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High-throughput genomic and phenomic data have enhanced the ability to
detect genotype-to-phenotype associations that can resolve broad
pleiotropic effects of mutations on plant phenotypes. As the scale of
genotyping and phenotyping has advanced, rigorous methodologies have
been developed to accommodate larger datasets and maintain statistical
precision. However, determining the functional effects of associated genes/
loci is expensive and limited due to the complexity associated with cloning
and subsequent characterization. Here, we utilized phenomic imputation of a
multi-year, multi-environment dataset using PHENIX which imputes missing
data using kinship and correlated traits, and we screened insertions and
deletions (InDels) from the recently whole-genome sequenced Sorghum
Association Panel for putative loss-of-function effects. Candidate loci
from genome-wide association results were screened for potential loss of
function using a Bayesian Genome-Phenome Wide Association Study
(BGPWAS) model across both functionally characterized and
uncharacterized loci. Our approach is designed to facilitate in silico
validation of associations beyond traditional candidate gene and
literature-search approaches and to facilitate the identification of putative
variants for functional analysis and reduce the incidence of false-positive
candidates in current functional validation methods. Using this Bayesian
GPWAS model, we identified associations for previously characterized
genes with known loss-of-function alleles, specific genes falling within
known quantitative trait loci, and genes without any previous genome-
wide associations while additionally detecting putative pleiotropic effects.
In particular, we were able to identify the major tannin haplotypes at the Tan1
locus and effects of InDels on the protein folding. Depending on the
haplotype present, heterodimer formation with Tan2 was significantly
affected. We also identified major effect InDels in Dw2 and Ma1, where
proteins were truncated due to frameshift mutations that resulted in early
stop codons. These truncated proteins also lost most of their functional
domains, suggesting that these indels likely result in loss of function. Here, we
show that the Bayesian GPWAS model is able to identify loss-of-function
alleles that can have significant effects upon protein structure and folding as
well as multimer formation. Our approach to characterize loss-of-function
mutations and their functional repercussions will facilitate precision
genomics and breeding by identifying key targets for gene editing and trait
integration.
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1 Introduction

Genome-Wide Association Studies (GWAS) have served as
powerful tools for genotype-phenotype mapping of genomic
regions that can be used as breeding targets since their initial
application (Ozaki et al., 2002). As newer models have been
developed, GWAS have seen significant improvements in
computational efficiency (Zhou and Stephens, 2012), statistical
power (Liu et al., 2016; Huang et al., 2019), user-friendly
interfaces (Yin et al., 2021), and development of multi-response
regression techniques (Zhou and Stephens, 2014). However, as the
scale of genomic and phenomic data continues to grow, both
traditional and newer tools will be required to make the best use
of massive biological datasets (Bilder et al., 2009). For advocates of
phenomic approaches, the expectation is that the broad-scale study
of multiscale phenotypes will better dissect complex genetic
architecture and subtly correlated biological networks
(Boatwright et al., 2022b). As phenomic data increasingly capture
orthogonal or partially correlated traits, it will be increasingly
feasible to functionally characterize and improve multiple traits
simultaneously in the breeding process (Eberius and Lima-
Guerra, 2009).

The decreased costs of high-throughput sequencing have led to
the exponential growth of genomic data (Furbank and Tester, 2011)
including single-nucleotide polymorphisms (SNPs), insertions and
deletions (InDels), and copy-number variants (CNVs). Due to costs
associated with acquiring these data, the technical complexity of
generating InDels and CNVs, and the ability of SNPs to estimate
relatedness and find associated loci, SNPs are the most prevalent
variant types studied with InDels and CNVs being largely
underrepresented among genomic studies. Conversely, phenomic
data acquisition has lagged due to several complications. These
complications include, but are not limited to, 1) manual collection of
data for validation, 2) flexibility (e.g., across crops, architecture,
conditions, etc.) and costs (e.g., high-performance liquid
chromatography) of high-throughput technologies, 3)
interoperability for phenotyping under both control and field
conditions, 4) data integration, management, and modelling, and
5) limited options for informatic tools and resources (Houle et al.,
2010; Araus et al., 2018). As such, collection and processing of
phenomic data have been major bottlenecks for genotype-
phenotype mapping, and for most biological systems, those data
have been collected over many years rather than at scale by a few
studies (Furbank and Tester, 2011).

Once phenomic data are collected, genotype-phenotype
mapping typically occurs using either quantitative trait loci
(QTL) mapping (Broman et al., 2019) or GWAS approaches
(Zhou and Stephens, 2012; Yin et al., 2021). Unfortunately, as
these methods are susceptible to false positives - due to the
extent of multiple testing and effects of population stratification -
downstream validation of associations via tissue culture and genetic
transformation represent pivotal steps in the complete
characterization of novel loci. Even in maize, characterization via
tissue culture involves considerable effort. Both transformation and

gene editing are limited in scale by the work required for tissue
culture and plant regeneration, which takes several months (Ishida
et al., 2020). As such, annotation and validation of putatively novel
loci represent additional major bottlenecks for advances in basic
science and adoption of novel findings in a given research program.
Just as data integration, management, and modelling are
complicating factors for phenomics, limited options for
informatic tools and resources place an additional burden for
research groups with viable phenomic datasets. Limitations for
standardized trait ontologies and databases further compound
problems, especially for researchers working with non-model or
recently sequenced organisms (Bilder et al., 2009).

