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Introduction: Animals such as cattle can achieve versatile and elegant behaviors

through automatic sensorimotor coordination. Their self-organized movements

convey an impression of adaptability, robustness, and motor memory. However,

the adaptive mechanisms underlying such natural abilities of these animals have

not been completely realized in artificial legged systems.

Methods: Hence, we propose adaptive neural control that can mimic these

abilities through adaptive physical and neural communications. The control

algorithm consists of distributed local central pattern generator (CPG)-based

neural circuits for generating basic leg movements, an adaptive sensory feedback

mechanism for generating self-organized phase relationships among the local

CPG circuits, and an adaptive neural coupling mechanism for transferring and

storing the formed phase relationships (a gait pattern) into the neural structure. The

adaptive neural control was evaluated in experiments using a quadruped robot.

Results: The adaptive neural control enabled the robot to 1) rapidly and

automatically form its gait (i.e., self-organized locomotion) within a few seconds,

2) memorize the gait for later recovery, and 3) robustly walk, even when a sensory

feedback malfunction occurs. It also enabled maneuverability, with the robot

being able to change its walking speed and direction. Moreover, implementing

adaptive physical and neural communications provided an opportunity for

understanding the mechanism of motor memory formation.

Discussion: Overall, this study demonstrates that the integration of the two forms

of communications through adaptive neural control is a powerful way to achieve

robust and reusable self-organized locomotion in legged robots.

KEYWORDS

self-organized locomotion, neural control, physical communication, neural

communication, walking robots
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1. Introduction

Some animals (e.g., wild cattle) can perform adaptive

locomotion within minutes of being born.1 Such animals can

move robustly in the natural environment and memorize their

self-organized locomotion. The locomotion is rapidly formed

through dynamic body-environment interactions that alter their

neural locomotion control circuits comprising genetically encoded

structures (Dickinson, 2000; Kullander et al., 2003). Furthermore,

they can robustly walk even when experiencing perturbations or

missing sensory feedback (Grillner and Zangger, 1984; MacKay-

Lyons, 2002). However, such a rapidly and automatically generated

(self-organized) robust locomotion with motor memory has not

been fully realized in legged robots. Although some robots have

exhibited certain excellent locomotion behaviors, their designs are

typically based on an engineering approach, which often requires

accurate kinematic models (Raibert et al., 2008; Hutter et al., 2016;

Semini et al., 2017; Bledt et al., 2018). Moreover, the approach is

difficult to relate to its biological counterpart to better understand

and realize an adaptive interlimb coordination for self-organized

robot locomotion.

In contrast to the engineering approach, biologically inspired

approaches based on underlying biological principles, such as

central pattern generators (CPGs) (Marder and Bucher, 2001)

and reflex chains (Lundberg, 1979) with sensory feedback, have

been implemented on various robots (Kimura et al., 2007;

Ijspeert, 2008; Ajallooeian et al., 2013; Tran et al., 2014; Yu

et al., 2014; Aoi et al., 2017; Lodi et al., 2020). Some of these

robots have performed adaptive motor patterns without kinematic

models. However, their versatile behavior often requires elaborate

preprogrammed rules for providing specific connections among

(neural) control networks or units (Steingrube et al., 2010; Fukuoka

and Kimura, 2014; Fukui et al., 2019). For example, Fukuoka

et al. developed a neural system with predefined coupled CPGs

and reflex mechanisms for a series of Tekken robots (Kimura

et al., 2007; Fukuoka and Kimura, 2014). The robots controlled

by the neural system can dynamically generate locomotion

on natural terrain. Based on reflex mechanisms and biological

observation of stick insects, Cruse et al. proposed Walknet, a

set of specific behavioral rules with neural networks for legged

locomotion (Cruse et al., 1998). The specific rules are considered

as predefined neural-wired connections (neural communication)

between networks. Generally, these approaches entail designing

interlimb coordination through biological observation before

transferring or implementing the locomotion control to robots.

This resulted in limitations pertaining to interlimb coordination

in terms of real-time adaptation and flexibility. An alternative

solution for autonomously creating locomotion control is the use

of machine learning (ML), which has continued to become more

sophisticated and practical over the past few decades.

Some ML techniques, such as reinforcement learning (RL)

(Nakamura et al., 2007; Cully et al., 2015; Heess et al., 2017;

1 Refer to the cattle video at http://www.manoonpong.com/

AdaptiveCommunications/cattle.mp4 and a documentary: amazing nature:

run to survive by Free High-Quality Documentaries at https://youtu.be/

ibzAZyO5wmM4.

Hwangbo et al., 2019; Ishige et al., 2019; Jones et al., 2020; Thor

et al., 2020) and evolutionary algorithms (EA) (Juang and Yeh,

2018), have been proposed to automatically tune a neural control

network for robust robot locomotion. Although these approaches

may enable robot agility, complex motor skills, and adaptability

to various environments, they typically have a time-cost learning

process and a sim-to-real transfer gap. This is because the RL/EA-

based robot neural control network, unlike the genetically encoded

neural network of animals, is typically trained from a random

structure (or scratch). Therefore, animals spend their first moments

of life fine-tuning the network, rather than learning it from scratch

(Kullander et al., 2003), which renders it difficult to relate the ML-

based control methods to animal locomotion control mechanisms

or principles.

To address this problem, Owaki et al. introduced a simple

but effective Tegotae-based control approach (Owaki et al., 2012).

They demonstrated that distributed decoupled CPGs with local

ground reaction force (GRF) feedback could rapidly facilitate self-

organized locomotion, similar to that of animals, through dynamic

body-environment interactions (physical communication)

(Dallmann et al., 2017). In other words, the GRF feedback provides

a communication channel for the CPGs through a physical body,

enabling the channel to indirectly reflect the motion state of other

legs. Compared to other traditional learning strategies, the control

scheme using the physical communication requires only fewer

steps to obtain a stable self-organized gait. Moreover, the control

eliminates the gap between the simulation and physical world

because it does not require numerous iterations and thus can be

directly implemented on real robots. However, the effectiveness

of the physical communication for locomotion generation

significantly depends on the uninterrupted functionality of the

load-sensing feedback (i.e., the GRF). Furthermore, the feedback

gain must be predefined and stable locomotion convergence cannot

be guaranteed if the sensory feedback encounters disturbances or

produces an unstable pattern (Sun et al., 2021b). Another drawback

is the impossibility of storing the generated locomotion (i.e., no

motor memory). In other words, the Tegotae-based approach

does not possess the capability of mammals to store generated

locomotion patterns in their spinal cords (Wolpaw, 2010). Such

a memory can be obtained through formed connections between

CPGs or neural control units. The connections will essentially

create neural communication paths and couplings that are

beneficial for factors such as locomotion recovery.

To overcome the shortcomings of the Tegotae-based approach,

we proposed adaptive neural control with adaptive physical

and neural communications (APNC). The proposed control has

the following distinct features: 1) it employs an online learner

(dual-rate learning Smith et al., 2006) to automatically tune

sensory feedback gains, thereby creating more adaptive physical

communication (APC), and 2) it combines the APC with a

type of novel adaptive neural communication (ANC) algorithm

for robust and reusable self-organized locomotion on even (as

shown using Tegotae) and uneven terrains. The ANC uses a fast

online learning strategy that can acquire and estimate the phase

relationships among leg movements originally generated through

physical communication. Subsequently, it automatically creates

neural couplings between the distributed decoupled CPGs such that

they can be stably synchronized.
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The neural couplings adaptively stabilize the locomotion

pattern and act as motor memory for reuse. Compared to the

typical, predefined neural connections and reflex approaches

(Collins and Richmond, 1994; Kimura et al., 2007; Ajallooeian

et al., 2013; Fukuoka and Kimura, 2014; Tran et al., 2014; Yu

et al., 2014; Aoi et al., 2017), the APNC (a combination of

APC and ANC) provides greater flexibility and adaptability for

locomotion generation because the locomotion simply emerges

from the interactions between the robot and its environment (Hülse

et al., 2007). Moreover, the locomotion generation is fast and robust

to disturbances because of the adaptive neural couplings formed by

the ANC. Furthermore, the ANC also enables a robot to memorize

the self-organized motor pattern within a few seconds.

