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OF NEURAL NETWORKS 
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Abstract. Artificial neural networks are essential intelligent tools for various learning tasks. Training them is challenging due to the nature of the data set, 
many training weights, and their dependency, which gives rise to a complicated high-dimensional error function for minimization. Thus, global 

optimization methods have become an alternative approach. Many variants of differential evolution (DE) have been applied as training methods 

to approximate the weights of a neural network. However, empirical studies show that they suffer from generally fixed weight bounds. In this research, 
we propose an enhanced differential evolution algorithm with adaptive weight bound adjustment (DEAW) for the efficient training of neural networks. 

The DEAW algorithm uses small initial weight bounds and adaptive adjustment in the mutation process. It gradually extends the bounds when a component 

of a mutant vector reaches its limits. We also experiment with using several scales of an activation function with the DEAW algorithm. Then, we apply 
the proposed method with its suitable setting to solve function approximation problems. DEAW can achieve satisfactory results compared to exact 

solutions. 
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ULEPSZONY ALGORYTM EWOLUCJI RÓŻNICOWEJ Z ADAPTACYJNYMI GRANICAMI WAG 

DLA EFEKTYWNEGO SZKOLENIA SIECI NEURONOWYCH 

Streszczenie. Sztuczne sieci neuronowe są niezbędnymi inteligentnymi narzędziami do realizacji różnych zadań uczenia się. Ich szkolenie stanowi 

wyzwanie ze względu na charakter zbioru danych, wiele wag treningowych i ich zależności, co powoduje powstanie skomplikowanej, wielowymiarowej 
funkcji błędu do minimalizacji. Dlatego alternatywnym podejściem stały się metody optymalizacji globalnej. Wiele wariantów ewolucji różnicowej (DE) 

zostało zastosowanych jako metody treningowe do aproksymacji wag sieci neuronowej. Jednak badania empiryczne pokazują, że cierpią one z powodu 

ogólnie ustalonych granic wag. W tym badaniu proponujemy ulepszony algorytm ewolucji różnicowej z adaptacyjnym dopasowaniem granic wag (DEAW) 
dla efektywnego szkolenia sieci neuronowych. Algorytm DEAW wykorzystuje małe początkowe granice wag i adaptacyjne dostosowanie w procesie 

mutacji. Stopniowo rozszerza on granice, gdy składowa wektora mutacji osiąga swoje granice. Eksperymentujemy również z wykorzystaniem kilku skal 

funkcji aktywacji z algorytmem DEAW. Następnie, stosujemy proponowaną metodę z jej odpowiednim ustawieniem do rozwiązywania problemów 
aproksymacji funkcji. DEAW może osiągnąć zadowalające rezultaty w porównaniu z rozwiązaniami dokładnymi. 

Słowa kluczowe: sieć neuronowa, ewolucja różnicowa, trening sieci neuronowej, aproksymacja funkcji 

Introduction 

The artificial neural network (ANN) is one of the most 

popular machine learning techniques and has continuously gained 

attention in many research fields. The ANN learning procedure 

imitates the behavior of the nervous system and has multiple 

characteristics, such as the number of connecting nodes 

and layers, the initial values of weights, and the types of a transfer 

function (or activation function). The procedure forwardly 

transforms input data to output as a mapping function using 

weights and the transfer function. The network training finds 

the optimal weights that minimize the error between the actual 

target and network output on the sample input data. Therefore, 

the training algorithm which applies an optimization method 

for minimization strongly affects the performance of ANN. 

In the beginning, Back-propagation (BP) [24] was the training 

method for the multilayer perceptron algorithm. The BP algorithm 

is a gradient descent optimizer technique that minimizes functions 

by iteratively moving in the direction of the steepest descent 

as defined by the negative of the gradient. The BP algorithm has 

powerful local search capability but has a few drawbacks. Since 

the objective function of ANN is a multi-modal function [9] that 

has several local minima, the algorithm can get stuck into a local 

minimum. Moreover, it possibly has a slow convergence speed 

depending on the learning parameter values [4, 22–23, 28].  

Global search methods are an alternative approach widely 

studied and applied as training methods for neural networks 

to overcome the limitation of the traditional gradient-based 

algorithm. Over the last decade, many researchers have developed 

global techniques based on natural inspiration that are population-

based and capable of parallel calculations. They do not require 

the derivative computation and can provide the global minimum 

for the multi-modal objective functions of ANN. 

The Differential Evolution (DE) algorithm is one of those 

popular global approaches. The method is an efficient population-

based technique developed by Rainer Storn and Kenneth Price 

[26] for optimization problems over continuous domains. Many 

DE variants were proposed based on various modifications 

of initialization, mutation, crossover, selection, and hybridization 

schemes [20]. Mezura et al. [16] empirically compared some DE 

variants to solve global optimization problems. The results 

showed that the rand/1/bin mutation scheme performs well 

for multimodal functions. The DE is an attractive optimization 

tool compared with other evolutionary algorithms due to ease 

of implementation, robustness, and a few control parameters. 

The beneficial usages of the DE algorithm for training networks 

are its ability to reach a global minimum of the objective function, 

quick convergence, and a small number of parameters of the 

network settings. Moreover, it is possible to adjust some essential 

parameters during the process execution. Also, the DE can train 

the network with non-differentiable transfer functions where 

the gradient information is unavailable. 

In this study, we concern with the learning algorithm 

of the feed-forward neural network using the DE. We study 

the capabilities of the network parameters, i.e., weight bounds 

and scaling of activation function, which affects the performances 

of DE for finding the solution in terms of search space and output 

space. The automatic adjustment of the weight bounds 

in the mutation processing stepand various scale parameters 

in the activation function are studied. 

We organize the rest of this paper into the following sections. 

Section 1 provides the literature reviews concerning training ANN 

using the DE algorithm and the influences of weight bounds. 

The DEAW algorithm, an implementation of DE with the weight 

bound adjustment as a training approach, is described in section 2. 

Then, we use the DEAW algorithm to solve the function 

approximation problems. The preliminary and comparison 

experiments, results, and discussion are presented in Section 3. 

Finally, section 4 is a conclusion and future work. 

user
Stempel
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1. Literature reviews 

1.1. Training neural networks using differential 

evolution 

In 2008, Gao and Liu [10] proposed a modified DE 

by introducing the mutation operator coupled with Back-

propagation (BP) training algorithm to solve the exclusive-OR 

(XOR) problem and function approximation. The method can 

reduce the training time, improve the training accuracy, 

and perform more steadily than the classical BP. Subudhi and Jena 

[27] solved a non-linear system identification problem using 

an improved DE with Lavenberg Marquardt (LM) algorithm 

to train the ANN. The method gives better results in terms 

of convergence speed and identification errors. Garro et. al. [11] 

applied the classical DE to ANN for solving the non-linear pattern 

classification problems. The algorithm can search for optimal 

synaptic weights by employing a few parameters to tune and 

perform better than the PSO algorithm on the UCI machine 

learning benchmark repository [31]. Morse and Stanley [19] also 

applied the self-adaptive DE algorithm (SDE) to train the ANN. 

The parameters 𝐹 and 𝐶𝑅 of the DE are adaptively adjusted. 

The SDE gives better results when compared to training ANN 

by GA algorithm and standard DE on four sets of the UCI dataset. 

