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Introduction: Multiple myeloma (MM) is a highly heterogeneous hematologic
malignancy. The patients’ survival outcomes vary widely. Establishing a more
accurate prognostic model is necessary to improve prognostic precision and
guide clinical therapy.

Methods: We developed an eight-gene model to assess the prognostic outcome
of MM patients. Univariate Cox analysis, Least absolute shrinkage and selection
operator (LASSO) regression, and multivariate Cox regression analyses were used
to identify the significant genes and construct the model. Other independent
databases were used to validate the model.

Results: The results showed that the overall survival of patients in the high-risk
group was signifificantly shorter compared with that of those in the low-risk
group. The eight-gene model demonstrated high accuracy and reliability in
predicting the prognosis of MM patients.

Discussion: Our study provides a novel prognostic model for MM patients based
on cuproptosis and oxidative stress. The eight-gene model can provide valid
predictions for prognosis and guide personalized clinical treatment. Further
studies are needed to validate the clinical utility of the model and explore
potential therapeutic targets.
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1 Introduction

Multiple myeloma, the second most common hematologic malignancy, accounts for
1.8% of all malignancies. It is a heterogeneous malignant plasma cell disorder characterized
by aberrant proliferation of mature B cells (Mitsiades et al., 2007; Rajkumar et al., 2014). The
first-line treatment for multiple myeloma (MM) mainly consists of the combination of
bortezomib, and dexamethasone with either cyclophosphamide or doxorubicin. With the
introduction of more effective proteasome inhibitors, such as carfilzomib and more potent
immunomodulatory drugs such as pomalidomide, as well as the development of a new class
of monoclonal antibody therapies, the clinical outcome of relapsed or refractory MM
patients has improved significantly (Joshua et al., 2019). However, MM remains incurable
with a high recurrence rate. The prognosis of MM patients is still poor (Palumbo and
Anderson, 2011; Sonneveld et al., 2016). Therefore, performing risk stratification for patients
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and finding a new prognostic biomarker is crucial to improve
prognostic accuracy and direct therapeutic treatment.

Copper ion plays a crucial role in numerous biological processes,
including mitochondrial respiration, redox signaling, kinase
signaling, cell wall remodeling, oxidative stress responses and
other processes (Rae et al., 1999; Kim et al., 2008; Yruela, 2009).
Dysregulation of copper plays a key role in cancer and mitochondria
in many diseases. Cuproptosis is a recently identified form of
programmed cell death (PCD) distinguished from known death
mechanisms like apoptosis necroptosis, pyroptosis, and ferroptosis.
Cuproptosis occurs through the binding of the intracelluar copper to
lipoylated components of the tricarboxylic acid (TCA) cycle in
mitochondria (Tsvetkov et al., 2022). This leads to aggregation of
lipoylated protein and subsequent loss of Fe-S cluster-containing
proteins, which results in acute proteotoxic stress and ultimately cell
death. Although cuproptosis has received increased attention, the
mechanism and role of cuprotosis in multiple myeloma remain
unclear.

Oxidative stress occurs due to the excessive production of
reactive oxygen species (ROS) or the failure of antioxidants to
eliminate ROS inadequately. It is an essential factor in driving
tumorigenesis and cancer progression (Schieber and Chandel,
2014; Lipchick et al., 2016). The production and degradation of
ROS levels are strictly controlled in normal cells. Mitochondria are
thought to be primary sources of ROS (Holmström and Finkel,
2014). The dysregulation of ROS induces mitochondrial DNA
damage (Cadenas and Davies, 2000). Additionally, accumulating
DNA damage eventually results various genomic alterations and
initiates tumorigenesis. Only a few studies describe genetic events
in multiple myeloma cells that primarily affect intracellular redox
status during its progression (Lipchick et al., 2016). ACA11, an
orphan box H/ACA class small nucleolar RNA, was shown to
inhibit oxidative stress in multiple myeloma cell, which was
upregulated in MM patient with t (Palumbo and Anderson,
2011; Lipchick et al., 2016) chromosomal translocation (Chu
et al., 2012). The relationships between oxidative stress with
survival in MM patients needs further investigation.