Here, we implement a Bayesian Genome-Phenome Wide
Association Study (BGPWAS) model that offers improvements
over existing genotype-phenotype mapping approaches in its
ability to identify pleiotropic and putative knockdown/out effects
of given loci in silico (Liang et al., 2020). This model overcomes
several limitations of traditional frequentist approaches to provide
clearer and better targeted results. In particular, as this approach
may require potentially thousands of statistical test, the use of strong
regularizing priors is of vital importance for controlling false-
positive results (Bilder et al., 2009). Additionally, this model may
be run with SNP, InDel, CNV, or haplotype data as necessary to
accommodate various use cases. As larger mutations are more likely
to exhibit functional effects, InDels and CNVs provide an increased
probability to identify functionally relevant mutations. Once
putatively functional mutations are identified, we apply
AlphaFold’s neural network-based model to predict protein
structures at scale (Jumper et al., 2021). Prediction of protein
structures provides the opportunity to perform in silico validation
of mutations quickly, at scale, and as a means to screen association
results before moving to resource-intensive tissue culture methods.
AlphaFold is further capable of predicting both monomer and
multimer formation, which provides the unique opportunity to
examine protein-protein interactions across protein isoforms and
better understand the genetic networks underpinning associated
phenotypes (Jumper et al., 2021). By performing in silico validation
of potential mutations to identify their functional effects, our
approach can accurately identify novel targets for altering gene
expression and integration of key traits of interest in plant breeding.
We expect that our statistical approach will improve phenotypic
characterization of genes through joint consideration of genomic
and phenomic data.

To demonstrate the value of these approaches, we apply these
models to the Sorghum Association Panel (SAP) (Casa et al., 2008).
The SAP is composed of both temperate-adapted breeding lines and
converted (photoperiod-insensitive) tropical accessions from the
Sorghum Conversion Program (SCP) (Stephens et al., 1967; Klein
et al., 2008). Accessions were selected to maximize the genetic and
phenotypic diversity of the panel while simultaneously capturing
accessions with significant demographic history and historical
breeding importance (Casa et al., 2008). The recent whole-
genome resequencing of the SAP included 400 individuals and
identified approximately 5.4 million SNPs, 2.6 million InDels, and
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170,000 CNVs after quality filtering (Boatwright et al., 2022a). Due
to the high quality and scale of these genomic data, we utilized this
resource here. In sorghum, plant height and tannin content
represent vital phenotypes due to both historic selection (Wu
et al., 2019) and modern agriculture (Dillon et al., 2007). As an
important domestication trait, tannin content has been shown to
lower nutrient uptake (Xiong et al., 2019). Conversely, phenolic
compounds like tannins can limit pest damage due to their bitter
flavor (Wu et al., 2019), exhibit antimicrobial properties (Shields
et al., 2021), and tannin antioxidant activities can also improve gut
health (Xiong et al., 2019). As such, we focus on several known and
putatively novel loci mediating these traits.

2 Materials and methods

2.1 Phenomic data and imputation

Phenomic data constituting 234 traits measured on the SAP
(Casa et al., 2008) were obtained from Mural et al. (2021). Traits
were filtered such that any trait with more than 30% missing data
were removed from subsequent analyses. The 30% threshold was
selected to reduce overall missingness while simultaneously
reducing the impact of imputation on the final results and
maintaining at least 100 traits, as Liang et al., 2020 indicated that
model power significantly increased with increasing feature count.
Filtering at a 30% threshold for each trait resulted in a total of only
11%missing data across the remaining 124 traits, which was lowered
to 10% after removing 10 individuals not represented in the genomic
data. These traits represented a mixture of four agronomic,
29 biochemical, five disease, 27 reproductive, 10 root, 18 seed,
and 31 vegetative traits. For phenotypic imputation of the filtered
traits, we used PHENotype Imputation eXpediated, (PHENIX)
(Dahl et al., 2016), which imputes a matrix of partially observed
phenotypes, Y, (an N×p matrix of N individuals row-wise and p
phenotypes column-wise) that have been centered and scaled. A
standard Multiple Phenotype Mixed Model (MPMM) has the form,

Y � U + ϵ (1)
where U is an N×pmatrix of random effects and ϵ is a N×pmatrix of
residuals and are modeled using matrix Gaussian distributions as
follows

U ~ MN 0, K, B( ),
ϵ ~ MN 0, IN, E( ) (2)

In this model K is the N×N kinship matrix between accessions
(or row-wise covariance), B is the p×p matrix of genetic covariances
between phenotypes (or column-wise covariance), E is the p×p
matrix of residual covariances between phenotypes, and IN is the
identity matrix of size N×N. PHENIX uses a Bayesian MPMM to fit
a low-rank model for U, such that U = S β, where

S ~ MN 0, K, IP( ),
β ~ MN 0, IP, τ

−1IP( ), (3)

WhereMN represents a matrix normal distribution with mean zero,
IP is an identity matrix of size p×p, τ is a regularization parameter,
and aWishart prior (Wi) is used for the residual precisionmatrix E−1

E−1 ~ Wi P + 5,
1
4
IP( ) (4)

where the prior has p + 5 degrees of freedom and scale 1
4IP.

The model is fit using Variational Bayes methods resulting in
sample posteriors with multivariate normal distributions, and
missing data are imputed using the posterior mean. In summary,
PHENIX uses known kinship and trait covariance to better predict
missing phenotypic data (Dahl et al., 2016). As the original PHENIX
did not work properly on R v4.1.0, we also provide a slightly
modified version used in the study on GitHub (https://github.
com/jlboat/PHENIX).

