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The human genome project galvanized the scientific community around an
ambitious goal. Upon completion, the project delivered several discoveries,
and a new era of research commenced. More importantly, novel technologies
and analysis methods materialized during the project period. The cost reduction
allowed many more labs to generate high-throughput datasets. The project also
served as amodel for other extensive collaborations that generated large datasets.
These datasets weremade public and continue to accumulate in repositories. As a
result, the scientific community should consider how these data can be utilized
effectively for the purposes of research and the public good. A dataset can be re-
analyzed, curated, or integrated with other forms of data to enhance its utility. We
highlight three important areas to achieve this goal in this brief perspective. We
also emphasize the critical requirements for these strategies to be successful. We
draw on our own experience and others in using publicly available datasets to
support, develop, and extend our research interest. Finally, we underline the
beneficiaries and discuss some risks involved in data reuse.
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Introduction

The human genome project (HGP) galvanized the scientific community around an
ambitious goal (Lander et al., 2001). Upon completion, the HGP produced several crucial
discoveries, and a new era of research began (Gates et al., 2021). The project provided an
estimate of the number of genes and a comprehensive list of their coding sequences. These
developments have allowed for a shift away from single gene models and kickstarted the
discipline of systems biology analysis. Furthermore, the non-coding regions came into focus,
and their function began to be studied along with the variation across individuals (ENCODE
Project Consortium TEP Feingold et al., 2004; Sabeti et al., 2007). More significantly,
scientists developed new technologies and analytic methods during the period of the project.
The cost reduction allowed many more labs to generate high-throughput datasets (Metzker,
2010). The project also served as a model for other big collaborations that generated larger
datasets. These included efforts to sequence a large number of genomes from different
populations across the globe (Auton et al., 2015; Wall et al., 2019; Smedley et al., 2022).
Others concentrated on specific diseases, and disease models such as cancer (Weinstein et al.,
2013; Subramanian et al., 2017).

Alongside these ambitious endeavors, small datasets were generated and made public
and continued to accumulate in repositories. The gene expression omnibus (GEO),
ArrayExpress, and sequence read archive (SRA) are just a few examples (Edgar et al.,
2002; Parkinson et al., 2007; Leinonen et al., 2011). Individual labs typically use these

OPEN ACCESS

EDITED BY

Hari Krishna Yalamanchili,
Baylor College of Medicine, United States

REVIEWED BY

Lei Wang,
The Ohio State University, United States

*CORRESPONDENCE

Deok Ryong Kim,
drkim@gnu.ac.kr

SPECIALTY SECTION

This article was submitted to ELSI in
Science and Genetics,
a section of the journal
Frontiers in Genetics

RECEIVED 25 November 2022
ACCEPTED 21 March 2023
PUBLISHED 31 March 2023

CITATION

Ahmed M, Kim HJ and Kim DR (2023),
Maximizing the utility of public data.
Front. Genet. 14:1106631.
doi: 10.3389/fgene.2023.1106631

COPYRIGHT

© 2023 Ahmed, Kim and Kim. This is an
open-access article distributed under the
terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication
in this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

Frontiers in Genetics frontiersin.org01

TYPE Perspective
PUBLISHED 31 March 2023
DOI 10.3389/fgene.2023.1106631

https://www.frontiersin.org/articles/10.3389/fgene.2023.1106631/full
https://www.frontiersin.org/articles/10.3389/fgene.2023.1106631/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fgene.2023.1106631&domain=pdf&date_stamp=2023-03-31
mailto:drkim@gnu.ac.kr
mailto:drkim@gnu.ac.kr
https://doi.org/10.3389/fgene.2023.1106631
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/journals/genetics#editorial-board
https://www.frontiersin.org/journals/genetics#editorial-board
https://doi.org/10.3389/fgene.2023.1106631


repositories to document and distribute raw and processed data
accompanying publications. As a result, the scientific community
should consider how to use these resources for research and the
public good. Efforts went into fostering the adoption of best
practices to document and share data, and proper policies
around accessibility (Thorogood and Knoppers, 2016; Rehm
et al., 2021). Indeed, recognizing reuse as a legitimate form of
research at the junior and senior levels has become more
acceptable and encouraged (Duvallet, 2020; Raman, 2021).
Furthermore, initiatives are being proposed to develop cloud
environments to store, manage, and analyze data in effective,
scalable, and secure ways (Schatz et al., 2022). Similarly, models
have been developed to create an ecosystem to improve data
description and hosting (Charbonneau et al., 2022).