The key specific problems the study addressed are 1) how to

achieve robust self-organized locomotion under various situations

(including sensor malfunction, uneven terrain, noisy feedback,

leg damage, carrying a payload, different locomotion speeds, and

different control update frequencies) and 2) how to store or

transfer formed locomotion into a neural structure as motor

memory for reusable locomotion or locomotion recovery. These

two main issues have not been fully solved or addressed by

current state-of-the-art fast self-organized locomotion control

methods (i.e., Tegotae-based control Kano et al., 2017; Owaki

et al., 2017, 2021 and phase resetting (PR)-based control Nomura

et al., 2009; Aoi et al., 2011, 2012, 2021; Ambe et al., 2021).

Furthermore, this study is also significantly different from our

previous study which focused only on adaptive joint (intralimb)

coordination with a fixed or predefined gait (i.e., predefined

interlimb coordination) for slope walking (Sun et al., 2021a).

Accordingly, the key contributions of this work include the

following: 1) providing a novel integrative approach of physical

and neural communications via adaptive neural control for

fast, robust, and reusable self-organized locomotion (or self-

organized, adaptive interlimb coordination); 2) demonstrating the

effectiveness and robustness of the adaptive neural control and its

motor memory through a quadruped robot in both simulated and

real-world environments under the various conditions, as well as

comparing the proposed neural control method to the state-of-the-

art methods; 3) gaining a better understanding of the interaction

between sensory feedback, CPGs, and neural mechanisms for

rapidly generating adaptive, robust, and reusable locomotion; 4)

introducing a control architecture that can serve as a basis for

developing “GEneral NEural control for Self-organIzed emergent

behavior of legged/limbed Systems (GENESIS).”

2. Adaptive neural control

Here, we propose the adaptive neural control (called APNC-

based control) that enables robots to achieve robust and reusable

self-organized locomotion. As shown in Figure 1A, in this study,

the control was applied to Lilibot, a quadruped robot (Sun et al.,

2020) (see also Supplementary Figure S1), in both simulated and

real-world environments through the robot operation system

(ROS, see Supplementary Figure S2). The control consists of

four identical local CPG-based neural circuits that send motor

commands to the legs (Figure 1B). The CPGs are adaptively

coupled via the APNC. The APC is derived from the interaction

between the body dynamics and environment through the

GRF feedback of each leg. During the interaction, the sensory

feedback gain is adjusted online (Figure 1B, red dashed lines) to

quickly achieve stable interlimb coordination. Subsequently, the

interlimb coordination (the phase relationships among the CPGs)

is maintained by the ANC through neural couplings (Figure 1B,

blue dashed lines). The neural couplings of the ANC are adaptively

controlled online based on the performance of the APC. After the

parameters of the APC and ANC converge, the control effectively

generates and stabilizes the self-organized coordinated motor

commands for all leg movements.

Specifically, each CPG-based neural circuit (Figure 1C)

possesses two main components. The first component is a CPG

to produce rhythmic signals that are subsequently transferred to

drive joint movements through the second component consisting

of motor neurons (MNs). To coordinate the signals, the CPG

is modulated by integrating the adaptive sensory feedback and

adaptive control input. The adaptive sensory feedback and adaptive

control input are achieved using the APC and ANC, respectively.

The two adaptive communication mechanisms are described in

detail below.

2.1. Adaptive physical communication

A fundamental problem posed by legged locomotion with

multiple degrees of freedom is interlimb coordination, whereby

the phase relationships between the leg movements must be

defined such as to form a stable gait. Instead of predefining the

relationships, as is typically done in most locomotion control

methods (Collins and Richmond, 1994; Ijspeert et al., 2007;

Kimura et al., 2007; Ijspeert, 2008; Zeng et al., 2018), we

employed a self-organized interlimb coordination strategy through

physical communication, as proposed by Owaki et al. (2012)

and Owaki and Ishiguro (2017). This approach is flexible and

transferable to different types of legged robots. The strategy

employs distributed, decoupled CPG-based control and utilizes

GRF feedback to automatically adjust CPG phase relationships.

However, in Owaki et al. (2012) and Owaki and Ishiguro (2017),

the GRF feedback gains to their CPGs were manually adjusted or

empirically selected.

Here, we propose an adaptive physical communication (APC)

mechanism by determining the physical communication strategy

with sensory adaptation (Wark et al., 2007) that is an adaptive

mechanism based on error-based learning for automatic sensory

feedback gain adjustment. The adaptivemechanism allows the APC

to modify (or strengthen) the sensory feedback gain to strongly

transmit the actual GRF signal to adjust the CPG’s activations when

the leg receives the GRF signal in the swing phase (i.e., the actual

GRF is larger than the expected GRF, see green areas in Figure 2),

while during the stance phase the feedback strength is reduced

since the actual GRF is basically smaller than the expected GRF

(Figure 2). As a result, during this phase the CPG’s activations

will be slightly adjusted through the decay adaptive gain (see the

first right terms in Equations (7), (8). As demonstrated in this

study, this adaptation strategy intriguingly results in fast and stable

self-organized locomotion.
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FIGURE 1

(A) Overview of the adaptive neural control implemented on a quadruped robot in both simulation and real world (see the Supplementary material

for more details of the simulated and real robot setups). (B) The control is based on decoupled CPG-based control circuits and the adaptive physical

and neural communications (APC and ANC). The number (1–17) represent the equation numbers. (C) The main ingredients of each local CPG-based

control circuit includes a SO(2) CPG (Pasemann et al., 2003) to produce rhythmic signals, motor neurons (MNs), and two adaptive modulation

mechanisms (adaptive sensory feedback and adaptive control input).

The architecture of the APC and its modules’ outputs can be

seen in Figure 2. The APC requires five components including: a

CPG,motor neurons (MNs), a sensory feedbackmechanism (SFM),

a dual-rate learner (DL), and a forward model (FM) (Figure 2A).

The outputs of the CPG are transferred to the MNs (M1 and

M2), which are linear neurons with scaling factors that shape the

CPG output signals (see Figure 2B). The outputs of the MNs are

transmitted to the hip and knee motors as the inputs of the position

control for driving the motors. The M1 output is fetched to the FM

that can estimate an expected GRF. The expected and actual GRFs

are transferred to the DL.

The DL outputs (Kf ,s(n)) are used to determine the strength of

the sensory feedback. From Figure 2B, during the first period (3

s), γ is zero, and hence the SFM outputs (f1,2(n)) are also zero.

This means that there are no sensory signals to affect the CPGs’

activations. This occurs because the actual GRF is zero at the initial

period (see the purple areas and the FM plot in Figure 2B). After

3 s, the SFM is activated to strongly modulate the activations of

the CPGs via f1,2(n) (see the dashed circles in Figure 2B) when

the actual GRF is larger than the expected GRF (see green areas in

Figure 2B).

2.1.1. Basic rhythmic pattern generation
For the rhythmic pattern generation, the CPG is realized by

a neural SO(2) oscillator2 (Pasemann et al., 2003). The SO(2)

oscillator has two fully connected standard non-spiking neurons

(N1 and N2, see Figure 2A), both of which have a sigmoid transfer

function. The activation ai and output oi of each neuron are

provided by Equations (1), (2):

ai(n+ 1) =

2
∑

j=1

wijoj(n)− fi(n), i = 1, 2, (1)

oi(n) = tanh(ai(n)), i = 1, 2, (2)

where wij is the synaptic weight of the connection from the jth

neuron to the ith neuron. n indicates a time step of discrete-time

2 SO(2) is a specific type of two-neuron network with recurrent

connections. The outputs of the neurons are sinewave-like patterns and have

a phase shift of π/2 created using specific parameter configurations.
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FIGURE 2

APC mechanism of one leg. (A) Diagram of components realizing the APC. The DL can produce the adaptive gain depending on the error between

the actual and expected GRF signals. The expected GRF signal is obtained from the forward model, which translates the motor command of the knee

joint (e�erence copy) into the expected foot state (swing or stance state). (B) Outputs of the components. The purple and green color areas show

initial (no adaptation) and strongly adaptation periods, respectively. The abrupt changes of the expected GRF at around 3.5 s, 4.5 s, 5.5 s to 0.0 are

due to a brief ascending of the CPG output during the expected descending periods. The control parameters used in this test are listed in

Supplementary Table S2. In this investigation, the SFM is activated to adaptively modulate the CPGs after 3 s and the stable gait is formed within 3–4 s.

equations. One time step is related to 1/update frequency. All the

weights andMI are defined using Equation (3).

w12 = 0.21+MI, w21 = −w12, w11,22 = 1.4, (3)

where MI is the modulatory input of the CPG synaptic weights

(Manoonpong et al., 2013). Using different MI values lead to

different CPG frequencies and, as a result, different walking

frequencies. Note that the default synaptic weights of 0.21 and

1.4 are selected from the parameter domains that stay beyond

a Neimark-Sacker bifurcation where periodic or quasi-periodic

attractors exist (as investigated in Pasemann et al., 2003). This

allows the CPG to produce basic periodic signals at a very low

frequency, even when the MI value is zero. In Equation (1), fi(n)

represents the adaptive sensory feedback term that is induced by

the APC to adaptively modulate the CPG’s phase.

