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Natural products derived from herbal medicine are a fruitful source of lead
compounds because of their structural diversity and potent bioactivities.
However, despite the success of active compounds derived from herbal
medicine in drug discovery, some approaches cannot effectively elucidate the
overall effect and action mechanism due to their multi-component complexity.
Fortunately, mass spectrometry-based metabolomics has been recognized as an
effective strategy for revealing the effect and discovering active components,
detailed molecular mechanisms, and multiple targets of natural products. Rapid
identification of lead compounds and isolation of active components from natural
products would facilitate new drug development. In this context, mass
spectrometry-based metabolomics has established an integrated
pharmacology framework for the discovery of bioactivity-correlated
constituents, target identification, and the action mechanism of herbal
medicine and natural products. High-throughput functional metabolomics
techniques could be used to identify natural product structure, biological
activity, efficacy mechanisms, and their mode of action on biological
processes, assisting bioactive lead discovery, quality control, and accelerating
discovery of novel drugs. These techniques are increasingly being developed in
the era of big data and use scientific language to clarify the detailed action
mechanism of herbal medicine. In this paper, the analytical characteristics and
application fields of several commonly used mass spectrometers are introduced,
and the application of mass spectrometry in the metabolomics of traditional
Chinese medicines in recent years and its active components as well as
mechanism of action are also discussed.
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1 Introduction

Exploring the safety and effectiveness of herbal medicine, such as
traditional Chinese medicine (TCM), is the key to its modernization
and internationalization (Zhang et al., 2011; Ren et al., 2023). It is of
great practical and long-term significance to excavate and utilize TCM
resources for the development of China’s pharmaceutical industry
(Wang X. et al., 2012; Zhang et al., 2012a). Especially in the large
epidemic situation of novel coronavirus infection in the past 2 years,
the advantages and characteristics of TCM are increasingly emerging.
However, like almost all traditional medicine, TCM also faces severe
challenges (Zhang et al., 2018a). The lack of scientific and
technological means and the lack of modern research restrict the
development of TCM worldwide (Zhang et al., 2012b). Therefore,
building a communication bridge between TCM and modern
medicine has become an important issue in the field of modern
biological sciences (Zhang et al., 2010). The advent of metabolomics
(Johnson et al., 2016) has gradually made the clear link between TCM
and modern medicine. Metabolomics has become more prevalent in
TCM research during the past few years, such as in cancer (Lv et al.,
2019; Chen et al., 2020; Li et al., 2020), cardiovascular disease
(Mcgarrah et al., 2018; Li et al., 2019; Wang X. et al., 2020), senile
dementia (Zhang et al., 2018b; Wei et al., 2019; Yi et al., 2020), liver
injury (Zhang et al., 2013a; Li et al., 2017; Wei et al., 2020), etc. The
application of metabolomics to understand the process of action of
TCM is consistent with the overall syndrome differentiation
observation of TCM (Wang et al., 2017).

Terminal downstream products of the genome are known as the
metabolome (Zamboni et al., 2015), which is composed of
metabolites of all low-molecular-weight molecules in cells, tissues,
or organisms, and the metabolome possesses a lot of information
that is thought to best predict the phenotype. Metabolomics uses
modern instrumental analysis methods, combined with pattern
recognition, to analyze metabolite changes over time after a
biological system is stimulated or disturbed (Schrimpe-Rutledge
et al., 2016). In biochemistry, metabolomics is the ultimate end-
point measure of biological events that link genotype to phenotype
but also captures the effects of nutrition, environmental influences,
drug response, etc. The importance of metabolomics in assessing
health and treatment impact is also manifested in biological timing
and biological probability: Genetics and genomics capture possible
events. Proteomics captures ongoing events, and metabolomics
captures events that have occurred (Amberg et al., 2017). In
addition, due to the intrinsic sensitivity of metabolomics, small
modifications in metabolic mechanisms and internal environments
of organisms can be discovered to shed light on the mechanisms
underlying a variety of physiological situations and abnormal
phenomena (Johnson et al., 2016). Metabolomics was originally
proposed as an approach to functional genomics (Przybyla and
Gilbert, 2022), but its use is far more than that. It contributes greatly
when changes in metabolite levels need to be assessed. The main
advantage is that metabolomics methods can specifically compare
the changes in themetabolic profile of the human body, elucidate the
mechanism of action and action changes of TCM, make up for the
lack of single components and single targets of TCM research
methods, and provide a more scientific and reasonable
comprehensive explanation for elucidating TCM research (Zhang
et al., 2019a; Qiu et al., 2020; Zhang et al., 2020; Du et al., 2022). The

experiment workflow of metabolomics is shown in Figure 1.
However, even the most comprehensive approach is unable to
provide a clear upper bound on the number of metabolites. The
current capacity to detect and quantify metabolites is far from
comprehensive enough (Qiu et al., 2023). In mass spectrometry-
based metabolomics, there are two general approaches, namely,
targeted metabolomics (Liu et al., 2023a) and untargeted
metabolomics (Vinayavekhin and Saghatelian, 2010). Because it
can provide a methodology for the absolute quantification of
identified and prospective biomarkers, targeted metabolomics is
an essential component of metabolomics. However, targeted
metabolomics can only be used to quantify relatively few
metabolites, so there is a deficiency in overall metabolome
coverage (Di Minno et al., 2021). By comparison, untargeted
metabolomics can measure up to thousands of molecules at a
time and can be thousands of molecules of different molecular
types. Untargeted metabolomics is extremely advantageous in that it
provides a large amount of data (Qiu et al., 2022).

