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Qaidam cattle (CDM) are indigenous breed inhabiting Northwest China. In the

present study, we newly sequenced 20 Qaidam cattle to investigate the copy

number variants (CNVs) based on the ARS-UMD1.2 reference genome. We

generated the CNV region (CNVR) datasets to explore the genomic CNV diversity

and population stratification. The other four cattle breeds (Xizang cattle, XZ;

Kazakh cattle, HSK; Mongolian cattle, MG; and Yanbian cattle, YB) from the

regions of North China embracing 43 genomic sequences were collected and

are distinguished from each of the other diverse populations by deletions and

duplications. We also observed that the number of duplications was significantly

more than deletions in the genome, which may be less harmful to gene formation

and function. At the same time, only 1.15% of CNVRs overlapped with the exon

region. Population di�erential CNVRs and functional annotations between the

Qaidam cattle population and other cattle breeds revealed the functional genes

related to immunity (MUC6), growth (ADAMTSL3), and adaptability (EBF2). Our

analysis has provided numerous genomic characteristics of some Chinese cattle

breeds, which are valuable as customized biological molecular markers in cattle

breeding and production.

KEYWORDS
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1. Introduction

Domestic cattle are one of the important animals that have been used as a source of

materials for production and development by human civilization. Approximately 850,000

years ago, domestic cattle diverged into two groups, namely, humpless taurine (Bos Taurus)

and humped indicine (Bos Indicus) (1, 2). Moreover, environmental factors, geographical

isolation, and human activities also contributed to the development of present-day cattle.

Through a long period of domestication, megabases (Mb) of DNA gradually enriched the

genomic diversity among cattle breeds (3).

As of 2021 (4), there are already 55 Chinese indigenous breeds. The Qaidam cattle

(CDM) is one of the 55 breeds reared in Northwest China (36◦21’−39◦23’ N, 90◦30’−99◦30’

E, Qinghai Province, China), where the drought (annual precipitation < 200mm) and

high altitude (2,600–3,000m) environment is predominant, and these conditions made the
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Qaidam cattle breed have more stress resistance, rough feeding

tolerance, and environmental adaptability. During the Yuan

dynasty (AD 1271–1638) period, the Mongolian army introduced

the Mongolian cattle (Bostaurus) into the present-day Qinghai

and Gansu Provinces of China during a southward invasion,

which might have influenced the breeding herds of the present

Qaidam cattle. Paternal and maternal diversity studies indicated

that Qaidam cattle included two lineages (1, 5). The autosomal

genetic evidence suggests that the Qaidam cattle was closer to

Mongolian cattle, which is a hybrid of Bos Taurus × Bos Indicus

(1). The purebred Qaidam cattle have not been effectively protected

for their low economic returns. There was a 47.80% decrease in the

Qaidam cattle population by 2006 compared to the 1981 Qaidam

cattle population (6).

The copy number variations (CNVs) are defined as the deletion

or duplication of a genome copy number, ranging from 50 bp

to several Mb in length (7). As compared to SNP mutations, the

CNV fragments are large in length and cover a wider range of

genomes that have broader prospects in studying animal genetics

and breeding application. Recently, next-generation genome

sequencing technologies have been continuously used to detect

the genome-wide CNVs of livestock (8, 9). However, numerous

genomic studies exploring CNVs in commercial cattle breeds have

underestimated the role of native breeds in the adaptation process

(10, 11).

In the present study, we performed a genome-wide CNV

analysis using genomic resequencing data in six Chinese cattle

breeds. The purpose was to generate a comprehensive CNV

landscape in Qaidam cattle to investigate and compare the diversity

and population–genetic properties of the CNV regions (CNVRs)

among them and to explore the diverse selection patterns involved

with the CNV genes for local adaptation in Chinese native cattle.

2. Materials and methods

2.1. Genome resequencing and samples
collection

Qaidam Basin is the highest basin in China with an altitude

of 2,600–3,000m and is located in the northwest region of the

Qinghai Province and the northeast region of the Qinghai–

Tibet Plateau. The climate of the basin is characterized as

extremely dry and cold, with an annual average precipitation of

<200mm and an annual average temperature of ∼3.0–6.5◦C. To

reflect the sample representativeness of the Qaidam cattle, 20

samples were collected from five different counties/cities (Dulan,

Golmud, Mangya, Wulan, and Dachaidan) in the Qaidam Basin

(Supplementary Table 1, Figure 2A).