The hypothesis of this study is that combining cuproptosis
and oxidative stress can provide a more accurate prognostic
value for patients with multiple myeloma (MM). To test this
hypothesis, we developed a novel 8-cuproptisis-associated-
oxidative stress signature to predict the survival outcomes of
MM patients by analyzing data obtained from the Gene
Expression Omnibus database. This signature was helpful for
risk stratification and prognosis. Furthermore we established a
prognostic nomogram that could accurately predict overall
survival of MM patients. Our findings may shed light on the
underlying mechanisms of MM progression and suggest that the
signature may serve as a promising prognostic marker for
multiple myeloma patients.

2 Materials and methods

2.1 Data acquisition

Gene expression profiles were downloaded from the Gene
Expression Omnibus (GEO) database (http://www.ncbi.nlm.nih.

gov/gds/). GSE24080, GSE4581 and GSE2658 were obtained
using the GPL570 platform (Hanamura et al., 2006; Shi et al.,
2010). GSE6477 was obtained using the GPL96 platform (Chng
et al., 2007). GS136337 was obtained using the
GPL27143 platform (Danziger et al., 2020). Multiple Myeloma
Research Foundation (MMRF) CoMMpass study offers the
expression profiles of MM patients and clinical information
(including survival statistics). The normalized was conducted
by the “limma” R package.

Thirteen cuproptosis-related genes were obtained from
previous studies (Supplementary Table S1) (Tsvetkov et al.,
2022) (Oliveri, 2022; Tang et al., 2022). 1,399 oxidative stress-
related genes were extracted from GeneCards (https://www.
genecards.org) with a relevance score ≥ 7 (Supplementary
Table S2) (Wu et al., 2021).

The flowchart for this study was shown in Figure 1.

2.2 Cuproptosis -related oxidative stress
genes

Using Pearson correlation analysis, cuproptosis -related
oxidative stress genes were identified and a co-expression
network was created based on the cutoff point (Pearson |R| >
0.3 and p < 0.05). A total of 419 cuproptosis-related oxidative
stress genes were identified.

2.3 Differential gene expression analysis

With p < 0.05 and |log2 Fold Change|≥ 0.6 as cut-off points,
differentially expressed genes (DEGs) between MM patients and
normal donors were identified using the “limma” package in R
language. To illustrate DEGs, heat maps and volcano were created
using the R package “ggplot2” and “pheatmap”. We then took the
intersection of DEGs and cuproptosis-related oxidative stress genes
to obtain differentially expressed cuproptosis -related oxidative
stress genes (DECROGs).

2.4 Functional enrichment analysis of
DECROGs

For the DECROGs, the gene ontology (GO) annotation and
Reactome pathway analysis were applied to investigated their
functions and pathway enrichment utilizing the R package
clusterProfiler (Yu et al., 2012). The cutoff criterion was the
false-discovery rate (FDR). Terms with FDR <0.05 represented
significant enrichment. GO enrichment consists of three
components: biological process (BP), molecular function (MF)
and cellular component (CC).

2.5 Construction and validation of a
prognostic risk model

We identified prognosis-related genes by the univariate Cox
regression analysis (p < 0.05). These genes were entered into the
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Least Absolute Shrinkage and Selection Operator (LASSO)
regression analysis to screen key genes (p < 0.05) through the
R package glmnet (Friedman et al., 2010). Then, multivariate Cox
regression was used to analyzed these genes and establish the risk
score model. Risk scores of all samples were calculated according
to the following formula: risk score = ∑Coef* Exp. The “Coef”
refers to the coefficient of each mRNA from the multivariate Cox
analysis and “Exp” indicates the expression level of each mRNA.
We validated the risk model using the GSE2658, GSE136337,
GSE4581 and MMRF datasets. The median risk score was used as
the cut-off value to divide the high-risk and low-risk groups, The
difference in overall survival between the high- and low-risk
groups was evaluated using the Kaplan-Meier survival analysis
and log-rank test. The R package “survivalROC” was utilised to
produce the time-dependent Receiver Operating Characteristic
(ROC) curves.

2.6 Construction and evaluation of a
predictive nomogram

We constructed a nomogram prognostic prediction model
based on risk scores and clinical pathological feature using the
“rms” R package. Concordance index (C-index), calibration
curve, and Decision Curve Analysis (DCA) were used to
assess the prognostic performance of the established
nomogram.

