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Light is an important abiotic factor affecting insect behavior. In nature, linearly
polarized light is common, but circularly polarized light is rare. Left circularly
polarized (LCP) light is selectively reflected by the exocuticle of most scarab
beetles, including Anomala corpulenta. Despite our previous research showing
that this visual signal probably mediates their mating behavior, the way in which it
does so is not well elucidated. In this study, we investigated how LCP light affects
not only mating behavior but also gene expression in this species using RNA-seq.
The results indicated that disruption of LCP light reflection by females of A.
corpulenta probably affects the process by which males of A. corpulenta
search for mates. Furthermore, the RNA-seq results showed that genes of the
environmental signaling pathways and also of several insect reproduction-related
amino acid metabolic pathways were differentially expressed in groups exposed
and not exposed to LCP light. This implies that A. corpulenta reproduction is
probably regulated by LCP light-induced stress. Herein, the results show that LCP
light is probably perceived by males of the species, further mediating their mating
behavior. However, this hypothesis needs future verification with additional
samples.
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Introduction

Vision is an important sense that triggers particular behaviors in most animals. In
nature, polarized light is generated by atmospheric scattering of unpolarized sunlight and by
sunlight reflecting off surfaces like water, leaves, and bodies (Wehner, 2001). Invertebrates,
including insects (Horváth and Varjú. (1997); Dacke et al., 2002) and spiders (Dacke et al.,
2001), can usually perceive linearly polarized light. However, only a small number of
vertebrates are known to use polarization for object-based vision, which exclusively occurs in
fish (Kamermans and Hawryshyn, 2011). Polarized light is known to mediate diverse
behaviors in insects, including navigation (Labhart and Meyer, 2002), host recognition
(Blake et al., 2019), and water avoidance (Shashar et al., 2005). Circularly polarized (CP) light
is another form of polarized light that is less common in nature (Heinloth et al., 2018).
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Multiple studies have revealed that CP light can be perceived by
mantis shrimp and that it affects their mating behavior and
defensive behaviors (Chiou et al., 2008; Baar et al., 2014; Gagnon
et al., 2015; Templin et al., 2017).

Michelson (1911) initially reported on reflection of polarized
light in some scarab beetles (Michelson, 1911), with subsequent
studies revealing that their exocuticle selectively reflects left
circularly polarized (LCP) light (Finlayson et al., 2017; Bagge
et al., 2020). The scarab beetle, A. corpulenta Motschulsky, is a
destructive agricultural and horticultural pest in China. Its body has
a metallic green color and LCP light reflects off its exocuticle. Our
previous research showed that the mating behavior of Anomala
corpulenta is probably regulated by a visual signal (Miao et al., 2015).
However, the way in which LCP light affects the mating behavior of
A. corpulenta has not been thoroughly investigated. In this study, we
examine the effects of LCP light on A. corpulenta mating behavior.
Furthermore, the effects of LCP light on their gene expression are
revealed using RNA-seq, and the potential molecular responses to
LCP light-induced stress are discussed.

Materials and methods

Insect collection

The A. corpulenta adults used in this study were trapped using
black lamps in peanut fields in Yuanyang County, Henan Province
(35.01 N, 113.69 E), in June 2022. The collected individuals were fed
fresh peanut leaves and kept under room conditions of 25 °C with a
16:8 h light:dark regime.

Mating experiments

To uncover the effects of LCP light on the mating behavior of A.
corpulenta, we disrupted these effects by painting the A. corpulenta
elytra with green nail enamel, which is similar to their body color.
Three experimental groups were established: 1) a group in which only
the males were painted, 2) a group in which only the females were
painted, and 3) a group in which bothmales and females were painted.
The behavior of these groups was compared in order to reveal the
beetles’ specific sexual responses to LCP light during mating. A fourth
group, consisting of normal (unpainted) A. corpulenta, was used as a
control. The mating experiments were conducted as previously
described (Miao et al., 2015), with a few modifications. First,
10 male and 10 female A. corpulenta beetles of one of the
experimental groups were placed into a plastic glass pot and kept
under natural conditions of <0.3 lx (night) and ~700 lx (day) for 24 h.
Five replicates were used for each condition. The number of mating
pairs of A. corpulenta beetles was counted every half hour. Mating
males and females were gently separated after being counted.