At present, there are four main analytical instruments to
analyze and identify the structure of compounds, which are
nuclear magnetic resonance (NMR) spectroscopy, infrared (IR)
spectroscopy, ultraviolet-visible (UV) spectroscopy and mass
spectrometry (MS). NMR spectroscopy has the characteristics of
the same sensitivity to all detected substances, simple sample
processing and non-invasiveness, so it can be applied in isotope
labeling to trace metabolic pathways (Markley et al., 2017).
However, it has the disadvantages of low sensitivity and a
narrow detection range. IR spectroscopy can realize the lossless
qualitative analysis of almost all organic compounds and most
inorganic compounds, and has the characteristics of fast analysis
speed (Putzig et al., 1994; Morris et al., 2005). UV spectroscopy is
only suitable for the analysis and identification of compounds
containing unsaturated bonds and aromatic ring groups, with a
small scope of application, low quantitative sensitivity, and usually
only reaching the microgram level (Lourenço et al., 2012). MS is
suitable for the study of numerous various substances, because it
has highly selective analysis, good repeatability, high sensitivity,
and a wide linear range (Király et al., 2016). In the research and
development of metabolomics, the most common is the
combination of various chromatograms and mass spectra, such
as liquid chromatography mass spectrometry (LC-MS), gas
chromatography mass spectrometry (GC-MS) and Capillary
electrophoresis mass spectrometry (CE-MS). The structures of
the above mass spectrometers are shown in Figure 2. MS is of
great help for the panoramic analysis of the metabolome. With the
continuous expansion of the field of metabolomics research and
the gradual maturation of MS, the application of MS technology
has evolved into an essential instrument for examining the
metabolomics of TCM. Depending on the characteristics of the
mass analyzer, mass spectra are divided into low-resolution mass
spectrum and high-resolution mass spectrum. Low-resolution
mass analyzers such as quadrupole analyzer (Q), ion trap (IT),
triple quadrupole (QQQ) and quadrupole linear ion trap (Q-Trap)
are slightly poor in the qualitative performance of compounds, but
can greatly improve the quantitative sensitivity and stability of
compounds through ion selection, and the cost is relatively low,
which is a reliable method for compound quantification (Mlot
et al., 2011).

Frontiers in Chemistry frontiersin.org02

Guo et al. 10.3389/fchem.2023.1142287

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://doi.org/10.3389/fchem.2023.1142287


High-resolution mass spectrometers such as Orbitrap, time of
flight (TOF) and Fourier transform ion cyclotron resonance (FT-
ICR) can attain a mass resolution of nearly 10 million and are suited
for correctly determining the precise molecular mass and molecular
structure of substances. Although high-resolution mass
spectrometry is better at quantifying chemicals, the costs of both
its purchase and maintenance are substantial (Marshall and

Hendrickson, 2008). The most common mass spectrometry
analyzers that are based on metabolomics in the area of TCM are
the analytical instruments of Q and TOF and their combinations.
Besides, instruments such as Orbitrap and FT-ICR-MS were used. In
this paper, the role of mass spectrometry in the metabolomics of
TCM is described, and the future development of mass spectrometry
in metabolomics is prospected.

FIGURE 1
The experiment workflowofmetabolomics. All imageswere obtained using the example data provided by theMetaboAnalyst 5.0 and figures created
by BioRender.

Frontiers in Chemistry frontiersin.org03

Guo et al. 10.3389/fchem.2023.1142287

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://doi.org/10.3389/fchem.2023.1142287


FIGURE 2
(A). The single quadrupole detector consists of four parallel cylindrical or hyperbolic cylindrical electrodes which are equally spaced with the central
axis to form two groups of positive and negative electrodes. The DC voltage and RF voltage in the x and y directions are applied to generate a dynamic
electric field. (B). Triple quadrupole detector, which by breaking the sample in the ion source to obtain specific daughter ions, daughter ions by Q1, Q2,
and Q3 after the selection of the receiver into electrical signals. (C). Linear ion trap, which are designed as three segments in their entirety, apply
Radial Trapping RF Voltage and Axial Trapping DC Voltage between electrodes. (D). 3D ion trap diagram is composed of a ring electrode and two oval
electrodes. Two oval electrodes have small holes as ion channels. Generally, RF AC voltage or DC voltage is applied on the ring electrode. (E). TheOrbitrap
detector, after ionization of the analytes in the Ion Source, will sequentially enter the Quadrupole, the C-trap, and the Orbitrap. If debris is also collected,
the detected material will also be fragmented in a high-energy collision cell. It works like electrons rotate around the nucleus. (F). The schematic diagram
of a substance passing through the Q-TOF mass spectrometer. According to the equation of kinetic energy with mass and velocity: E = mv2, ions with
smaller mass-to-charge ratio will obtain higher velocity, shorter flight time, and then convert into mass spectra. (G). The FT-ICR mass spectrometer is a
cavity with uniform superconducting magnetic field. Ions move in a circular orbit perpendicular to the magnetic field. When the cyclotron ion beam
approaches a pair of traps, the image current signal will be detected on the traps, and the original data is transformed by Fourier transform to form amass
spectrum.
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2 Mass analyzers

2.1 Triple quadrupole mass spectrometer

The quadrupole mass spectrometer (QMS) is the most classical
mass spectrometer (Li et al., 2018) with outstanding quantitative
capabilities, and QMS accounts for the vast majority of GC-MS.
QMS belongs to dynamic mass spectrometry, which does not
require a magnetic field because it only uses a pure electric field
to work. Consequently, the instrument’s sensitivity and resolution
can indeed be altered by modifying its electrical parameters,
allowing it to fulfill various analysis requirements (Ens and
Standing, 2005). QMS has the advantages of straightforward
structure, light weight, inexpensive maintenance, simple

operation, strong quantitative ability and fast scanning speed.
However, in accurate mass determination, samples are required
to have relatively high purity, and the chemical background of
impurities cannot exist, which can cause undetectable
interference (Liu et al., 2023b), so it is less used in drug
metabolomics. The most common multistage tandem MS system
is the tertiary tandem mass spectrometer-QQQ. In three-stage
tandem quadrupole mass spectrometry, three quadrupole
analyzers are connected in series to form a QQQ sequence,
which can also be called TQMS. This allows QMS to have serial
functionality and gain much higher chemical specificity than single-
stage, while maintaining significant quantitative power.