2.7 Immune microenviroment

Immune infiltration analysis was analyzed by single-sample
gene set enrichment analysis (ssGSEA) method. This involved the
enrichment scores of 16 immune cell and 13 immune function

FIGURE 1
Flow chart of this study.
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categories. The “GSVA” package was utilized for the analysis
(Hänzelmann et al., 2013). The correlation between the immune
cell scores and the signature was investigated by Pearson
correlation analysis, and the “corrplot” package was used for
the analysis.

2.8 Drug sensitivity analysis

The data on drug sensitivity was obtained from the Genomics
of Drug Sensitivity in Cancer (GDSC) database (Yang et al.,
2013). “OncoPredict” package was used to calculate the 50%
inhibiting concentration (IC50) values in the high- and low-risk
groups (Maeser et al., 2021).

2.9 Statistical analyses

R software (version 4.2.0) and corresponding packages were
carried out for statistical analyses. The Kaplan-Meier method
and log-rank test were used to assess prognosis. Pearson
method was applied for correlation analysis. The Wilcoxon
test was used to compare data between two groups, while the
Kruskal-Wallis H test was used for data comparison among
three groups. All tests with p-value <0.05 indicated statistical
significance.

3 Results

3.1 DECROGs identification and functional
enrichment analysis

The correlation between cuproptosis-related mRNAs and
oxidative stress genes was analyzed by the Pearson correlation
coefficient method (Pearson |R| > 0.3 and p < 0.05). A total of
419 cuproptosis-related oxidative stress genes were identified.
The sankey plot demonstrated the correlation between
cuproptosis-related genes (CRGs) and oxidative stress genes
(OSGs) (Figure 2A). Then, we set a p < 0.05, and
[log2FoldChange (log2FC)] > 0.6 as the cutoff point. Based
on this criteria, we identified 2,298 DEGs in the
GSE6477 dataset comparing multiple myeloma with healthy
donors. The volcano plot of DEGs was illustrated in Figure 2B.
Finally, 2,298 DEGs were intersected with 419 cuproptosis-
related oxidative stress genes and thus we obtained
76 differentially expressed cuproptosis-related oxidative
stress genes (DECROGs). The Venn diagram was shown in
Figure 2C and the heatmap of the 76 DECROGs are shown in
Figure 2D.

GO enrichment and Reactome analyses were conducted for
exploring the potential function of 76 DECROGs. The result was
demonstrated in Figures 2E, F. The results of GO enrichment
analysis were categorized into the following three parts. For

FIGURE 2
Identification of candidate DECROGs. (A) Sankey diagram showed the correlations between CRGs and OSGs (B)The volcano plot between healthy
donors andMMpatients. (C) Venn diagram identifying DEGs correlatedwith cuproptosis-related oxidative stress genes. (C)Heatmap of the expressions of
76 DECROGs. (E) Top 10 classes of GO enrichment terms in biological process (BP), cellular component (CC), and molecular function (MF). (F) Top
10 classes of Reactome pathway enrichment terms.
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biological process (BP), DECROSGs were enriched in response to
oxidative stress, and lipid localization. For cellular component
(CC), the genes were associated with lumen and membrane. For
molecular function (MF), the genes were associated with
antioxidant activity and lipid-protein binding. Reactome
pathway analysis demonstrated that the DECROGs were
mainly associated with cell respiratiory electron transport,
interleukin-12 signaling and neutrophil degranulation,
defective intrinsic pathway for apoptosis.

3.2 Exploration of the prognostic DECROGs
in MM

Then, we investigated the prognostic significance of the
76 genes using univariate Cox regression. Consequently, a

total of 26 DECROGs associated with prognosis were chosen
(p < 0.05) (Table 1). Subsequently, the 26 DECROGs described
above were integrated into the LASSO regression model
(Figures 3A, B). Then stepwise multivariate Cox proportional
hazard regression analysis was used and eight genes were
identified to construct a prognostic model for MM patients
(Figure 2C). We obtained eight genes, including RNASE3,
APOE, CCNB1, MIF, FOXO1, KIT, PLA2G4A, ECG1 to build
the risk model for MM patients. Among them CCNB1, MIF,
PLA2G4A may be regarded as oncogenes, whereas RNASE3,
APOE, FOXO1, KIT, and EGR1 may be tumor suppressor genes.
The formula for calculating out each patient’s risk score is as
follows:

