
Frontiers in Endocrinology

OPEN ACCESS

EDITED BY

Jie Mei,
Huazhong Agricultural University, China

REVIEWED BY

Jingjing Tian,
Pearl River Fisheries Research Institute
(CAFS), China
Xiangyan Dai,
Southwest University, China
Junjie Wu,
Yunnan Institute of Fishery Sciences
Research, China

*CORRESPONDENCE

Xi Li

xili_ihb@126.com

Xiang Gao

gaoyangxixi@whu.edu.cn

†These authors have contributed
equally to this work

SPECIALTY SECTION

This article was submitted to
Experimental Endocrinology,
a section of the journal
Frontiers in Endocrinology

RECEIVED 10 February 2023

ACCEPTED 13 March 2023

PUBLISHED 31 March 2023

CITATION

Guan K, Shan C, Guo A, Gao X and Li X
(2023) Ghrelin regulates hyperactivity-like
behaviors via growth hormone signaling
pathway in zebrafish (Danio rerio).
Front. Endocrinol. 14:1163263.
doi: 10.3389/fendo.2023.1163263

COPYRIGHT

© 2023 Guan, Shan, Guo, Gao and Li. This is
an open-access article distributed under the
terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that
the original publication in this journal is
cited, in accordance with accepted
academic practice. No use, distribution or
reproduction is permitted which does not
comply with these terms.

TYPE Original Research

PUBLISHED 31 March 2023

DOI 10.3389/fendo.2023.1163263
Ghrelin regulates hyperactivity-
like behaviors via growth
hormone signaling pathway in
zebrafish (Danio rerio)

Kaiyu Guan1,2†, Chunyan Shan2†, Anqi Guo2, Xiang Gao3*

and Xi Li2*

1Department of Clinical Psychology, Wenzhou Seventh People’s Hospital, Wenzhou, Zhejiang, China,
2The Affiliated Kangning Hospital of Wenzhou Medical University, Zhejiang Provincial Clinical
Research Center for Mental Disorder, Wenzhou, Zhejiang, China, 3Central Laboratory, Scientific
Research Department, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
Introduction: Ghrelin is originally identified as the endogenous ligand for the

growth hormone secretagogue receptor (GHSR) and partially acts by stimulating

growth hormone (GH) release. Our previous studies have identifiedGHRELIN as a

novel susceptibility gene for human attention-deficit hyperactivity disorder

(ADHD), and ghrelin-depleted zebrafish (Danio rerio) display ADHD-like

behaviors. However, the underlying molecular mechanism how ghrelin

regulates hyperactivity-like behaviors is not yet known.

Results: Here, we performed RNA-sequencing analysis using adult ghrelinD/D

zebrafish brains to investigate the underlying molecular mechanisms. We found

that gh1 mRNA and genes related to the gh signaling pathway were significantly

reduced at transcriptional expression levels. Quantitative polymerase chain

reaction (qPCR) was performed and confirmed the downregulation of gh

signaling pathway-related genes in ghrelinD/D zebrafish larvae and the brain of

adult ghrelinD/D zebrafish. In addition, ghrelinD/D zebrafish displayed hyperactive

and hyperreactive phenotypes, such as an increase in motor activity in swimming

test and a hyperreactive phenotype under light/dark cycle stimulation, mimicking

human ADHD symptoms. Intraperitoneal injection of recombinant human

growth hormone (rhGH) partially rescued the hyperactivity and hyperreactive-

like behaviors in ghrelin mutant zebrafish.

Conclusion: Our results indicated that ghrelin may regulate hyperactivity-like

behaviors by mediating gh signaling pathway in zebrafish. And the protective

effect of rhGH on ghrelinD/D zebrafish hyperactivity behavior provides new

therapeutic clues for ADHD patients.
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Introduction

Attention-deficit/hyperactivity disorder (ADHD) is a common

and highly genetically related neurodevelopmental disorder in

children and adolescents, characterized by inattention,

hyperactivity, and impulsivity, with a prevalence of 5.29% in

children and adolescents worldwide. More than half of the

symptoms of ADHD may persist into adulthood, and the

prevalence among adults aged 19-45 years was 2.5% (1, 2). The

impairments of physical health, academic, social, and occupational

functions of ADHD patients could sustain across the whole life span

and cause serious burden on families and society (3, 4).