The most common multistage tandem MS system is a three-
stage tandem mass spectrometer--QQQ. In three-level tandem

FIGURE 3
Mechanism of Qing-Xue-Xiao-Zhi formula in attenuating atherosclerosis. QXXZF, Qing-Xue-Xiao-Zhi formula; ox-LDL, oxidized low-density
lipoprotein; TMAO, trimethylamine N-oxide; RCT, reverse cholesterol transport; ABCA1, ATP-binding cassette A1; ABCG1, ATP-binding cassette G1;
PPARγ, peroxisome proliferator-activated receptor γ; LXRα, liver X receptor α; TLR4, Toll-like receptor 4; MyD88, Myeloid Differentiation primary
response 88; NF-κB, Nuclear Factor kappa B.
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quadrupole mass spectrometry, three quadrupole analyzers are
connected in series to form a QQQ sequence, which can also be
called TQMS (Yost and Enke, 1978). This allows QMS to have serial
functionality and gain much higher chemical specificity than single-
stage, while maintaining significant quantitative power. The TQMS
workflow diagram is shown in Figure 3. In this way, the qualitative
ability of mass spectrometry is strengthened, and it is widely utilized
as a confirmatory detection approach for QMS in the detection
standards. TQMS includes a wide range of capabilities beyond the
standard product ion scanning operation, including SRM, MRM,
precursor scan, neutral loss, and others (Rubino, 2020). Therefore, it
is particularly suitable for combination with LC and is now widely
used in metabolomics for the screening and identification of
metabolites and the metabolic transformation of active
components of TCM.

2.2 Quadrupole time-of-flight tandem mass
spectrometer

TOF-MS performs well in terms of fast scanning capability,
wide mass range, and high resolution (Liang et al., 2015). Q-TOF
combines the stability of QSM with TOF functionality by using
QMS as a quality filter and TOF-MS as a mass analyzer for
coupling. The most common arrangement involves three
independent quadrupoles executing the sequential tasks of
collision-induced dissociation, parent ion selection, and
collision cooling. Then the TOF spectrometer is filled with
orthogonal ions for the purpose of obtaining m/z
measurements (Ens and Standing, 2005). Q-TOF offers superior
resolution spectra as well as MS/MS experiments. At the same
time, it has the characteristics of a fast running speed, which
creates the conditions for providing comparable sensitivity and a
shorter method development time. Q-TOF-MS coupled to liquid
chromatography is one of the most commonly used instruments in
metabolomics research. In spite of its moderate mass resolution
and mass precision, it can be compensated by the very fast scan
rate, thus better defining the chromatographic peak (Zhang et al.,
2014). However, the flight tube vacuum cavity of Q-TOF MS is
bulky and has poor quality stability, and most instruments require
real-time correction. It has advantages over QQQ configuration in
high performance MS/MS measurements of biomolecules (Zhang
et al., 2013b). TOF/MS also has the advantages of a wide mass
analysis range and a large data set, making it particularly suitable
for use in tandem analysis with ultra-high performance liquid
chromatography and tandem analysis with quadrupole mass
spectrometry, which can obtain secondary mass spectra of low-
abundance chemical components and is suitable for the analysis of
complex TCM system components. However, because Q-TOF MS
lacks a multi-stage mass spectrometry function, it must be
combined with other tandem mass spectrometry when inferring
or confirming the structure of TCM components. In the
experiment, except for the identification and analysis of TCM
components using UHPLC-Q/TOF-MS alone, some components
will also be quantified and further elucidated by Q/TOF-MS
combined with TQ-MS (Liu et al., 2018a; Lin et al., 2020). At
the same time, the in vivo metabolites of TCM can also be
identified and characterized by UPLC-QTOF/MS (Mi et al., 2019).

2.3 Ion trap mass spectrometry

IT-MS is a three-dimensional quadrupole field composed of a
toroidal electrode with a hyperboloid section and a pair of upper and
lower end electrodes (Elschner, 1953). The principle of IT is to store
ions in the trap, and then change the electric field to push ions out of
the trap according to different mass-to-charge ratios for detection.
Due to their uncomplicated construction, compact size, outstanding
sensitivity, and relatively low vacuum demands, IT mass analyzers
have emerged as the preferred choice for the creation of miniature
mass spectrometers (Snyder et al., 2016). Two-dimensional linear
ion trap (LIT), which is an improved form of conventional 3D ion
trap, is not constrained by radiofrequency potential in the axial
direction as is the case with 3D ion trap (Li et al., 2021a). TCM
metabolites are emerging as important sources for the discovery of
pharmacologically active substances and new drugs. However, the
large internal destruction and small amounts of metabolites in
biological matrices make it challenging for TCM to identify and
discriminate between in vivo components. The advent of IT mass
spectrometry has provided solutions to this challenge. However, the
disadvantage of IT is that it has a fair resolution and cannot give
accurate molecular weight information. Optimization is therefore
achieved by coupling with other types of mass analyzers. The
quadrupole ion trap (Q-Trap) that adds auxiliary radiofrequency
to the QQQ can do selective excitation and provide the functional
advantage of multistage serial for the QQQ (Douglas et al., 2005).
Ion trap-time-of-flight (IT-TOF-MS) mass spectrometry uses a 3D
ion trap as a mass selector and reactor, which combines the multi-
stage mass spectrometry ability of the IT with the excellent
resolution ability of TOF-MS (Liu, 2012). Linear ion trap-time-
of-flight (LIT-TOF-MS) mass spectrometry uses a LIT as a mass
selector and reactor, which combines the highly sensitive multistage
serial capacity of the LIT with the high-resolution capacity of TOF
mass spectrometry (Kosma et al., 2021). Combining the information
of IT and TOF mass spectra for structure identification can improve
the accuracy of the results and is a common strategy for the
identification of TCM components. The elemental composition
of the components was deduced by determining the exact
molecular weight of TOF. The fragmentation information was
then obtained using the multi-stage mass spectrometry function
of IT to confirm the structure. LIT-Orbitrap mass spectrometers
have the ability to screen and confirm compounds with multiple
residues in complex substances (Kosma et al., 2021). LIT-Orbitrap
has the dual confirmation function and precise molecular weight of
MSn, which can explain the molecular cleavage process, and is also
an important tool in the field of metabonomics of TCM.