2.2 Genomic data

Genomic data were obtained and processed as described in
(Boatwright et al., 2022a). In short, 30x whole-genome sequencing
was performed using an Illumina NovaSeq 6,000 sequencer resulting
in paired-end 150-bp reads for 400 SAP accessions, and variants
were called against the BTx623 version 3.1.1 annotated reference
genome (McCormick et al., 2018) using the GATK variant calling
pipeline (McKenna et al., 2010) and best practices (DePristo et al.,
2011; Van der Auwera et al., 2013). The resulting variants were
quality filtered to reduce false positives (MAF < 0.1, QD < 2,
InbreedingCoeff < 0, QUAL < 30, SOR > 3, FS > 60, MQ < 40,
MQRankSum < -12.5, and ReadPosRankSum < -8) (DePristo
et al., 2011; Danecek et al., 2021) and imputed using Beagle
(Browning et al., 2018). Principal components (PCs) were
obtained using both SNPs and InDels based on a leave-one-
chromosome-out (LOCO) approach (Yang et al., 2014) to
prevent confounding of components with the response variant’s
chromosome of origin. The LOCO PCs were calculated using Plink
v1.90b6.10 (Purcell et al., 2007). While all PCs were estimated, only
the top three PCs were used for each model run as this number has
been shown to account for population structure in previous
sorghum studies (Boatwright et al., 2022a). The number of PCs
may be altered as necessary. For the current study, we isolated both
insertions and deletions (InDels) from the full set of imputed
genomic data resulting in 1,349,015 InDels. The BGPWAS was
executed sequentially on each InDel for a given gene using custom
scripts (https://github.com/jlboat/BGPWAS) using the model
described below.

2.3 Bayesian genome-phenome wide
association model

Our Bayesian GPWAS was executed using stan (Stan
Development Team, 2019) and rstanarm (Goodrich et al., 2022),
which uses the No-U-Turn-Sampler (NUTS) as the default Markov
Chain Monte Carlo (MCMC) sampler (Hoffman and Gelman,
2014). In brief, the NUTS does not perform a random walk of
the parameter space thereby circumventing sensitivity to correlated
parameters characteristic of many MCMC methods. Instead, the
NUTS uses first-order gradient information to inform which steps
should be taken, allowing the sample posteriors to converge on high-
dimensional target distributions much more quickly than simpler
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methods such as random walk Metropolis or Gibbs sampling
(Hoffman and Gelman, 2014). The Bayesian GPWAS model has
the form,

yi � βXi + ϵi,
ϵi ~ N 0, σ2( ), (5)

for i = 1, . . . , n, where n is the number of samples. The response
variable y represents numerically encoded variant data (e.g. SNPs,
Indels), X represents the matrix of predictors including traits (124)
and LOCO-based principal components 3) as described above (see
Genomic Data), and ϵ represents the residual variance. Coefficients
are estimated using a horseshoe prior (Piironen and Vehtari, 2017c)
where,

βj|λj, τ ~ N 0, λj
2τ2( ),

λj ~ C+ 0, 1( ), (6)

for j = 1, . . . , D. The global regularization parameter τ shrinks all βj
toward zero, while the local parameters λj allow some βj to escape the
shrinkage through the heavy-tailed half-Cauchy prior (Piironen and
Vehtari, 2017c). The effective number of non-zero coefficients is
controlled using a user defined τ, which we scale based upon the
number of predictors and sample size as follows:

τ0 � p0

D − p0( )
1�
n

√ , (7)

Where D is the number of predictors, n is the number of samples,
and p0 represents the least integer value of 10% of the number of
predictors. In summary, the horseshoe prior allows some coefficients
to be completely unregularized thereby allowing some traits to be
strongly associated with a variant of interest while the coefficients of
weakly or unassociated traits are shrunk toward zero (Piironen and
Vehtari, 2017c).

In addition to the horseshoe prior, we provide code for execution
of Bayesian ridge and lasso models to compare results and provide
additional options for analysis. Ridge priors follow a traditional
normal distribution with zero mean and variance of five. Similarly,
the lasso model may be described as identifying the posterior mode
for a Gaussian likelihood when the coefficient priors have
independent Laplace distributions. This model uses a tuning
parameter with a chi-squared prior with an expected value of
one to determine the value of lambda for coefficient shrinkage.
The Laplace distribution is then characterized by a zero mean and
model-tuned variance. Significant features were determined based
upon parameter estimates where the 95% central (quantile-based)
posterior interval estimates from MCMC draws did not overlap
zero. Posterior intervals were plotted for each variant using
bayesplot (Gabry et al., 2019; Gabry and Mahr, 2022).

2.4 Processing and modelling feature data

Variant data used in the BGPWASmodel were selected from the
full set of InDels using ranges for known loci and novel associations
in concert with BEDTools (Quinlan and Hall, 2010) or BCFtools
(Danecek et al., 2021). Any features overlapping those ranges
were written to gene-specific VCF files before converting
variant data to numeric format using VCFtools (Danecek
et al., 2011). Gene-specific variants were iterated over using

BGPWAS to identify significant features, where iteration,
modelling, and plotting were all done in R version 4.1.0 (R
Core Team, 2021). Annotation information was obtained from
the sorghum BTx623 version three annotation (McCormick
et al., 2018), UniProt (UniProt Consortium, 2021), and/or
the String protein-protein interaction database (Szklarczyk
et al., 2019). Individual String networks were generated using
either sorghum or rice genes to identify interacting proteins and
functional pathways. These networks may further be used to
identify putatively interacting proteins subject to AlphaFold
modeling. Scripts used for analyses are available on GitHub
(https://github.com/jlboat/BGPWAS).