The ear tissues of selected samples were used for DNA

extraction by the standard phenol–chloroform protocol. Genomic

DNA was constructed into 350-bp libraries and sequenced using

Illumina NovaSeq at Novogene Bioinformatics Institute (Beijing,

China). Moreover, 42 publicly available data of four Chinese cattle

breeds were downloaded in this study (10 Mongolian cattle, MG; 9

Xizang cattle, XZ; 15 Yanbian cattle, YB; and 8 Kazakh cattle, HSK)

(Supplementary Table 2). It is worth noticing that the resequencing

data of one Xizang cattle (Sample ID: Xizang9) was offered by the

Key Laboratory of Animal Genetics, Breeding and Reproduction of

Northwest A&F University (Supplementary Table 2).

2.2. Genome data generation and CNV
calling

Read pairs were aligned to the B. taurus reference assembly

(ARS-UCD1.2) using the Burrows–Wheeler Aligner (BWA)

program with default parameters (12). Then, CNVcaller (13) was

applied to call the CNV in each individual. First, to create a

B. taurus reference database, the ARS-UCD1.2 was split and

the overlapping windows were recommended as 800 bp (13).

Second, the reads number in each window was calculated, and

high similarity (≧97%) reads were merged into segments of the

autosomes. Third, the GC bias was used to standardize the copy

number in each window, and it was used to classify the different

genotypes of each sample. Finally, various steps of CNVcaller

filtering parameters were carried out: -f 0.1 -h 3 -r 0.1; a Silhouette

score of > 0.6; the length of CNVR of ≤50 kb (deletion and both),

with the length of CNVR of < 500 kb (duplication) (15).

2.3. Breed/population di�erentiation

Principal component analysis (PCA) was used to stratify and

cluster the close breeds/populations, which plays a positive role in

understanding the genetic differences among cattle subpopulations.

According to the smartPCA module of EIGENSOFT (Program

2006), the PCA calculation was performed based on the four

different CNVR datasets.

2.4. Di�erential CNVR identification

We calculated VST (15) between Qaidam cattle and the other

four cattle breeds (XZ, YB, HSK, and MG) to identify the

differential CNVRs. The VST is a method to calculate selection

between populations similar to the FST method. The formula isVST

= (VT – VS)/VT, where VT represents the variance among all the

unrelated individuals and VS is the average variance within each

population, weighted for population size (16). Finally, the top 1%

gene cluster of the VST method was kept out by the outlier method.

The ANNOVAR was applied to annotate the CNVRs in

our results (14). Further, the Kyoto Encyclopedia of Genes

and Genomes (KEGG) and gene ontology (GO) analysis were

performed on the candidate CNV genes by KOBAS 3.0. Since the

enriched terms were retained with a p-value of< 0.05, we preferred

showing some of the top pathways; for more information, please

see Supplementary Tables.

3. Results

3.1. CNV discovery and CNVR set statistics

We collected 63 Chinese cattle whole genomes representing

five breeds from the north and northwest regions of China,
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FIGURE 1

Genomic diversity and distribution of CNVRs. (A) The number of the detected CNVR. (B) Annotation of CNVRs with various genomic features. The

inner circle indicates the intronic region, intergenic region, and the remaining set of functional regions (outer_part). The outer circle includes ncRNA

intronic; exonic; UTR3; downstream; upstream; ncRNA exonic; UTR6; splicing; upstream and downstream; exonic and splicing. (C) The autosomal

distribution of CNVRs. The location with di�erent colors represent duplication (blue), deletion (red), and both duplication and deletion (green).

including 20 Qaidam cattle, 10 Mongolian cattle, 15 Yanbian

cattle, nine Kazakh cattle, and nine Xizang cattle (Figure 2A,

Supplementary Table 2). The mean sequencing depth was

performed to 12-fold coverage of the Bos taurus genome

(Supplementary Table 2). Among the 63 genomes, we newly

sequenced 20 Qaidam samples and one Xizang sample at ∼9-fold

coverage each (Supplementary Table 2), and the other 42 genomic

sequences were available online.