2.4 Orbitrap

The Orbitrap, the first high-performance mass spectrometer
introduced in early 2000, which uses electrostatic fields to capture
ions, is another mass analyzer of the Fourier transform series and
can usually be used in combination with other mass analyzers
(Zubarev and Makarov, 2013). Two exterior electrodes and an
electrode in the center of the Orbitrap mass spectrometer serve
as both an analyzer and a detector. Ions enter the Orbitrap and are
trapped by electrokinetic extrusion, then they oscillate around at the
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center electrode and among the two external electrodes. When ions
are tangentially introduced into the logarithmic DC field between
these two electrodes, they begin to oscillate radially around the lead
and are eventually ejected at the end of the trap. Different ions
oscillate at different frequencies and thus get separated. By
determining the oscillation frequency that the ion generates on
the external electrode, image flow monitoring can be utilized to
acquire the mass spectrum of an ion (Hu et al., 2005; Perry et al.,
2008; Makarov and Scigelova, 2010). The first Orbitrap mass
analyzer was developed to build a new spectrometer avoiding the
disadvantages of existing instruments, such as the complexity and
size of the FT-ICR analyzer; the limitations of resolution, dynamic
range, and sensitivity of the TOF analyzer; and the limited mass
accuracy of the IT analyzer (Eliuk and Makarov, 2015). Orbitrap
closes the gap between TOF and FT-ICR quality analyzers. And this
instrument is currently more suitable for targeted analysis. However,
Orbitrap-MS has a lower acquisition rate than Q-TOF MS, and its
resolution interacts with the scan rate, and the resolution decreases
significantly at high scan rates. It is difficult to obtain the secondary
spectra of low-abundance chemical constituents in TCM under the
traditional data-dependent scanning mode (DDA). Therefore, this
instrument is currently more suitable for non-target analysis and
target analysis of active components of TCM. The Orbitrap-MS, in
combination with the LC, provides approximately
500,000 resolution capabilities (Pan et al., 2020; Stettin et al.,
2020). In contrast, since its development, Orbitrap-MS integrated
with GC has had few applications in the field of metabolomics. It is
possible that LC separating has been shown to offer the optimum
balance between uncomplicated sample processing and metabolome
coverage, making it the preferred method for MS-based
metabolomics.

2.5 Fourier transform ion cyclotron
resonance mass spectrometer

Ion cyclotron resonance spectrometry (ICR) and contemporary
digital technology were combined to create Fourier transform mass
spectrometry (FT-MS), also known as Fourier transform ion
cyclotron resonance mass spectrometry (FTICR-MS). FTICR-MS
has the highest resolving power and is often used as equipment for
high-end scientific research, and its unique analytical
characteristics make it an essential tool for studies on
proteomics, metabolomics and complex mixtures. A common
method for micromolecule and proteomic analysis uses FTICR-
MS in conjunction with ion preselection and fragmentation
equipment and its bonding with reversed-phase LC. The high
fidelity of detection linearity and frequency determination are
inherent properties of FTICR-MS, which can realize the
resolution, mass accuracy and dynamic range (Scigelova et al.,
2011; Nikolaev et al., 2016). Since its invention, the fundamental
principle of FT-ICR-MS has remained the same: Internally or
externally generated ions are radially captured inside the strong
electromagnetic field in conjunction with the poor axial
electromagnetic current, and image currents are observed from
connectedly energized captured ions, culminating in time-domain
signals that are imaged and transformed into frequency-domain
spectra using FT before being converted into mass spectra.

Additionally, cooling circulation is provided for the cryogenic
preamplifier within the FT-ICR, increasing sensitivity
(Comisarow and Marshall, 1974; Nicolardi et al., 2015; Choi
et al., 2012; Qi and O’connor, 2014). FT-ICR-MS has a strong
resolving power and can be used in combination with different
ionization sources to detect compounds with different polarities. Its
ultra-high resolution and mass accuracy can provide accurate
elemental composition of compounds, giving it significant
potential and advantages in the composition and structure of
unknowns, as well as the rapid analysis of complex mixtures.
However, the comprehensive grasp of the data machining
methods used tends to lag behind that of the instrument, and
the majority of data machining algorithms used in FT-ICR have not
been thoroughly studied; as a result, expert skills and experience in
FT-ICR procedure and data analysis are still essential to achieving
the high performance of FT-ICR.