2.5 Protein alignment and folding

InDels with significant associations for Ma1, Tan1, and
Dw2 were then used in conjunction with the corresponding
transcript sequences to manually generate the mutant alleles.
Alternative transcripts were then translated using ExPASy
(Gasteiger et al., 2003) to determine the effects of each variant
on protein sequence. The resulting proteins were aligned with the
annotated transcripts using the Clustal Omega multiple sequence
aligner through EMBL-EBI with default parameters (Madeira et al.,
2022) to visually compare the original and truncated sequences.
Protein folding was performed for alternative transcripts using
AlphaFold 2 (Jumper et al., 2021) through ColabFold (https://
github.com/sokrypton/ColabFold) (Mirdita et al., 2022) available
through Google Colab (https://colab.research.google.com/).
AlphaFold two was executed using the global superposition
metric template model (TM) for protein structure prediction.
Output from AlphaFold two includes PDB formatted structures
sorted by average predictions of side-chain χ angles and per-residue
accuracy of the structure estimated using the predicted local distance
difference test (pLDDT) where complexes are sorted by the
predicted TM score, plots of the model quality (i.e., predicted
aligned error (PAE), pLDDT, and sequence identity to query
coverage), and multiple sequence alignment files (Mirdita et al.,
2017; 2019; Mitchell et al., 2019; Jumper et al., 2021; Mirdita et al.,
2022).

3 Results

3.1 Bayesian model comparison

The BGPWAS was designed using a horseshoe prior to
effectively shrink non-relevant coefficients (Piironen and Vehtari,
2017c). This allows for feature selection across the phenomic data
while permitting estimation of the remaining parameters without
the strong shrinkage. By comparing Bayesian Ridge regression
results (Figures 1A, 2A) with those from the Lasso (Figures 1B,
2B) and horseshoe model (Figure 1C and 2C), it is clear that the
horseshoe and Lasso priors effectively shrink priors of non-relevant
traits as compared to the Ridge model (Figure 2C). The Ridge
regression incorrectly associated several panicle-related traits with
the tannin-related locus, which was a consistent pattern across Ridge
regression results for different loci. Unlike Ridge regression, Lasso
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results were largely consistent with the traits known to be associated
with characterized loci. However, the Horseshoe regression
provided unshrunken estimates of beta, thereby leading to
stronger associations than those of the Lasso model. As the
Horseshoe regression results were largely similar with the
exception of the shrinkage differences, only the variants that
showed strong associations from Horseshoe regression were
considered for downstream loss-of-function analyses.

3.2 Confirmation of characterized loci

In sorghum, there are several well-characterized loci for
maturity (Ma1 and Ma3), tannin content (Tan1, Tan2, and Y1),
and plant height (Dw1, Dw2, and Dw3). We performed BGPWAS
analysis of InDels falling within these genes as a means of assessing
model accuracy. For maturity genes, many maturity-dependent
traits were associated - particularly traits mediating both biomass
and grain yield (Table 1). Similarly, the dwarfing genes were strongly
associated with plant height traits such as the stem size, length from

flag leaf to apex, and plant surface area (Table 1). Genes Ma1 and
Dw2, which are known to have large, pleiotropic effects, had a higher
number of associated traits than those genes that only affected a few
traits. The pleiotropic nature of several tannin genes was also evident
as three of the primary tannin loci were also associated with metal
binding (aluminum, iron, and zinc) (Figures 1, 2; Table 1). The
affinity of tannins for metal binding is well documented across a
variety of metals and plant species including close relatives of
sorghum, maize, and pearl millet (Kidd et al., 2001; Barcelo and
Poschenrieder, 2002; Kochian et al., 2004; Lestienne et al., 2005; Su
et al., 2022).

A significant association in Ma1 with a single-base deletion at
Chr06_40312436 corresponded with a loss-of-function mutation
that affects the protein product via a frameshift mutation (Figures 3,
4). The ma1 mutant protein is approximately 60% the size of the
native transcript. This truncation also results in the partial loss of a
response regulatory domain and the total loss of an intrinsically
disordered region (IDR). Similarly, for the well-documented Dw2
gene, we identified a loss-of-function mutation that significantly
affects the translated protein via a frameshift mutation that results in

FIGURE 1
Posterior estimates of β for traits associated with Tan2 (Chr2:7,976,118) using (A) Bayesian Ridge, (B) Lasso, and (C)Horseshoe Regression. Boxplots
represent the 95% highest posterior density interval (HPDI) based on MCMC samples.
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a product less than one-quarter the original size (Figure 5). This
frameshift mutation also results in the loss of the sole kinase domain
as well as three IDRs (UniProt Consortium, 2021).

Two major alternative alleles were identified within the Tan1
gene (Figure 6). The two alleles identified were consistent with the
previously identified tan1a and tan1b alleles (Wu et al., 2012) with
the exception that the 10-bp deletion sequence (deletion relative to
the BTx623 reference genome in contrast toWu et al. (2012) where it
was considered an insertion relative to the ShanQuiRed
wildtype—PI656025) was GCGGCGGGCA instead of
CGGGCAGCGG. This difference may occur due to reference
genome versions, the different sequencing approaches used, or a
technical error. The annotated Tan1 protein exhibited predicted
multimer formation scores with Tan2 at the threshold for acceptable
interface pTm (ipTm) scores (ipTm > 0.7), where an ipTm of zero
indicates no evidence of multimer formation, an ipTm of one
represents a perfect score, and 0.75 represents a standard
significance cutoff. Translation of the tan1a mutant allele
resulted in a protein product that demonstrated exceptionally
poor predicted multimer formation scores (ipTm < 0.3) with the
annotated Tan2 protein (Figure 7). These results contrast with those

seen for the 10-base altered tan1b allele, which demonstrated very
high predicted multimer scores (ipTm > 0.9). This strong
interaction effect is also consistent with the fact that mutations
in either gene have been shown to mask effects of a dominant allele
at the other locus (Yang et al., 2022).

