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ABSTRACT

Preharvest sprouting (PHS) is one of the most important factors for lower productivity in mungbean [Vigna radiata 
(L.) R. Wilczek]. The morpho-physiological characters, ultra-structural variations in pods and seeds, changes and 
regulatory water absorption pathway of 30 mungbean genotypes in relation to pre-harvest sprouting behaviour was 
studied during kharif 2017–19 at Seed Research Technology Center, Indian Institute of Rice Research, Rajendranagar, 
Hyderabad, Telangana. Mungbean genotypes subjected to PHS imposed by simulated rainfall were evaluated. 
Rainfall simulator generates a rainfall spectrum that was similar to natural rainfall. Genotypes LGG 450 and K 851 
with low score (%), while ML 267 and MGG 295 with high score (%) were screened as tolerant and susceptible to 
PHS. Accordingly, higher seed yield was recorded in LGG 450 (4.94 g/plant) followed by K 851 (4.20 g/plant) while 
lower seed yield was recorded in ML 267 (0.26 g/plant) followed by MGG 295 (0.79 g/plant). The findings were 
further corroborated with SEM studies by presence of sparse, wiry, short, twist or shriveled trichomes; thick cuticular 
pod wall, wide locular gap between seed coat (seed) and pod wall helping for the slow diffusion of moisture from 
endosperm to embryo. Further, the presence of lea-protein-insulated starch grains of endosperm merits lipophilic 
nature which might hindered dissipation of water to embryo via endosperm. The SEM studies have established ultra-
structural features that determine the resistance to pre-harvest sprouting of mungbean and development of future 
resistant lines identification.
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Mungbean [Vigna radiata (L.) R. Wilczek] genotypes 
for pre-harvest resistance depend on architecture of the pod 
wall structure, and bimolecular alignment decides absorption 
and stimulates sprouting. Seed coat, the physical barrier 
protects the seed from adverse environmental conditions, 
maintains quality and disease-causing organisms. Warm, 
humid conditions at maturity in tropical and temperate 
regions are conducive to pre-harvest sprouting, resulting in 
rupture of seed coat and pod wall leading to reduction in 
seed quality and quantity. Genetic improvement has been 
made in developing disease resistance but not for abiotic 
factors like pre-harvest sprouting. 

The yield gap in many high yielding varieties of 
mungbean could be mainly due to lack of resistance to 
wetting and sprouting due to rains at the time of physiological 
maturity (Rao et al. 2007) or just before harvesting. G×E 
interactions have major importance for plant breeders in 
developing improved varieties (Kumar et al. 2021 and 

Sanjeev et al. 2022). In our studies, we have selected 30 
mungbean genotypes and evaluated for their variation in 
morpho-physiological traits due to preharvest sprouting 
(PHS) induced by simulated rain.

MATERIALS AND METHODS
A field experiment was conducted at Seed Research 

and Technology Centre, Rajendranagar, Hyderabad during 
kharif 2017–19 to evaluate the mungbean genotypes (30 
accessions) against PHS damage. At pod maturity stage of 
the crop, the plants were exposed to alternate wetting and 
drying with rainfall simulator using overhead sprinklers. 
The plants were exposed to a diurnal regime of 6 h period 
with 9 mm per hour rainfall followed by 80 to 90% RH 
for 6 days. Ten randomly selected plants were harvested, 
threshed and weather damage was assessed by collecting 
data on pod and seed characteristics. Based on the response 
of mungbean genotypes, the pods of 2 genotypes LGG 450 
(tolerant) and ML 267 (susceptible) subjected to Scanning 
Electron Microscope (SEM) at RUSKA Lab, College 
of Veterinary Sciences, ANGRAU Campus to study the 
thickness of pod wall, seed coat, their external surface and 
internal structures of seed. The fresh seed samples were 
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transferred into glass vials and fixed in 3% gluteraldehyde 
in 0.05 M phosphate buffer (pH 7.2) for 24 h at 4°C. 
The treated samples were then post-fixed in 2% aqueous 
osmium tetroxide for 4 h and later in the same buffer for 
2 h. The samples dehydrated in series of graded alcohol 
and dried to a critical point of drying, for SEM. The dried 
samples mounted over the stubs with double sided carbon 
tape. Finally, a thin layer of platinum (palladium) coat was 
applied over the samples using an automated sputter coater 
(JEOL JFC-1600) for about 3 min. All samples were coated 
with gold and examined with a HitachiS 570 SEM at 15 
kV. The samples were then scanned using SEM (Model: 
JOEL- JSM 5600) with magnification from x50 to x1400.