Various genetic, neuroendocrine, and environmental factors

have been proposed to play a role in susceptibility to ADHD (4).

Severe growth problems and delayed brain maturation are receiving

increasing attention in the pathological process of ADHD (5, 6),

especially in height and body mass index (7–10). A Czech study

found ADHD patients showed lower body height, smaller head

circumference, compared with non ADHD patients (5). A recently

published nationwide population-based study of Israeli

demonstrated minor but statistically significant lower height in

adolescents with mild or severe ADHD than those without ADHD,

suggesting that patients with ADHD may have mild growth

restriction (11). Faraone, S.V et al., also reported dysregulated

growth in ADHD patients (12). On the other hand, long-term

stimulant treatment is associated with height suppression in

adolescent ADHD patients, and generally remits in adulthood

(13). The reasons behind the associations of ADHD itself and

growth are not known. Many researchers have therefore focused

on the role of the neuroendocrine system in the etiology of ADHD

(14, 15).

Growth hormone (GH) is a peptide hormone secreted from the

anterior pituitary gland and plays a key role together with activating

the GH receptor (GHR). GHR is expressed in almost all cell types in

the brain, including neurons and glial cells in the frontal lobe,

hippocampus, and hypothalamus (16, 17). GH is not only

traditionally confined to promote growth but also involved in brain

repair after injury, neuronal cell growth, differentiation,

neuroprotection, and synaptogenesis (16, 18–20). GH also strongly

promotes insulin-like growth factor-1(IGF-1) production and

regulates IGF-binding protein (known as the GH-IGF-1 axis),

which is involved in the development and maintenance of the

nervous system (21, 22). Furthermore, GH is also reported to affect

brain neurotransmitters, including serotonin, norepinephrine and

dopaminergic activity (18, 23), and mediate various brain functions,

such as sleep, learning, and memory (20). Besides, peripheral GH

treatment has been shown to modulate several types of behaviors

including eating, locomotoractivity, and aggression in animals (24–

27). Previous studies have shown no difference in GH levels between

children with and without ADHD (28). But, considering that GH

secretion is fluctuating and felt by multiple factors, randomGH levels

are not diagnostic for the evaluation of GH deficiency, and IGF-1 and

GH stimulation tests are more responsive to GH status (29, 30).

Wang et al., found that the serum IGF-1 of ADHD patients was

significantly lower than that of healthy controls, although there were
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no significant differences in height and weight between the two

groups, further studies suggested that IGF-1 levels were negatively

associated with the severity of symptoms and cognitive deficits in

ADHD (10). Reduced GH response was observed after exercise

challenge, dextroamphetamine challenge and clonidine challenge in

children with ADHD (31). The above evidence imply that GH

pathway may be involved in the pathology of hyperactivity.

Our previous study identified GHRELIN is a new susceptibility

gene for human ADHD pat ients by sequencing the

PREPROGHRELIN/GHRELIN gene of 248 ADHD patients and

208 healthy children (32). Ghrelin-deficient zebrafish clearly

displayed ADHD-like behaviors, such as hyperactivity,

inattention, defective learning and memory and impulsive-like

impaired, with dysfunctional dopaminergic system (32).

GHRELIN is a brain-gut peptide that acts as an endogenous

ligand of growth hormone secretagogue receptor type 1a (GHS-

R1a) and mediates the various functions in nervous system, such as

memory formation, hippocampal neurogenesis adiposity, energy

homeostasis, sleep and anti-anxiety (33–35). The most prominent

effect of GHRELIN is to stimulate the secretion of GH (33).