3.3 Candidate prediction for
uncharacterized loci

Using the data from the WGS of the SAP (Casa et al., 2008;
Boatwright et al., 2022a), we selected 46 genes falling around the
novel loci identified by Boatwright et al. (2022a) for tannin content
100 kb upstream and downstream of the top associations on Chr03
(centered at Chr03:60,368,179 and Chr03:60,722,769) as well as
64 genes within a larger span from 57 to 57.5 Mb on Chr03, which
were selected based on previous mapping of the R locus (Rhodes
et al., 2014; Kimani et al., 2020; Nida et al., 2021). This resulted in the
selection of 110 genes for subsequent BGPWAS analysis. From the
set of 46 genes, only four exhibited associations with tannin content
including Sobic.003G266100 (a HEAT repeat-containing protein),

FIGURE 2
Posterior estimates of β for traits significantly associated with Tan2 (Chr2:7,976,118) using (A) Bayesian Ridge, (B) Lasso, and (C) Horseshoe
Regression. Histograms represent the 95% highest posterior density interval (HPDI) based on MCMC samples.
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TABLE 1 Genotype-Phenotype associations by gene.

Gene name Gene ID Phenotypes

Characterized

Tan2 Sobic.002G076600 Tannins, Iron

Tan1 Sobic.004G280800 Tannins, Zinc

Y1 Sobic.001G397900 Aluminum

Dw1 Sobic.009G229800 PlantSurfaceArea

Dw2 Sobic.006G067700 FlagToApex, PanicleBranches,PanicleBranchLength

Dw3 Sobic.007G163800 StemSize

Ma1 Sobic.006G057866 HeightFlagLeaf, HydrolysisRate,LeafAngle, ShootLength,ShootWeight

Ma3 Sobic.001G394400 PanicleBranches, Tannins

Uncharacterized

Dw4 Sobic.006G028000 BranchInternodeLength

HEAT Sobic.003G266100 Tannin, Aluminum,SeedWeight, SeedDeteriorationetc.

CYP711A1 Sobic.003G269600 Tannin, SeedWeight

CMT Sobic.003G269700 Tannin, Copper,FlagToApex

MYB86 Sobic.003G270300 Tannin, SeedAcidFiber,SeedWeight, Sodiumetc.

R locus Sobic.003G233200 Tannin, Zinc,BranchInternodeLength

CA Sobic.003G234200 Tannin, Aluminum,RachisTraitsetc.

UBC Sobic.001G526600 Indium

PLATZ Sobic.007G018550 BranchInternodeLength, BranchLength,RachisLength

FIGURE 3
Protein structures predicted for Ma1 using AlphaFold two for both the (A) annotated protein and (B) truncated protein based on a single-base
deletion at Chr06_40312436. Protein coils represent α helices and arrows represent β-pleated sheets.
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Sobic.003G269600 (a cytochrome P450 gene, CYP711A1),
Sobic.003G269700 (a SAM-dependent carboxyl
methyltransferase), and Sobic.003G270300 (MYB86).

CYP711A1 orthologs like that at Sobic.003G269600 are known to
be involved in strigolactone/carotenoid biosynthesis (Vinde et al.,
2022). Similarly, the sorghum gene Sobic.003G270300 encodes a

FIGURE 4
Boxplots of height to flag leaf best linear unbiased predictions by genotype (either homozygous reference 0/0 or homozygous alternative 1/1) for a
four-base deletion in Ma1 at Chr06_40305333. These two groups were significantly different (t-test) at p < 0.001.

FIGURE 5
Protein structures predicted for Dw2 using AlphaFold two for both the (A) annotated protein and (B) truncated protein. Protein coils represent α
helices and arrows represent β-pleated sheets.
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MYB transcription factor, and orthologs of this gene are known to
regulate flavonoid biosynthesis (Cheng et al., 2021; Song et al., 2022).
In rice, the Sobic.003G269700 ortholog (Os01g0701700) is closely
associated with genes involved in terpene synthase activity (red) and
the Shikimate metabolic process (blue) (Figure 8), which serves as
the gateway to biosynthesis of phenylpropanoids (Tian et al., 2019).
Similarly, from the set of 64 genes representing putative R locus
genes, only two genes were associated with tannins,
Sobic.003G233200 and Sobic.003G234200. Another gene,
Sobic.003G270500, was previously identified as a potential
candidate gene for the R locus (Boatwright et al., 2022a). While
this locus encodes a farnesyl diphosphate transferase known to
regulate terpene and terpenoid biosynthesis (Figure 9) (Davis and
Croteau, 2000; Boatwright et al., 2022a), we did not detect any
significant associations for tannin content. Instead, based on
BGPWAS results, the two candidate genes were
Sobic.003G233200 and Sobic.003G234200.
Sobic.003G233200 encodes a cinnamoyl-CoA reductase-related
(CCR-related) gene, and Sobic.003G234200 encodes a carbonic
anhydrase.

In addition to tannin related loci, we also explored the QTL
known as Dw4 for the best candidate gene. The Dw4 locus has been

FIGURE 6
Multiple sequence alignment of the Tan1 alleles. The allele names include the Tan1 allele with a 10-bp deletion (Tan1_10-base), 1-bp deletion (Tan1_
1-base), and the BTx623 version 3.1.1 annotated protein (Tan1_annotated). Consensus symbols include asterisks, which indicate positions with fully
conserved residues, colons, which indicate conservation among amino acids with strongly similar properties, and periods, which indicate conservation
between groups with weakly similar properties. Positions without consensus symbols represent non-conserved substitutions or deletions.