The outputs of the CPG are transferred to the MNs (M1 and

M2), which are linear neurons with scaling factors that shape the

CPG output signals. The outputs of the MNs are transmitted to the

hip and kneemotors as the inputs of the position control for driving

the motors. The MNs can be represented as follows:

θi(n) = aioi(n)+ bi, i = 1, 2, (4)

Where oi(n) is the output of the ith neuron in a CPG and ai and

bi are the slope and offset of the linear transformation of the MNs,

respectively. θi(n) is the output of the corresponding MN. The hip

and knee joints extend (clockwise rotation) as θi(n) increases, while

the joints flex (counterclockwise rotation) as θi(n) decreases.

2.1.2. Adaptive CPG phase modulation
The CPG phase is directly modulated by the SFM that can be

described by the following equations:

fi(n) =

{

γ (n)F(n) cos(oi(n)), i = 1

γ (n)F(n) sin(oi(n)), i = 2
, (5)

Where oi(n) is the output of the ith neuron in a CPG. γ (n) is

an adaptive feedback gain automatically tuned by the DL. F(n)

represents the continuous actual GRF as sensory feedback to the

CPG. Note that the GRFs of four legs are normalized to [0, 1) by

dividing the measured GRFs with around half of the robot body

weight, where zero and nonzero denote a foot in the swing phase

and stance phase, respectively. Zero and nonzero denote a foot in

the swing phase and stance phase, respectively. The DL is an error-

based learning mechanism (Smith et al., 2006) that implements the

adaptation of the physical communication.

Specifically, the DL tunes the gain γ (n) (see Equation 5) based

on the error between the actual and expected GRF signals. Its
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function is represented by the following equations:

e(n) =

{

Fa(n)− Fe(n), Fa(n)− Fe(n) > 0

0, Fa(n)− Fe(n) ≤ 0
, (6)

Kf (n+ 1) = AfKf (n)+ Bf e(n), (7)

Ks(n+ 1) = AsKs(n)+ Bse(n), (8)

γ (n) = Kf (n)+ Ks(n), (9)

Where Fa(n) and Fe(n) are the actual and expected GRF signals,

respectively. Bs and Bf correspond to the slow and fast learning

rates of the slow and fast learners, whose slow and fast retention

factors are As and Af , respectively. The fast learner has a higher

learning rate and the slow learner is characterized by a higher

retention rate, i.e., As > Af and Bs < Bf . The learning parameters

used in this study were empirically set to: As = 0.99,Af =

0.57,Bs = 0.0002, and Bf = 0.002.

The expected GRF (Fe(n)) is mapped from an efference copy

of the knee joint by the FM. This is because, in an ideal state,

the flexion and extension of the knee joint indicate that the foot

should move up into a swing phase and down into a stance phase,

respectively. Thus, in the swing phase, the expected GRF is zero;

however, in the stance phase, it yields a higher value (> 0). Here,

the input to the FM is a sine wave-like pattern (see Figure 2B). The

FM can be described as follows:

Fe(n+ 1) = α
(

ρG(n)+ (1− ρ)Fe(n)
)

, (10)

G(n) =

{

1, θ1(n) <= θ1(n− 1)

0, θ1(n) > θ1(n− 1)
, (11)

Where Fe(n) is the expected GRF, α is a scaling factor used to scale

the amplitude of the expected GRF such that it matches the actual

GRF, ρ is a shaping parameter used to fine-tune the duty factor

of the expected GRF. G(n) is a variable used mainly for switching

the expected stance and swing phases depending on θ1(n), where

θ1(n) is the output of the MN to the hip joint. In the following

experiments, the parameters were set to α = 0.9, ρ = 0.99 (see

Equation 10). Note that although the selected FM cannot create

a complex waveform, a radial basis function network can yield a

complex waveform (Thor et al., 2020).

2.2. Adaptive neural communication

Although the APC mechanism can automatically generate

coordinated motor commands for interlimb or leg coordination,

the coordination of the commands is sensitive to any disturbance

in the GRFs and cannot be memorized for reuse. Therefore, if

there is a strong disturbance or sensory damage, the generated

motor commands can become dis-coordinated, leading to unstable

locomotion. Furthermore, if the control system is reset, the

previously generated coordinated motor commands from the

physical communication will no longer be available. Thus, we

introduce the ANC to address these problems.

The underlying mechanism of the ANC is to capture the

coordinated phases among the CPGs and transfer their stable

output patterns into the adaptive neural couplings among the CPGs

to memorize the patterns (see Figure 3A). The ANC of one leg

includes an acquisition of phase relationships (APR) for observing

the CPG phase states, an estimation of the phase relationships

(EPR) for triggering the neural communication, and an adaptive

control input (ACI) for implementing the coupling effect of the

neural communication (Figure 3A).

The outputs of the APR, EPR, and ACI can be seen in Figure 3B.

The control system starts at the 6th s. At approximately the 10th s,

the variance of relative phase (d(n)) falls below the threshold, and

then the EPR output (κ(n)) increases toward 1 from 0. At this point,

which we term the activation point, the ANC is triggered. Then, the

ACI outputs are introduced to modulate the CPGs. After the 10th

s, the relative phases φ12(n) and φ13(n) converge to approximately

3.14 rad, and φ14(n) is approximately zero. Here, the convergence

time is approximately 4 s. This indicates that the RH and LF legs

move in phase, and in anti-phase with reference to the RF and LH

legs. The relative phases of the CPGs of the RH, LF, and LH legs

referred to the CPG of the RF leg can be calculated as follows:

φlk(n) =
tlp − tkp

T
· 2π , (12)

Where tlp (t
k
p) is the moment when the neuron N1 output of the lth

(kth) CPG (i.e., l, k = 1, 2, 3, 4) attains a peak point within a CPG

signal period. T is the current period of the CPG signals. Note that

when k = l, φlk(n) = 0 (i.e., the phase shift of a CPG with respect

to itself is zero) and φlk(n) = −φkl(n) (i.e., the phase shift of the

CPG k with respect the CPG l is opposite to that of the CPG l with

respect the CPG k).

To transfer the stable pattern (e.g., stable phase relationships

φ12(n), φ13(n), and φ14(n)) into the adaptive neural couplings,

the first step is to automatically identify and acquire the stable

pattern. The CPG relative phases are changeable online before

a stable pattern is obtained owing to the APC (see Figure 3B).

Thus, in principle, a stable pattern is formed when the relative

phases became constant. Therefore, if the distance between the

current relative phases and the previous ones is minimal, the

pattern is considered stable. Based on this assumption, the EPR

is implemented to calculate the stabilization value for the relative

phases through the Frobenius norm of the difference between the

current and previous average relative phases. Once the Frobenius

norm falls below a defined threshold, the pattern of the CPG phase

relationships is considered stable, thereby switching on the ANC.

This process can be represented as follows:

8(n) =
[

0 φ12(n) φ13(n) φ14(n)
]T

, (13)

8(n) =
1

N

N
∑

i=1

8(n− i), (14)

d(n) = |8(n)− 8(n)|F, (15)

κ(n) =

{

1, d(n) ≤ σ

0, d(n) > σ
, (16)
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FIGURE 3

ANC mechanism. (A) Diagram of the components realizing the ANC. (B) Outputs of these components. The CPG phase relationships (φ12(n), φ13(n),

φ14(n)) change from an initial state (0, 0, 0) to a convergence state (π , π , 0) after 4 s. The control parameters used in this test are listed in

Supplementary Table S2.