Riskscore � EXP RNASE3( )* −0.077( ) + EXP APOE( )* −0.214( )
+ EXP CCNB1( )* 0.270( ) + EXP MIF( )* 0.290( )
+ EXP FOXO1( )* −0.238( ) + EXP KIT( )* −0.069( )
+ EXP PLA2G4A( )* 0.192( ) + EXP EGR1( )* −0.104( )

3.3 Establishment and validation of risk
model for predicting overall survival

According to the median risk scores of 558 samples, high-risk
subgroups (n = 279) and low-risk subgroups (n = 279) were
stratified. The heat map showed the expression levels of the eight
DECROGs in the high- and low-risk groups (Figure 4A). Figure 4B
shows the distribution of risk scores and survival status between the
high-risk and low-risk groups. The mortality rate of patients
increased with the increasing risk score.

Kaplan-Meier analysis showed that overall survival was worse in
high-risk patients than in low-risk patients (p < 0.0001, Figure 4C).
We evaluated the efficacy of the prognostic model by time-
dependent ROC curves, and the area under the curves (AUC)
was 0.653 for 1-year survival, 0.678 for 3-year survival, and
0.643 for 5-year survival (Figure 4D), indicating a moderate
performance of this model.

The prognostic significances of this 8-gene signature were further
vilified in 3 external independent GEO datasets and MMRF datasets
with over 2,000 MM patients (Figure 5). The results showed that the
overall survival of patients in the high-risk groups was significantly
worse than that of patients in the low-risk group. The AUC of the risk
model was >0.6, proving the performance of this model. In summary,
we established an eight-gene risk model that exhibited acceptable
performance in these datasets.

3.4 Construction and validation of the
nomogram prognostic model

We evaluated the correlation between the risk score and other
clinical characteristics using univariate and multivariate Cox
regression analysis with the GSE24080 dataset to determine
whether the risk score was an independent prognostic factor.
The univariate analysis revealed that AGE, β2M, ALB, CRP,
LDH, HGB, and risk score were substantially associated with

TABLE 1 26 potential genes based on univariate Cox regression analysis.

Gene HR HR.95L HR.95H p-value

RNASE3 0.887 0.810 0.972 0.011

C5AR1 0.917 0.841 1.000 0.049

TXN 1.325 1.061 1.653 0.013

APOE 0.680 0.549 0.840 0.000

DHFR 1.297 1.018 1.653 0.035

SOD1 1.560 1.169 2.083 0.003

KCNMA1 0.896 0.803 0.999 0.047

VDAC1 1.350 1.028 1.773 0.031

PPIA 1.575 1.104 2.247 0.012

CYP1B1 0.742 0.601 0.917 0.006

HBB 0.908 0.830 0.992 0.033

NME1 1.327 1.052 1.674 0.017

CCNB1 1.525 1.278 1.818 0.000

ETFA 1.361 1.040 1.780 0.025

CD79A 0.888 0.796 0.991 0.034

DECR1 1.544 1.138 2.096 0.005

MIF 1.644 1.210 2.235 0.001

FOXO1 0.649 0.511 0.823 0.000

DRD4 0.770 0.613 0.968 0.025

IGF1 0.762 0.621 0.934 0.009

C1QBP 1.272 1.030 1.571 0.025

CPQ 0.828 0.727 0.942 0.004

KIT 0.927 0.878 0.978 0.006

PLA2G4A 1.333 1.152 1.543 0.000

CRP.1 0.891 0.796 0.998 0.046

EGR1 0.893 0.817 0.977 0.013

HR: hazard ratios.
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the overall survival in MM patients (Figure 6A). Then, multivariate
analysis confirmed that AGE, β2M, ALB, LDH, and risk score were
significant independent prognostic factors (Figure 6B). We
established a nomogram using the four independent factors to
predict 1-,3- and 5- year overall survival rate in the
GSE24080 dataset (Figure 6C). We evaluated the nomogram in
terms of calibration, discrimination, and DCA curve. The
calibration curve demonstrated that the predictive performance
of the nomogram was generally consistent with the actual survival
time in terms of the 1-, 3- and 5-year overall survival rate
(Figure 6D). The C-index (concordance index) is mainly used
to evaluate the discrimination between predictive outcomes of the
nomogram and actual outcomes in survival analysis. The
nomogram’s C-index was at 0.727 (95% CI 0.706–0.749),
showing that the nomogram has good discrimination
(Figure 6E). The five-year DCA curves showed that the
nomogram was a good predictor of survival in MM patients
(Figure 6F).