Si et al. [25] presented a DEGL approach to combine global and 

local mutation steps to create a candidate population vector using 

the mutation probability adaptation to balance the searchability. 

They tested the method on four benchmark functions and seven 

classification problems. The proposed method shows superior 

performance in less complex networks with a small number 

of generations compared to the classical DE algorithm. 

Comparative performances of a neural network trained with 

variant DE also have been studied. Baioletti et al. [1] tested 

various combinations of self-adaptive methods (i.e., JDE, JADE, 

ShaDE, L-ShaDE, MAB-ShaDE, SAMDE), mutation, and 

crossover operators on some well-known classification problems. 

The experiments showed that the results from the neural network 

obtained with DE training are better and more robust than those 

from back-propagation. 

Nevertheless, Piotrowski [21] studied the performance 

of variant DE such as DEGL, DE-SG, DEGL-Epitr, JADE, 

SADE, SspDE, Trig-DEGL, Trig-DEGL-Epitr, and the empirical 

experiments showed that various DE algorithms fell into 

stagnation during the training of ANN. Moreover, the methods 

performed poorer than the classical Levenberg-Marquardt 

algorithm. The stagnation of DE occurs because of the undesired 

effect of the lack of difference vectors of small magnitude; 

in other words, the population stops proceeding toward 

the optimum even though the population diversity remains high. 

The paper showed that the appropriate range initialization 

and bound limitation strongly influence speed and efficiency 

for exploring the solution and are critical to convergence. In that 

research, they demonstrated that the smaller range and the broader 

bound gave the best results. By using the set-up, initial the weights 

with [-1,1] and limit the bound to [-1000,1000], during the 

beginning stage, the individual disperses rapidly in the decision 

space, and the magnitude of the difference vector increase, 

irrespective of DE variant used; however, the improvement slows 

down during the later stage of the run and leads the algorithm 

to fall into stagnation. However, several works on training ANN 

using the DE method did not investigate how to calibrate 

the weight bound that significantly affects the process of finding 

the solutions. 

1.2. The influence of weight bound 

Since the solutions of network training are the synaptic 

weights in various ranges, DE suffers from the problem of the 

bound and size of search space [21]. The population-based method 

needs to search the solution space. It is not only the bounds 

of the solution that should limit during the initialization but also 

the diversity of initial weights should vary to cover all over the 

solution space. Bartlett [2-3] proposed that, by computation 

theory, the number of training data growing linearly with 

the number of adjustable parameters leads to good generalization 

performance. The performance also depends on the bound 

of the weights rather than the number of the weight connections. 

The proof also supports heuristics that attempt to keep the weight 

vectors small during training. Ismailov [13] referred to many 

previous works that the weights are not necessary a large 

magnitude. Then the author proposed the sets of weights 

consisting of a finite number of directions. The result shows that 

the weights vectors can do well approximation but not always 

possible. Hahm and Hong [12] mentioned that the weights 

in the neural networks vary; hence it is too difficult to be applied 

in applications. In their work, they showed that a network with 

suitable fixed weights and a sufficient number of neurons can 

approximate any continuous function over a compact interval. 

In 2014, H. Migdady [17] proved the delta rule for hidden 

and input weights to help understand and explain the behavior 

of the weight vectors in the feed-forward neural networks with 

BP. The proof shows that the weight vectors in the neural network 

are upper bounded, i.e., do not approach infinity. Jesus et al. [14] 

studied the effects of the initial configuration of weights on the 

training and activation function of neural networks. They found 

that the efficiency of the learning process depends on fine-tuning 

the weight vectors of the networks. In the appropriate case, 

the networks always converge to the neighborhood of their initial 

configuration. Cong et al. [6] also analyzed the effect of the initial 

weights vector in the learning process by BP. The result shows 

that the process tends to get stuck into the local minima if the 

weights start from the area which does not contain a global 

minimum. 

Therefore, the weight vectors of the neural networks should 

be initialized in a small magnitude and near the global minimum. 

They should be limited by a suitable fixed bound; otherwise, 

fine-tuned within a small range. 

Another essential factor that involves the weights of ANN 

is the activation function. Many functions have been proposed 

for different tasks, for example, binary function, radial basis 

function, and ReLu function, but the most widely used function 

is the sigmoid function. The sigmoid function consists 

of 3 parameters that affect the range of the outputs as illustrated 

in the figure 1. 

As shown in figure 1, if input 𝑥1 and 𝑥2 are slightly different 

values, a small parameter 𝑐1 gives a smoother different output 

than a large one which provides rapid change. Increasing 

the parameter 𝑐1 in the ANN training by DE application for 

approximation and classification, the magnitude of the difference 

of output vectors will be increased, thus, leading the individual 

population to explore the search space rapidly. Therefore, 

we investigate the various values of parameter 𝑐1, called the 

activation scale. 

 

Fig. 1. Basic sigmoid function. The 3 parameters are 𝑥 , 𝑐1 and 𝑐2. 𝑥 is an input 

of the function, 𝑐1 affects the slope of the function and 𝑐2 is a translation of axes 
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2. Background and methodology 

2.1. Feed-forward neural network 

In this work, the Multilayer perceptron (MLP) is a general 

structure of our study. MLP is a feed-forward neural network 

consisting of multiple layers: an input layer, one or more hidden 

layers, and an output layer. Each layer has nodes where each node 

is fully weight interconnected to all nodes in the subsequent layer 

as shown in figure 2.  

 

Fig. 2. Feed-forward neural network model 

An MLP transforms the inputs into the outputs through the 

non-linear function; called the transfer function or activation 

function, expressed by: 

 𝑥ℎ = 𝑓1([𝑥𝑖], [𝑤𝑖,ℎ])  =  𝑓1(∑ (𝑥𝑖 ∗ 𝑤𝑖,ℎ)𝑑
𝑖=1 ) (1) 

 𝑥𝑜 = 𝑓2([𝑥ℎ], [𝑤ℎ,𝑜])  =  𝑓2(∑ (𝑥ℎ ∗ 𝑤ℎ,𝑜)𝑛ℎ
ℎ=1 ) (2) 

where 𝑓1, 𝑓2 are the activation functions of the hidden nodes and 

the output nodes, respectively. 𝑥ℎ and 𝑥𝑜 are the output of each 

hidden node ℎ and output node 𝑜. 𝑤𝑖,ℎ is a connecting weight 

between the input 𝑖 and the hidden node ℎ while 𝑤ℎ,𝑜 connects 

between the hidden node ℎ and the output 𝑜. In general, the 

activation function applied to the hidden node is the sigmoid 

function and that for the output is usually a linear function. The 

functions are expressed as:  

Sigmoid function 

 sigmoid(𝑥)  =  
1

1+𝑒−𝑥 (3) 

Linear function 

 linear(𝑥)  =  𝑥 (4) 

where 𝑥 is a value or a vector.  

Since the ANN learns the mathematical model by training 

the network, the training rule is essential for a learning algorithm. 

The updating rules determine how connection weights 

are changed. The learning algorithm finds the optimal weights 

by minimizing the objective function defined by the distance error 

between the target value and the output from the network. 