Where 8(n) is a 4 × 1 vector representing the relative phases,

and 8(n) is the mean value of the previous 8(n). The value of

N was set to 50 in the experiments. d(n) is the Frobenius norm,

which indicates the variance of the relative phases. σ is a threshold

that was set empirically to 0.4. Based on the experiments we

conducted, this value can indicate that a stable gait is formed.

Thus, the ACI outputs modulating the CPGs are introduced

as follows:

gi(n) = κ(n)ξ

4
∑

k=1

(

sin
(

oli(n)− oki (n)− φlk(n)
))

, i = 1, 2,

(17)

Where oli(n) and oki (n) are the outputs of the ith neurons in CPGs l

and k (l and k = 1, 2, 3, 4). φlk(n) is the relative phase of CPG k, with

respect to CPG l. ξ is a communication gain, which we empirically

set to 0.01.

By introducing gi(n) for CPG modulation, the new activations

of CPG neurons are as follows:

ai(n+ 1) =

2
∑

j=1

wijoj(n)− fi(n)+ gi(n), i = 1, 2, (18)

Where fi(n) and gi(n) represent the modulation terms of the

adaptive sensory feedback and neural couplings produced by the

APC and ANC, respectively.
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3. Experiments and results

Several experiments were conducted on Lilibot to assess

the effectiveness of the proposed adaptive neural control

(APNC-based control) (see Supplementary Figures S1, S2,

Supplementary Table S1). First, the APNC-based control was

evaluated in a real-time physical simulation (CoppeliaSim) for

autonomously generating adaptive walking patterns at different

CPG frequencies, update frequencies, terrain roughness, and

robot conditions. We also compared the performance of the

APNC-based control with two state-of-the art self-organized

locomotion control methods (i.e., Tegotae-based control Kano

et al., 2017; Owaki et al., 2017, 2021 and PR-based control Nomura

et al., 2009; Aoi et al., 2011, 2012, 2021; Ambe et al., 2021). Similar

to the setup of the proposed method, both methods also use GRFs

to modulate the phase relationships of distributed (decoupled)

CPGs to generate self-organized locomotion. Continuous GRFs

are typically used to modulate CPG phases in the Tegotae method

(also known as phase modulation Sun et al., 2021b). The PR

method, on the other hand, uses discrete GRFs to periodically

reset the CPG phases. The parameter setups of the three control

methods are presented in Supplementary Tables S2, S3. Second,

we examined the functions of the APC for quickly generating self-

organized locomotion, following which we tested the effectiveness

of the APNC for realizing robust and reusable self-organized

locomotion in the real world. Finally, the maneuverability of

the robot using the formed locomotion was demonstrated by

changing the walking speed and direction under manual steering

control in the real world. In the simulated robot, the GRFs were

detected using force sensors in the legs, while in the real robot,

they were calculated from motor current feedback in the knee

joints (Sun et al., 2020).

3.1. Adaptability of the adaptive neural
control

3.1.1. Adaptability to di�erent CPG frequencies
Legged robots and animals show adaptive walking patterns with

respect to the changes of their walking speed (Hoyt and Taylor,

1981; Owaki et al., 2012; Owaki and Ishiguro, 2017; Fukui et al.,

2019; Nirody, 2021). In the physical simulation, we experimented

the APNC on Lilibot to evaluate its adaptive walking pattern

generation (self-organized locomotion) under different MI values

(i.e., different walking frequencies, see Equation 3). The CPG

parameterMI determines the CPG output frequency and robot step

frequency (Sf ), thereby regulating the robot’s walking speed. There

is an approximate relationship between them: Sf = 8.6×MI+ 0.5.

Thirteen differentMI values ranging from 0.04 to 0.28 (comparable

to Sf from 0.8 to 2.9 Hz) were tested. The experiment was repeated

20 times for eachMI value. Each trial ran for 45 s. The adaptability

was evaluated using the CPG phase convergence time and duty

factor (see Figure 4).

The CPG phase convergence time indicates the time required

by the relative phases (φ12(n), φ13(n), φ14(n)) of the decoupled

CPGs to converge to a suitable state (e.g., π , π , 0) from the initial

state (0, 0, 0).3 The dynamic transitions of the relative phases can

be seen in Supplementary Figure S3.

The CPG phase convergence time and success rate were

explored at different walking frequencies for the three control

methods (Figure 4). The APNC and PR-based control methods

exhibited faster phase convergence than the Tegotae-based control

method. The APNC-based control method employed an adaptive

feedback gain to properly accelerate the effect of the continuous

phase modulation; thus, it achieved faster phase convergence

than the Tegotae-based control method, which employed a fixed

predefined feedback gain. The PR-based control method used

discrete GRF feedback to periodically reset the CPG phases, which

also led to fast phase convergence (see Sun et al., 2021b for further

comparative analysis of the continuous phase modulation and PR).

The duty factor is defined as the proportion of the stance

phase to a gait cycle (swing and stance phases). It can quantify the

walking patterns according to the foot-end movement states. The

average duty factors of the four legs are interestingly proportional

to the MI value (see Supplementary Figure S4). This is due to the

APC mechanism. The frequency of the CPG oscillation increases

as the MI value increases (Manoonpong et al., 2013). This also

increases the walking or step frequency, and the higher the step

frequency, the greater the GRF feedback. As a result, the actual GRF

signals might be greater than the expected GRF signals; thereby,

the adaptive gains are also increased to transmit the actual GRF

signals for adapting/inhibiting the CPGs’ activations. Thus, the

stance phase can become longer than the swing phase (see the

gait diagram4 in Supplementary Figure S5). When MI ≥ 0.24, the

effect weakens, and the average duty factor tends to be stable at

approximately 0.72.

3.1.2. Adaptability to di�erent controller update
frequencies

The update frequency of the robot system is an important factor

for self-organized locomotion generation. We conducted robot

walking experiments using different update frequencies ranging

from 5 Hz to 60 Hz to investigate the effect of update frequency

on control performance (Figure 5). The robot motor system has

a maximum update frequency of 60 Hz. For the experiments,

we tested three control methods (APNC, Tegotae, and PR) and

compared their phase convergence time and success rate. Each trial

lasted 60 s and was repeated 20 times. The MI value defining the

robot walking frequency was set to 0.08.

Figure 5 shows the success rate and phase convergence time of

each control method for different update frequencies. In general,

as the update frequency increased, the phase convergence time

3 Note that, a suitable state of CPG relative phases is determined from the

ideal state that quadruped robots perform a typical trot gait where the front

and hind legs on opposite sides move together. However, the converged

relative phases might be slightly changed around this ideal state depending

on the situations of the robot and environment as well as their interactions.

Thus, for simplicity here, we use the ideal state (π , π , 0) as our reference state

to measure phase convergence time.

4 A video showing robot walking gaits at di�erent MI values can be seen at

http://www.manoonpong.com/AdaptiveCommunications/video1.mp4.
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FIGURE 4

Phase convergence time (represented by the boxes along with the left axis) and success rate (represented by the marks along with the right axis) of

the robot performing self-organized locomotion under three di�erent control methods (APNC, Tegotae, and PR) and di�erent MI values

(corresponding to di�erent walking frequencies). Small and large MI values indicate low and high walking frequencies, respectively. The success rate

is defined as the ratio of successful phase convergences to total trials (i.e., 20). The red and blue arrows indicate the APNC and PR.

FIGURE 5

Phase convergence time (represented by the boxes along with the left axis) and success rate (represented by markers along with the right axis) of the

robot performing self-organized locomotion under three di�erent control methods (APNC, Tegotae, and PR) for various update frequencies of the

robot system. Red and blue arrows indicate the APNC and PR.

of the three control methods decreased. This is because the high

update frequency had low delay of the sensory feedback to the

CPG, thereby yielding the optimal CPG modulation. Only the

APNC method successfully generated self-organized locomotion

with 100% success rate for all the update frequencies. The

Tegotae and PR methods achieved 100% success rate only when
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the frequency was higher than 25 Hz. Furthermore, owing to

its adaptive sensory feedback gain (see Figure 2) that properly

enhances the effect of GRF modulation in the CPG phase, the

APNCmethod achieved phase convergence faster than the Tegotae

method across all the frequencies. The stability analysis of the

control system under different update frequencies is provided in

Supplementary Figure S10.