However, whether growth hormone signaling plays a role in

ghrelin-deficiency leading to ADHD-like symptoms are not known.

In this study, based on our previously generated ADHD

zebrafish model-ghrelinD/D zebrafish, we used RNA-sequencing

technology to perform a comparative transcriptome analysis of

the zebrafish brain. Here, our research showed that the gh related-

gene mRNA levels of ghrelinD/D zebrafish were significantly reduced.

In addition, recombinant human growth hormone (rhGH) could

rescue the hyperactivity of ghrelinD/D zebrafish. In short, our results

provided new clues for how ghrelin regulates hyperactive behaviors

and suggested a new potential therapeutic target for the treatment

of hyperactivity.
Materials and methods

Animals

6–8 months-old adult male zebrafish (weighing 300 to 400 mg/

fish) and five days post-fertilization (dpf) zebrafish larvae were used for

all experiments. Wild-type AB strain of zebrafish (Danio rerio) were

obtained from the National Zebrafish Resource Center. Zebrafish and

embryos were raised as previously described (36). Larvae were kept at

28.5 °C in E3 medium until the 5th day after fertilization. The adult

zebrafish were maintained in the 10 L tank with daily water changes

under 14 h light: 10 h dark cycles at 28.5 °C. All animal experiments

were approved by the Animal Care and Use Committee of Wenzhou

Medical University under standard conditions in compliance with

relevant protocols and ethical regulations.
GhrelinD/D zebrafish genotype verification

The methods for obtaining ghrelinD/D zebrafish and genotype

verification were described as previously reported (32). Briefly,
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genomic DNA was exacted from tail tissue followed by PCR with

annealing temperature of 58 °C and 35 cycles of amplification.

(Forward Primer 5’-AGACCTACTGAGGCAGCCTCATCA-3’;

Reverse primer: 5’-CCGATCGTCTTCTTTGATCACTGG-3’). The

PCR product was digested with the restriction enzyme XhoI (New

England Biolabs, Beijing, China) and separated using a 2% agarose

gel. In ghrelinD/D zebrafish, there is one XhoI enzyme cleavage site,

thus it can be cleaved into two fragments of 206 and 207 bp, while

ghrelin+/+ fragment could not be digested. The sanger sequencing

was used for re-verification of genotypes.
Transcriptome sequencing

Whole-brain samples dissected from 6-month-old male adult

ghrelinD/D and ghrelin+/+ zebrafish (each group containing 6

brains) were used in this study. The brain tissue was frozen in

liquid nitrogen immediately after dissection and stored at − 80° C

until be used. Before dissection, fish were fasted overnight for 12

hours and killed by an overdose of the fish anesthetic tricaine at

0.1% (w/v) as previously described (32).Total mRNA was

extracted for generating sequencing library using Trizol reagent

(Invitrogen, USA) according to GENEWIZ’s standard preparation

protocol. Then libraries were sequenced on an Illumina HiSeq

instrument to a 2 × 150 bp paired end read at the GENEWIZ

company (Suzhou, China). The sequencing data were analyzed

and inductively charted for easy analysis. Gene expression

calculation was performed by Rsem software (V1.2.6), which

uses FPKM (Fragments Per Kilo bases per Million reads)

method to calculate gene expression. Genes with the |log2 fold

change| ≥ 1 and the P-values less than 0.05 were assigned as

significantly differentially expressed genes (DEGs). Gene

Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes

(KEGG) enrichment analyses were performed to determine the

functions and the metabolic pathways of the DEGs.
Quantitative real-time PCR

Total RNA extraction was performed according to the

manufacturer’s instructions. Trizol reagent (Invitrogen,

California, USA) was used to extract the whole brain total RNA

of 6-month-old male adult zebrafish (n = 5 fish brains per group)

and from 5 dpf zebrafish larvae (n = 20 larvae per group). The

quality of RNA was assessed by measuring the A260/A280 ratio

(1.8 - 2.0) using a NanoDrop2000/2000c spectrophotometer

(Thermo Fisher Scientific, USA). PrimeScript™ RT Master Mix

(TaKaRa, Tokyo, Japan) was used to reverse-transcribe cDNA.