2.6 Ion mobility mass spectrometer

In the traditional MS, the new separation and measurement
factor of ion mobility is added, thus constituting the IM-MS system.
IM-MS has multidimensional separation, which increases peak
capacity, shortens analysis time, separates structural analogues or
isomers, and has multiple fragmentation modes and acquisition
modes. Experimental data that cannot be provided from MS alone
when IM is coupled with MS. Ion-size isomers can be measured by
adding an ion migration cell to the MS. Isobaric lines and
conformational isomers are separated, and chemical noise is
decreased, which are characteristics of IMS. Additionally, ions
with a similar charge state and those with structural similarities
can be grouped into categories according to the lines where their
mass-mobility relationships appear (Kanu et al., 2008). At present,
there are four ion mobility separation methods used with MS,
including drift time ion mobility spectrometry (DTIMS) (Latif
et al., 2021), traveling wave ion mobility spectrometry (TWIMS)
(Shliaha et al., 2014), differential migration spectrometry (DMS),
also known as field asymmetric waveform ion mobility spectrometry
(FAIMS) (Costanzo et al., 2017) and aspiration ion mobility
spectrometry (AIMS) (Ratiu et al., 2017). Especially for
compounds that are not easily separated chromatographically,
IM-MS has great separation advantages. Combined with high
resolution mass spectrometry, it has significant advantages in the
study of the material basis of TCM. IM has been linked to additional
mass spectrometers such as QQQ, IT, and Orbitrap in addition to
TOF, which is typically the main mass instrument associated with
IM-MS. IM-MS can be readily combined with other cutting-edge
technologies, such as capillary electrophoresis and supercritical fluid
chromatography. The characteristic parameter ion mean collision
cross-sectional area (CCS) determined by IM-MS is an inherent
property of compound ions and has significant advantages in
compound characterization. However, the CCS database of
chemical components of TCM is still blank, and the construction
of the CCS database of chemical components of TCM is of great
significance for the analysis and research of TCM. The advantages
and disadvantages of the above mass spectrometers and their scope
of application in the field of TCM research are shown in
Supplementary Table S1.
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3 Application

3.1 Pharmacodynamic evaluation

Effectiveness is a fundamental property of a drug. Despite the
fact that TCM is frequently used in clinical settings, it is still
challenging to demonstrate its usefulness through science (Cao
et al., 2015; Ma et al., 2016). Further consolidating and
improving the efficacy of TCM and greatly enhancing its
contribution to medical and health security in China has become
a key issue for the sustainable development of TCM. TCM
effectiveness evaluation is a necessary step in determining TCM
quality markers and pharmacodynamic material basis. However, the
clinical effectiveness of TCM is often related to biochemical
indicators; in addition, mass spectrometry should be used to
prove that the effectiveness of TCM is directly related to clinical
indicators from a molecular point of view and at a microscopic level.
Combining in vivo and in vitro studies, the effectiveness of TCMwas
scientifically expressed, and the overall pharmacodynamic action
process of TCM was efficiently analyzed under the premise of
effectiveness. Tang et al. (2020) used UPLC-Q-TOT-MS to
quantitatively analyze the multiple biotransformation products of
Xian-Ling-Gu-Bao (XLGB) with rat intestinal bacteria, and this
study method successfully described the dynamic contour of thirty-
one biotransformation substances of XLGB. He et al. (2022) studied
the role of Jigucao capsule (JGCC) in the treatment of Dampness-
heat Jaundice syndrome (DHJS) using a classical strategy, which is a
research technique of UPLC-QTOF-MS united with pattern
identification along with metabolomics applications and digital
databases JGCC has been found to call back twenty-five potential
biomarkers, including arachidonic acid, L-urobilin, etc. Yao et al.
(2022) used UPLC-QTOF-MS to find that Longzuantongbi granules
effectively regulated 11 biomarkers associated with lipid metabolism
and amino acid metabolism, such as lysophosphatidylcholine,
alpha-3-hydroxybutyric acid, alpha-linolenic acid, arachidonic
acid, and 12-HETE. Wang et al. (2021) demonstrated that Liu
Shen capsule treats respiratory diseases by altering airway
microbiota, such as Bacteroidetes and Proteobacteria, based on
UPLC-QTOF-MS. Yang et al. (2022) explored the antidiabetic
effect of red ginseng on type Ⅱ diabetes with a focus on UPLC-Q
Exactive-MS Technology and found that disturbances in regulatory
pathways such as D-arginine and D-ornithine metabolic activities,
tryptophan bioconversion, taurine, and hypotaurine metabolism
were improved after red ginseng intervention. Liu et al. (2022)
used UPLC-IT-TOF-MS/MS to qualitatively analyze the metabolites
of berberine in human hepatocellular carcinoma cells to elucidate
the biodistribution and pharmacokinetic profile of berberine and its
metabolites in hepatocytes. Zhao et al. (2022) targeted analysis of
29 kinds of energy metabolites in myocardial tissue based on UPLC-
QQ-MS, and verified that Naoxintong Capsules played a role in
treating myocardial infarction by affecting part of energy
metabolism.

3.2 Quality markers and quality control

In the clinical setting, the effectiveness of TCM is crucial.
Contrary to modern medicine, TCM’s multiple active ingredients