3.1.3. Adaptability to di�erent terrain roughness
Adaptability to various uneven terrains (characterized by

terrain roughness) is a critical property of adaptive interlimb

coordination mechanisms for legged robots. To explore the

adaptability of the APNC to uneven terrains, we set up different

terrain conditions with many randomly distributed hemispherical

obstacles with different diameters embedded in the ground. This

was done to emulate varying terrain roughness conditions. The

roughness (R) was defined as the percentage of the obstacle height

(ho) to the robot step height (hs) (see Figure 6A). We tested the

robot on 10 different terrain roughness setups ranging from 0% to

100% in the simulation. The experiment on each roughness setup

was performed 20 times, and each trial was run for 45 s. The robot

step height was empirically set to 0.01265 m in the experiment.

Note that a higher step height will lead to unstable locomotion

which requires additional posture balance control (Kimura et al.,

2007).

The experiment results are presented in Figure 6B. As can

be observed, the CPG phase adaptation required more time

to converge with increasing roughness across all the methods.

Moreover, the deviation of the phase convergence time also

increased. When R was larger than 80%, the Tegotae was unable

to form a gait in some trials (i.e., the success rates were less than

100%). This was because the CPG phase relationships could not

converge to the desired state (see Supplementary Figure S6). The

experiment results indicated that the APNC not only adapted to

all the extents of terrain roughness, including relatively extremely

uneven terrains (R > 60%), but also exhibited faster and more

stable phase convergence than the Tegotae and PR at the extremely

uneven terrains.

3.1.4. Adaptability to di�erent robot conditions
To validate the performance of the proposed control method

in complex conditions, we tested the robot under four conditions:

normal condition (C1) as a baseline, noisy feedback [GRF with

noise (C2)], leg damage (C3), and carrying a payload (C4) (see

Supplementary Table S5 for more details). The robot’s walking

performance was evaluated based on three common metrics: i)

balance, ii) coordination, and iii) cost of transport (COT). The

metrics are defined in the Supplementary Section S6 and Sun et al.

(2021a). The walking trial was repeated 20 times for each condition

and control.

The experiment results are depicted in Figure 7. While all

the control methods (APNC, Tegotae, and PR) performed nearly

equally well in the normal condition (C1), the APNC improved the

robot’s balance, coordination, and energy efficiency significantly,

compared to the others in complex conditions (C2-C4). This is

because, unlike those of the Tegotae and PR methods,5 the CPGs

of the APNC-based control had adaptive neural connections that

enabled the robot to effectively and robustly coordinate its leg

movement even in complex conditions (C2-C4). In addition, a

comparison of the three control methods using the real robot with

a damaged leg is shown in Figure 8. As can be observed, the robot

driven by the APNC-based control walked with the greatest speed.

3.2. Robust and reusable self-organized
locomotion

To systematically demonstrate the APNC-based adaptive

neural control in the real world, a scenario consisting of

three continuous states experienced by Lilibot was designed

(see Figure 9). The states included self-organized locomotion

generation from an initial condition (State 1, S1); sensory feedback

malfunction (State 2, S2); and resetting to the initial condition

(State 3, S3). In these situations, Lilibot, under the adaptive

neural control (Figure 1), exhibited several locomotion properties,

including (Figure 1A) self-organized locomotion in S1, Figure 1B

robust locomotion in S2, and Figure 1C memorized or reusable

locomotion in S3. To verify the functionalities of the ANC, S2 and

S3 were performed twice, using the control with and without the

ANC, for comparison purposes.

3.2.1. Self-organized locomotion
In the first state (S1), we suspended Lilibot midair and

initialized all the CPGs (MI = 0.15) with the same parameters and

phases. After 1.7 s, Lilibot was placed on the ground (see Figure 10).

Consequently, the GRFs were activated to modulate the CPGs.

The feedback gain (γ (n) in Equation 5) was also automatically

adjusted via the DL (Equation 9) to obtain the proper feedback

strength to effectively modulate the CPGs. The sensory feedback to

each decoupled CPG was implemented by physical body dynamics

(Figure 2). This indicates that the APC occurred among the CPGs.

After 3.8 s, the GRF signals exhibited a periodic pattern

(see Figure 10B). Furthermore, the clear swing and stance phases,

where the GRF exhibited no activation (swing) and high activation

(stance), could be observed. This resulted in a stable, self-organized

trot gait (Figure 10D). The relative phases acquired by the APR

(Figure 3) converged at approximately 9 s (Figure 10C). The

relative phases slowly converged (after approximately 5 s) because

of the effect of a low-pass filter in the APR of each CPG control

circuit. The relative phases indicated that the outputs of the CPG

were in phase for the RF and LF legs and in anti-phase for the

other legs. This experiment result demonstrated that the APNC

5 It is worth noting that the Tegotae and PRmethods rely solely on physical

communication to form a robot gait. They do not include adaptive neural

communication, and therefore cannot store or memorize a generated gait

(i.e., no motor memory). Consequently, removing the GRF feedback may

cause their locomotion systems to become unstable, as continuous GRF

feedback is required tomaintain the stability of the generated gait. In contrast,

the proposed locomotion system successfully memorized and reused the

generated gait via the ANC.
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FIGURE 6

(A) Illustrations of four uneven terrain examples with di�erent roughness (R) (0%, 20%, 50%, and 100%). The robot walking behavior related to the

di�erent terrain roughness conditions can be viewed at http://www.manoonpong.com/AdaptiveCommunications/video2.mp4. (B) Phase

convergence time (represented by the boxes along with the left axis) and success rate (represented by marks along with the right axis) of the robot

performing self-organized locomotion under the three di�erent control methods (APNC, Tegotae, and PR) and various terrain roughness conditions

from flat (R = 0%) to extremely rough terrains (R > 60%). The success rate was defined as the ratio of successful phase convergences to total trials

(i.e., 20). Red and blue arrows indicate the APNC and PR. Note that the phase convergence time, indicating the e�ciency of a controller enabling the

robot to achieve self-organized locomotion, is used here as a measure to assess how fast a control system can learn or adapt. However, other

measures, like speed and balance, can be also used to evaluate the robustness of rough terrain locomotion.

enabled swift generation of self-organized locomotion (within 5

s) and effectively established the ANC on an even ground within

9 s. The snapshots of the experiment are shown in Figure 10E

and a video clip of the experiment can be viewed at http://www.

manoonpong.com/AdaptiveCommunications/video4.mp4.

After the self-organized locomotion emerged, the phase

relationships (φlk(n) in Equation 12) converged; thus, the physical

communication gain (γ (n) in Equation 9) of the APC became

small and the GRF feedback modulation (fi(n) in Equation 5)

decreased, while the ANC was activated to induce neural couplings

(gi(n) in Equation 17) among the CPGs, thereby storing the phase

relationships (Supplementary Figure S7).

3.2.2. Robust locomotion
In the second state (S2), after Lilibot performed self-

organized locomotion, the ANC was activated to compensate for

sensor malfunction (Figure 9B). Thus, in this state, there were

two communication mechanisms (APC and ANC) working in

parallel. To simulate possible sensor malfunctions arising from

an unexpected impact, the sensory feedback of the front legs was

set to a high constant value (i.e., 0.9). To comparatively examine

the effect of the combination of both communications, the state

was also tested without the ANC. The experiment results of the

adaptive neural control without and with the ANC are shown in

Figures 11A, B, respectively.
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FIGURE 7

Comparison of the robot’s walking performance under three di�erent control methods (APNC, Tegotae, and PR) under four conditions (C1: normal

condition, C2: noisy feedback, C3: leg damage, and C4: carrying payload (see Supplementary Table S5). To compare the performance of the control

methods, a Mann-Whitney test was used. * denote significant di�erences with the following p ≤ 0.05. Note that the coordination metric is based on

the duty factor. Thus, the low variance of the duty factor characterizes well-coordinated locomotion behavior (see also

Supplementary Equations S4–S7).

FIGURE 8

The three control methods were evaluated in a walking experiment conducted using the real robot with damaged leg. The APNC-based control

enabled the robot to walk at the highest speed (0.07 m/s). A video clip of this experiment can be viewed at https://www.manoonpong.com/

AdaptiveCommunications/video3.mp4.