We applied a read–depth-based bio-software (CNVcaller)

to discover autosomal CNVs among individuals relative to

the ARS-UCD1.2 reference genome. We generated the CNVR

datasets from each cattle breed. The CNVR set contained

10,178 CNVRs, which were detected from 63 cattle genome

datasets. There were 5,743 duplication CNVRs; 4,187 deletion

CNVRs; and 248 both duplication and deletion CNVRs

(Supplementary Table 3). Here, 10,178 CNVRs (duplication,

deletion, and both duplication and deletion) were divided into

different length groups (Figure 1A). The CNVRs annotation

showed that the number of CNVRs was 5,398 (53.04%), which

were detected in 2–5 kb size. It was observed that 55.92%

CNVRs were located in the intergenic region followed by the

intron region (35.77%). However, only 1.16 % CNVRs were

detected in the coding exonic region (Figure 1B). And the CNVRs

distribute randomly in the chromosome both in number and

length (Figure 1C).

3.2. Population structure

With the effect of balancing selection, abundant

polymorphisms of the genomic copy number variation are

found in Chinese Bos taurus. A principal component analysis

(PCA) was carried out with an obvious distinction from deletions

(Figure 2B), duplications (Figure 2C), and total CNVRs datasets

(Figure 2D). Qaidam cattle population is broadly distinguished

from Mongolian, Kazakh, and Xizang breeds and closely clustered

with the Yanbian breed. The PC1 explained ∼30.13–50.86% of

the genetic variation. For deletions, PC1 (30.13% of the variance)

could separate Qaidam and Yanbian breeds from the other breeds,

and PC2 (3.52% of the variance) could distinguish Xizang cattle

(Figure 2B) from the other breeds (Kazakh and Mongolian cattle).

Compared to deletions, duplications separated Qaidam cattle from

all other breeds, in general, as shown in the PCA, but its clustering

had less accuracy (Figure 2C). The effect of the PCA using both

CNVR types was not optimistic in the clustering populations

(Supplementary Figure 1). Interestingly, Kazakh and Mongolian

cattle populations showed greater separation within these breeds

by duplication. Unlike Qaidam, Xizang, and Yanbian cattle, Kazakh

and Mongolian cattle may have less pressure of selection, which

caused numerous meaningless duplications. These data suggest

that artifical selection has shaped the CNVR diversity of each cattle

breed during animal domestication.
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FIGURE 2

Geographic distribution and population stratification in five Chinese cattle. (A) The major geographical locations of the five Chinese cattle breeds.

The dotted circle represents the Qaidam Basin, which is the main geographical distribution area of Qaidam cattle. In this study, Qaidam cattle were

selected from five geographical locations along the Qaidam Basin, as shown in the lower right corner, which are Dulan, Golmud, Mangya, Wulan, and

Dachaidan. (B) The principal component analysis (PCA) was derived from CNVRs (deletions). (C) PCA derived from CNVRs (duplications). (D) PCA

derived from all CNVRs in five population genomes.

3.3. Di�erentiated CNVRs between Qaidam
cattle and other cattle breeds

We calculated the VST between Qaidam cattle (CDM) and

other cattle breeds from the regions of North China (XZ, HSK,

YB, and MG) (Supplementary Figure 2, Supplementary Tables 4–

7). First, the top 1% signal value regions were kept out; then, it was

annotated by the cattle reference genome (ARS-UCD1.2).

The selection signals between CDM and YB were enriched to

“MAPK signaling pathway” (p = 4.49× 10−7), “Pi3k-akt signaling

pathway” (p = 1.82 × 10−8), “mTOR signaling pathway” (p =

3.22 × 10−6), “HIF-1 signaling pathway” (p = 4.95 × 10−5), and

“aldosterone-regulated sodium reabsorption” (p = 5.91 × 10−4)

(Figure 3A, Supplementary Table 8). There were five candidate

genes (MUC6,WDR25, CNNM4,MGAM, andGFRA2) in the study

(Figure 4A, Supplementary Table 4). The selection signals between

CDM andMGwere enriched to “ErbB signaling pathway” (p=2.73

× 10−4), “calcium signaling pathway” (p =2.69 × 10−3), “GnRH

signaling pathway” (p = 0.01122), and “insulin signaling pathway”