3.5 Correlation of the riskmodel with clinical
characteristics

We further assessed the connection between the risk score
and clinical features. The international staging system (ISS) is
one of the earliest validated risk stratification for MM patients
(Greipp et al., 2005). We first compared the predictive
performance of this eight-gene risk model with ISS. In both
GSE24080 and MMRF datasets, the time-dependent AUC of
our model were higher than those of ISS, indicating that the
predictive ability of our risk model was superior to ISS (Figures
7A, B). We then hypothesize that this risk model can further
optimize the predictive performance of ISS for patient outcomes.
We evaluated differences in overall survival between the high-
and low-risk groups of three stages stratified by ISS. For the ISS
stage I, the difference between the two groups was insignificant in
both GSE24080 and MMRF datasets (Supplementary Figures
S1A, S1B). For the ISS stage II, patients in the high-risk group
had a worse prognosis than patients in the low-risk group in

GSE24080. However, the difference between the two groups was
not apparent in MMRF (Supplementary Figure S1C, S1D). As
shown in Figures 7C, D, stage III patients were clearly split into
two groups with varying survival rates, and the high-risk group
had a worse prognosis. As shown in Figures 7E, F, the risk scores
of GSE24080 and MMRF also increased significantly with
increasing tumor stage (Kruskal–Wallis test p < 0.05, Figures
7E, F). When stage III patients were compared with stage I and II
patients, respectively, there were significant differences in risk
scores (Wilcoxon test p < 0.05). However, the difference in risk
scores among stage I and stage II patients was not significant
(Wilcoxon test p = 0.49, Wilcoxon test p = 0.089, respectively,
Figures 7E, F). In conclusion, the eight-gene risk score model can
be further used for stage III patients to predict the prognostic
outcome more accurately.

Multiple myeloma (MM) is an exceptionally complicated and
heterogeneous disease, which is characterized by various genetic
alterations (Bustoros et al., 2022). Del (17p), del (13q) and
translocation t (Palumbo and Anderson, 2011; Lipchick et al.,
2016) were considered high-risk Chromosomal abnormalities by
the IMWG (Palumbo et al., 2015). Amplification of 1q (amp1q)
are associated with worse prognosis (D’Agostino et al., 2020).
The prognostic significance of t (Schieber and Chandel, 2014;
Lipchick et al., 2016) MM remains debatable (Bal et al., 2022). To
confirm the predictive capacity of the 8-gene signature in patients
with and without these genetic alterations, we selected the
GSE136337 dataset containing these alterations for analysis.
For genetic variation of amp1q, we only analyzed patients
without amp1q, as there were only two patients with amp1q.
We compared the survival of MM patients without these genetic
indicators and found that patients in high-risk group had a worse
prognosis (Figure 8). For patients with genetic indicators,
including del (17p), del (13q), t (Palumbo and Anderson,
2011; Lipchick et al., 2016), and t (Schieber and Chandel,
2014; Lipchick et al., 2016), there was no difference between
the high-risk group and low-risk group (Supplementary Figure
S2). As a result, the MM patients without genetic abnormalities
could be efficiently stratified by high- and low-risk using our
eight-gene risk model.

FIGURE 3
LASSO regression analysis of 26 genes. (A) LASSO regression analysis of 26 genes. (B) Cross-validation of results of LASSO regression analysis. (C)
Multivariable Cox regression analysis of genes determined by lasso regression analysis.
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3.6 Immune microenvironment of high- and
low-risk groups

To further investigate the relationship between risk score
and immune infiltration, we used ssGSEA to evaluate the
enrichment scores of different immune cells and
immunological functions in the high-risk and low-risk groups.
Compared to the high-risk group, most immune cell components
were higher in the low-risk group (such as aDCs, macrophages,
pDCs, Th1 cells, DCs, B cells, mast cells, Th2 cells, T helper
cells, TIL, Treg), except for a lower proportion of CD8+ T cells.
Moreover, except for MHC class I, the immune functional
scores, such as APC co-inhibition, T cell co-inhibition,

neutrophils, Type I IFN response, CCR, cytolytic activity,
APC co-stimulation, HLA, T cell co-stimulation,
inflammation-promoting, checkpoint, and parainflammation
were lower in the high-risk group than in the low-risk group
(Figures 9A, B). We further analyzed the correlation between
the enrichment scores for immune cell and risk scores. The
results showed a negative correlation between the risk score and
the enrichment scores of aDCs, macrophages, pDCs, Th1 cells,
DCs, B cells, mast cells, Th2 cells, T helper cells, TIL, and Treg,
while the risk score and the enrichment score of CD8+ T cells
were positively correlated (Figure 9C). These findings may
suggest that the immune system of low-risk patients is more
active.