In Figure 11A, the outputs of the CPGs of the front legs

became constant. This indicated that the two CPGs stopped

oscillating, owing to the abnormal sensory feedback of the front

legs, which was very high, at 0.9, inhibiting the CPGs through

the physical communication. As shown in the gait diagram in

Figure 11A, the front legs remained in the stance phase all

the time because they could not periodically move. Conversely,

in Figure 11B, all the CPGs continued to oscillate, even after

the front legs encountered the same abnormal situation as in

Figure 11A, because the ANC among the CPGs coupled them,

enabling them to synchronize their activations. This compensated

for the inhibitory effect caused by the sensor malfunction of

the front legs. Consequently, the robot successfully maintained

a trot gait. The robot’s GRFs and displacement can be seen

in Supplementary Figure S9. The experiment results of this state

revealed that the APNC-based adaptive neural control successfully

improved the robustness of the self-organized locomotion by

compensating for sensor malfunction or damage. The snapshots

of this experiment are shown in Figures 11C, D, and a video of

the experiment can be viewed at http://www.manoonpong.com/

AdaptiveCommunications/video5.mp4.

3.2.3. Memorized locomotion
In the last state (S3), we evaluated the effectiveness of the ANC

for reusable locomotion or locomotion recovery. Therefore, we

switched off the GRF feedback to the CPGs (i.e., sensory absence)

such that there was no physical communication (see Figure 9C).

Thus, only the ANC remained active. Furthermore, all the CPGs

were initialized to prevent oscillation by setting MI (see Equation

3) to zero, thereby removing the formed patterns of the CPGs. S3

was performed under the adaptive neural control without and with

the ANC. The results are shown in Figures 12A, B.

As shown in Figure 12, from 20 s to 24 s, the two cases

yielded the same results during initialization. The CPGs stopped

oscillating and the robot was motionless. At 24 s, the CPGs
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FIGURE 9

Experiment setup to evaluate the performance of the adaptive neural control (see text for details). (A) Self-organized locomotion. (B) Robust

locomotion. (C) Memorized locomotion.

were reactivated to oscillate (we set MI of the CPGs back to

0.15). Subsequently, the behaviors of the robot were obviously

different in both cases. In Figure 12A, although the CPGs generated

commands to move the robot joints, the four legs moved in phase.

The legs could not be lifted off the ground during the swing

phase (see the gait diagram). Thus, the robot was rooted to the

ground and unable to move forward. This was because without

the ANC, the previously formed gait could not be recovered.

Conversely, as shown in Figure 12B, the relative phases returned

to the same values as observed in S1 (Figure 10). Accordingly,

the trot gait was immediately recovered. This was attributed to

the ANC, because the phases among the CPGs were stored in

the couplings (i.e., motor memory; see Equation 17). The robot’s

GRFs and displacement can be seen in Supplementary Figure S8.

The snapshots of this experiment are shown in Figures 12C, D,

and a video clip of the experiment can be viewed at http://www.

manoonpong.com/AdaptiveCommunications/video6.mp4.

3.3. Maneuverability of self-organized
locomotion

Finally, we evaluated the maneuverability of Lilibot under the

APNC-based adaptive neural control, where the walking speed and

direction of the robot were controlled. In principle, the walking

speed can be regulated by adjusting the MI value of the CPGs

(Equation 3), the a1,2 values of the MNs (Equation 4), and the

controller update frequency. A higher controller update frequency

can result in a higher walking step frequency, higher a1,2 values can

result in a larger stride length, and a higher MI value can result in

a higher CPG oscillation frequency. As a consequence, all of these

parameters can increase the robot walking speed. As an example,

we demonstrated the walking speed control by setting theMI value

of the CPGs (see Figure 13).We increased theMI value of the CPGs

to 0.4 between 44–54 s and 64–74 s using a joystick; thereby leading

to a faster walking speed. In the corresponding periods, the walking

speed changed from approximately 0.08 m/s to 0.16 m/s. Once the

lower MI value (e.g., 0.15) was set, the walking speed returned to

the slower speed (0.08 m/s).

The walking direction can be easily controlled by setting the

magnitudes of the motor neuron outputs through the slope of the

transfer function in the MNs (i.e., parameter ai in Equation 4).

The slope can be adjusted online in the proposed control via

the ROS parameter server using the joystick. The results of

the walking direction operation are presented in Figure 14. The

aim of the walking direction regulation experiment was to set

different slopes for the motor neurons (between the right and

left sides of the robot). For instance, if the slopes of the right

legs’ motor neurons were steeper than those of the left legs’
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FIGURE 10

Real-time data of the self-organized locomotion generation (in S1). (A) The outputs of all the CPGs. (B) The GRF feedback to the CPGs. The GRF

periodic pattern appeared after 4 s. (C) The relative phases between the CPG signals (see Equation 13). (D) Gait diagram. (E) Snapshots of Lilibot

exhibiting self-organized locomotion. A green circle under a foot indicates that the foot was in a swing phase. Lilibot was suspended in midair in (i),

and was placed on the ground in (ii), after which it began to form a gait from (iii) to (iv).

motor neurons, the robot turned left (see 242–254 s in Figure 14),

and vice versa (see 232–241 s in Figure 14). A video clip of

this continuous demonstration, including walking speed and

direction regulation, can be viewed at http://www.manoonpong.

com/AdaptiveCommunications/video7.mp4.

Additionally, we also demonstrated the performance of

the adaptive neural control for self-organized locomotion and

maneuverability of Lilibot on various types of outdoor terrains

(e.g., gravel, grass, pavement, Figure 15). A video of this

demonstration can be viewed at http://www.manoonpong.com/

AdaptiveCommunications/video8.mp4.

4. Discussion

We proposed adaptive neural control based on the integration

of the APC and ANC for robust and reusable self-organized

locomotion of quadruped robots. The self-organized locomotion or
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FIGURE 11

Real-time data of the robust locomotion and robot behavior negotiating a sensor malfunction (in S2). The experiment was conducted using the

control without and with the ANC. The results are shown in (A, B), respectively. (C, D) Snapshots of Lilibot under the adaptive neural control without

and with the ANC, respectively. A green circle under a foot indicates the foot was in a swing phase.

automatic sensorimotor interlimb coordination (Aoi et al., 2017)

was accomplished through the dynamic interactions among the

decoupled neural CPG-based control circuits, sensory feedback,

and the environment. The intralimb coordination of each leg was

achieved through a local neural CPG-based control circuit that

outputs two stable periodic signals. Both signals were applied to

the hip and knee joints to generate proper foot movement (see

Figure 2). Interlimb coordination was driven by four identical

CPG-based control circuits that were coordinated and coupled

by the APC and ANC. The APC built a communication

channel through the GRF feedback to coordinate the CPG

phase relationships and the ANC stored the formed CPG

phase relationships as neural couplings between the CPG-based

control circuits.

4.1. Aspect of the APC

In this study, the APC relied on the GRF feedback, which

indirectly reflected the movement state of the legs owing to a

mechanical connection between the legs and trunk. Themechanical

connection and the interaction between the robot and the

environment (see Equation 5) provided a physical communication

channel among the CPGs through the GRF feedback. Specifically,

when the legs moved on the ground, the GRF feedback inhibited

the CPG activation using the feedback value (see Equation 5).

This function induced phase differences among the identical CPGs

because the GRFs of all the legs were not identical owing to noise,

body movement dynamics, and non-perfect structural symmetry.

Subsequently, the phase differences gradually converged because

the physical communication produced a stable relationship among

the CPGs through the GRFs. For example, when a leg (e.g.,

the RF leg) landed on the ground (f1,2 > 0 in Equation 5),

the influence of the physical communication slowed the RF leg

movement such that it remained in the stance phase slightly

longer, and hence, 1) the leg provided additional time to wait

for the other legs to enter their stance phase and 2) shared

the load acting on the other legs to enable them to enter their

swing phase. After the other legs entered the stance phase, thus

supporting the trunk, the GRF of the RF leg began to decrease

and gradually became zero, inducing the leg to enter a swing

phase (f1,2 = 0 in Equation 5). Consequently, the effect gradually

yielded stable phase shifts among the CPGs, thereby generating

self-organized locomotion.
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FIGURE 12

Real-time data of the memorized locomotion and robot behavior in response to the resetting of the control in S3. The experiment was conducted

using the control without and with the ANC. The results are shown in (A, B), respectively. The di�erent colors indicate phase shifts among the CPGs

in (B). (C, D) Snapshots of Lilibot under the adaptive neural control without and with the ANC, respectively. A green circle under a foot indicates that

the foot was in the swing phase.