are affected by a variety of parameters, including the source,
provenance, and processing methods of medicinal ingredients
(Bai et al., 2018). The non-systematic nature of TCM quality
control also seriously affects its efficacy and credibility. The idea
of quality-marker (Q-marker), according to TCM features was
proposed by Professor Liu ChangXiao, providing new research
opportunities for TCM quality management (Liu et al., 2018b;
Wu et al., 2018). Q-markers of TCM are substances that are
naturally occurring in medicinal materials and components, such
as processed goods, extractions, and formulations, or that are created
during manufacturing and preparation. The Q-marker approach
essentially emphasizes the core meaning of TCM’s quality qualities,
which not only indicate security but also represent the effectiveness
of treatment and represent a fundamental advance in standard
evaluation models and ideas (Yang et al., 2017; Ren et al., 2020).
To investigate the potential Q-marker of the Periplocae Cortex,
UPLC/Q-TOF MS and network pharmacology approaches were
integrated. A total of nine components, such as periplocin,
periplogenin, periplocymarin, etc. were selected as Q-markers for
the Periplocae Cortex (Li et al., 2021b). Li et al. (2022) analyzed the
Q-markers of Wutou decoction (WTD) according to Pearson
correlation analysis and UPLC-Q/TOF-MS and identified
12 compounds, including aconitine, ephedrine, quercetin,
astragaloside IV, paeoniflorin, and glycyrrhizic acid, etc. as
Q-markers of WTD. Zhang et al. (2015) used Carbonized Typhae
Pollen (CTP) as an example to establish a discovery strategy for
Q-markers of carbonized TCM. Using UPLC-QTOF-MS, six
Q-markers of CTP were found to include kaempferol-3-O-
neohesperidoside, isorhamnetin-3-O-neohesperidoside,
sorhamnetin, naringenin, quercetin, isorhamnetin-3-O-rutinoside
and isorhamnetin. Liang et al. (2021) identified eight compounds,
including emodin, chrysophanol, magnolol, hesperidin, geniposide,
etc. as potential Q-markers for Chaiqin chengqi decoction
(CQCQD) based on UPLC-QQQ-MS. Chu et al. (2022) found
sweroside, paeoniflorin, liquiritigenin, chlorogenic acid, calycosin-
7-glucoside, formononetin and 3-butylephthalide to be Q-markers
of the Mailuoshutong pill based on TCM theory and metabolomics
techniques. Wang et al. (2023) used UPLC-Q-Exactive Orbitrap MS
to identify five active ingredients in Bushen Huoxue Prescription as
potential Q markers against diabetic retinopathy, tanshinone IIA,
puerarin, ajugol, protocatechuic acid and panaxatriol. Li et al. (2023)
used UHPLC-LTQ-Orbitrap MS to analyze and identify the active
components in Panax notoginseng and found a new efficacy grading
marker alkynol related to Panax notoginseng, which can be used as a
new grading quality marker.

The quality marker of TCM is the basis of a modern TCM
research system that combines macroscopical and microscopic
aspects and includes the study of compatibility law of TCM
compounds, the basic study of chemicals and the modern
pharmacological study from the molecular point of view. The
determination of TCM quality markers is based on the overall
view of “pharmacodynamic components,”, that is, those that have
clear chemical structure and biological activity. It is conducive to
carrying out layer-by-layer analysis of the pharmacodynamic
components that play an important role in TCM, and gradually
elucidating its pharmacological effects and mechanism of action,
which is the premise for traditional Chinese medicine to carry out
subsequent research.
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3.3 Formula compatibility

TCM formula has always been the most common type of
medication in clinical research, and it is a group of drugs that
are properly compatible according to the composition principle after
selecting the appropriate dosage of drugs after determining the
treatment method based on syndrome differentiation
examination. TCM formulas containing two or more medicinal
herbs tend to obtain better efficacy and fewer side effects than the
single herbs (Zhou et al., 2017). Jun-Chen-Zuo-Shi in Chinese (king,
minister, assistant and guide) is one of the most typical and
significant theories, which vividly defines the diverse roles of
various components in TCM (Luan et al., 2020). Herb pairings
were crucial to the progress of TCM, and their appearance expanded
its range of applications and established the organizing tenets of
formulas. The compatibility principles of TCM formulae include
considering herbal properties (hot, cold, warm, and cool), herbal
taste (pungent, sweet, bitter, acidic, and salty), and
pharmacodynamic trends (entering meridians, going up and
down, and floating, etc.), as in modern medicine: Synergism and
attenuation (Wang S. et al., 2012; Zhang et al., 2015).

Gu et al. (2021) investigated the synergistic effect of Jinlingzi San
(JLZS) on Fructus Toosendan (FT) and Rhizoma Corydalis (RC)
based on UPLC-QQQ-MS. Synergistic effects of the combination of
FT and RC were observed at the pharmacokinetic level, slowing the
clearance of tertiary alkaloids and improving their intake and
bioavailability to some extent. Sun et al. (2021b) used UFLC-
QTRAP-MS targeted metabolomics to elucidate the contribution
of Salvia miltiorrhiza and Pueraria lobata in the treatment of acute
myocardial ischemia (AMI) in Xin-Ke-Shu and found that the
regulatory effect of cardioprotection during AMI was significantly
lost in the deficient group lacking Salvia miltiorrhiza and Pueraria
lobata, especially the mediation of FFA metabolism. Zhou et al.
(2021) investigated the compatibility principle and salt treatment of
salt-processed Foeniculi Fructus& Salt-processed Psoraleae Fructus
(sFF&sPF) by UHPLC-QTOF-MS. The results showed that
sFF&sPF group had the best efficacy in the treatment of diarrhea
and polyuria, and salt treatment would briefly affect the correlation
between pharmacodynamic components and endogenous
metabolites. Chen et al. (2021) used pharmacokinetics and
metabolomics, relying on UHPLC-Q Exactive Orbitrap-MS
technology, to elucidate the compatibility mechanism of Radix
Bupleuri-Radix Paeoniae Alba (RB-RPA). The results showed
that the RB-RPA combination could dramatically enhance the
bioavailability of 11 drug ingredients and raise neuroprotective
and anti-inflammatory activity. Guo et al. (2023) used LC-IT-
TOF-MS to compare the component differences between single
herb and Zhi-Zi-Chi decoction (ZZCD) compounds, while the
solubility of toxic substances and active components was found
to affect the attenuation and synergy of the compound by
quantitative characteristic compounds, laying the foundation for
optimizing the compatibility of ZZCD. Dong et al. (2023) used
UFLC—QTRAP-MS to compare the pharmacokinetic differences
between Sijunzi decoction and “quewei” Sijunzi compound (one
medicinal herb was randomly removed) and found that the
compatibility of the four herbs could change the pharmacokinetic
properties of the compound and justify oral administration of
Sijunzi decoction.