FIGURE 4
Risk score model based on eight-gene signature in GSE24080. (A) Gene expression heat map for eight prognostic genes in the high-risk and low-
risk groups. (B)MM patients were divided into high-risk and low-risk groups based on the median risk score. Scatter plot of survival time and status in the
high-risk and low-risk groups. (C) Kaplan–Meier curves of overall survival. (D) Assessment of the predictive ability of the model by time-dependent ROC
analysis.
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FIGURE 5
Validation of the eight-gene risk score model in the testing datasets. (A) The Kaplan–Meier OS curves for patients in the high- and low-risk groups in
the MMRF cohort (p = 0.00026, top). ROC curves showed the prognostic performance of the prognostic model in the MMRF cohort. (bottom) (B) OS in
GSE4581 (p < 0.0001, top), ROC curve in GSE4581 (bottom). (C)OS in GSE2658 (p < 0.0001, top), ROC curve in GSE4581 (bottom). (D)OS in GSE136337
(p = 0.0072, top), ROC curve in GSE136337 (bottom).

FIGURE 6
Nomogram construction based on the eight-gene signature and prognostic value of genes. Forest plot of univariate (A) and multivariate (B) Cox
regression analysis of the clinical features in GSE24080. (C)Nomogram of risk score and other clinical factors for predicting MM1-, 3-, and 5-year overall
survival in GSE24080. (D) The calibration plot (D), C-index (E), and DCA curves (F) of the nomogram in GSE24080.
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3.7 Chemotherapy sensitivity prediction

To identify suitable drugs for high-risk patients, we
compared the chemosensitivity of high- and low-risk groups
based on IC50 values using the OncoPredict algorithm. A lower
IC50 value indicates higher drug sensitivity. We found that
patients in the high-risk group exhibited greater resistance to
eight drugs, including SB216763 (a GSK3 inhibitor),

Doramapimod (a p38 MAPK inhibitor), PF-4708671 (an
S6K1 inhibitor), BMS-754807 (an IGF-1R/IR inhibitor),
Selumetinib (a MEK inhibitor), NU7441 (a DNAPK
inhibitor), Ribociclib (a CDK4/CDK6 inhibitor), and JQ1 (a
BET inhibitor). On the other hand, high-risk patients showed
greater sensitivity to eight drugs, including MIRA-1 (a
TP53 inhibitor), GDC0810 (an ESR1/ESR2 inhibitor),
Dihydrorotenone (a mitochondrial inhibitor), I-BRD9 (a

FIGURE 7
Validation of the eight-gene risk scoremodel in ISS (A) The C-index of our risk model and ISS in GSE24080. (B) The C-index of our riskmodel and ISS
in MMRF. (C) Kaplan–Meier curves of MM patients in stage III of ISS in GSE24080 (p < 0.001). (D) Kaplan–Meier curves of MM patients in stage III of ISS in
MMRF cohort (p=0.043). (E) Boxplot showed the difference in riskscore for different stages in GSE24080 (p < 0.001). (F) Boxplot showed the difference in
risk scores for different stages in MMRF (p < 0001).
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BRD9 inhibitor), WIKI4 (a TNKS1/TNKS2 inhibitor),
Fulvestrant (an ESR inhibitor), Linsitinib (an IGF1R
inhibitor), and BI-2536 (a PLK1/PLK2/PLK3 inhibitor)
(Figure 10). We believe that these drugs may be beneficial
for the subsequent treatment of high-risk patients.