Let the weights vector be 𝑊 = [𝑊1, 𝑊2], where 𝑊1 = [𝑤𝑖,ℎ] and 

𝑊2 = [𝑤ℎ,𝑜]. The ANN find the optimal solutions by minimizing 

the sum of error: 

 𝐸(𝑊)  =  ∑ (𝑡𝑑 − 𝐹(𝑥𝑑 , 𝑊))
2

𝑑∈𝐷  (5) 

where 𝐷 is a set of training data and 𝑑 is the index of each training 

data. The target and output values are 𝑡𝑑 and 𝐹(𝑥𝑑 , 𝑊), 

respectively. The output 𝐹(𝑥𝑑 , 𝑊) can be calculated by 

 𝐹(𝑥𝑑 , 𝑊)  =  𝑓2(𝑓1(𝑥𝑑 , 𝑊1), 𝑊2) (6) 

2.2. Differential evolution algorithm 

Differential evolution algorithm is a population-based 

optimization method derived from the Genetic algorithm (GA). 

The method consists of three operations, i.e., mutation, crossover, 

and selection for generating new candidate solutions. Unlike GA, 

the weight called ‘Scaling Factor: 𝐹’ multiplies the difference 

between the randomized two population vectors to add to the third 

one and obtain the mutant vector. The DE crossover operator uses 

a crossover probability; named ‘Crossover Rate: 𝐶𝑅’ in the range

of [0,1] to combine the mutant vector with the target vector 

to create a trial vector. In selection, the trial candidate vector 

replaces the target vector if it gives a superior solution; otherwise, 

the original candidate remains unchanged. Many variant DE 

methods are different in the step of mutation and crossover 

[1, 7, 8]. In this work, we apply the basic mutation scheme called 

DE/rand/1/bin to avoid the effect of other improvements to the 

DEAW performance. The following steps describe the DE 

algorithm. 

● Step I: (Initialization) Randomly initial population vectors 

𝑥𝑖  ;  𝑖 = 1, … , 𝑁𝑃 

● Step II: (Mutation) Generate a mutant vector 𝑣𝑖 by adding 

weighted difference between two population vectors to a third 

one. The equation can be expressed as: 

 𝑣𝑖  =  𝑥𝑟1 + 𝐹 ∗ (𝑥𝑟2 − 𝑥𝑟3) (7) 

where 𝑥𝑟1, 𝑥𝑟2, 𝑥𝑟3 are 3 randomized distinct vectors and 

different from 𝑥𝑖, and 𝐹 is a scaling factor in the range [0.5,1]. 
● Step III: (Crossover) Create a trial vector 𝑢𝑖 from 𝑥𝑖 and 𝑣𝑖 by 

 𝐼𝐶 =  𝑟𝑎𝑛𝑑(1, 𝑛𝑑𝑖𝑚) (8) 

 𝑢𝑖,𝑗  =  {
𝑣𝑖,𝑗 𝑖𝑓 𝑟and(0,1) ≤ 𝐶𝑅 𝑜𝑟 𝑗 = 𝐼𝐶

𝑥𝑖,𝑗 𝑖𝑓 𝑟and(0,1) > 𝐶𝑅
 (9) 

where (𝑖, 𝑗) is an element 𝑗𝑡ℎ of vector 𝑖 and 𝐶𝑅 in [0,1] 
is a crossover rate. 

● Step IV: (Selection) Choose the vector for the next generation 

by comparing the objective function values of 𝑥𝑖 and 𝑢𝑖: 

 𝑥𝑖
𝑛𝑒𝑤  =  {

𝑥𝑖 𝑖𝑓 𝑓(𝑥𝑖) < 𝑓(𝑢𝑖)

𝑢𝑖 𝑖𝑓 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (10) 

Repeat Step II–IV until reaching the termination conditions. 

2.3. Training neural network by using differential 

evolution 

Applying DE to train the network, the vectors of connecting 

weights in ANN are used as the individual population vector 

of the DE algorithm, i.e., a set of population vectors 𝑊 = {𝑊𝑖}, 

where 𝑖 = 1, . . . , 𝑁𝑃 and 𝑁𝑃 is the number of populations. Let 

𝑋 = {𝑥𝑑}, 𝑇 = {𝑡𝑑} where 𝑑 = 1, … , 𝑛𝑑𝑎𝑡𝑎 are the set of training 

and target data vectors, respectively. 𝐹(⋅) is the composite 

of activation functions in the network and 𝐹(𝑥𝑑 , 𝑊𝑖) is an output 

corresponding to 𝑥𝑑 and 𝑊𝑖. In each iteration, the current weight 

vectors of ANN are obtained from the DE approach by reducing 

the error between the target 𝑇 and the output obtained from 

𝐹(𝑋, 𝑊𝑖) in the selection process. 

As described in section II, the range of the weights affects 

the approximated result of the activation function. Thus, 

the performance of the DE algorithm used for ANN training 

significantly depends on the initialization range and the bounds. 

The ANN training algorithm should initialize the weights 

in a small bound and extend it later.  

In our study, the DEAW algorithm initializes both ranges 

and bounds of the weights by small values at the beginning. 

Then, the algorithm adjusts the bound corresponding to the mutant 

vectors and the number of the current iterations in the process. 

If a component value of a mutant vector is greater than the upper 

bound or less than the lower bound, then the bound is extended. 

As a result, the search space gradually broads, and the magnitude 

of the difference vector also slightly increases. In practice, 

it is difficult to determine where the range is satisfied unless 

several empirical tests.  

The DEAW algorithm applies an adaptive process to the 

mutation step for automatic bound adjustment. The amount 

of extending rate depends on the current iteration. This strategy 

increases the rapid exploration ability of the algorithm 

at the beginning stage and decreases it at the later stage. 

The equation for adjustment is expressed as: 

 𝑒𝑥𝑡_𝑟𝑎𝑡𝑒 =  
1

𝑖𝑡𝑒𝑟
 (11) 

where 𝑖𝑡𝑒𝑟 is the number of current iteration. Algorithm 

in the figure 3 shows our enhanced DE with adaptive weights 

bound for training ANN. Also, table 1 represents all notations. 
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Fig. 3. DEAW algorithm 

Table 1. Notation 

Notation Detail 

𝑁𝑃 population size 

𝑛𝑑𝑎𝑡𝑎 number of training data 

𝑛𝑑𝑖𝑚 
dimension of the weight vector where  
𝑛𝑑𝑖𝑚 = [(𝑖𝑛𝑑𝑖𝑚 + 𝑛𝑏𝑖𝑎𝑠) × 𝑛ℎ𝑖𝑑𝑑𝑒𝑛] + [(𝑛ℎ𝑖𝑑𝑑𝑒𝑛 + 𝑛𝑏𝑖𝑎𝑠) × 𝑜𝑢𝑡𝑑𝑖𝑚] 