The research on the chemical constituents of Chinese herbal
compounds alone is not enough to clarify the compatibility law of
Chinese herbal compounds and their basic efficacy and mechanism
of action. As a result, using mass spectrometry, it is necessary to
analyze the qualitative or quantitative changes in active ingredients
of drugs before and after compatibility, study the pharmacokinetic
interactions in vivo, that is, the effects of TCM compatibility on in
vivo processes such as absorption, distribution, metabolism, and
excretion, and finally reflect the synergistic or resistant biological
effects in TCM compounds through effect indicators, bioavailability,
and target recognition.

3.4 Mechanism of action and target
exploration

Although there is only one drug, single herbs contain a variety
of active ingredients. While TCM formulas are composed of
several herbs and dozens of components, these components are
decomposed into countless chemical molecules, so elucidating the
mechanism of action of TCM is a very difficult thing (Hao et al.,
2017). Metabolomics based on mass spectrometry combined with
multivariate statistical analysis can analyze endogenous
metabolites, study their species, quantities, and changes under
the action of internal and external factors, and perform group
index analysis through systematic integration to reflect the
dynamic changes of endogenous metabolites in organisms. Li
et al. (2021c) studied the mechanism of action of the Qing-
Xue-Xiao-Zhi formula (QXXZF) in the treatment of
atherosclerosis based on the serum metabolomics of UPLC-Q-
TOF-MS. This paper has found that QXXZF can inhibit the
development of atherosclerosis by reducing atherosclerotic
plaques in the aorta and aortic root, reducing the content of
oxidized low-density lipoprotein and trimethylamine N-oxide in
serum. Moreover, QXXZF can also promote reverse cholesterol
transport by regulating the expression of related genes (PPARγ/
LXRα/ABCA1/ABCG1). Wang et al. (2022a) explored the
mechanism of action of Qing-Xin-Jie-Yu Granule (QXJYG) in
the treatment of atherosclerosis by LC-QTOF-MS. Finally, QXJYG
was found to reduce mRNA levels of IL-6 and IL-1β in the aorta
while remodeling gut microbiota and associated bile acid levels.
Zhang et al. (2022c) investigated the mechanism of Sheng Mai San
(SMS) in the treatment of liver injury by UHPLC-QTRAP-MS
combined with the pharmacodynamics strategy. The results
showed that SMS reconstructs mitochondria to achieve
therapeutic effects by altering AST/ALT ratio, regulating
glycolysis and TCA cycle. Luo et al. (2022) found that emodin
ameliorates ulcerative colitis by modulating the PPARγ signaling
pathway. Wang et al. (2022b) evaluated the metabolites of
honeysuckle by UPLC-QTOF-MS isolation and found that
chlorogenic acid and swertiamarin could regulate the main
mediators of inflammation, which in turn affected the
phosphatidylinositol-3-kinase-AKT and MAPK pathways.
Taking QXXZF as an example, its mechanism of action is
shown in Figure 3.

Many studies showed that the main active components of TCM
can target one or more specific molecules and thus perform a variety
of clinic treatment functions (Shen and Yin, 2021). Exploring TCM
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from the methodical sentiment and the molecular criterion changes
the research paradigm from the previous “one-target and one-drug”
model to a novel “multiple targets and multiple constituents”model.

Based on the exploration of the drug-disease relationship in the
comprehensive pharmacology of TCM, the network of “drug active
ingredient-target-disease”was established and enriched, as shown in

FIGURE 4
‘Drug-Ingredient-Target-Disease’ Network Diagram. Drug ingredients bind to common targets such as enzymes, ion channels, receptors, or other
biomolecules. In this figure, quercetin is used as an example to show its docking diagram with the stick structure and surface structure of IL6 target.

FIGURE 5
Mechanism of Qing-Re-Ka-Sen Granule in Treating Nephrotic Syndrome. QRKSG, Qing-Re-Ka-Sen granule; PI3K, Phosphatidylinositol3-kinase;
PIP2, Phosphoinositide 2 kinase; PIP3, Phosphoinositide 3 kinase; PDK1, Pyruvate dehydrogenase kinase 1; AKT, AKT Serine/Threonine Kinase; mTOR,
mammalian target of rapamycin; BAX, BCL2-associated X protein; BCL2, Apoptosis Regulator; TCA, tricarboxylic acid cycle; ROS, reactive oxygen
species; P53, tumor suppressor gene.
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Figure 4, which was used to analyze the functions of key target genes,
metabolic pathways and their “cores”. Construct a comprehensive
network framework for TCM-target interactions. Based on the
biological effect factors and the regulation mechanism of TCM
on the targets and pathways of disease, strengthen the precise
positioning and provide accurate treatment of TCM (Li and
Zhang, 2013; Wang et al., 2018; Wei et al., 2021). Duan et al.
(2021) studied the mechanism of Qing-Re-Ka-Sen granule
(QRKSG) in the remedy for nephrotic syndrome (NS) via
integrating UPLC-QTRAP-MS, GC-MS, Western blotting and
molecular docking techniques. Ultimately, it was discovered that
the main targets of the QRKSG for the therapy of NS were AKT1,
MTOR, CASP3, and BCL2L1. Guo et al. (2022) found that
Qifenggubiao granules achieved immunomodulatory effects by
acting on targets such as HSP90AA1, PPARA, PTGS2, CASP3,
AKT1, IL6, MAPK3, MAPK1, ESR1, and PPARG. Figure 5
illustrates the target action for QRKSG. Li et al. (2021d) used
data mining technology combined with HPLC-Q-Exactive MS/
MS to comprehensively analyze the key targets of
Hydroxysaffloryellow A in the treatment of traumatic brain
injury, as PTGS2, XDH, NOS1 and ACHE. Huang et al. (2022);
Zhang et al. (2022d) used UPLC-QTOF-MS to discover potential
targets of Chaigui Granule in the treatment of depression and key
targets of Rheum officinale Baill. in the treatment of thrombotic
diseases, respectively. Wang et al. (2020c) characterized
20 compounds in Zi-shen pill ultrafiltrate using FT-ICR MS and
found four active ingredients that inhibit 5-lipoxygenase to treat
benign prostatic hyperplasia.