Transcriptome sequencing of Anomala
corpulenta

The effect of LCP light on gene expression in A. corpulenta was
evaluated using transcriptome sequencing. First, adult beetles were

placed into transparent plastic pots and initially kept under a
daylight lamp for 3 h, then transferred into a dark room for 3 h.
Thereafter, they were divided into an LCP light treatment group
(exposed to LCP light at 600 lx for 3 h) and a control group (exposed
to darkness (0 lx) for 3 h). A 50 W bromine tungsten lamp (OSRAM,
Germany) was used as a light source with LCP light filtered using
LCP film (Nitto Denko Corporation, Osaka, Japan). Five A.
corpulenta pairs (i.e., five males and five females) were subjected
to each treatment, and each condition was performed in triplicate.
The heads of the individuals were then dissected and subjected to
transcriptome sequencing.

Total RNA was extracted using TRIzol reagent (Invitrogen, CA,
United States) following the manufacturer’s recommendations. The
RNA integrity number (RIN) was obtained using the RNA
1000 Nano LabChip Kit on a Bioanalyzer 2100 (Agilent, CA,
United States) to evaluate the quantity and purity of total RNA.
Samples with RIN <7.0 were excluded from subsequent analyses.
mRNA was enriched from ~5 µg total RNA using poly-T oligo-
attachedmagnetic beads with two rounds of purification. Thereafter,
the purified mRNA was fragmented using divalent cations under
high temperature. Subsequently, the cleaved RNA fragments were
reverse-transcribed to create a final cDNA library as per the
transcriptome sample preparation kit protocol (Illumina, San
Diego, United States). Paired-end sequencing was performed on
an Illumina NovaSeq™ 6000 platform. In this study, sequencing
libraries were constructed and transcriptome sequencing was
conducted by Lc-Bio Technologies Co., Ltd. (Hangzhou, China).

Bioinformatics analyses

The adaptors of the row data were removed using Cutadapt
(Version 1.9) (Martin, 2011), and low-quality bases were further
trimmed using fqtrim (Version 0.94) (https://ccb.jhu.edu/software/
fqtrim/). FastQC (Version 0.10.1) (http://www.bioinformatics.
babraham.ac.uk/projects/fastqc/) was used to evaluate the quality
of the cleaned data, with low-quality data eliminated for
subsequent analyses. De novo transcriptome assembly was
performed using Trinity (Version 2.4.0) (Grabherr et al., 2011).
The longest assembled transcript of a given gene was defined as a
unigene. The functions of unigenes were predicted using DIAMOND
(Version 0.7.12) (Buchfink et al., 2015) against the non-redundant
(Nr) protein sequence database and the Kyoto Encyclopedia of Genes
and Genomes (KEGG). An e-value threshold of 1 × 10−5 was used in
the searches. GO (Gene Ontology) annotations were mapped to the
GO terms in the Gene Ontology database (http://www.geneontology.
org/) using Blast2GO (Version 2.3.5) (Conesa et al., 2005).
Transcripts per million (TPM) of unigenes were calculated using
Salmon (Version 0.8.2) (Patro et al., 2017) to evaluate their expression
levels. The edgeR R package (Robinson et al., 2010) was used to help
filter differentially expressed genes (DEGs) with a threshold of
absolute log2 (FC, fold change) ≥1 and statistical significance
(p-value) < 0.05. Principal component analysis (PCA) of the
samples was carried out using the gene expression matrix and
subsequently visualized using the stats R package.

GO and KEGG enrichment was performed for the DEGs and
visualized using the clusterProfiler R package (Yu et al., 2012). The
gene–concept network highlighted the interactions between DEGs,
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with significantly enriched KEGG pathways further constructed
using clusterProfiler. The expression patterns of the DEGs among
the individuals were visualized using heat maps constructed using
TBtools (Chen et al., 2020). The DEGs were further verified by real-
time quantitative reverse transcription PCR (RT-qPCR). First,
cDNA was synthesized using the First-Strand cDNA Synthesis
Kit (Toyobo, Shanghai); RT-qPCR was then performed using the
SYBR Green Real-Time PCR Master Mix Kit (Toyobo) on a
Mastercycler® ep realplex system (Eppendorf). The relative
expression of DEGs was normalized to the A. corpulenta β-actin
gene as previously described (Livak and Schmittgen, 2001; Bustin
et al., 2009). All RT-qPCR assays were conducted with three
biological replicates and further analyzed via one-way analysis of
variance (ANOVA). The primers used in this study were listed in
Supplementary Table S1.

Results

Change in the body color of Anomala
corpulenta under circularly polarized light

In Henan Province, A. corpulenta is one of the major pests of
peanut fields (Figure 1A). Under normal light conditions, their body
color is green with a little brown (Figure 1B). However, this color is
clearly altered by circularly polarized light. In particular, the A.
corpulenta cuticle selectively reflects LCP light (Figure 1C) rather
than right circularly polarized (RCP) light (Figure 1D).