Quantitative real-time PCR was performed using 2 × SYBR Green

qPCR Master Mix (Bimake, Shanghai, China), and each reactions

was carried out in triplicate. Relative gene expression was

normalized with the housekeeping gene ef1-a and analyzed by

the comparative 2−DDCT method (37). Each group has three

technical replicates. The primers used for qPCR are listed

in Table 1.
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Locomotor activity measurement

Behaviors of 6-month-old male zebrafish were monitored using a

zebrabox imaging system (Viewpoint Life Sciences, France) with

constant illumination by infrared light and tracking with video-

tracking system (Videotrack, ViewPoint behavior technology,

France). Animals were transferred to the experiment room for 1

hour to acclimate before the start of test. Each fish was placed in a 1 L

tank one by one (dimension: 20 cm L × 8.5 cm W × 6 cm H). All

experiments were conducted between 8 am to 15 pm. The locomotor

activity and light/dark tests protocol consisted of 5 minutes in the

dark, 5 minutes in the light followed by a stimulus (light/dark cycle, as

a startle response to light flashes), 5 minutes in the dark, and 5

minutes in the light. We tracked the total distance of swimming, as

well as stimulus-evoked swimming in response to rapid changes from

light to dark.
Intraperitoneal injection of rhGH into
adult zebrafish

Recombinant human growth hormone (State Medical

Permitment No: S20000001, GeneScience Pharmaceutical Co.,

Ltd., China) was stored at -20°C and was diluted in 0.9% saline

according to the manufacturer’s protocol, the solution was freshly

prepared just before use. All zebrafish were randomly assigned in a

double-blind fashion to receive either 1.2 IU/0.2 mg/kg rhGH or

same volume vehicle (0.9% saline). Intraperitoneal injection of

rhGH into adult zebrafish carried out as previously described
TABLE 1 The primer sequences information used in this experiment are
listed below.

Primer Sequence Primer Sequence (5’->3’)

stat5b
ACAGAATCAAGCCACAACA

CTGGGACTTGAACTCAGGATG

map2k2b
AGGGCACTGATGGATGTTGG

GCAGTTTAGGAGGAGGCTCATT

adcy1a
GTGGAGCCAGGATTTGGTCA

AGCCCAGGAAAAATCTTGCG

gh1
TCGTTCTGCAACTCTGACTCC

CCGATGGTCAGGCTGTTTGA

atf2
ACTACTCACTGATGACAAGGAGG

AGTTGGCCAGAAGCACATTG

itpr1b
ACTAGACGCCGCGATTTTCA

CCACTTTGTGTCGTGCCTTC

itpr2
TAACCTGGTGTGTGAGACGC

GCCTGGCTATGCATGACTGA

ef1-a
CTGGAGGCCAGCTCAAACAT

ATCAAGAAGAGTAGTACCGCTAGCATTAC
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(38). Briefly, before injection, all fish were fasted for at least 24

hours, and the temperature of water where the zebrafish were raised

dropped from 17°C to 12°C. When the fish was anesthetized, gently

transfer the fish to the groove of the sponge with cold fingers, put

the fish’s belly up and gills in the sink. Quickly transfer the surgical

table to the microscope stage, and then insert the needle into the

midline between the pelvic fins of fish. After injection, immediately

transfer the fish back to its warm-water (~28.5°C) tank for recovery.
Statistics

All statistics were performed by GraphPad Prism 7 (San Diego,

CA, USA). Two-way ANOVA with Bonferoni post hoc tests, and

unpaired Student's t-test. were used for analysis. All data were

presented as mean ± SEM. The statistically significant difference

was set at P < 0.05.
Results

GhrelinD/D zebrafish exhibited
hyperactivity-like behaviors

Frist of all, ghrelinD/D zebrafish were confirmed by restriction

enzyme XhoI as our previously published study and performed

revalidation using Sanger sequencing (Supplementary Figures 1A,

B). To verify the hyperactivity-like phenotype of adult ghrelinD/D

zebrafish, we quantified locomotor behaviors via a video tracking

assay. Compared with ghrelin+/+ zebrafish, the swimming distance

of ghrelinD/D zebrafish was significantly increased in 20 minutes,
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which was consistent with the previous study (32) (Figures 1A–C).