𝑖𝑛𝑑𝑖𝑚 dimension of the inputs 

𝑜𝑢𝑡𝑑𝑖𝑚 dimension of the outputs 

𝑛ℎ𝑖𝑑𝑑𝑒𝑛 number of hidden nodes 

𝑛𝑏𝑖𝑎𝑠 number of bias nodes 

𝑊 a set of weights vectors; 𝑊 = {𝑊𝑖  ; 𝑖 = 1, … , 𝑁𝑃} 

𝑋 a set of input data; 𝑋 =  {𝑥𝑑  ;  𝑑 = 1, . . . , 𝑛𝑑𝑎𝑡𝑎} 

𝑇 a set of targets corresponding to 𝑋; 𝑇 =  {𝑡𝑑  ;  𝑑 = 1, . . . , 𝑛𝑑𝑎𝑡𝑎}  

𝑈𝐵, 𝐿𝐵 upper and lower bounds, respectively 

𝐹 a scaling factor 

𝐶𝑅 a crossover rate 

𝑒𝑥𝑡_𝑟𝑎𝑡𝑒 extending rate 

𝐹(𝑥, 𝑊) the output of ANN for (𝑥, 𝑊) 

𝐹𝑏𝑒𝑠𝑡 minimum error obtained by current best weight vector 

𝑊𝑏𝑒𝑠𝑡 the current optimal weight vector 

3. Experimental results and discussion 

To verify the efficiency of our proposed method and control 

parameter values, we apply the DEAW algorithm to train the feed-

forward neural network for solving function approximation 

problems. The details of the experiments are described in the 

following subsections. 

3.1. Experimental setup 

In this work, we apply the DE as a learning algorithm to feed-

forward neural networks with one hidden layer. The number 

of nodes in the input layer depends on each problem and includes 

one bias. The number of hidden nodes is varied appropriately 

depending on the complexity of the problem and also includes one 

bias. The algorithm applies the sigmoid function to the hidden 

nodes while the linear function to the output nodes. 

Each experimental study performs 30 runs. We use a trimmed 

mean method for calculating the average values of the results to 

eliminate the outliers. In our tests, we trim 15% of the results, i.e., 

five runs for both best and worst cases. The maximum iteration 

depends on the training dataset and the complexity of the problem. 

The configuration of DE is simple. The algorithm uses a basic 

scheme called DE/rand/1/bin and general control parameters, 

𝐹 = 0.5, 𝐶𝑅 = 0.9. The population size is 50 for all experiments. 

More individual settings for each study are described 

in the following subsections. 

3.2. Function approximation problems 

To observe the performance of our proposed enhancement, 

we first apply the DEAW algorithm to the 1D function 

approximation. Two testing functions are described as: 

 𝑓1(𝑥) = sin(2𝜋𝑥) × (4𝜋𝑥) (12) 

 𝑓2(𝑥) = sin(2𝜋𝑥) × sin(3𝜋𝑥) × sin(5𝜋𝑥) (13) 

The data of each function is uniformly generated on 𝑥 ∈ [0,1], 
100 data for training and 199 testing data including the training 

data. As illustrated in figure 4, both functions are multimodal with 

6 and 10 local maxima/minima, respectively. 

 

Fig. 4. Illustrated graphs of the functions: (a) 𝑓1 and (b) 𝑓2 on [0,1] 

This study concerns the effects on the ANN performance 

caused by the weight bound and the activation scale. Both the 

initial and limit of weight bound are essential for the efficiency of 

the performance of ANN. Thus, we conducted two experiments. 

First, we observed the effects of different combination of fixed 

limit bounds with varied activation scales. Fig. 5(a) shows the 

values of the Sigmoid function generated on the various interval 

ranges. The graphs generated on the limit bounds have the similar 

shape but different output ranges. A small bound gives small 

output ranges, whereas a wide bound gives a larger one. However, 

as seen in the figure, the outputs are almost not changed where 

𝑥 < −10 and 𝑥 > 10. Thus, we only investigated the limit bound 

settings, [−1,1], [−10,10], [−20,20] and [−30,30] for our 

experiments. 
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Fig. 5. (a) The outputs from Sigmoid function as an activation function with scale =1. (b) Each range of bound also gives the same shapes but different output ranges. 

The outputs obtained by various activation scales express similar shapes but different slopes 

Fig. 5(b) shows the output obtained by varying the scale 

of activation function. The outputs give similar shapes but 

different slopes. Large scales show extreme slope while small 

scales show slight slope. In this study, we then use 1, 10, 20, 

and 30 as observation scales. Note that a general ANN usually 

uses [-1,1] for the bound and 1 for the activation scale. Second, 

we initialized a small range of weight bound, i.e [−2,2] 
or [−10,10] and then the range is gradually extended during 

the mutation process. For the ANN structure, we applied 

a structure 2-10-1 for this experiment. The algorithm runs 

for 50000 iterations for function 𝑓1 and 150000 for 𝑓2, or the mean 

error (VTR) reaches 0.5e-3. Tables 2 and 3 illustrate the results 

of the training and testing. The best scale for each bound 

represented in bold. 

3.2.1. The effects of varying ranges of weight 

bound and activation scales 

As shown in tables 2 and 3, a standard configuration, limit 

weight bound as [−1,1] and activation scale as 1, gives unsatisfied

results, i.e. the errors are greater than the VTR. In table 2, 

the results of the 𝑓1 approximation obtained by limiting the bound 

to [−1,1] and [−10,10] with scale 1 show unsuccessful converge 

to the VTR. Nevertheless, increasing of activation scale can 

improve the accuracy but has to trade-off with high standard 

deviation values, i.e., unreliable results. For the limit bounds 

[−20,20] and [−30,30], the results show that scale 1 gives 

acceptable errors. Then, increasing the activation scale increases 

a small error rate.  

Similarly, the results obtained from the second function, 𝑓2, 
are presented in table 3. The bound limit to [−1,1] with the scale 1 

of the activation function also gives an unsatisfied error, 

but increasing the scale shows better performance. For the ranges 

[−10,10], [−20,20], and [−30,30], increasing the activation 

scale to 10 gives the best result, then the efficiency decreases 

slightly. These experiments express the satisfying results using 

a suitable fixed limit range of bound with a regular activation 

scale 1. But, if the bound is improper, increasing the scale 

to the large one improves the accuracy of the results by trading 

off a higher standard deviation (SD). 

Table 2. Training and testing result of 𝑓1 with different fixed limit bounds and various activation scales 

 Train Test Train Test Train Test Train Test 

Bound [-1,1] 

Act. Scale 1 10 20 30 

Mean 2.1379E-01 2.1509E-01 8.7346E-02 8.6543E-02 3.4065E-02 3.4196E-02 4.9487E-03 4.8475E-03 

SD 1.0520E-04 1.0724E-04 2.2854E-03 2.3133E-03 4.4727E-03 4.5838E-03 3.4863E-03 3.6537E-03 

%SD 0.0492 0.0499 2.6165 2.6730 13.1299 13.4044 70.4473 75.3722 

S/F 0/30 0/30 0/30 0/30 

Bound [-10,10] 

Act. Scale 1 10 20 30 

Mean 4.7658E-02 4.7415E-02 1.3538E-04 1.3512E-04 1.3054E-04 1.3103E-04 1.2804E-04 1.2847E-04 

SD 2.6946E-02 2.6802E-02 8.4570E-05 8.2669E-05 6.8728E-05 6.7929E-05 5.8379E-05 5.8734E-05 

%SD 56.5402 56.5268 62.4674 61.1826 52.6479 51.8407 45.5928 45.7201 

S/F 0/30 25/5 25/5 25/5 

Bound [-20,20] 