Effects of LCP light on the mating behavior
of Anomala corpulenta

In this study, to eliminate the effect of body color and evaluate
the potential effects of LCP light on the mating behavior of A.
corpulenta, we colored the elytra of some individuals with green nail
enamel (Figure 2A). The results showed that the reflection of
circularly polarized light by A. corpulenta was greatly disrupted
by painting of the elytron (Figures 2B, C). Furthermore, the number
of pairs of mating beetles differed significantly between the groups
with and without elytron-painting treatment (ANOVA: F = 4.875,
p = 0.035) (Figure 2D). Multiple comparisons indicated that, relative
to the control group, the number of pairs of mating beetles was
significantly reduced in the group with painted females (LSD test:
p = 0.012) but there was no significant difference in the case of the
group with painted males (LSD test: p = 0.739).

Analyses of the Anomala corpulenta
transcriptome

In this study, we identified 32,619 unigenes with 37.13% GC
content assembled in the A. corpulenta transcriptome. The N50 of
these unigenes was 1,578 bp. We predicted the functions of
15,786 and 10,619 unigenes against the Nr and KEGG databases,
respectively. Furthermore, we annotated 11,133 unigenes in the GO
predictions. The PCA showed that the LCP light treatment and
control groups were well distinguished (Figure 3A). Furthermore,

FIGURE 1
Developmental stages of Anomala corpulenta and photographs of the beetles under different polarizing films. (A) Developmental stages of A.
corpulenta. (B) Photograph showing appearance without polarizing film. (C) Photograph showing appearance with left circularly polarizing film. (D)
Photograph showing appearance with right circularly polarizing film.
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FIGURE 2
Photographs of painted beetles under different polarizing films and results of mating experiment. (A) Photograph showing appearance without
polarizing film. (B) Photograph showing appearance with left circularly polarizing film. (C) Photograph showing appearancewith right circularly polarizing
film. (D) Results of the mating experiment with painted and unpainted members of A. corpulenta.

FIGURE 3
Principal component analysis (PCA) and gene expression of Anomala corpulenta subjected to left circularly polarized light. (A) PCA using the gene
expression matrix. (B) Volcano plot of gene expression.
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315 unigenes were filtered as DEGs, with 176 and 139 being
significantly downregulated and upregulated, respectively, at the
filtered thresholds (Figure 3B). We also observed similar expression
patterns of the representative DEGs via RT-qPCR (Supplementary
Figure S1), which further confirmed the RNA-seq results.

Predictions of the functions of DEGs

The top 10 enriched GO terms and KEGG pathways are shown
in Figure 4. In the GO analysis, most enriched GO terms were
clustered under molecular functions. Moreover, the enriched GO
terms mainly related to the process of integration and synthesis of
DNA, while terms relating to contributions to the structural
integrity of the insect cuticle also appeared (Figure 4A). In the
KEGG analysis, the significantly enriched pathways were those
falling under amino acid metabolism and insect
phototransduction, such as glycine, serine, and threonine
metabolism and phototransduction–fly (Figure 4B).

Heat maps were also used to visualize differences between the
treatment groups in the expression patterns of DEGs in the
significantly enriched pathways (Figure 5A). The results
showed that the patterns of DEG expression generally
clustered by treatment group, and expression patterns varied
between groups within the same enriched pathway. In particular,
DEGs enriched in the neuroactive ligand–receptor interaction
were significantly downregulated in the LCP light group, whereas
those enriched in phototransduction were significantly
upregulated.

Finally, the interactions between DEGs and significantly
enriched pathways are presented in the gene-concept network
(Figure 5B). The results show that four DEGs were enriched in
multiple pathways. Within these pathways, two DEGs were shared
between the phototransduction–fly and phagosome pathways, one
DEGwas shared between the bacterial invasion of epithelial cells and
ECM–receptor interaction pathways, and one DEG was shared
between the bacterial invasion of epithelial cells and phagosome
pathways.

FIGURE 4
Enriched GO terms and KEGG pathways of the differentially expressed genes (DEGs). (A) Top ten GO significantly enriched terms (FDR< 0.05) (B)
KEGG significantly enriched pathways (FDR< 0.05).