In addition, we analyzed the swimming distance of zebrafish in

different illumination conditions. Results showed that the ghrelinD/D

zebrafish exhibited a significant increase in motor activity under

dark/light conditions (Figures 1D–F) and rapidly light/dark change

stimulation than ghrelin+/+zebrafish, indicating that ghrelinD/D

zebrafish were more sensitive to external stimuli and more likely

to exhibit hyperactivity and hyper-reactivity behavior, which was

consistent with our previous study (32).
Transcriptomic analysis of ghrelinD/D adult
zebrafish brain

To investigate the underlying molecular mechanism how

ghrelin regulates the hyperactivity-like behaviors. A high-

throughput transcriptome was used to compare brain mRNA

expression profiles between ghrelin+/+ and ghrelinD/D. Fragments

per kilobase of transcript per million fragments (FPKM) analysis

showed that total 3381 genes (P value <0.05 & FC>2) were

differently expressed between ghrelin+/+ and ghrelinD/D. Compared

to ghrelin+/+ zebrafish, 1644 genes were up-regulated and 1737

genes were down-regulated in ghrelinD/D zebrafish (Figure 2A).

To identify metabolic pathways in which the DEGs were

enriched, we performed Gene Ontology (GO) classification

(Figure 2B). GO analysis showed that these DEGs were classified

in three main ontologies, including molecular function, cellular

component, and biological process. Most of genes enriched referred

to molecular function in catalytic activity (e.g., endonuclease

activity; helicase activity; sphingomyelin phosphodiesterase

activity; hydrolase activity, acting on acid anhydrides, in
A B

D E F

C

FIGURE 1

GhrelinD/D zebrafish exhibited hyperactivity-like behaviors. (A) Representative images of zebrafish swimming path. (B, C) Quantification of the
spontaneous swimming distance of zebrafish. The swimming distance of the zebrafish (ghrelin+/+ zebrafish, n=18 GhrelinD/D zebrafish, n=15) under the
dark (D), light stimulation (E) and light (F) conditions were measured. *P < 0.05, **P < 0.01, ***P < 0.001,****P < 0.0001, unpaired Student's t-test.
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phosphorus−containing anhydrides; creatine kinase activity;

sphingomyelin phosphodiesterase D activity) and binding (e.g.,

zinc ion binding; ATP binding; DNA binding; metal ion binding;

steroid binding; 2 iron, 2 sulfur cluster binding). Within the
Frontiers in Endocrinology 05
biological process categories, calcium ion transport, cell

migration, regulation of biological process and signaling were

dominant terms.

To further understand the direct pituitary functions of ghrelin,

annotated pathways of DEGs were analyzed using the Kyoto

Encyclopedia of Genes and Genomes (KEGG) database

(Figure 2C). The results revealed that the DEGs were mainly

enriched in metabolism (e.g., Zeatin biosynthesis, Pentose

phosphate pathway, Thiamine metabolism, etc.) and cell growth

and death (e.g., Necroptosis, Cell cycle-Caulobacter).
The mRNA levels of growth
hormone-related genes decreased in
ghrelinD/D zebrafish

The most important function of ghrelin is to stimulate the

secretion of growth hormone and known as one of the strongest GH

secretagogues. Among the DEGs identified by RNA-sequencing

analysis, we focused on seven down-regulated DEGs involved in the

growth hormone secretion, synthesis and action pathway (Table 2)

such as signal transducer and activator of transcription 5b (stat5b),

mitogen-activated protein kinase kinase 2b (map2k2b), adenylate

cyclase 1a (adcy1a), growth hormone 1 (gh1), activating

transcription factor 2 (atf2), inositol 1,4,5-trisphosphate receptor,

type 1b (itpr1b), inositol 1,4,5-trisphosphate receptor, type 2 (itpr2).