In the dynamic interaction induced by the APC, there were

three vital factors to consider: 1) the differences among the GRF

feedback of the CPGs, which triggered phase shifts among identical

CPGs, regardless of the fact that they had the same initialization;

2) the sensory feedback gain (γ in Equation 5) that defined the

ideal inhibitory strength applied to the CPGs, thus impacting the

effectiveness of the convergence in the self-organized locomotion

process significantly.When the inhibition was too strong, the CPGs

stopped oscillating. On the other hand, the convergence process

was very slow when the inhibition was too weak; and 3) the

functionality of the sensory feedback that provided an appropriate

modulation for the CPG phases to generate proper interlimb

coordination. We elaborate on the three points subsequently.

4.1.1. Di�erences among the GRF feedback
The legs received the same motion commands if their CPGs

were initialized using the same parameters. Thus, in an ideal

situation, they would perform the same movements in response

to the same commands. Accordingly, in the ideal condition, the

sensors on the legs would acquire the same sensory information

(e.g., GRFs) and pass it on to the CPGs. This resulted in the

same modulation for all the CPG activations, such that the legs

would move in the same phase forever. Therefore, in this ideal

case, the physical communication makes it impossible for the

robot to form a gait. However, the actual GRFs of all legs were

not completely identical, even when the legs moved in the same

phase. This is because of the existence of some non-ideal factors

such as sensory noise, joint movement trace error, measurement

error, and imperfect structural symmetry. These factors cause slight

differences among GRFs, thus creating initial phase shifts among

the CPGs. Subsequently, the slight phase shifts increase rapidly

and converge to values that represent a particular gait when using

sensory feedback modulation (see Equation 5).

4.1.2. Sensory feedback gain
The adaptive feedback gain mechanism employed in this study

augmented the differences among the GRF feedback to accelerate

gait formation. This is because of the ability of the DL to derive

the optimal feedback gain for each leg, thus enabling the GRF to

appropriately influence the CPG. InOwaki et al. (2012), Owaki et al.

proposed a novel approach using four decoupled phase oscillators

serving as CPGs with local-only GRF feedback to generate self-

organized locomotion in a quadruped robot. They discussed the

phase dynamics of the sensory-modulated CPG and indicated that
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FIGURE 13

Walking speed of Lilibot adjusted by tuning MI of the CPGs. (A) Changes of MI of the CPGs. (B) Walking speed of the robot during the corresponding

time. The black and red lines are the instantaneous and average speeds of the trunk with reference to the inertial frame, respectively. The blue line

indicates the displacement of the robot.

the CPG had two states, namely, the oscillatory and excitatory

states. The autonomous switch from one state to the other plays an

essential role in the generation of adaptive interlimb coordination.

However, the sensory feedback gain was predefined in their work,

although it has a significant effect on the convergence time of self-

organized locomotion. Therefore, we induced an adaptive sensory

feedback gain realized by the DL (see Figure 2A). The DL adjusted

the gain depending on the error between the actual and expected

GRFs such that the actual leg movement matched the expected one

with greater precision. The DL with fast and slow learners quickly

adapted the feedback gain online toward achieving rapidly self-

organized locomotion generation (i.e., within 5 s see Figure 10).

The error between the actual and expected GRFs utilized by the

DL was limited to positive values (Equation 6). Consequently,

the feedback gain was non-negative (γ ≥ 0) and had a positive

value (γ > 0) only when the corresponding foot remained in

the actual stance phase; thus, the DL was active when the robot

interacted with the ground. This feature prevented the legs’ swing

phase from affecting the retention of the DL such that the adaptive

sensory feedback modulation provided a rapid reaction to the

stance phase movement.

4.1.3. Functionality of the sensory feedback
The automatic sensorimotor coordination was significantly

influenced by the functionality of the sensory feedback, which

determined the walking patterns. Over the years, various forms of

sensory information have been exploited to modulate CPGs for

adaptive gait generation and transition. For instance, Fukuhara et

al. investigated a combination of the support and propulsion force

as sensory feedback to adjust the CPG phase, through which they

demonstrated not only self-organized locomotion generation, but

also gait transitions on a quadruped robot (Fukuhara et al., 2018).

Fukui et al. (2019) modulated the CPG phase using vestibular

feedback, which enabled a quadruped robot to achieve autonomous

gait transition and galloping, even when the CPGs had predefined

and fixed weak connections. In addition to the use of multiple

sensory feedback, Aoi et al. (2010) studied the effect of the stiffness

of the backbone joint on gait transitions under CPG-based control.

They achieved gait transitions by changing the waist joint stiffness.

Similar biological examples have been observed in mammals (e.g.,

dogs Schilling and Carrier, 2010, cheetahs Hildebrand, 1959 and

horses Hildebrand, 1959) that exhibit distinctive spine movements

when they use different gaits.

As a matter of fact, the backbone joint significantly affects the

functionality of the physical communication because its stiffness

influences the dynamic interactions among the legs. In summary,

these results support the argument that the functionality of sensory

feedback to the CPGs not only plays a key role in interlimb

coordination generation, but also affects the gait selection. In

this study, we used Lilibot, a robot with a rigid trunk that

provided a relatively fixed transmission over GRFs (i.e., a support

force) regardless of changes in the walking speed and direction

changes. Thus, in future work, we plan to implement multiple

sensory feedback modulation and incorporate a backbone joint

with adaptive stiffness to extend the flexibility of the physical

communication channel and thereby enable the robot to perform

adaptive gait transitions.

Owing to its high dependence on sensory feedback, there

are two drawbacks associated with using the APC for interlimb

coordination generation. First, once a sensor malfunction occurs,

the robot cannot sustain its stable self-organized locomotion.
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FIGURE 14

Motor commands fed to Lilibot and its walking direction under these commands. The four legs received periodic commands with the same

amplitudes after the control converged and the robot walked forward. After approximately 232 s, the robot was made to turn right by setting the

amplitudes of the left leg motor commands to be larger than normal and those of the right side became lower than normal. After 241 s, the setting of

the amplitudes was reversed and the robot turned left.

FIGURE 15

Outdoor demonstration on various terrain types. (A) Gravel. (B) Grass. (C) Pavement. The formed gait was then stored through the neural couplings.

This enabled maneuverability, with the robot being able to stably change its walking speed and direction.
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Second, the robot cannot memorize the formed gait for later

recovery. However, biological findings have demonstrated that

animals have the capability to maintain locomotion even when they

encounter unexpected situations (Graham, 1977) such as sensory

damage or leg amputation. A general neurophysiological fact is

that the neural couplings between neural circuits form a basis

for memory. An evidence from Giovanni et al. demonstrated that

neural circuits and their couplings support imitation learning of

hand actions (Buccino et al., 2004). Many biologically inspired

control approaches employed for locomotion generation utilize

neural couplings or connections to predefine movement behaviors

for legged robots (Cruse et al., 1998; Kimura et al., 2007; Ajallooeian

et al., 2013; Fukuoka and Kimura, 2014; Liu et al., 2018).

4.2. Aspect of the ANC

Neural couplings endue robots with more stable and reusable

interlimb coordination. In contrast to the traditional predefined

neural couplings, we implemented adaptive neural couplings,

which were automatically formed online to obtain the ANC

among the distributed CPGs. Consequently, we integrated the

neural communication and physical communication mechanisms

to achieve rapid self-organized locomotion that was characterized

by 1) robustness against sensor damage, as well as 2) reusability of

a formed gait for movement recovery.

4.2.1. Robust self-organized locomotion
The generated self-organized locomotion was robust against

sensory feedback damage. In our experiments, we studied a sensor

malfunction case in which the GRFs to the front legs took on a

high constant value to simulate an unexpected collision triggering

sensor failure in the feet (see S2 in Figure 9). The abnormal

GRF signals could not be used to distinguish the movement

state (stance or swing phase) and strongly inhibited the CPGs

continuously, as a result of which the CPGs stopped oscillating

(Figure 11). However, the control with the additional ANC was

able to synchronize and enforce the oscillation of the CPGs, even if

some of them are inhibited heavily by abnormal sensory feedback.

This is because the activations of the CPGs were controlled by the

CPGs themselves through the ANC (see Equation 17). Therefore,

the control using a combination of the APC and ANC enabled a

legged robot to exhibit not only rapidly self-organized locomotion

generation but also robust locomotion against sensor malfunction

or absence. This result indicates that the ANC mechanism plays

an important role in supplementing physical communication to

generate stable movement in a legged robot. Furthermore, in

contrast to some existing CPG coupling approaches using phase

oscillators (Collins and Richmond, 1994; Aoi et al., 2010), we

achieved neural communication based on the abstract version of

biological neurons (i.e., the neuron model in the SO(2) CPG).