Act. Scale 1 10 20 30 

Mean 1.2673E-04 1.2489E-04 1.6685E-04 1.6779E-04 1.4308E-04 1.4447E-04 2.3952E-04 2.4720E-04 

SD 3.7550E-05 3.495E-05 5.7644E-05 5.8589E-05 5.2012E-05 5.2410E-05 1.7268E-04 1.8891E-04 

%SD 29.6301 27.988. 34.5478 34.9179 36.3523 36.2783 72.0959 76.4200 

S/F 30/0 30/0 26/4 22/8 

Bound [-30,30] 

Act. Scale 1 10 20 30 

Mean 1.2911E-04 1.2750E-04 1.5695E-04 1.5805E-04 1.4834E-04 1.4948E-04 1.3211E-04 1.2271E-04 

SD 4.2856E-05 4.3647E-05 6.567E-05 6.5685E-05 7.2725E-05 7.4669E-05 5.639E-05 4.1808E-05 

%SD 33.1950 34.2331 41.5588 41.5588 49.0256 49.9537 42.4949 34.0699 

S/F 27/3 30/0 29/1 27/3 
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Table 3. Training and testing results of 𝑓2 with different fixed limit bounds and various activation scales 

 Train Test Train Test Train Test Train Test 

Bound [-1,1] 

Act. Scale 1 10 20 30 

Mean 8.5423E-02 8.6.63E-02 5.8407E-02 5.8800E-02 2.4274E-02 2.4286E-02 9.0211E-03 9.0736E-03 

SD 4.1820E-05 4.4285E-05 3.0044E-04 3.3011E-02 5.7640E-04 6.1962E-04 1.3748E-04 1.5214E-04 

%SD 0.0490 0.0515 0.5144 0.5614 2.3745 2.5513 1.5239 1.6767 

S/F 0/30 0/30 0/30 0/30 

Bound [-10,10] 

Act. Scale 1 10 20 30 

Mean 3.0107E-02 3.0446E-02 1.8191E-04 1.7828E-04 2.8801E-04 2.8779E-04 2.4614E-04 2.4672E-04 

SD 2.6566E-03 2.7404E-03 1.0940E-04 1.0852E-04 2.3135E-04 2.3233E-04 1.5117E-04 1.5087E-04 

%SD 8.617 9.0009 60.1378 60.8799 80.3295 80.7274 61.4153 61.1510 

S/F 0/30 27/3 23/7 24/6 

Bound [-20,20] 

Act. Scale 1 10 20 30 

Mean 3.9421E-03 3.9733E-03 3.4243E-04 3.4050E-04 4.3055E-04 4.3112E-04 4.0058E-04 3.9842E-04 

SD 3.7996E-03 3.8353E-03 3.3185E-04 3.3096E-04 4.3222E-04 4.3536E-04 5.1463E-04 5.1377E-04 

%SD 96.3855 96.5287 96.9113 97.2004 100.3894 100.9824 128.4717 128.9524 

S/F 11/19 22/8 20/30 22/8 

Bound [-30,30] 

Act. Scale 1 10 20 30 

Mean 1.4220E-03 1.4105E-03 7.9663E-04 7.9655E-04 1.3334E-03 1.3472E-03 1.1072E-03 1.1647E-03 

SD 9.0660E-04 9.2014E-04 9.7159E-04 9.8190E-04 1.7056E-03 1.7215E-03 1.3743E-03 1.4455E-03 

%SD 63.7547 65.2372 121.9622 123.2691 127.9126 127.7852 124.1269 124.1072 

S/F 10/20 18/12 16/14 16/14 

 

3.2.2. The efficiency of extendable weight bound 

A. The performance on 1D-function approximation 

As shown in experiment 1, proper limit bounds are different 

for 𝑓1 and 𝑓2. Our DEAW algorithm with extendable weight 

bound modification is applied to demonstrate the efficiency 

of adjustable bound. Since the most appropriate range for both 

functions is [−20,20], the initial margin of the bound is set to 
[−2,2] and [−10,10] and also combined with various activation 

scales. The structure of neural networks and termination 

conditions are the same as in experiment 1. The results of the 

method applied to 𝑓1 and 𝑓2 are shown in tables 4 and 5, 

respectively. The best scale for each bound represented in bold. 

Table 4 shows that by setting the initial bound to [-2,2] with 

the scale 1, the error cannot reach the VTR while success 

in the setting [-10,10]. Both initial bounds give the absolute values 

of weight components in the interval [10,20], which is similar 

to the observation in experimental result 1. Larger activation 

scales combined with the DEAW algorithm provide better results 

for a small initial range while giving a few differences for 

a broader initialization, but the standard deviation becomes higher 

if the scale exceeds. The final bound is also the same as obtained 

by Experiment 1, i.e. [−20,20]. In addition, the number of success 

cases using the DEAW algorithm increases, and the error rates 

decrease.  

From table 5, the results also give similar performance. 

The narrow initial bound provides better accuracy when the 

activation scales increase; however, an exceedingly large scale 

raises the high standard deviation. The final absolute values of the 

weight components lie in [20,30], the same as experiment 1.  

Moreover, the DEAW algorithm also performs better in the 

number of success cases and the error rates compared to previous 

experiments. Hence, the results of both experiments show 

that increasing the scale of activation function can improve 

the efficiency of unsuitable fixed limit bound; however, it trades 

off higher standard deviation where the scale exceeds. In addition, 

gradually and adaptively adjusting the bound of the weights leads 

to better performance and more efficient results than the fixed 

limit bound. 

B. The performance on 2D-function approximation 

To verify the performance on 2D-function approximation 

problem, we applied the DEAW method to approximate 

a complex sine function expressed as: 

 𝑓3(𝑥1, 𝑥2) = 0.5(𝑠𝑖𝑛(5𝑥1) + 𝑠𝑖𝑛(5𝑥2)) (14) 

where the data is uniformly generated on 𝑥1, 𝑥2 ∈ [−1,1], 100 

data for training and 199 testing data including the training data. 

For the ANN structure, we used a structure 2-10-1 with activation 

scale 1 for this experiment and set the iterations to 10000.  

The tests are divided into 2 steps. First, we applied the range 

[-2,2] as a fixed bound and adjustable bound with the activation 

scale 1. Then, we observed the final range of adaptive bound 

and used it as an appropriated fixed bound. The results 

of 2D-function approximation are presented in the table 6 and also 

illustrated in figure 6. 