In this short perspective, we highlight three critical areas to
maximize the utility of publicly available data. We draw on ower
own experience and others in using genomics and transcriptomic
public datasets to support and extend our research interest. A dataset
can be re-analyzed, curated, or integrated with other forms of data to
enhance its utility (Figure 1). Although not an exhaustive list of
possible use cases, those three strategies encapsulate a majority of
research types that rely on the existence of public data. Furthermore,
each has identifiable benefits and requirements. Finally, we remark
on the overall benefit of reuse, the primary beneficiaries, and
highlight some of its risks.

Reanalyzing primary data

High-throughput experiments generate simultaneous
measurements of a large portion, if not all, of the genome. It has

become a standard practice for researchers to share the raw data and
documentation of how they generated it. The obvious case for reuse
is to mine the dataset for insights that were not explored in the
initially published studies. Investigators could focus on a particular
subset of the data and analyze it in-depth. When data is available in
raw or unaltered formats. The availability of the data facilitates the
peer-review process where the suggested hypothesis can be
examined and the analysis reproduced. Others choose to verify
or refute the hypothesis presented in the original analyses by
examining them independently. Both reuse cases yield additional
value and benefit the wider community. We employed existing gene
expression, and DNA binding datasets of preadipocytes to explore
the role of autophagy during adipocyte differentiation (Ahmed et al.,
2019). Our analysis focused on the subset of gene products involved
in lipogenesis and autophagy. We were able to link the regulation of
key autophagy genes to the transcription factors that drive the
reprogramming of progenitor cells into mature adipocytes.

Any given dataset can only be analyzed in a few ways in any
given study. Existing and newly developed tools can be applied to
these datasets to generate new insights. Often, statistically
sophisticated approaches have the potential to extract more
information from the same data points. We used co-expression
analysis and unsupervised learning methods to study gene product
interactions in the preadipocyte differentiation dataset mentioned
above (Ahmed et al., 2018). Furthermore, we deconvoluted the
mixture of differentiating adipocytes into subpopulations. We
suggested that mature adipocytes originate from a small fraction
of the progenitors (Ahmed et al., 2021a). Researchers have employed
large datasets of RNA-seq to predict genes, transcripts, and
promoters (Steijger et al., 2013; Keilwagen et al., 2018; Wilson
et al., 2021). Analysis methods such as chromatin segmentation

FIGURE 1
A scheme for maximizing the utility of public data. A diagram explaining the ways and benefits of using data from public sources. These include
curating datasets of particular models, integrating different data types, and re-analysis with various goals.

Frontiers in Genetics frontiersin.org02

Ahmed et al. 10.3389/fgene.2023.1106631

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.1106631


are only possible when a considerable number of histone markers
have been profiled using ChIP-seq (Hoffman et al., 2012). These and
others are examples of research pursuits that are only possible
because or enhance the utility of publicly available data.

Curating data from different sources

Researchers interested in a particular topic often use similar
models and similar experimental designs. Despite being
generated using different protocols, combining the datasets
from separate groups could help filling the gaps in the design
and increasing the statistical power of the analysis. For an
example from our work, the cell line model 3T3-L1 has been
used for years in standard time-course experiments to study
adipocyte differentiation. Combining several gene expression
experiments produced a dataset with numerous samples and
covered more time points in the differentiation course
(Ahmed and Kim, 2019). A similar problem arises when
generating gene expression data with drug or genetic
perturbations. Incorporating more than one dataset means
including additional perturbations in the study (Ahmed et al.,
2020a). The reverse is also possible by curating and annotating a
subset of a larger dataset to address a specific aspect of the model
or focus on a data type (Ganzfried et al., 2013).

Curation in either direction, smaller to larger, or larger to
smaller datasets improves the utility of the data. One added
benefit is that curators have to homogenize data from different
sources and use unified terminologies. Furthermore, curators can
pre-process and quality assesses large files of row data and make the
data available in more accessible formats. The recount3 project
accomplished just that by curating and processing thousands of
RNA-seq reads files and making the results available in the form of

gene counts (Wilks et al., 2021). Likewise, KnockTF is a curated gene
expression dataset of transcription factors knockdown experiments
(Feng et al., 2019). These two examples highlight yet another
advantage of curation. Namely, it exposes the data to the
scientific community beyond computational labs and makes it
available and easy to use for lab biologists.