3.5 Pharmacophoric substance discovery

A large number of research studies have shown the utility of
metabolomics in discovering the pharmacodynamic material basis
of TCM and TCM formulations (Han et al., 2020). The
pharmacodynamic material basis of TCM refers to the general
term for the chemical components contained in TCM that can
express the clinical efficacy of drugs. All the effective components in
the Chinese herbal formula were separated and identified by mass
spectrometry, and the changes in endogenous metabolites after the
compound acted on specific diseases were further studied to
elucidate the relevant metabolic pathways. Finally, the
pharmacodynamic components that could prevent and treat
specific diseases were selected. To find the active constituents of
Xiaoxuming decoction (XXMD) in the therapy of ischemic epilepsy,
Luo et al. (2019) used UPLC/Q-TOF MS in conjunction with fast
separation liquid chromatography-triple quadrupole linear ion trap
mass spectrometry (RRLC-QTRAP MS(n)). 48 different substances
were found in XXMD by qualitative examination; 33 of these
substances underwent quantitative study, and the most prevalent
substances were found to be monoterpenes, flavonoids, and
cyanophoric glycosides. Huang et al. (2021) compared the
metabolic profiles of Uncaria rhynchophylla. (Miq.) Miq. ex
Hvail. and Uncaria hirsute Havil. based on UHPLC/Q-Orbitrap-
MS. In this study, six potential vasodilator compounds with relaxant
effects on mesenteric arteries were selected using multivariate
statistical analysis, including corynoxeine, isocorynoxeine,
isorhynchophylline, rhynchophylline, and hirudin. Sun et al.

(2022) identified glycyrrhizic acid, kaempferol, cinnamaldehyde,
catechin daidzein, and caffeic acid as the primary therapeutic
efficacy components of Lingguizhugan decoction in the treatment
of heart failure using UHPLC-Q-TOF-MS/MS in conjunction with
cell experiments and digital storage mining; Kong et al. (2022) used
UPLC-QTOF-MS to explore the core active ingredients of Keluoxin
(KLX) in the treatment of diabetic retinopathy. The results showed
that rhein, astragaloside IV, emodin, chrysophanol and other
compounds may be the pharmacodynamic basis of KLX. Liao
et al. (2023) isolated and identified the specific binding
components of Huanglian Jiedu Decoction to human umbilical
vein endothelial cells by a combination of UPLC-Orbitrap-MS
and found 13 active components such as geniposide, thapsigin,
baicalin, and berberine as pharmacodynamic components that
promote angiogenesis. Gao et al. (2023) isolated and identified
45 compounds from the leaves of Amomumvillosum Lour., with
the help of HPLC-QTOF-MS technology and further experimented
that 14 compounds (one unknown compound and thirteen known
compounds) could prevent and treat diseases caused by
inflammation and oxidative stress. Liu et al. (2023b) analyzed the
components of Danshen decoction by UHPLC-Q-Orbitrap-MS
technology, combined with network pharmacology, to elucidate
that 35 compounds in its active components are potential
pharmacodynamic materials for the treatment of cardiovascular
diseases.

4 Future perspectives and conclusion

Metabolomics, as a science that can comprehensively analyze
the metabolome, can elucidate the mechanism of action and the
change rule of action of TCM by specifically comparing the
changes in metabolic profile. It provides a powerful grasp of
“multi-component-multi-target” for TCM, and provides a more
scientific and reasonable comprehensive explanation for
elucidating TCM. As the most important instrument for the
analysis and identification of compound structure, MS lays the
foundation for the scientific elaboration of the metabolome
change contour, pharmacodynamic material basis, mechanism
of action, safety, and compatibility principles of TCM.
Metabolomics also emerged as a result of the development of
MS. With the addition of high-tech and more MS databases, the
characterization and identification of metabolites are also more
accurate.

With the advancement of science and technology and the
passage of time, the types of MS and MS-based analysis
technology have been continuously updated, reformed and
broken through, and the sensitivity, scope of application,
throughput and identification technology of instruments have
been greatly improved. The development of MS has contributed
to the promotion of metabolomics applications, giving researchers a
more comprehensive understanding of small molecule metabolites.
Although mass spectrometry has the traits of high resolution, good
precision, and maximum throughput, the research progress of
metabolomics is still slow due to the complexity of organisms,
the huge number of metabolites, and unrepeatable experimental
protocols in different laboratories. Different types of MS have their
own advantages, and appropriate mass analyzers are selected
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according to different sample characteristics and requirements.
Compared with the acquisition of data, the subsequent
processing and mining of data are the bottleneck problems facing
metabolomics. Although the existing metabolome database has
shortcomings in terms of scale, the open MS database and shared
metabolome dataset provide convenience for the qualitative
identification of metabolomics. Introducing the quick algorithms
of computers into the field of metabolomics is of great help to the
annotation as well as the accuracy of the data. The research direction
of multi-omics conforms to the root of the overall regulation of
organisms, and multidisciplinary cross-fusion can promote the
development of metabolomics.
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