FIGURE 7
Protein structures predicted for the Tan1-Tan2 multimer using
AlphaFold two for the translated tan1b allele and the Tan2 annotated
protein. Protein coils represent α helices and arrows represent β-
pleated sheets.
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previously identified by multiple publications (Morris et al., 2013;
Miao et al., 2020; Boatwright et al., 2022a). Using variants 100 kb
upstream and downstream of the QTL on Chr6, we performed
BGPWAS to identify potential candidate genes. BGPWAS results for
the Dw4 locus (Li et al., 2015; Boatwright et al., 2022a) indicate that
Sobic.006G028000 is the primary candidate regulating plant height
at this site. This gene encodes a fatty acid amide hydrolase.

4 Discussion

The primary methods utilized to perform phenomic analysis for
genotype-phenotype associations involve individually identifying
associations for every variant-trait pair one-at-a-time. Alternative
methods for multiple traits include multiple response GWAS (Zhou
and Stephens, 2014), meta-analyses Urbut et al. (2019), and the
recently developed GPWAS (Liang et al., 2020). Among these, both
meta-analyses and GPWAS provide the most potential for
identifying pleiotropic effects of variants across a range of traits.
Uniquely, GPWAS does not rely on traditional GWASmethodology
as a precursor for the identification of pleiotropy. Similarly, GPWAS
scales much more efficiently than meta-analyses, which incorporate
estimates for every variant with every additional trait included. As
the scale of sequencing data increases, meta-analyses will grow
increasingly computationally prohibitive. As such, we assess the

application of a BGPWAS for the identification of pleiotropy and to
serve as a means of high-throughput characterization for previously
uncharacterized loci.

4.1 Benefits and limitations of Bayesian
modelling

Liang et al. (2020) performed GPWAS using a forward stepwise
regression. In that study, every model converged within
35 iterations. However, the authors also noted that further
assessment was necessary to determine how well the GPWAS
model would converge with varying numbers of individuals or
traits, especially when highly correlated. Here, we remove highly
correlated phenotypes based on a Pearson’s correlation coefficient
> 0.95, and the implementation of the NUTS allows for reduced
sensitivity to correlated parameters (Hoffman and Gelman, 2014).
Further, our model permits the designation of a user-defined τ to
control the effective number of expected non-zero coefficients.
Stepwise regression, while an efficient approach for identifying
potential features in a regression model, exhibits several
shortcomings that are exacerbated with big data (Smith, 2018).
Stepwise regression performs what is essentially local optimization
of features by including explanatory variables incrementally. As
such, some real explanatory variables with causal effects may not be

FIGURE 8
Protein-Protein Interaction Network for the rice ortholog (P0421H07.2) of Sobic.003G269700. Interaction types were represented by different
colored edges between nodes that represent genes. Functional KEGG pathways involved in terpene synthase activity (red) and the Shikimate metabolic
process (blue) are highlighted. Network results were generated using the String protein-protein interaction database (Szklarczyk et al., 2019).
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statistically significant, and conversely, some nuisance variables may
be significant. Similarly, the inclusion of nuisance variables risks
collider bias among the covariates in the reverse regression (Day
et al., 2016). Instead, the shortcomings of stepwise regression are
better addressed using Bayesian approaches where feature effects
have explicit prior uncertainty that mediate the relevance of
included features (Smith, 2018) and where parameters may be
estimated in an unbiased manner when the response variable is
not conditionally independent of one explanatory variable given
another explanatory variable (Kelter, 2022). Since Bayesian models
provide several benefits over frequentist stepwise regression, we have
opted to compare the effectiveness of Bayesian models for variable
selection including ridge, lasso, and horseshoe priors (Piironen and
Vehtari, 2017a; b,c). Both the lasso and horseshoe priors are
examples of sparse Bayesian models, which induce variable
selection by shrinking coefficients to zero. These sparse Bayesian
models are able to estimate parameters in which p ≫ n (Johnson,
2013).

Limitations for the BGPWAS include longer runtime
requirements than frequentist approaches and, in its current
form, variants must be run individually - rather than running a
multiresponse model. The NUTS generates estimates for a single
variant in about 3 minutes (including data import and cleaning),
which can be a limiting factor at larger scales. We minimized
computational requirements both by focusing analyses on known
QTL and by limiting associations to InDels that resulted in
frameshift mutations. This not only reduces the total number of
tests necessary but also shifts focus to those InDels most likely to

result in loss-of-function mutations. Similarly, the BGPWAS was
not written in multi-response form both to reduce computational
requirements and avoid complications in sampling. Sampling of
multi-response models resulted in a significant number divergent
transitions and significantly longer sampling times to overcome low
effective sample sizes. Instead, running variants individually allowed
for parallelization of runs and circumvented issues with highly
correlated variants, which are exceptionally common when
examining variants falling within a single locus. Importantly,
issues with generating estimates from complex, multi-response
models are not unique to Bayesian models, but rather the
Bayesian model makes explicit the issues inherent in generating
estimates from complex models that derivative-based maximum
likelihood approaches do not.

4.2 In-silico characterization of maturity and
dwarfing loci

For validation of our model, we primarily focused on two well-
documented traits, plant height and tannin content. Not only are
these traits thoroughly studied in sorghum (Rhodes et al., 2014; Li
et al., 2015; Boatwright et al., 2022a), but these traits are also the
focus of studies across plant models (Yin et al., 2022). Genes
regulating both maturity and plant height were introgressed into
elite germplasm during the sorghum conversion program (SCP) for
photoperiod conversion and short stature (Stephens et al., 1967;
Duodu et al., 2003; Klein et al., 2008). These traits represent vital

FIGURE 9
Protein-Protein Interaction Network for the rice ortholog (SNL6) of the R locus gene Sobic.003G233200. Interaction types were represented by
different colored edges between nodes that represent genes. Functional KEGG pathways involved in flavonoid (red) and phenylpropanoid (blue)
biosynthesis are highlighted. Network results were generated using the String protein-protein interaction database (Szklarczyk et al., 2019).