Integrating multiple types of data

Different high-throughput technologies generate data types that
describe different layers of biology. Integrating data types can be
beneficial to either verify or complement the observations made
based on a single data type. For example, the binding of a
transcription factor to the DNA of a specific region is not
necessarily a claim about the function of that transcription factor.
However, the likelihood that this binding is functional increases if,
under the perturbation of that transcription factor, the expression of
the nearest gene changes.We used both binding and gene expression
data to study the interaction between adipogenic transcription
factors and the autophagy genes of interest. We were able to
show that a hierarchy of transcription regulators, including those
controlling the differentiation program, regulates autophagy directly
or indirectly through other factors (Ahmed et al., 2022). Integrating
data types, in this case, allowed for identifying a phenomenon that
was not otherwise obvious from gene expression or DNA-binding
alone.

New methods capitalize on this idea of combining data from
different sources. For example, binding and expression target
analysis (BETA) infers direct target genes of transcription factors
by integrating binding peaks, and gene expression changes under the
factor’s perturbation (Wang et al., 2013). We further extended this
method to the interaction of two DNA-binding proteins as they

TABLE 1 Ways, benefits, and requirements to increase the utility of public data.

Strategy Benefits Requirements

Reanalysis Mining the data for new insights • Sharing the raw data

• Documenting and sharing meta-data

Re-evaluating the original hypothesis • Clear presentation of how data were generated and analyzed

• Sharing reproducible code

Subjecting the data to new analyses methods • Encouraging the development of new analysis methods and techniques

• Developing new tools

Curation increasing the sample size Proper documentation and sharing of experimental protocols

Filling in the gaps • Developing an ontology to code experimental variables

• Transparent and transferable annotations

Improving the utility • Funding for computational resources to generate and maintain processed data

• Lowering the entry barrier for lab biologists

Integration Complementing an analysis Encouraging collaboration between dry and wet labs

Examining a phenomenon from different angles Generating complementary datasets (OMICS)

Spurring the development of new methods Funding open-source methods and tools development
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function in cooperative or competitive ways to induce or repress a
shared target (Ahmed et al., 2020b). Existing biological knowledge
can also help in modeling and interpreting experimental data. The
known pathways can be encoded in a network where the nodes are
the biological entities, and the edges are the known interactions
between them. The biological expression language (BEL) is one way
to represent this knowledge in a standard computable graph (Hoyt
et al., 2018). Methods such as network perturbation amplitudes
(NPA) take advantage of these graphs to infer the function of the
biological entities from the changes in gene expression in response to
drug treatment or genetic perturbations (Martin et al., 2012; Martin
et al., 2019). We used this approach to generate a database of cancer
cell-specific perturbations and to screen for potential antimetastatic
drugs in breast cancer (Ahmed and Kim, 2021). In one instance, we
inferred the pathways that control the expression of an
antimetastatic gene along with multiple drugs that target it
(Ahmed et al., 2021b). We experimentally validated some of
these predictions.

Discussion

In this perspective, we highlighted three avenues to maximize
the utility of existing public data. Namely, re-analyzing primary
data, curating data from different sources, and integrating multiple
data types. We also opined the potential benefits of each strategy
with examples from our work and others. We acknowledge that
successful reuse places demands on the broader community
regarding the documenting and sharing of data (Table 1). Other
broad benefits can be accrued from this model of sharing and reuse,
which we discuss next in addition to the risks some pointed out.

Our model of sharing and reusing data focuses on extracting
more value from the available resources. However, we acknowledge
that for this to be standard, it requires data to be documented and
shared in transparent reproducible ways. In addition, resources
should be available for curating, annotating, developing tools,
and re-analyzing data. We similarly view these as stimulators for
good: encouraging best practices of reproducible research and
developing models for open science (Peng, 2011; OECD. Making
Open Science a Reality, 2015). In other words, if data were generated
with potential reuse, by the primary authors or others, in mind, it
would be a net benefit to the community. The conditions that
encourage reproducible open science are the same that foster and
encourage reuse. We also believe data sharing and reuse would
benefit researchers in low-resource labs and developing nations
(Cheah et al., 2015). Finally, easily accessible data would facilitate
and lower the entry barrier for non-computational researchers to use
the extensive knowledge made possible by large datasets.

It is necessary to acknowledge the potential risks associated with
the reuse of public data. Sielemann and colleagues underlined some
of these and suggested solutions (Sielemann et al., 2020). They warn
that user-submitted data may be of questionable quality and require
substantial work to locate and obtain before reaching the point of
analysis. This effort on behave of the researcher interested in reuse

may be wasted as the data quality would only be assessed later in the
process. Furthermore, reusing public data may produce duplicate
records of the same dataset. Finally, several ethical issues arise in
reuse cases. For example, not crediting the original authors may
disincentive others from sharing their data and code in the future
(Curty et al., 2017). Besides, funding for generating new datasets
may stall because similar datasets exist or others could be
repurposed (Nature, 2016).
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