(p = 0.04588) (Figure 3B, Supplementary Table 9). Among these

annotated genes, four genes (PTPRT, BOLL, PLIN4, and ADGRL3)

deserved more attention in copy number between CDM and

MG (Figure 4B, Supplementary Table 5). The selection signals

between CDM and XZ were enriched to “axon guidance” (p

= 5.48 × 10−6) and “ErbB signaling pathway” (p = 7.49

× 10−5) (Figure 3C, Supplementary Table 10). Among these

annotated genes, five genes (PLIN4, CDH13, SYCP1, PTPRC, and

ADAMTSL3) were noteworthy in copy number between CDM

and XZ (Figure 4C, Supplementary Table 6). There was a difference

in copy numbers between CDM and HSK. The selection signal

enrichment pathways between CDM and HSK include “bacterial

invasion of epithelial cells” (p = 1.10 × 10−3), “Salmonella

infection” (p = 0.02195), and “human immunodeficiency virus

1 infection” (p = 0.02446) (Figure 3D, Supplementary Table 11).

Among these annotated genes, three genes (KHDRBS2, THRDE,

and EBF2) were notable in copy number between CDM and HSK

(Figure 4D, Supplementary Table 7).

4. Discussion

During domestication and diversification, the frequency of

copy number variation in the species’ genome responds to

selective pressure. Considerable effort has been applied to

identify the causal mutations and genes. However, screening the

selected genomic copy number genetic markers is complex. Over

the past decades, high-throughput sequencing techniques and

bioinformatics tools have been increasingly used to construct

genome-wide CNV maps (1, 15, 17, 18). The diversity of CNVs
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FIGURE 3

KEGG pathways from the enrichment analysis. (A) CDM vs. YB; (B) CDM vs. MG; (C) CDM vs. XZ; (D) CDM vs. HSK) (p < 0.05). We preferred showing

part of the pathways; for more information, please see Supplementary Tables 8–11.

has been extensively explored in Bos Taurus, Bos Indicus, and their

crossing populations.

In our study, we investigated the CNV of 20 newly resequenced

Qaidam cattle genomes based on the ARS_UCD 1.2 cattle reference

genome. It improved the reliability of screening CNVs more

than through UMD 3.1 assembly (19, 20). A total of 10,178

CNVRs were detected in five Chinese indigenous cattle breeds,

and more than 99.9% CNVRs in length ranged from 1 to 100 kb.

It was suggested that CNVs were widespread in Chinese cattle

and may have been caused by the rapid adaptation during

population expansion. For better statistics, variants were divided

into three categories: duplication, deletion, and both duplication

and deletion. The duplication was higher than deletions in number

(Supplementary Table 3). And most of the CNVRs ranging from 2

to 5 kb in length (Figure 1A). In addition, the location of CNVRs

is not uniformly distributed in the cattle genome (Figure 1C),

and they are also not randomly distributed on chromosomes. The

annotation uncovered that CNVRs are mostly annotated in the

intergenic or intronic regions in the cattle genome. A previous

study has also supported that many CNVRs are located on highly

variable genes (15).

Compared to the analysis of the genome CNV in Qaidam

cattle (18) for the first time, the role that CNVs have in the

evolution of Qaidam cattle is becoming clear through our present

study. The Qaidam cattle have strong adaptability to the arid

environment, exhibiting dry, hypoxia, low air pressure, and

large diurnal temperature difference (relative humidity 29–42%,

precipitation 140–210.4mm). Interestingly, YB cattle have almost

opposite living conditions (relative humidity 68.6%; precipitation

500–700mm) than Qaidam cattle. By consulting scientific articles,
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FIGURE 4

Normalized copy number comparison of the top 1% VST genes between CDM and other populations. (A) CDM compared with the YB population. (B)

CDM compared with the MG population. (C) CDM compared with the XZ population. (D) CDM compared with the HSK population.

we found that EBF1 and ZNF521 related to fat development

(21, 22) and VEGFA, EGLN2, and ENO3 were associated with

high altitude hypoxic adaptation (23–25). In the enrichment

analysis, the MGAM gene was significantly enriched in the

“metabolic pathways (bta01100, P-value = 0.000113)” (Figure 3A),

and was also clustered in the “carbohydrate metabolic process

(GO:0005975, P-value = 0.014482)” (Supplementary Table 8). A

previous study reported on the CNVR overlapping with the

MAGM gene, and that it was related to starch digestion (26).