This biological plausibility tends to support the claim that adaptive

neural couplings (e.g., synaptic adaptation) play a crucial role

regarding interlimb coordination after a limb injury (e.g., leg loss

Cully et al., 2015 or amputation Dasgupta et al., 2015).

4.2.2. Reusable self-organized locomotion
Another important effect attributed to the ANC is the

reusability of the formed locomotion even when the CPGs are

reinitialized. The robot exhibiting this behavior demonstrated

that the proposed adaptive neural control can memorize the

stable movement formed in a self-organized manner. This feature

was derived from the inherent properties of the adaptive neural

couplings, which stored the stable phase relationships among the

CPGs.Motor learning has increasingly attracted researchers aiming

to develop adaptive movement in robotics (Reinkensmeyer et al.,

2004). This study illustrates a means to convert the adaptive

movement formed online (using physical communication) into an

adaptive neural circuit network (see Figure 1B). It further provides

insight into the underlyingmechanism ofmotormemory regarding

how to encode and store information in the neural system for

movement recovery in robots.

4.3. Combination of the APC and ANC

Based on the real-time GRF feedback, the APC modulates

and forms a walking pattern, which the ANC stores and recalls.

Their gains (γ (n) in Equation 9 and ξ in Equation 17) determine

their respective contributions in shaping the walking pattern. In

the maneuverability experiment, the neural communication gain

(ξ ) was set to a relatively high value (i.e., 0.01) compared to the

physical communication gain (γ ), which automatically converged

toward zero (γ (n) < 0.01, see the DL output in Figure 2B) after

the neural communication was active. Thus, the recall function of

the ANC was stronger than the modulation function of the APC.

Although the changing walking speed and directions produced

different GRF feedback to the CPGs, the ANC strongly stabilized

the generated walking pattern. The balance between the two

parameters defined the interplay between the APC and ANC.

Similar to the terminology in RL (Hwangbo et al., 2019; Jones et al.,

2020; Thor et al., 2020), the roles of the APC and ANC represented

the exploration (learning process) and exploitation (recall process)

in our locomotion learning, respectively.

The proposed adaptive neural control with the APC and

ANC enabled a robot to quickly generate adaptive gaits within

9 s on even terrain (Figure 10), 20 s on simulated rough terrain

(Figure 6B), and 25 s on outdoor terrain (e.g., gravel, grass, and

pavement), unlike conventional ML-based control that typically

requires long training and learning processes. For instance, Ishige et

al. presented a combination of CPG-based control with an episode-

based RL for locomotion generation. Its training process required

approximately a day (Ishige et al., 2019). Hwangbo et al. (2019)

proposed an RL-based method for training a neural network policy

in simulation and transferred it to a quadruped robot ANYmal.

This approach also required a long training process (approximately

4 h). To avoid long training sessions resulting from the structural

complexity of neural networks (Hwangbo et al., 2019), Thor and

Manoonpong recently presented a novel control framework that

translates CPG signals into desired joint motor commands for

robot locomotion via a radial basis function network with a

simplified structure and black-box optimization (Thor et al., 2020).

However, it still required several training sessions (approximately
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13 min for normal walking). In addition, Juang et al. presented a

multi-objective evolutionmethod based on an ant colony algorithm

to learn a recurrent neural network for generating the gait of

a legged robot. This method required a few billion of trials for

training in simulation, following which the trained model was

transferred to a real robot (Juang and Yeh, 2018).

A comparison of the proposed adaptive neural control with

related state-of-art methods (Buchli and Ijspeert, 2008; Aoi

et al., 2012; Owaki et al., 2012; Barikhan et al., 2014; Fukuhara

et al., 2018; Miguel-Blanco and Manoonpong, 2020) for fast

self-organized locomotion generation (i.e., obtaining a gait in

less than a minute and without robot kinematics, environmental

models, and predefined interlimb coordination) reveals that

the proposed adaptive neural control method can achieve self-

organized locomotion on not only even terrain (typically shown by

the others Buchli and Ijspeert, 2008; Aoi et al., 2012; Owaki et al.,

2012; Barikhan et al., 2014; Fukuhara et al., 2018; Miguel-Blanco

and Manoonpong, 2020) but also uneven terrain. Furthermore, it

provides motor memory through the ANC for gait recovery and

robust locomotion to deal with a sensor malfunction. It also enables

spontaneous variations in the walking speed and direction for robot

maneuverability (Supplementary Table S6). It is worth noting that,

while the proposed control system has been shown to be effective

in the study, it does not address adaptive intralimb coordination,

which controls the robot foot trajectory and has a significant impact

on the robot’s balance on complex uneven terrain and slopes (Sun

et al., 2021a).

4.4. Limitations

The proposed control method has two limitations of the

intralimb coordination that determines the robot foot trajectory

and significantly influences the robot’s balance on uneven terrains.

First, the relative phase between the outputs of a CPG was a fixed

value ≈ π/2 that defined the intralimb coordination between the

hip and knee joints of a leg. In addition, the hip and knee joint

movement amplitudes and offsets, which influence the step length

and body posture (Wang et al., 2018; Sun et al., 2020; Saputra et al.,

2022), were also predefined with fixed parameter values. These

two points limited the adaptation of the intralimb coordination of

the robot, thus hindering its ability to effectively handle complex

terrains (e.g., slopes Sun et al., 2021a) and negotiate a high

obstacle (Sun et al., 2018). Biological studies have revealed that

adaptive interlimb and intralimb coordination as well as posture

control depends on the integration of CPGs, reflexes, and muscle

mechanisms (Aoi et al., 2017; Saputra et al., 2022). Thus, in the

future, we will integrate multiple reflexes (e.g., vestibular/posture

reflexes Kimura et al., 2007 and spinal reflex Saputra et al., 2022)

and muscle models (Xiong et al., 2015) to realize a more advanced

adaptive intralimb coordination and study its integration with the

proposed adaptive interlimb coordination.

5. Conclusion

We developed adaptive neural control by integrating the APC

and ANC. The experiment results on Lilibot indicate that the

combination of the APC and ANC can enable more robust and

reusable locomotion. It further confirms that the combination plays

an essential role in reliable interlimb coordination generation in

biological, as well as artificial systems.6 The main advantages of the

proposed approach over existing locomotion control approaches,

such as classic engineering techniques (Raibert et al., 2008; Hutter

et al., 2016; Semini et al., 2017; Bledt et al., 2018) and ML (e.g.,

RL Nakamura et al., 2007; Heess et al., 2017; Hwangbo et al., 2019;

Ishige et al., 2019; Jones et al., 2020, ant-colony optimization Juang

and Yeh, 2018, intelligent trial and error Cully et al., 2015, and

black-box optimization Thor et al., 2020) are as follows:

• It does not require robot kinematics, environmental models,

and predefined interlimb coordination (i.e., the interlimb

coordination was achieved in a self-organized manner),

• It does not require numerous attempts and long convergence

time (i.e., we were able to quickly generate robust and reusable

self-organized locomotion within a few seconds (i.e., 9 s and

25 s for even and uneven terrains, respectively).

These features make the proposed approach powerful

and generic for developing robust and reusable self-organized

locomotion for legged robots. The control based on the proposed

approach is modular and developed with generic interfaces. It is

flexible and offers the possibility of integrating it with other control

strategies such as balance control through a reflex mechanism

(Kimura et al., 2007) and navigation. Moreover, the control can

be extended to various types of legged robots, such as hexapod,

and octopod, because the adaptive neural control is organized by

distributed identical local control circuits, and the relationships

among the local control circuits are formed in an adaptive manner.

This will enable the adaptive neural control to be used as a

generic control algorithm for various legged systems in the future.

Limitations of the proposed method are that some parameters were

empirically set up, such as α and ρ of the FM, as well as phase shift,

amplitudes, and offsets of intralimb coordination. The parameter

values lead to the expected GRF with a predefined ideal shape and

predefined foot trajectory, thereby reducing the adaptability of the

control to some extent. In the future, we will further investigate

optimizing the control method parameters by combined with

reinforcement learning.
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