RESULTS AND DISCUSSION
Evaluation of mungbean genotypes for PHS tolerance: 

High-low score evaluation method was conducted to screen 
the genotypes into susceptible and tolerant to PHS, based 
on mean performance of morphological and physiological 
parameters (Arunachalam and Bandyopadhay 1979). The 
criteria for selecting genotypes for PHS tolerance included 
morphological features, physiological parameters and pod 
characteristics. The number of genotypes falling under 
each category of high, medium and low varied and thus 
identification of PHS susceptibility or tolerance feature was 
determined (Table 1). Hence, 4 important physiological 
parameters directly related to sprouting damage, viz. (i) 
Rate of moisture absorption (%), pods with in situ sprouting 
(%) (Fig 1), (ii) sprouted seeds/pod (%) and (iii) Yield of 
healthy seed (%) were considered. Based on these selection 
protocols, our results indicated two varieties each, LGG 450, 

K 851 and ML 267, MGG 295 as tolerant and susceptible 
to sprouting. These entries were advanced for comparative 
assessment for their genotypic differences regarding pod 
wall, seed coat and seed proper studies.

PHS susceptibility or resistance showed variation 
among mungbean genotypes with regard to morpho-
physiological characters. The yield reduction was very high 
(80–90%) in ML 267, MGG 295, MGG 336 and LGG 407 
compared to others. Such yield reduction could be due to 
high moisture absorption by their pod walls (56–77%) or 
early seed sprouting. As a result of unseasonal rainfall before 
harvest, causing severe PHS and yield losses were also 
reported in cereals and pulses (Nagarajan and Radder 1983).

In the present study, mungbean varieties LGG 450,  
K 851, LGG 460, PIMS 4 and LGG 505 showed lower 
moisture absorption by pods (24 to 29%), resulting in a 
smaller number of sprouted seeds/pod (17–22%). PHS 
occurred in seeds following their exposure to periods of 
rainfall or high humidity on mother plant (Andrews 1982). 
Damage to testa due to weathering resulted in a loss of 
membrane integrity that potentially reduced the ability of a 
seed to resist excessive desiccation enhanced absorption of 
water at times of pre-harvest rainfall, and resulted in PHS 
and thereby spoilage of seed (Michel Peel 2000).

Further, the pod beak length (2.1–4.3 mm) and 
pod beak angle (21–33°) varied significantly among the 
genotypes. Pod characteristics such as pod wall thickness, 
pod wall wax (epicuticular) and hard seed (%) exhibited 
distinct relationship with yield reduction due to PHS 
among mungbean genotypes. Genotype LGG 450, K 851, 
PIMS 4 and LGG 460 exhibited distinctly higher values of 

Fig 1	 Relationship between Per cent moisture absorption, sprouting of pods (%), seeds (%) and yield in mungbean. 



271March 2023]

27

Pre-harvest sprouting tolerance in mungbean 

Table 1  Selection and evaluation of PHS of mungbean pod and seed characters affected by PHD under simulated rainfall

Genotype
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LGG 407 +1 +1 0 +1 +1 -1 +1 +1 +1 +1 -1 +6