Frontiers in Genetics frontiersin.org11

Boatwright et al. 10.3389/fgene.2023.1143395

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.1143395


characteristics for sorghum grain production in temperate
environments and combine harvesting. Similarly, tannins provide
value in reducing bird pressure and human gut health but confer a
bitter flavor to the grain and impede protein digestibility via
indigestible protein–tannin complexes (Tipton et al., 1970; Yang
et al., 2022). In addition to focusing on genes important for breeding
targets, we also focus discussion on InDels with significant effect on
protein structure. To date, studies on InDels are limited in plants,
particularly in regard to their application in a breeding program.
However, InDels represent an important class of variants that are
more likely to affect protein structure or function when they occur
within an open reading frame. Further, many programs focus on the
use of SNP variants due to the ease of obtaining such data and the
scale at which they may be acquired. We highlight the flexibility of
our model to incorporate diverse variant types for discovery.

The mutant alleles of the Ma1 gene were introgressed into
sorghum breeding lines during the SCP due to their ability to
confer early maturity. Ma1 has several known loss-of-function
alleles that have been validated using positional cloning (Murphy
et al., 2011). One particular InDel identified in this gene, previously
identified as Sbprr37-1 (Murphy et al., 2011), significantly affects
protein length (a 40% reduction in length) via a frameshift mutation
that results in an early stop codon. This early truncation also results
in the loss of an IDR and an response regulatory (RR) domain. IDRs
increase the functional versatility of proteins by facilitating
interactions between the structural domains of other proteins,
and IDRs are frequently targeted for post-translational
modifications that affect the functional state of the protein (Van
Der Lee et al., 2014). Response regulatory domains are known to
interact with phosphorylated histidine kinases and catalyze the
transfer of a phosphoryl group to an Asp residue in the protein
containing the RR domain. RR domains also demonstrate the ability
to catalyze autodephosphorylation and regulate effector domain
activity in a phosphorylation-dependent manner (Gasteiger et al.,
2003). As over half of the response regulatory domain is lost, this
frameshift mutation results in a non-functional protein as previously
determined using cloning (Murphy et al., 2011). As Ma1 affects
plant maturity, it also exhibits a pleiotropic effect across a variety of
traits such as height to flag leaf as identified here (Figure 4).

Among the known dwarfing genes in sorghum (Dw1-3), we were
able to identify a loss-of-function mutation in Dw2. Along with the
other major dwarfing genes, Dw2 was introgressed into breeding
lines during the SCP due to its ability to confer short stature which
facilitates combine harvesting. This particular gene exhibits a large
effect on plant height and was the second most significant QTL
identified for plant height based on whole-genome sequencing of the
SAP (Boatwright et al., 2022a). As the InDel located within Dw2
results in significant loss of several IDRs and a kinase domain, this
frameshift mutation likely results in complete loss of function. In
addition to the known Dw loci, we also explored the genes falling
within a known QTL (on Chr6) designated as Dw4 (Morris et al.,
2013; Miao et al., 2020; Boatwright et al., 2022a). Importantly, this
locus is not to be confused with another QTL for plant height and
biomass, which has also been categorized as a potential Dw4 locus
(on Chr4) (Li et al., 2015; Brenton et al., 2020; Boatwright et al.,
2022b). The only significant association for plant height within the
documented QTLwas Sobic.006G028000, which encodes a fatty acid
amide hydrolase. Interestingly, plant amidases have been shown to

serve important physiological roles in plant growth and stress
responses (Moya-Cuevas et al., 2021). The Arabidopsis ortholog
for this amidase gene exhibits some role in sink-to-source transition
within the vascular tissues (Wu et al., 2013). Sink-to-source
transition represents a vital breakpoint in development at which
carbon and nitrogen pools are remobilized, and there is a transition
to accumulating carbohydrates and depleting both inorganic and
organic nitrogen (Masclaux et al., 2000). As such, this gene may
regulate plant height by prolonging the growth phase of sorghum
plants and delaying grain filling and senescence (Masclaux et al.,
2000).