Specifically, we found that MUC6 in Qaidam cattle was a normal-

type CNVR, but it is a deletion CNVR in the YB cattle genome

(Figure 4A). A previous study found CNV polymorphism in the

MUC6 gene of domestic sheep, and this CNVR presents normal

or duplication under arid environments, and deletion in warm

and humid environments (27). Structurally, large numbers of

tandem repeats rich in Pro, Thr, and Ser residues in MUC6 can
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affect the covalent attachment of O-glycans (28). In ruminants,

such as sheep and cattle, the MUC6 gene has been associated

with gastrointestinal parasite resistance (29, 30). Therefore, we

hypothesized that the copy number difference of the MUC6 gene

may influence the ability of antiparasitic immunity inQaidam cattle

and YB cattle.

High-quality beef is the breeding target of Qaidam cattle.

In the comparison between Qaidam cattle and MG cattle

(Supplementary Figure 2B), we observed that the PRKCA,

CAMK2D, PHKB, and GRID2 genes (Supplementary Table 5) (VST

value > 0.43) were related to muscle growth and development

by searching previous research studies (31–34). Moreover, we

identified PTPRT, BOLL, PLIN4, and ADGRL3 gene regions in the

CNVRs of the top VST values which have obvious copy number

differences between Qaidam cattle and MG cattle (Figure 4B).

The ADGRL3 gene is associated with the nervous system of the

Fuzhong buffalo (34). In addition, PTPRT (Chr13: s17021.1) was

associated with body weight for pre-weaning growth in Esme

sheep (35). In addition, the functional enrichment analysis of

candidate genes with top 1% signal VST values revealed that the

“GnRH signaling pathway” and “calcium signaling pathway” were

significantly overrepresented. These results imply that the selected

genes might contribute to the characteristics of growth rate and

meat quality in Qaidam cattle.

Body size is one of the important traits in the evaluation of beef

selection. In this study, we identified ADAMTSL3, PLIN4, CDH13,

SYCP1, and PTPRC genes of the top 1% signal regions between

Qaidam and XZ cattle (Supplementary Table 6). According to

previous research, ADAMTSL3 plays an important role in

chondrogenesis, morphogenesis, and skeletal growth in humans

(36). A previous study reported that the bovine ADAMTSL3 gene

has specific polymorphisms in individuals and the SNPs (T1532C

and C1899T) were significantly associated with body size traits (37).

Our results further suggested that copy number in the ADAMTSL3

gene may be one of the reasons for the difference in body size

between XZ cattle and Qaidam cattle.

By comparing the copy number differences between the HSK

and Qaidam breeds on the genome (Supplementary Figure 2C), we

identified CNVRs with significant differences including KHDRBS2,

THRDE, and EBF2 (Figure 4D, Supplementary Table 7). One of

the eye-catching genes was EBF2, which has copy number

polymorphism and showed a normal type in Qaidam cattle but a

deletion type in HSK cattle (Figure 4D). Previous studies showed

that EBF2 promotes brown adipocyte differentiation (38) and that

its loss in mouse adipocytes abrogates brown adipose tissue (BAT)

characteristics and function, leading to cold intolerance (39, 40).

The cold tolerance of Qaidam cattle is an essential characteristic

and it was speculated to be related to the copy number variation

of EBF2.

5. Conclusion

Based on the high-quality Bos taurus reference genome, we

constructed a CNV map of Northern Chinese Qaidam cattle using

whole-genome resequencing data. Moreover, there are many copy

number differences between Qaidam cattle and other cattle breeds

from the regions of North China. It may play a crucial role

in understanding the Qaidam cattle’s adaptability, growth, and

developmental characteristics In conclusion, these results provide

a wealth of CNVR information to explore the valuable molecular

markers in the Qaidam cattle genome.
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