LGG 410 0 0 0 0 0 0 0 0 0 0 0 0

LGG 450 -1 -1 -1 -1 -1 +1 -1 -1 -1 -1 +1 -7

LGG 460 -1 -1 0 -1 -1 +1 -1 -1 0 -1 +1 -5

LGG 477 0 0 0 +1 +1 0 +1 0 0 0 0 +3

LGG 479 0 0 0 0 0 +1 0 0 0 0 +1 +2

LGG 487 +1 +1 0 0 0 0 0 +1 +1 0 0 +4

LGG 488 0 0 0 0 0 0 0 0 0 0 0 0

LGG 491 0 0 0 0 0 0 0 +1 0 0 0 +1

LGG 496 0 0 +1 0 0 0 0 +1 0 0 0 +2

LGG 497 0 0 0 0 0 +1 0 0 0 0 0 +1

LGG 498 0 0 0 0 0 0 0 0 0 0 0 0

LGG 502 0 0 0 0 0 +1 0 0 0 0 +1 +2

LGG 505 0 0 0 -1 -1 +1 0 -1 0 -1 +1 -2

LGG 521 0 0 +1 0 0 0 +1 +1 0 0 0 +3

LGG 522 0 0 +1 0 0 0 0 0 0 0 0 0

LGG 523 0 0 0 0 0 0 0 0 0 0 0 0

LGG 524 0 0 0 0 0 +1 0 0 0 0 0 +1

MGG 295 +1 +1 +1 +1 +1 -1 +1 +1 +1 +1 -1 +8

MGG 330 0 0 0 0 0 0 0 0 0 0 0 0

MGG 332 0 0 0 0 0 0 +1 0 0 0 0 +1

MGG 336 0 +1 +1 +1 +1 -1 +1 +1 +1 0 -1 +5

MGG 347 0 0 +1 0 0 0 0 +1 0 0 0 +2

MGG 348 0 0 0 0 0 0 0 0 0 0 0 0

MGG 351 0 0 0 0 0 0 0 +1 0 0 0 +1

ML 267 +1 +1 0 +1 +1 -1 +1 +1 +1 +1 -1 +6

PIMS 4 0 -1 0 0 0 +1 -1 0 0 0 +1 0

K 851 0 -1 -1 -1 0 +1 -1 -1 0 -1 +1 -4

Madhiramung 0 0 0 0 0 0 +1 +1 +1 0 0 +3

WGG 2 0 0 +1 0 0 0 0 +1 0 0 0 +2

GM 5.00 1.46 0.58 1.62 0.67 13.39 3.55 1.27 0.27 0.39 4.75

SEm ± 0.29 0.01 0.0 1 0.01 0.01 0.62 0.34 0.01 0.01 0.06 0.27

CD (0.05) 0.82 0.02 0.02 0.03 0.02 1.08 0.97 0.04 0.02 0.16 0.77

CV (%) 10.02 0.80 1.69 0.98 1.93 8.34 16.67 1.83 5.33 24.90 9.93

SD 1.48 0.31 0.20 0.31 0.24 3.56 0.85 0.10 0.05 0.10 1.46

G M + S D = (+1) 6.31 1.73 0.75 1.87 0.88 15.96 4.20 1.33 0.32 0.48 6.04

G M – S D = (-1) 3.35 1.11 0.35 1.25 0.40 8.84 2.50 1.13 0.22 0.28 3.12
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epicuticular wax (8.68–13.67 µg/cm2) and higher percentage 
of hard seed (48–55). The genotypes, ML 267, MGG 
336, MGG 295 and LGG 407 recorded lesser amounts 
of epicuticular wax and hard seed (27 to 29%). The hard 
seed coat prevented imbibition of water by the seed in 
soybean (Dougherty and Boerma 1984). The genotypes 
with higher podwall thickness (2.8 to 3.2 µm) showed less 
reduction in yield compared to other. It clearly indicates 
that possible genetic variation with respect to pod wall 
and water absorption characteristics are responsible for 
PHS and yield reduction. These results are in conformity 
with Williams et al. (1995). Hence these traits might be 
useful to screen PHS in mungbean. In soybean it was 
recommended a thick and/or dense pod walls as selection 
criteria and the presence of pubescence on the pod surface. 
Similar results in mungbean were reported earlier (Lawn 
et al. 1987, Naidu et al. 1994). LGG 450, K 851, LGG 
460 and PIMS 4 consistently recorded lower damage and 
yield reduction. Similar type of damage by weather was 
progressed with discolouration, wrinkling and cracking of 
testa to precocious germination of the seeds in mungbean 
when pods were exposed to alternate cycles of wetting and 
drying (Williams et al. 1984 and Lassim et al. 1984). This 
situation probably results in increased water content that 
lead to testa expansion and increased seed respiration rate. 
Subsequent drying during intermittent rainfall also causes 
testa shrinkage and seed restoration to a physiologically 
inactive stage. Adverse weather conditions before harvesting 
cause damage to the seed ranging from pre-mature enzyme 
activity to an extent of complete sprouting (Williams et al. 
1995) through loss in seed weight.

It can be inferred from our studies that the seed, pod 
traits and pre-harvest damage caused by weather, the 
genotypes, LGG 450, K 851, LGG 460 and PIMS 4 could 
be considered as PHS tolerant (PHST) while ML 267, 
MGG 295, MGG 336 and LGG 407 as PHS susceptible 
(PHSS). The SEM studies on pod structure and seed coats 
of the susceptible varieties ML 267 and MGG 295 against 
PHS showed that, pod wall experienced deep cracks and 
witnessed a greater number of pores on its surface. The pod 
wall thickness of MGG 295 was 423 µm (Supplementary 
Fig 1). The thickness of pod wall was lesser than K 851 
and LGG 450 (Supplementary Fig 2). The fairly large 
elongated and a greater number of functional and turgid 
trichomes with high density on pod wall surface made easy 
access for movement of water when it was wet or subjected 
to simulated rainfall. Water droplets adhered to trichomes 
helped to absorb water could also enhance due to the more 
trichome density on the outer surface of the podwall. Thus, 
wetting of seed coat or absorption of water could also be 
enhanced due to the high density of trichomes on the outer 
surface of the pod wall (Rao et al. 2022).