To further confirm the transcriptomic results, mRNA levels

were detected in the brain of 6-month-old adult ghrelin+/+ zebrafish

versus ghrelinD/D zebrafish by qPCR. Our results showed that the 7

down-regulated genes in the brain of adult ghrelinD/D zebrafish were

significantly decreased, consistent with transcriptomic results

(Figures 3A–G). Meanwhile, at 5 dpf, the majority of genes

expressed in ghrelinD/D zebrafish larvae were consistent with those

expressed in adult fish (Figures 4A, D–G). but the expression of two

genes,map2k2b and adcy1amRNA, in ghrelinD/D zebrafish larvae at

5 dpf showed a trend of decrease, although this trend was not

statistically significant (Figures 4B, C).
Ghrelin mediated hyperactivity-like
behaviors can be alleviated by recombinant
human growth hormone

The rhGH has been approved for treating short stature closely

related with growth hormone deficiency (39). To investigate the

effect of rhGH on the hyperactivity-like behavior of ghrelinD/D

zebrafish, we monitored swimming distance of zebrafish in

different illumination environments by Viewpoint system. Our

results showed that rhGH injection has no significant effect on

the locomotor activity of ghrelin+/+ zebrafish, but it can significantly

alleviate ghrelin deficiency-induced hyperactivity-like behaviors in

ghrelinD/D zebrafish (Figures 5A–C). The same results occurred in

the dark condition (Figure 5D). In addition, when we analyzed the

swimming distance of zebrafish under light/dark cycle stimulation,

after administration of rhGH, the swimming distance of ghrelinD/D

zebrafish returned to normal levels (Figure 5E). The most important
A

B

C

FIGURE 2

Transcriptome profile of the brain of adult ghrelinD/D zebrafish.
(A) Volcano plot of DEGs in ghrelin+/+ and ghrelinD/D. Splashes
represent different genes, and the gray splashes mean genes
without significant different expression. The red splashes mean
significantly up-regulated genes in ghrelinD/D, and the blue splashes
mean significantly down-regulated genes in ghrelinD/D.
(B) GO enrichment histogram, the ordinate is the enriched GO term,
and the abscissa is the P value. The size of the dot indicates the
number of differentially. Different colors are used to distinguish
biological processes, cellular components, and molecular functions.
(C) Differential gene KEGG enrichment scatter plot, the vertical axis
represents the name of the pathway, the horizontal axis represents
the Rich factor, the size of the dot indicates the number of
differentially expressed genes in this pathway, and the color of the
dot corresponds to different Q value ranges.
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thing is that the protective effect of rhGH on ghrelinD/D zebrafish

hyperactivity behavior was not affected by dark or light/dark cycle

stimulation environments (Figures 5C–F). Taken together, the

hyperactivity-reactivity phenotype in ghrelinD/D zebrafish could be

partially improved by injection of rhGH.
Discussion

In this study, we found that ghrelin-deficient in zebrafish caused

impaired gh signal pathway by conducting RNA-seq analysis and

qPCR verification. We found that the transcriptional expression of

gh1 mRNA and its signal pathway-related genes were significantly

reduced. On the fourth day of intraperitoneal injection of rhGH

into adult zebrafish, the hyperactive behaviors of ghrelinD/D

zebrafish have been partially improved.
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Given the significant reduction of gh level in ghrelinD/D