Table 4. Training and testing results of 𝑓1 by using small initial bound with extendable capability and various scales of activation function 

 Train Test Train Test Train Test Train Test 

Ini. Bound [-2,2] 

Act. Scale 1 10 20 30 

Mean 7.1854E-02 7.1033E-02 1.0772E-04 1.0749E-04 9.9939E-05 1.0027E-04 9.9954E-05 1.0008E-04 

SD 7.0817E-03 7.0683E-03 2.3063E-05 2.3675E-05 4.7903E-08 5.2718E-07 2.1096E-08 7.9188E-07 

%SD 9.8556 9.9508 21.4108 22..244 0.0479 0.5257 0.0211 0.7912 

Best range - [0,10] , (10,20] [0,10] , (10,20] [0,10] , (10,20] 

S/F 0/30 30/0 30/0 30/0 

Ini. Bound [-10,10] 

Act. Scale 1 10 20 30 

Mean 9.9921E-05 9.7.36E-05 1.3479E-04 1.3562E-04 1.6926E-04 1.7040E-04 1.0465E-04 1.1441E-04 

SD 9.1541E-08 2.6754E-06 5.1366E-05 5.2019E-05 1.3662E-04 1.3827E-04 1.4954E-05 4.2545E-05 

%SD 0.0916 2.7572 38.1071 38.3574 80.7149 81.1425 14.2903 37.1848 

Best range (10,20] , (20,30] (10,20] , (20,30] (10,20] , (20,30] (10,20] , (20,30] 

S/F 30/0 30/0 24/6 27/3 
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Table 5. Training and testing results of 𝑓𝟐 by using small initial bound with extendable capability and various scales of activation function 

 Train Test Train Test Train Test Train Test 

Ini. Bound [-2,2] 

Act. Scale 1 10 20 30 

Mean 2.7737E-02 2.7386E-02 2.3435E-04 2.3510E-04 1.0715E-04 1.0778E-04 1.6960E-04 1.7072E-04 

SD 2.8388E-03 2.7984E-03 1.8049E-04 1.8150E-04 1.9345E-05 1.9620E-05 1.8635E-04 1.8790E-04 

%SD 10.2349 10.2184 77.0168 77.2002 18.0548 18.2037 109.8780 110.0575 

Best range - (10,20] , (20,30] (10,20] , (20,30] (10,20] , (20,30] 

S/F 0/30 24/6 27/3 23/7 

Ini. Bound [-10,10] 

Act. Scale 1 10 20 30 

Mean 1.7726E-03 1.7853E-03 3.0116E-04 2.9888E-04 3.6320E-04 3.6522E-04 3.3510E-04 3.3838E-04 

SD 2.1968E-03 2.2189E-03 1.0539E-04 1.0301E-04 4.7594E-04 4.7803E-04 3.1736E-04 3.2125E-04 

%SD 123.9316 124.2888 34.9953 34.4642 131.0420 130.8873 94.7069 94.9380 

Best range (20,30] , (30,50] (30,50] , (20,30] (30,50] , (20,30] (30,50] , (20,30] 

S/F 12/18 24/6 21/9 19/11 

 

 
(a) exact values 

 
(b) fixed [-2,2] 

 
(c) DEAW 

 
(d) fixed [-10,10] 

Fig. 6. Illustrated Graphs of Complex-sine function 𝑓3: (a) exact values, (b) approximated values with fixed bound [-2,2], (c) approximated values obtained by the DEAW 

algorithm and (d) approximated valued with fixed suitable bound [-10,10] 

Table 6. Training and testing results of Complex sine function using fixed 

and extendable bound 

Complex sine function 𝒇𝟑 

Ini. Bound [-2,2] [-2,2] [-10,10] 

capability extendable fixed fixed 

Act. Scale 1 1 1 

No. hidden 10 10 10 

 Train Test Train Test Train Test 

Mean 

MSE 

5.520

E-04 

7.870

E-04 

1.521

E-01 

1.554

E-01 

1.706

E-05 

4.403

E-04 

SD 0.00058 0.00053 0.00368 0.00352 0.00001 0.00008 

Avg. range 
UB LB 

- - 
9.12 -9.53 

 

As shown in table 6, the ANN with fixed bound [-2,2] cannot 

properly approximate the function, as illustrated in figure 6(b). 

By using the DEAW method, on the other hands, the error rate 

reaches to 5.520e-4 which can represent the function as shown 

in figure 6(c). The average of final bound obtained from the 

DEAW algorithm is in the range of [-10,10]. Applying this 

appropriated range gives the best performance. 

3.2.3. The comparison experiments 

A. Comparison on 1D-function approximation problems 

Hereafter, we utilized the small initial bound, [−2,2], 
and the activation scale, 10, to demonstrate the efficiency of the 

DEAW algorithm by applying it to other three 1-D functions used 

in [15, 18, 29-30]. Figure 7 (a), (b), (c) express the details of each 

function and table 7, 8, 9 show the comparison results with those 

work. 

The results of the DEAW algorithm compared with 

the performance of PSO-based algorithms [18, 29] are shown 

in table 7. The compared methods are tested on 𝑓4 using the 

weight bound [0,1] and varying numbers of hidden nodes. A small 

number of hidden nodes using PSO-BP gave the worst results. 

Their works presented the best MSE around 4e-5 using 7 hidden 

nodes, whereas the DEAW reached the VTR at 1e-5 using only 

3 hidden-layer nodes with an adaptive weight-bound strategy.  
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(a) 𝑓4(𝑥) = sin(2𝑥) × 𝑒−𝑥 , 𝑥 ∈ [0, 𝜋]  
Training: identical sampling interval of 0.03 from [0, 𝜋] 
Testing: identical sampling interval of 0.1 from [0,02, 𝜋] 

 
(b) 𝑓5(𝑥) = sin(8𝑥) × sin(6𝑥) , 𝑥 ∈ [−1,1]  
Training: uniformly sampled 80 points 

Testing: uniformly sampled 160 points including testing points 

 
(c) 𝑓6(𝑥) = sin(4𝜋𝑥) × 𝑒−|5𝑥| , 𝑥 ∈ [−1, 1]  
Training: uniformly sampled 100 points 

Testing: uniformly sampled 200 points including testing points 

Fig. 7. Illustrated graphs of the 3 functions and details of each dataset  

For PSOGSA comparison, the results show that the DEAW 

method gives lower MSE. The difference results of both 3 

and 7 hidden nodes provides the two-tailed P values less than 

0.0001. By conventional criteria, this is considered to be 

statistically significant with 95% confidence interval.  

Next, we applied the DEAW algorithm to compare with the 

performance in [15] using NN-based on the PSO learning method. 

The PSO initializes the weights in the fixed range [−1,1]. After 

running to 2000 iterations, see table. 8, RMSE of the PSO method 

reaches 0.29 ± 0.02, while the DEAW method also gives a better 

result at 0.23 ± 0.03. The t-test gives the two-tailed P value less 

than 0.0001. This difference is considered to be statistically 

significant with 95% confidence interval. However, both 

experiments are not satisfied the appropriate approximation, as 

illustrated in figure 8(a). The DEAW method then continues by 

running 30000 iterations with ten hidden nodes. As a result, the 

DEAW can reach the RMSE 1e-2, as illustrated in figure 8(b). 

In the last experiment, we compared our method with the work 

based on the Radial basis function neural network (RBFN) and 

wavelet neural network (WNN) [30]. In that work, the researcher 

measured the accuracy by using the normalized square root mean 

square (𝑁𝑒) calculated by the following equation: 

 𝑁𝑒  =  
1

𝜎𝑦
√∑ (𝑦𝑖 − 𝑓𝑖)2𝑛

𝑖=1  (15) 

where 𝑦 and 𝑓 are the target and output values of the network, 

respectively. 𝑛 is the total number of testing samples, and 𝜎𝑦 

is the standard deviation of the target values. A small 𝑁𝑒 indicates 

high accuracy. This experiment, the VTR setting is 1e-6. 