FIGURE 5
Expression patterns and gene–concept network of DEGs. (A) Expression patterns of DEGs that related to the significantly enriched pathways.
Log2 TPM values are further scaled by row using the zero-to-one method and then indicated by the color and area of the circles. (B) Gene–concept
network of DEGs among significantly enriched pathways.
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Discussion

In nature, polarized light is generated by atmospheric scattering
of unpolarized sunlight and its reflection off surfaces like water,
leaves, and bodies (Wehner, 2001). Polarized light of the form
commonly referred to as linearly polarized light plays a role in
insect navigation (Wehner, 1976; Krapp, 2007), assists in the
predation behaviors of cuttlefish and horseflies (Shashar et al.,
1998; Shashar et al., 2000; Meglic et al., 2019), and affects
recognition of host and oviposition sites in dragonflies and
butterflies, respectively (Wildermuth, 1998; Blake et al., 2019).
Circularly polarized light is another form of polarized light that
is less common in nature (Heinloth et al., 2018). Previous studies
have indicated that circularly polarized light is a covert signal in the
intraspecific communication of stomatopod crustaceans (Templin
et al., 2017), and that it can alter their mating selections (Chiou et al.,
2011; Baar et al., 2014).

Left circularly polarized (LCP) light is selectively reflected by the
exocuticle of scarab beetles (Coleoptera: Scarabaeidae) (Finlayson
et al., 2017; Bagge et al., 2020). However, its role in beetles has not
been thoroughly investigated. Although our previous research
showed that the mating behavior of A. corpulenta is affected by
visual signals, the roles of body color and LCP light in the mate
choices of A. corpulenta are not well understood (Miao et al., 2015).
To investigate how LCP light affects the mating behavior of A.
corpulenta, we disrupted the reflection of LCP light by members of
this species, while retaining their general green body color, by
painting their elytra with green nail enamel. The results indicated
that, compared with controls, the number of mating pairs of A.
corpulenta was significantly reduced when LCP light reflection was
disrupted in female A. corpulenta, but not in male A. corpulenta. In
beetles, male insects domost of the searching for mates (Muniz et al.,
2018). Thus, this finding implies that LCP light reflected by the
exocuticle of females of A. corpulenta is probably perceived by males
of the species, which improves their ability to find mates, as
previously reported in Heliconius butterflies (Sweeney et al.,
2003). However, the circularly polarized light-detecting capability
of scarab beetles is debatable. While the jewel scarab, Chrysina
gloriosa, can distinguish circularly polarized light, another jewel
scarab, C. woodi, exhibits no phototactic discrimination between
linear and circularly polarized light (Brady and Cummings, 2010).
Furthermore, in another study, four scarab beetles showed no
behavioral response under circularly polarized light treatments
(Blaho et al., 2012). Hence, despite the demonstration in this
study of potential interactions between LCP light and mating
behavior in A. corpulenta, firm conclusions cannot be drawn on
their LCP light-perceiving capacity. Therefore, further behavioral
experiments with more samples are required.

Previous studies indicate that light stress strongly alters the gene
expression patterns of insects (Yang et al., 2021; Wang et al., 2023).
In this study, we investigated the effect of LCP light on the gene
expression patterns of A. corpulenta. The results showed that the
insect phototransduction pathway was enriched. Phototransduction
is a well-known signaling cascade that converts light energy into an
electrical signal. In insects, the expression of phototransduction-
related genes is significantly modified by exposure to different light
environments (Macias-Munoz et al., 2019) and even viral infections
(Bhattarai et al., 2018b). Another environmental information

signaling pathway, including neuroactive ligand–receptor
interaction, was also enriched. Although the neuroactive
ligand–receptor interaction pathway is known for responding to
diverse environmental stresses (Cao et al., 2013; Yadav et al., 2017;
Bhattarai et al., 2018a), it has also been found to be vital in
adaptations in invasive beetles (Liu et al., 2021). Furthermore,
some amino acid metabolic pathways that regulate insect
reproduction were also found to be significantly enriched. Recent
studies indicate that phenylalanine metabolism regulates
reproduction and mating behavior in flies and mosquitos
(Proline et al., 2014; Arya et al., 2021), while glycine, serine, and
threonine metabolism are involved in sex pheromone biosynthesis
in the oriental fruit fly (Gui et al., 2023). Overall, when A. corpulenta
beetles were subjected to LCP light stress, not only was the
expression of insect environmental signaling pathway-related
genes affected, but that of amino acid metabolism pathways
related to insect reproduction was also affected. This indicates
that LCP light probably regulates reproduction in A. corpulenta.

In conclusion, we investigated the effect of LCP light on the
mating behavior of A. corpulenta and also examined how
exposure to this affects gene expression in this species. The
results indicated that LCP light probably affects the mate-
searching capabilities of male A. corpulenta beetles, with
multiple insect environmental signaling and reproduction-
related pathways being significantly enriched when they are
subjected to LCP light-induced stress.
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