4 Discussion

Multiple myeloma is a highly heterogeneous hematologic
malignancy, and the clinical outcomes of MM patients vary
widely. What they have in common is that most cases are
incurable (Siegel et al., 2019). Cell death is essential for
maintaining of organismal homeostasis, and preventing excessive
proliferation. Cuproptosis is a newly discovered form of death,
which is closely associated with mitochondrial metabolic activity
(Tsvetkov et al., 2022). Oxidative stress plays a critical role in various
stages of tumorigenesis and cancer progression. Excessive ROS
causes mitochondrial DNA damage, which associated with
initiates tumorigenesis (Cadenas and Davies, 2000). Both
cuprotosis and oxidative stress are closely related to
mitochondrial homeostasis. Oxidative stress also plays an
indispensable role in cell death, which can result in ferroptosis
and autophagy (Chen et al., 2022; Ma et al., 2022). We combined the
two in our analysis.

In our study, we first identified cuproptosis-related oxidative
stress genes and then obtained DEGs between healthy donors and
MM patients, after which the two were taken to intersect to

obtain 76 DECROGs. A novel 8 gene signature as a prognostic
marker for MM was developed by univariate, LASSO, and
multivariable Cox analysis. Patients were divided into the
high- and low-risk groups according to the median cut-point
of risk score. There are significant differences in the
Kaplan–Meier survival curve between the high-risk and low-
risk groups in GSE24080. Similar results were observed in other
three GEO and MMRF cohorts.

The eight genes in the risk score model: CCNB1 (Cyclin B1)
is associated with the cell cycle and mitosis. In previous study,
comparing to replased MM patient, the level of CCNB1 was
downregulated in newly diagnosed MM patients (Dementyeva
et al., 2013). MIF (Macrophage Migration Inhibitory Factor)
has been shown to accelerates the development of the disease in
multiple myeloma. MM patients with high MIF had a worse
prognosis (Wang et al., 2020; Xu et al., 2021). A number of
studies have shown that PLA2G4A (placental phospholipase
A24A is involved in the biological procedure of stress response
in various diseases (Brien et al., 2017; Zhang et al., 2018;
Mishra et al., 2022). PLA2G4A is overexpressed in different
solid cancers such as hepatocellular carcinoma (Fu et al., 2017),
prostate cancer (Patel et al., 2008), breast cancer (Chen et al.,
2017), cervical cancer (Xu et al., 2019), as well as malignant
hematologic diseases, such as AML (acute myeloid leukemia)
(Runarsson et al., 2007; Bai et al., 2020; Zhang et al., 2022) In
multiple myeloma patients, expression of the PLA2G4A was
higher compared to healthy individuals and high gene
expression of PLA2G4A is associated with adverse outcomes

FIGURE 8
Validation of the eight-gene risk scoremodel in patients without genetic indicators by Kaplan–Meier curves. (A)MMpatients without t (Palumbo and
Anderson, 2011; Lipchick et al., 2016) (p = 0.002). (B) MM patients without amp1q (p = 0.007). (C) MM patients without del (17p) (p = 0.009). (D) MM
patients without del (13q) (p = 0.016) (E)MM patients without t (Schieber and Chandel, 2014; Lipchick et al., 2016) (p = 0.014). MM patients were divided
into high-risk and low-risk groups by the median risk score.
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(Mahammad et al., 2021). A previous study showed that
FOXO1 (Forkhead Box O1) activation could inhibit the
tumor growth and induce cell autophagy and cell death. In
Chronic myeloid leukemia, FOXO1 is upregulated in drug-
resistant cells with BCR-ABL1 kinase mutation (Wagle et al.,
2016). In MM, FOXO1 mediates cell apoptosis and inhibits
tumor cell growth (Liu et al., 2016). RNASE3 (Ribonuclease A
Family Member 3), also known as ECP(Eosinophil cationic
protein), is mainly involved in human immune function
(Ostendorf et al., 2020). A previous study described the
protective role of ECP under oxidative stress. It inhibits
ROS-induced apoptosis in cardiomyocytes via PI3K-Akt
pathway (Ishii et al., 2015). In hematological cancers, it was
significantly upregulated in CML patients’ PBMCs compared
with healthy controls (Yao et al., 2022). APOE (apolipoprotein
E) is a known immune suppressant, which is significantly
regulated in many human tumors, but its role in multiple
myeloma has not been defined (Wu et al., 2022). KIT (KIT
proto-oncogene) encodes a receptor tyrosine kinase. Its role in
MM needs to be further investigated. EGR1 (early growth

response protein 1) is characterized as a tumor suppressor
in multiple myeloma (Chen et al., 2010).