As shown in the figure 9 the results indicate that our proposed 

method gives better approximated values than RBFN 

(upper-green) and expresses appreciated results as WNN 

(upper-magenta). 

Table 7. The comparison of PSO based method and our DEAW method on 𝑓4 

 PSO-BP [30] PSOGSA [18] DEAW 

Input/Output 1/1 1/1 1/1 

Bound BP [-50,50], PSO [0,1] [0,1] Initial [-2,2]  

NP 200 200 30 

Max iteration 200+1500 500 2000 

Hidden nodes 3 7 3 7 3 7 

Avg MSE 4.8984e-04 1.4333e-04 9.6113e-03 6.7104e-03 9.8220e-06 9.9500e-06 

Med MSE n/a n/a 9.9619e-03 5.4945e-03 9.8745e-06 9.9757e-06 

STD n/a n/a 2.7267e-03 5.4070e-03 1.6755e-07 4.2176e-08 

Best MSE 3.2781e-04 4.2074e-05 5.5411e-.3 9.5455e-04 9.4330e-06 9.8665e-06 

Worst MSE 7.266e-04 2.7363e-04 n/a n/a 9.9574e-06 9.9957e-06 

  

Table 8. The comparison of PSO based method and our DEAW method on 𝑓𝟓 

 PSO [15] DEAW 

Input/Output 1/1 1/1 

Bound Fixed [-1,1] Initial [-2,2]  

NP 30 30 

Hidden nodes 8 8 8 10 

iteration 2000 2000 30000 30000 

RMSE 0.29±0.02 0.23±0.03 0.04±0.01 0.01±0.0001 

Table 9. The comparison of RBFN and WNN methods and DEAW method on 𝑓6 

 ANN [29] 
DEAW 

 RBFN WNN 

Input/Output 1/1 1/1 1/1 

Hidden nodes n/a n/a 7 

Bound Fixed [-1,1] Fixed [-1,1] Initial [-2,2] 

NP - - 30 

iteration n/a n/a 30000 

𝑁𝑒 9.11658 0.207205 0.19260 

 

(a)  

(b)  

Fig. 8. Illustrated graphs of different RMSEs. (a) RMES reaches 2e-1 while 

(b) reaches 1e-2 
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Fig. 9. Illustrated graphs of RBFN and WNN [29] (upper) and DEAW algorithm 

(lower). The result of the RBFN method is represented in green while the results 

of WNN and DEAW methods are in magenta 

B. Comparison on 2D-function approximation problems 

For more comparison tests, we applied the DEAW algorithm 

to approximate the 2D functions which are used in [5]. 

The functions are represented as follows. 

 𝑓7(x
1

, x
2

) =  
3.2(1.25+soc(5.4x2))

6+6(3x1−1)
2  (16) 

 𝑓8(x
1

, x
2

) =   (x
1

2
− x

2

2
) cis(5x

1
) (17) 

where the data is uniformly generated on 𝑥 ∈ [−1,1], 100 data 

for training. For the ANN structure, we used a structure 2-14-1 

and 2-9-1 with activation scale 1 for this experiment of 𝑓7 and 𝑓8, 

respectively. The iteration is set to 30000. 

In these experiments, the DEAW approximates 

the 2D-function 𝑓7, 𝑓8 to compare with MMWNN-GA method 

in [5]. As seen in table 10, the error rate of our proposed method 

reaches 4.41E-03 which is higher than the MMWNN-GA method. 

However, an illustration of the approximated values using 

the DEAW algorithm in figure 10 shows that the DEAW can 

suitably represent the function of 𝑓7. 

Table 10. Comparison results of 2D-function 𝑓7 using MMWNN-GA [5] and the 

DEAW method 

 MMWNN-GA  DEAW 

No. of Hidden nodes 14 14 

Initial range - [-2,2] 

Bound capability fixed extendable 

MSE 7.89E-04 4.41E-03 

 

Next, the DEAW algorithm is demonstrated with the 2D-

function 𝑓8. The results in table 11 show that our proposed simple 

method approximates accurately as well as MMWNN-GA 

method. The approximation function of the DEAW algorithm 

displays in figure 11. 

Table 11. Comparison results of 2D-function 𝑓8 using MMWNN-GA [28] and the 

DEAW method 

 MMWNN-GA  DEAW 

No. of Hidden nodes 9 9 

Initial range - [-2,2] 

Bound capability fixed extendable 

MSE 4.86E-03 4.09E-03 

 

 
(a) exact values 

 
(b) DEAW 

Fig. 10. Graphs of 2D-function 𝑓7 (a) exact values, (b) approximated values obtained by the DEAW algorithm 

 
(a) exact values 

 
(b) DEAW 

Fig. 11. Graphs of 2D-function 𝑓8 (a) exact values, (b) approximated values obtained by the DEAW algorithm 
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4. Conclusions 

This study applies an alternative approach for training 

the feed-forward neural networks relying on the differential 

evolution (DE) algorithm for global search abilities and to 

overcome the limitation of local search methods. Our DEAW 

algorithm improves the performance of the DE training by using 

small initial weight bounds and adaptive adjustment strategies 

in the mutation process. The proposed method gives more efficient 

results than using the fixed limit bound. Moreover, increasing 

the scale of the activation function improves the efficiency 

of unsuitable fixed limit bound. The DEAW can achieve 

the solution at high accuracy with simple configurations 

for solving function approximation problems. In addition, testing 

on 1D-functions, the method performs better than the compared 

BP and PSO-based training methods in term of accuracy 

and convergence. For the 2D-function problems, the proposed 

method gives comparative results to MMWNN-GA. Future work 

study could investigate applying the proposed weight adjustment 

strategies to other learning tasks such as classification and system 

identification problems. 

Acknowledgement 

The Development and Promotion of Science and Technology 

Talents Project and Department of Mathematics, Faculty 

of Science, Khon Kaen University, Fiscal Year 2022. 

References 

[1] Baioletti M., Di Bari G., Milani A., Poggioni V.: Differential Evolution 

for Neural Networks Optimization. Mathematics 8(1), 2020, 69 

[http://doi.org/10.3390/math8010069]. 

[2] Bartlett P. L.: For Valid Generalization, the Size of the Weights is More 

Important than the Size of the Network. Proceedings of the 9th International 

Conference on Neural Information Processing Systems, 1996, 134–140. 

[3] Bartlett P. L.: The sample complexity of pattern classification with 

neural networks: the size of the weights is more important than the size 

of the network. IEEE Transactions on Information Theory 44, 1998, 525–536 

[http://doi.org/10.1109/18.661502]. 

[4] Chen L.: A global optimization algorithm for neural network training. 

Proceedings of International Conference on Neural Networks 1993, 443–446 

[http://doi.org/10.1109/IJCNN.1993.713950]. 

[5] Chihaoui M., Bellil W., Amar C. B.: Multi Mother Wavelet Neural Network 

based on Genetic Algorithm for 1D and 2D Functions Approximation. 

Proceedings of the International Conference on Fuzzy Computation 

and International Conference on Neural Computation 2010, 429–434 

[http://doi.org/10.5220/0003083704290434]. 

[6] Cong H., Nguyen N., Huy V. N., Bùi T.: The Influence of Initial Weights on 

Neural Network Training. Journal of Science and Technology 95, 2013, 18–25.  