zebrafish, and the positive response of ghrelinD/D zebrafish to

rhGH treatment, it indicated that abnormal gh signaling in

ghrelinD/D zebrafish may be responsible for hyperactivity

behaviors. Appropriate filtering of environmental stimuli is a

critical component of attention (40), hyperactivity is usually

distracted and sensitive to external stimuli, more likely to produce

behavioral responses (2). To further assess this, we evaluated startle

response to rapidly light/dark cycle stimulation, and rhGH

treatment seems to be effective in hyper-reactivity, implying that

this distracting behavior in ghrelinD/D zebrafish may be mediated

through gh signaling. In addition, in other animals, GH-induced

decrease in swimming activity has previously been observed in rat

after intraperitoneal GH injections (26, 27), but an increase in

swimming activity in rainbow trout and gh transgenic fish treated

with GH in the brain and periphery (24, 25, 41, 42). In our study, we
TABLE 2 Critical DEGs involved in GH synthesis in ghrelinD/D zebrafish.

Gene Fcghrelin+/+/ghrelinD/D P value Function

stat5b 836.0879 1.23E-09 Signal transducers and activators of transcription

map2k2b 748.6025 3.26E-09 Catalysis of the phosphorylation of an amino acid residue in a protein

adcy1a 247.5498 1.80E-05 Catalysis of the reaction

gh1 10.60715 2.62E-05 Binding to a growth hormone receptor

atf2 96.43862 0.004166 Binding to a cAMP response element binding protein

itpr1b 72.57896 0.014079 Binding to inositol 1,4,5 trisphosphate

itpr2 64.62575 0.0219 Inositol 1,4,5 trisphosphate binding
A B D

E F G

C

FIGURE 3

Quantitative real-time PCR analysis of candidate genes in the brain of adult ghrelinD/D zebrafish. (A–G) In order, the investigated genes are stat5b,
map2k2b, adcy1a, gh1, atf2, itpr1b, itpr2. N= 3, *P < 0.05, **P < 0.01, ****P < 0.0001, unpaired Student's t-test.
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did not observe the effect of rhGH on the behaviors of wild-type

zebrafish, this may be related to the dose of rhGH treatment. We are

using a dose that is clinically used for growth hormone deficiency in

children, and no behavioral abnormalities have been reported using

this dose.

Previous studies have shown that ghrelin is necessary to initiate

growth hormone expression (36), and our results have also verified

Ghrelin interacts with GHSR to increase GH release, in addition

GH secretion is partly activated by GHRHR-PKA-GH signaling

pathway (involved genes including adcy1a and atf2) (43). Once GH

is released into the circulation, GH binds to GHR in target tissues

such as brain, bone, liver, and muscle, leading to activation of JAK2

that in turn triggers a series of downstream signaling pathways

including calcium signaling pathway, MAPK signaling pathway

(44), and JAK-STAT signaling pathway (45). Among them,

inositol-1,4,5-trisphosphate receptors (IP3Rs) regulate the release

of Ca2+ to increase the content of GH, and the increase in GH also

feedback onto IP3Rs (43). MAPK signal (map2k2b) is activated by

GH-JAK and regulates cell growth and metabolism (44). STATs

(stat5b), when activated by members of the JAK family of tyrosine

kinases, dimerize and transfer to the nucleus and regulate the

expression of target genes (45). In our study, zebrafish lacking

ghrelin displayed a reduced expression level of gh1 mRNA

compared to ghrelin+/+ zebrafish. In line with this, transcriptomic

data and qPCR further confirmed that the levels of adcy1a, atf2,

itpr1b and itpr2 mRNA in ghrelinD/D zebrafish were significantly
Frontiers in Endocrinology 07
decreased, which indicates that the ghrelin knockout affected the

cAMP signaling pathway and calcium signaling pathway, thereby

affecting the generation of gh1 mRNA. The decrease of gh1 leads to

a significant decrease in downstream signals such as stat5b and

map2k2b, suggesting that the decrease of gh in ghrelinD/D zebrafish

affects the MAPK signaling pathway and the JAK-STAT signaling

pathway which is required for neuron cell growth and metabolism.