A nomogram integrates multiple independent prognostic
factors, and scores of each factor are calculated based on their
contribution to the outcome. Then a total score for an
individual patient can be calculated. Finally, the outcome for
a given patient can be predictive. Therefore, we can specify a
more precise treatment strategy based on the results of the
nomogram (Iasonos et al., 2008). In this study, we evaluated the
relations between DECROGs and patients’ clinical
characteristics, and multivariate Cox regression analysis
showed that risk score was one of the independent
prognostic factors indicating that the DECROGs could serve
as a reliable predictor of survival. Then we constructed a
nomogram to predict the outcome of MM patients. The
C-index, calibration curve and DCA curve demonstrated that
the nomogram’s predicted value was in close agreement with
the actual outcome.

The International Staging System (ISS) is the standard for
staging of myeloma. Therefore, we wanted to evaluate whether

FIGURE 9
Characteristics of immune cell and immune function in different risk groups. (A) Comparison of the 16 immune cell scores calculated by ssGSEA
between different risk groups.(B) Comparison of the 13 immune-related functions by ssGSEA between different risk groups. (C) Relations between
immune cells and the risk score (*p < 0.05; **p < 0.01; ***p < 0.001)
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the model could improve prognosis prediction in MM patients
by combining with the ISS. The outcomes demonstrated that the
model could optimize ISS to some extent by further
differentiating patients with ISS stage III. Chromosomal
change are present in the plasma cell of almost 100% of MM
patients (Avet-Loiseau et al., 2009), which resulting the internal
heterogeneity of MM. We evaluate the role of our model in
patients with or without genetic alterations. In patients with
genetic alterations, including del (17q), t (Palumbo and
Anderson, 2011; Lipchick et al., 2016), del (13q), amp1q, and
t (Chu et al., 2012; Schieber and Chandel, 2014), the difference
was not significant, whereas in patients without these
alterations, our model allows further stratification of patients
by prognosis. The high-risk group demonstrated shorter overall
survival than the low-risk group. Above all, the model can

increase the prediction accuracy significantly combining ISS
and genetic alterations.

As immune cells play a crucial role in the development of
multiple myeloma, we further analyzed the relationship between
the model and immune infiltration (García-Ortiz et al., 2021). In
multiple myeloma, cell-mediated immunity is suppressed (Kyle and
Rajkumar, 2004). Our study found that compared to the low-risk
group, most immune cells were lacking in the high-risk group,
indicating an overall decrease in immune activity. The reduction of
these immune cells may lead to increased susceptibility to infection
and the development of other diseases, and may also affect the
patient’s response to multiple myeloma treatment, which is
unfavorable for prognosis (Allegra et al., 2021).

Drug sensitivity research is beneficial for discovering
potential therapeutic drugs. We used the Oncopredict tool to

FIGURE 10
Chemotherapeutic sensitivity prediction. High-risk group showed lower sensitivity to SB216763 (A), Selumetinib (B), NU7441 (C), PF-4708671 (D),
BMS-754807 (E), Doramapimod (F), JQ1 (G) and Ribociclib (H), and higher sensitivity to WIKI4 (I), I-BRD9 (J), BI-2536 (K), MIRA-1 (L), Dihydrorotenone
(M), Linsitinib (N), Fulvestrant (O) and GDC0810 (P).
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evaluate the IC50 of different drugs in the high-risk and low-
risk groups by analyzing cancer drug sensitivity genomics
(GDSC). High-risk patients were found to be more sensitive
to MIRA-1, GDC0810, Dihydrorotenone, I-BRD9, WIKI4,
Fulvestrant.1, Linsitinib, and BI-2536, providing candidate
drugs for the treatment of multiple myeloma.

There are inevitably some limitations in the research work,
which we hope to solve in the future.

First, this is a retrospective study and needs further prospective
studies to confirm our results. Second, to increase the sample size, we
employed numerous datasets. Biases between platforms are
unavoidable, which may cause differences in the results. Moreover,
the role of the eight-gene signature in the pathogenesis of MM remains
to be addressed based on further experimental research.

In conclusion, we established an eight-gene risk model based on
oxidative stress genes associated with cuproptosis. The risk model
and prognosis are significantly correlated. Combining the risk model
with clinical features, we established a novel nomogram that may
better predict the survival in MM patients more accurately. This
study offers a novel perspective on understanding multiple myeloma
and provides potential targets for the diagnosis and treatment of
multiple myeloma.
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