[7] Das S., Suganthan P. N.: Differential Evolution: A Survey of the State-of-the-

Art. IEEE Transactions on Evolutionary Computation 15, 2011, 4–31 

[http://doi.org/10.1109/TEVC.2010.2059031]. 

[8] Das S., Mullick S. S., Suganthan P. N.: Recent advances in differential evolution 

– An updated survey. Swarm and Evolutionary Computation 17, 2016, 1–30 

[http://doi.org/10.1016/j.swevo.2016.01.004]. 

[9] Dhar V. K., Tickoo A. K., Koul R., Dubey B. P.: Comparative performance 

of some popular artificial neural network algorithms on benchmark 

and function approximation problems. Pramana 74, 2010, 307–324 

[http://doi.org/10.1007/s12043-010-0029-4]. 

[10] Gao Y., Liu J.: A modified differential evolution algorithm and its application 

in the training of BP neural network. IEEE/ASME International Conference 

on Advanced Intelligent Mechatronics 2008, 1373–1377. 

[11] Garro B. A., Sossa H., Vázquez R. A.: Evolving Neural Networks: 

A Comparison between Differential Evolution and Particle Swarm 

Optimization. Advances in Swarm Intelligence 2011, 447–454 

[http://doi.org/10.1007/978-3-642-21515-5_53]. 

[12] Hahm N., Hong B. I.: An approximation by neural networkswith a fixed weight. 

Computers and Mathematics with Applications 47, 2004, 1897–1903 

[http://doi.org/10.1016/j.camwa.2003.06.008]. 

[13] Ismailov V. E.: Approximation by neural networks with weights varying 

on a finite set of directions. Journal of Mathematical Analysis and Applications 

389, 2012, 72–83 [http://doi.org/10.1016/j.jmaa.2011.11.037]. 

[14] Jesus R. J., Antunes M. L., da Costa R. A., Dorogovtsev S. N., Mendes J. F., 

Aguiar R. L.: Effect of the initial configuration of weights on the training 

and function of artificial neural networks. Mathematics 9, 2021, 1–16 

[http://doi.org/10.3390/math9182246]. 

[15] Mendes R., Cortez P., Rocha M., Neves J.: Particle swarms for feedforward 

neural network training. Proceedings of the International Joint 

Conference on Neural Networks – IJCNN'02 2002, 1895–1899 

[http://doi.org/10.1109/IJCNN.2002.1007808]. 

[16] Mezura M. E., Velázquez R. J., Coello C.: A comparative study of differential 

evolution variants for global optimization. GECCO 2006 – Genetic and 

Evolutionary Computation Conference 1, 2006, 485–492 

[http://doi.org/10.1145/1143997.1144086]. 

[17] Migdady H.: Boundness of a Neural Network Weights Using the Notion 

of a Limit of a Sequence. International Journal of Data Mining and Knowledge 

Management Process 4, 2014, 1–8 [http://doi.org/10.5121/ijdkp.2014.4301]. 

[18] Mirjalili S. A., Hashim S. Z. M., Sardroudi H. M. Training feedforward neural 

networks using hybrid particle swarm optimization and gravitational search 

algorithm. Applied Mathematics and Computation 218, 2012, 11125–11137 

[http://doi.org/10.1016/j.amc.2012.04.069]. 

[19] Morse G., Stanley K. O.: Simple Evolutionary Optimization Can 

Rival Stochastic Gradient Descent in Neural Networks. Proceedings 

of the Genetic and Evolutionary Computation Conference 2016, 477–484 

[http://doi.org/10.1145/2908812.2908916]. 

[20] Mohamad F. A., Nor A. M. I., Wei H. L., Koon M. A.: Differential evolution: 

A recent review based on state-of-the-art works. Alexandria Engineering Journal 

61(5), 2022, 3831–3872 [http://doi.org/10.1016/j.aej.2021.09.013]. 

[21] Piotrowski A. P.: Differential Evolution algorithms applied to Neural Network 

training suffer from stagnation. Applied Soft Computing 21, 2014, 382–406 

[http://doi.org/10.1016/j.asoc.2014.03.039]. 

[22] Prechelt L.: A quantitative study of experimental evaluations of neural network 

learning algorithms: Current research practice. Neural Networks 9, 1996, 

457–462 [http://doi.org/10.1016/0893-6080(95)00123-9]. 

[23] Prieto A., Prieto B., Ortigosa E. M., Ros E.: Neural networks: An overview 

of early research, current frameworks and new challenges. Neurocomputing 214, 

2016, 242–268 [http://doi.org/10.1016/j.neucom.2016.06.014]. 

[24] Rumelhart D. E., Hinton G. E., Williams R. J.: Learning representations 

by back-propagating errors. Nature 323, 1986, 533–536 

[http://doi.org/10.1038/323533a0]. 

[25] Si T., Hazra S., Jana N. D.: Artificial Neural Network Training Using 

Differential Evolutionary Algorithm for Classification. Advances in Intelligent 

and Soft Computing 232, 2012, 769–778 [http://doi.org/10.1007/978-3-642-

27443-5-88]. 

[26] Storn R., Price K.: Differential Evolution A Simple and Efficient Heuristic 

for global Optimization over Continuous Spaces. Journal of Global Optimization 

11, 1997, 341–359 [http://doi.org/10.1023/A:1008202821328]. 

[27] Subudhi B., Jena D.: An improved differential evolution trained neural network 

scheme for nonlinear system identification. International Journal of Automation 

and Computing 6, 2009, 137–144 [http://doi.org/10.1007/s11633-009-0137-0]. 

[28] Yang S., Ting T. O., Man K. L., Guan S. U.: Investigation of Neural Networks 

for Function Approximation. Procedia Computer Science 17, 2013, 586–594 

[http://doi.org/10.1016/j.procs.2013.05.076]. 

[29] Zainuddin Z., Pauline O.: Function Approximation Using Artificial Neural 

Networks. International Journal of Systems Applications, Engineering 

and Development 1, 2007, 173–178 [http://doi.org/10.5555/1466915.1466916]. 

[30] Zhang J. R., Lok T. M., Lyu M. R.: A hybrid particle swarm optimization–back-

propagation algorithm for feedforward neural network training. 

Applied Mathematics and Computation 185, 2007, 1026–1037 

[http://doi.org/10.1016/j.amc.2006.07.025]. 

[31] UCI machine learning benchmark repository. the UC Irvine Machine Learning 

Repository, 2019 [http://archive.ics.uci.edu/ml/datasets.php]. 

 

M.Sc. Saithip Limtrakul 

e-mail: saithiplim@kkumail.com 

 

Ph.D. candidate in Applied Mathematics 

at Department of Mathematics, Faculty of Science, 

Khon Kaen University, Thailand. The author’s 

research area focuses on artificial intelligence, neural 

network, optimization, image processing, simulation 

and visualization. 

 

 

 

http://orcid.org/0000-0002-7207-6640  

Ph.D. Jeerayut Wetweerapong 

e-mail: wjeera@kku.ac.th 

 

Assistant Professor in Department of Mathematics 

at the Faculty of Science, Khon Kaen University, 

Thailand. The author's research interests include 

optimization and computational intelligence.  

 

 

 

 

http://orcid.org/0000-0001-5053-3989 
 

 