Further, the mesocarp and endocarp seen in perforated 
tissues exhibited large longitudinal cracks in MGG 295 as 
well as in ML 267. This is immediately followed by large 
locular space (0.48 mm) in MGG 295 while 1.06 mm in  
ML 267 formed a reservoir around the seed proper for 

incoming water. In crops like soyabean, wheat (King and 
Richards 1984) mungbean (Singh et al. 2017) revealed 
that pod morphological characters are made congenial for 
wetting, rapid movement and water absorption of podwall 
and kept it moist which leads PHS under adverse climatic 
conditions due to thin podwall ultrastructural features like 
deep cracks with more pores, thin unicellular cuticular layer, 
high density, size and shape of the trichomes on the pod 
wall, thin cuticular layer. K 851 and LGG 450 have exhibited 
PHS resistance due to attribution. LGG 450 and K 851 
pod wall surface had no cracks with very few numbers of 
pores (slight and slits). Trichomes sparsely with short, wiry 
twisted few number along the margin seen as it dried and 
less turgid nature of trichomes and thick pod wall. A very 
few short, flattened, less turgid, wiry and twisted trichomes 
in these genotypes indicate their dysfunction for absorption 
of water. This further emphasizes less scope for trapping 
of water droplets when they are wet. These morphological 
characters exhibited resistance against PHS, were reported 
earlier also (Singh et al. 2017). 

The seed coat of ML 267 and MGG 295 (Supplementary 
Fig 1) are relatively thinner 77.3 µm (MGG 295) than that 
of K 851. The cotyledons of ML 267 had smaller starch 
granules embedded within protein bodies. The layers of 
pod wall, locular space and seed coat of ML 267 and MGG 
295 indicated access to water movement across the seed 
layers (Supplementary Fig 3). Aforesaid, structural features 
culminating movement of imbibed water might prone the 
seed to pre-mature sprouting, when they were subjected to 
simulated or unseasonal rainfall.

The thickness of the mesocarp and endocarp of LGG 
450 together measured 195 µm. The locular space was 
reduced conspicuously in LGG 450 while it was very 
small compared to that of K 851. Both these genotypes had 
three times lower locular space compared to that of ML 
267 (Supplementary Fig 4). The locular space at placental 
region or at other places ranges from 34–39 µm in LGG 
450. The seed coat of LGG 450 and K 851 was thicker 
(Supplementary Fig 5) compared to ML 267 and MGG 
295 (77.3 µm). The cotyledons contained few but larger 
starch granules, partially covered with protein deposits. The 
embryo was seen interlocked within cotyledons measuring 
2 × 3 and 558 × 275 µm. The embryonic space around the 
embryo was relatively more at mid width. This indicated 
that the embryo is unready to take up imbibitional growth 
for sprouting unlike that of ML 267 (Supplementary Fig 6).  
The longitudinal embryo was seen surrounded by a 
large space; embryonal space also indicated a space for 
accumulation of water helped at the time of imbibition 
(Supplementary Fig 7).

The thicker mesocarp almost tight with endocarp 
together with narrow locular space (no gap in case of LGG 
450) formed a barrier for impeding free movement of water. 
The cotyledons contain almost naked starch granules with 
splashed protein bodies indicate less prone for absorption 
of water; also, the median width of the embryo indicates 
its un readiness for sprouting (Harris 1987). The variation 
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in ultra-structural features of pods and seeds of mungbean 
varieties of ML 267, MGG 295, LGG 450 and K 851 
examined under the SEM revealed more number of pores 
with few deep cracks on podwall surface, large elongated 
and a greater number of turgid and functional trichomes, 
thin unicellular cuticular layer with one-celled epidermis, a 
large locular space and protein bodies embedded between 
many smaller starch granules in cotyledonary area. SEM 
studies in the lines of biochemical enzymes and metabolites 
such as α-amylase, ABA in rice and wheat were reported 
but are scanty in mungbean. 

SEM studies in wheat, revealed, starch granules in 
sprouted seed samples were partially hydrolyzed. Overall, 
α-amylase activity caused changes to the physicochemical 
properties of the PHS damaged wheat (Simsek et al. 2014). 
Earlier also, Lamichaney et al. (2017) fresh seed dormancy 
of 10-15 days is a desirable trait in mungbean.

The genotypes with higher reduction in seed yield, 
namely ML 267, MGG 295, MGG 336 and LGG 407 had 
lower amounts of epicuticular wax and lower values of 
hard seed. The pod and seed traits, and pre-harvest damage 
parameters caused by weather culminated these genotypes 
as pre-harvest sprouting susceptible (PHSS) while LGG 
450, K 851, PIMS 4 and LGG 460 as pre-harvest sprouting 
tolerant (PHST).

The SEM studies have established ultra-structural 
features that determine the resistance to pre-harvest sprouting 
of mungbean hence, development of future resistant lines 
should be identified for these ultrastructural features 
by adapting field level screening of existing mungbean 
genotypes. Overall, our results suggest the multi-faceted 
approach in establishing the resistance/tolerance of 
mungbean genotypes with respect to pre-harvest sprouting.
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