Increasing evidence reveal the neuroprotective effects of GH in

several models, particularly in wildtype rainbow trout that GH

treatment can change the brain dopaminergic system, stimulate

dopaminergic activity and increase turnover of dopamine to

DOPAC (23). Our previous study also showed a significant

decrease in the number of dopaminergic neurons and

disorganized in ghrelinD/D larvae. cFos acts as downstream of

MAPK signaling pathway and cAMP signaling pathway during

the production of GH (46–48). Studies have shown that Ghrelin-

deficient mice exhibited reduced cFos expression in the mesolimbic

dopamine pathway under a restricted feeding paradigm (49). These

results strongly imply a potential neurobiology role of gh

in hyperactivity.

As a first-line treatment for ADHD, Methylphenidate (MPH)

has significant side effects and limited therapeutic benefits (50–53).

A 16-year trajectory analysis showed that treatment of hyperactivity

with stimulant medications was associated with reduced adult

height and increased BMI and weight (50). Other clinical trials

have also found that hyperactivity patients receiving long-term
A B D

E F G

C

FIGURE 4

Quantitative real-time PCR analysis of candidate genes in 5 dpf ghrelinD/D zebrafish larvae (A–G) In order, the investigated genes are stat5b,
map2k2b, adcy1a, gh1, atf2, itpr1b, itpr2. N= 3, Mean ± SEM. *P < 0.05, **P < 0.01, ***P < 0.001, NS=no significance,unpaired Student's t-test.
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treatment of MPH resulted in a slightly, but significant, decrease of

weight, BMI, and height (51–53). One reason for growth

dysregulation may be decreased appetite and another may be that

MPH has a negative effect on the reuptake of dopamine, which is a

monoamine involved in the regulation of GH secretion (54–56).

Transcriptome sequencing and qPCR revealed dysregulation of gh

signaling in ghrelinD/D zebrafish, and hyperactivity behaviors were

rescued in ghrelin mutants by rhGH treatment. The rhGH is widely

used to restore the rate of growth in slowly growing children (57).

Our research provides a potential hypothesis that rhGH may be an

emerging adjuvant medication for hyperactivity, particularly in

combination with traditional stimulant medications, which may

improve its growth restriction (32).

However, there are limitations of our study. In the future, we

need to test whether patients with hyperactivity may be

experiencing subtle GH deficiency in their daily lives. Increasing

evidence suggest beneficial neuroprotective effect of GH in the

nervous system (48, 49, 57). It is necessary to fully understand the

specific location in the brain where GH plays a role in improving

hyperactivity behavior.

In summary, this study firstly identified that ghrelin deficiency

caused hyperactivity-like symptoms in zebrafish is due to the down-

regulation of growth hormone signaling pathway. This research
Frontiers in Endocrinology 08
may provide new therapeutic clues for those who carry a GHRELIN

risk allele.
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(interaction) =0.5135, two-way ANOVA). (Ghrelin+/+ zebrafish injection vehicle, n=8; ghrelin+/+ zebrafish injection rhGH, n=9; and ghrelinD/D zebrafish
injection vehicle, n=7, ghrelinD/D zebrafish injection rhGH, n=8).
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SUPPLEMENTARY FIGURE 1

Generation and verification of ghrelinD/D zebrafish. (A) Restriction

endonucleases XhoI digestion results of ghrelin-specific PCR products
were electrophoresed on 2% agarose for identifying ghrelin+/+ (Two

digestion product fragments were separated:206 and 207bp), ghrelin+/

D(digestion product fragments: 413 bp, 206 bp and 207 bp) and ghrelinD/D

zebrafish (one PCR product fragment: 413 bp). (B) The sanger results of

ghrelin gene in ghrelin+/+ and ghrelinD/D zebrafish, this is ghrelin mutant site
(9-base deletion: TGTGTCTG) in ghrelinD/D zebrafish that has been

highlighted in a red box. The restriction site of XhoI in ghrelin+/+ zebrafish
is shown in DNA sequencing, the nucleotides in the blue highlighted “-”.
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