33	1446*	29	-5
INK-2-93	0.03	2758	59	2721	291	2690	20	2690	20	-1
INK-2-94	0.10	1831	35	1794	100	1750	21	1750	21	-2
INK-2-95	0.08	842	15	811	28	725	31	842*	15	-3
INK-2-96	0.06	1779	40	1759	115	1735	25	1735	25	-1
INK-2-97	0.07	1483	26	1495	82	1510	34	1483*	26	0
INK-2-98	0.23	1781	37	1779	108	1775	24	1775	24	0
INK-2-99	0.05	841	15	874	32	955	31	841*	15	3
INK-2-100	0.21	1798	37	1859	120	1925	24	1925	24	3
INK-2-101	0.12	1411	31	1525	87	1685	27	1685	27	8
INK-2-102	0.10	1874	33	1913	110	1955	20	1955	20	2
INK-2-103	0.23	838	16	904	36	1070	34	838*	16	7
INK-2-104	0.15	1686	43	1827	144	1990	30	1990	30	8
INK-2-105	0.08	1730	46	1835	159	1955	36	1955	36	6

Примечание. D, % – степень дискордантности. «Best age» определялся при оценке возраста >1 млрд лет. Произведен расчет "Best age" из меньшей ошибки: Dezirteer использует изотопную систему (206 Pb/ 238 U (значения с *) или 207 Pb/ 206 Pb) с наименьшим процентом ошибки для каждого анализа.

Note. D, % – degree of discordance. «Best age» was estimated at more than 1 Ga. «Best age» was obtained from downward error, by Dezirteer involving isotopic system (²⁰⁶Pb/²³⁸U (values with *) or ²⁰⁷Pb/²⁰⁶Pb) with the lowest error percentage for each analysis.