4.3 In-silico characterization of tannin loci

In Arabidopsis, there are three transparent testa genes known to
regulate tannin content, including TTG1 (a WD-repeat protein),
TT2 (an R2R3-MYB transcription factor (TF)), and TT8 (a basic
helix-loop-helix (bHLH) TF). These three genes work in a complex
and directly activate BANYULS expression (Baudry et al., 2004).
However, this complex is not conserved in maize, a closer relative of
sorghum. Instead, PL/C1 (MYB TFs) and B/R (bHLH TFs) proteins
mediate developmental-stage- and tissue-specific patterns of
anthocyanin production, while PAC1 (a WD40 protein) is
required by both B1 or R1 proteins for maximum production of
anthocyanin in root tissue and seeds (Carey et al., 2004). While
TT2 and TT8 are believed to form a heterodimer in sorghum, the full
set of interactors during potential multimer formation is unclear.
We also assessed whether the sorghum TT2 (Y1) and TT8 (Tan2)
exhibited significant binding affinity as that observed for the
orthologs in Arabidopsis. Iteration of the various protein
isoforms all resulted in ipTm values less than 0.25, well below
our significance threshold of 0.75. Similarly, the multimer of
Tan1, Tan2, and Y1 exhibited ipTm values < 0.6. Given the
sensitivity of Alpha Fold to the isoform used, it may be that the
Y1 allele used was incorrect for multimer formation. We
additionally examined the potential for Tan1 (a WD-repeat
protein like TTG1) and Tan2 proteins to generate a heterodimer.
Interestingly, the tan1b allele exhibiting a high predicted multimer
score with the annotated Tan2 allele at an ipTm > 0.9 (Figure 7).
This is potentially consistent with Tan1 serving the homologous role
of Arabidopsis TTG1 (or maize PAC1) and Tan2 as the
TT8 ortholog. This interaction is consistent with observations
that mutations in either gene mask effects of a dominant allele at
the other locus (Yang et al., 2022). By jointly using the BGPWAS
model with Alpha Fold, the process of screening functionally
relevant mutations may be reduced to just a few hours of
compute time. It is worth noting that there are several
limitations for multimer modeling that are worth exploring. First,
there are limitations to the current AlphaFold model that may make
particular protein conformations difficult to model. Thus, the
absence of a strong multimer model may not be indicative of the
true biological state. Second, multimer formation may be rescued in
spite of the presence of indels in a given gene by stoichiometry of
functional monomers, isoforms, other homologues present in the
sorghum genome. Running additional models with potential
functional homologs could support a redundant action. Though,
prediction of protein conformation is currently the most resource
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intensive step of this current approach and likely will remain so in
the near future. Non-etheless, where multimer formation (or lack of
formation) is supported by significant phenotypic differences and
BGPWAS associations between wild type and mutation individuals,
these in silico methods may provide significant support prior to
exploring tissue culture or transformation.

While the R locus represents a regularly identified locus for
tannin content, to date, the gene responsible for these associations
has remained elusive. In our analysis of the variants falling within
this QTL, we identified two primary candidates,
Sobic.003G233200 and Sobic.003G234200.
Sobic.003G233200 encodes a cinnamoyl-CoA reductase-related
(CCR-related) gene. Significantly, CCR genes have been shown to
profoundly affect soluble phenolic pools in tomato (Van der
Rest et al., 2006), and both the Arabidopsis and rice orthologs of
this gene are associated with flavonoid (red) and
phenylpropanoid (blue) biosynthesis (Figure 9) (Szklarczyk
et al., 2019). Similarly, CCR genes affect traits similar to
those known to be regulated by the R locus in sorghum,
particularly where knockouts exhibit reduced tannins and a
yellow seed color in Brassica napus (Yin et al., 2022).
Conversely, the only other gene associated with tannin
content within the R locus span was Sobic.003G234200,
which encodes a carbonic anhydrase. As tannins are known
to act as carbonic anhydrase inhibitors through inhibitive
binding by two tannin molecules (Karioti et al., 2016), this
action does justify the association. However, this action does
not support the functional role associated with known
phenotypes for this locus and as such, this gene is not likely
to significantly affect seed color nor to be the primary driver for
associations within the R locus. The ability to further dissect the
role of individual genes within a QTL has the potential to
improve breeding pipelines whether through targeted
breeding (Zhang et al., 2014), marker-assisted selection
(Dudley, 1993), or another technology.

4.4 Additional examples of model accuracy

As an additional example of model accuracy, we assessed a
random selection of 30 genes - three per chromosome - representing
322 variants - both SNPs and InDels. In total, 10 of the 30 genes had
no associations, but the remaining 20 genes were associated with
65 traits. Here, we highlight some interesting associations. One of
the gene examined was the sorghum gene Sobic.007G018550
(Table 1). While this locus was not annotated in the original
BTx623 v3.1.1 annotation (McCormick et al., 2018), later
annotation of this locus (UniProt Consortium, 2021) identified it
as a putative PLATZ transcription factor (TF) (Fu et al., 2020).
Interestingly, PLATZ TFs are known to regulate seed endosperm
development and increase the rate and duration of cell proliferation
especially in the leaf tissue during earlier stages of development (Fu
et al., 2020). Consistent with this, our BGPWAS identified branch
length, branch internode length, and rachis lengths as the primary
traits associated with this locus. We also identified a potentially
novel association for a ubiquitin-conjugating enzyme
(Sobic.001G526600) with indium stress. This is interesting as an
Arabidopsis ubiquitin-conjugating enzyme (PHOSPHATE2:

PHO2) has been shown to be required for the degradation of
PHO1 protein and subsequent mediation of indium toxicity
(Chang et al., 2020). By performing BGPWAS across known
QTL and arbitrary genes, we have demonstrated the ability of
this model to detect genotype-phenotype associations that
support previously observed biological roles, identify pleiotropic
effects of loci, provide functional annotation of InDels and other
variants, and, in conjunction with Alpha Fold, to provide an in silico
alternative to the traditional methods for phenotypic
characterization.

5 Conclusion

Here, we demonstrated the value of our BGPWAS as a proof
of concept approach to identify breeding targets in the form of
genes with gain/loss of functions for given traits and to identify
putative pleiotropy of associated loci/variants. We further show
that even previously characterized sorghum genes possess
major InDels that directly affect protein folding and
interactions during multimer formation. As a high-
throughput approach for in silico characterization of loci,
this model could serve to expedite the process of moving
from novel QTL to their functional characterization and the
introgression of desired loci in a breeding program. Further, by
serving as a quick in silico alternative to existing cloning and
validation procedures, this model may serve as a vital tool for
identifying key functional targets to act upon for improvement
across all species and alleviate some of the current bottlenecks
in functional genomics.
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