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The Role of AI in Driving the Sustainability
of the Chemical Industry
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Abstract: Sustainability is here to stay. As businesses migrate away from fossil fuels and toward renewable
sources, chemistry will play a crucial role in bringing the economy to a point of net-zero emissions. In fact,
chemistry has always been at the forefront of developing new or enhanced materials to fulfill societal demands,
resulting in goods with appropriate physical or chemical qualities. Today, the main focus is on developing goods
and materials that have a less negative impact on the environment, which may include (but is not limited to)
leaving behind smaller carbon footprints. Integrating data and AI can speed up the discovery of new eco-friendly
materials, predict environmental impact factors for early assessment of new technological integration, enhance
plant design and management, and optimize processes to reduce costs and improve efficiency, all of which
contribute to a more rapid transition to a sustainable system. In this perspective, we hint at how AI technologies
have been employed so far first, at estimating sustainability metrics and second, at designing more sustainable
chemical processes.
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1.Introduction

1.1 A Broader View
Specific definitions of sustainability are difficult to agree

on. In 1987, the United Nations released their final report, Our
Common Future,[1] that famously defines sustainable devel-
opment as “development that meets the needs of the present
without compromising the ability of future generations to meet
their own needs”. Practically, they realized that economic de-
velopment at the cost of social equity and ecological health was
not building a prosperous long-lasting future. ‘Harmonization’
was, and is, the watchword. Sustainability is based on three ma-
jor pillars: the environment, the economy, and the society.[2,3]
Environmental sustainability aims at building a society where all
earth’s ecological systems are kept in balance, natural resources
are replenished, even if consumed. The economic pillar on the
other hand, focuses on the independence of the communities and
on the ability they have to access the resources that they need.
This is strictly linked to societal sustainability where the ulti-
mate goal is to dismantle any form of discrimination and make
fundamental human rights and basic necessities accessible to
everyone. Even though there are a lot of people who think that
the environmental pillar ought to be the most essential one,[4,5]
it is impossible for it to be successful without the development
of the other two. For this reason, the adoption of environmen-
tally sustainable practices should always take into account the
societal and economic consequences, making sure that the other
pillars are not penalized in the process.

1.2 Chemical Industry, a Main Player in Sustainability
First and foremost, sustainability presents the chemical sector

with a window of opportunity for new product development and
expansion. Because it is one of the industries that is significantly
involved in the use of energy as well as the substantial use of fos-
sil fuels as raw materials, the chemical industry accounts for 10%
of the global energy demand and is therefore one of the largest

doi:10.2533/chimia.2023.144 Chimia 77 (2023) 144–149 © A. Toniato, O. Schilter, T. Laino



NCCR Catalysis CHIMIA 2023, 77, No. 3 145

attention,[14] with the broader community constantly improving
the processes’ evaluation criteria.[15–17] However, these metrics
tended to concentrate solely on the used materials or on their
chemical processing while ignoring the wider context of their
entire life cycle. In addition, in GC economic considerations are
rarely addressed and societal issues often neglected.[17]Derbenev
et al.[18] provide an overview of these case-specific metrics and
of the tools available for their calculations.[19–21] Some of the ap-
proaches presented are AI-based like structure-to-yield predic-
tors or greener solvents selection. However, sustainability met-
rics arise as more comprehensive and holistic metrics to measure
concurrently economical, environmental and societal impacts
going beyond the calculation of quantities like, for example,
process mass efficiency (PME).[15,17] Liao et al.[11] complied an
extensive list of methods that can be used to quantify indica-
tors for sustainability goals, divided by impact category. We will
elaborate on key approaches, where we believe recent develop-
ments in AI could be the most impactful: indicators estimations
such as Life Cycle Assessment (LCA), Material Flow Analysis
(MFA), Techno-Economic Analysis (TEA) and energy & exergy
analysis.

2.1 LCA
An integral part of designing a chemical process is the evalu-

ation of its impact on the health and environment. The evaluation
of a product’s inputs and outputs of energy and materials as well
as the environmental impact caused by its production through-
out its entire life cycle is referred to as a life cycle assessment
(LCA). It is a crucial framework that provides insights into up-
stream and downstream trade-offs associated with environmen-
tal pressures and consumption of natural resources and energy,
allowing us to evaluate and reduce the overall environmental
burden of a chemical process. Comprehensive studies of how
LCAs can be beneficial can be found in literature.[22–25] Often
one of the limitations of LCA is the availability of information
on all the chemicals (Life Cycle Inventory - LCI). To this end,
AI can facilitate LCAs even with limited data from LCIs. In fact,
AI models can be utilized to extrapolate unknown impact factors
of chemicals such as, but not limited to, global warming IPCC
2007,[26] acidification TRACI,[27] human health Impact 2000+,[28]
ecosystem quality Impact 2000+,[28] Ecoindicator99 (I and to-
tal).[29] Through the use of LCA, Zhu et al.[30] were able to de-
termine that the feedstock used in the production of sitagliptin
is responsible for up to 80 percent of the life cycle impact. They
used a dataset of 224 chemicals to train a neural network to learn
to predict LCA impact categories Ecoindicator99 and ReCiP.
They investigated a variety of alternative feedstock choices and
discovered a new environmentally friendly route. A similar ap-
proach was used by Song et al.,[31] where they trained a neural
network to predict the life-cycle impacts of 166 chemicals ac-
cording to six impact categories. Their studies concluded that
these models are useful to estimate the impact of chemicals in
absence of more reliable data sources. Calvo-Serrano et al.[32]
focused on predicting the cradle-to-gate life cycle production
impact of 88 organic chemicals by means of mixed-integer pro-
gramming methods successfully. They used a combination of
molecular descriptors and thermodynamic properties to repre-
sent the organic molecule and predicted nine impact categories.
In a second publication, Calvo-Serrano et al.[33] built mathemati-
cal models to represent the LCA impact of chemicals based on
a network representation of the petrochemical industry which
allows them not to rely on fixed mass and energy flows. Finally,
Liao et al.[34] developed LCA for activated carbon from diverse
biomasses, combining process simulations with ANN (artificial
neural networks).

All these above-mentioned approaches and many more[11,35,36]
mainly rely on simple machine learning architectures and do not

emitters on the planet.[6] Most importantly, the chemical sector is
currently unable to meet the targets established by downstream
industries. In the future, a crucial difference will be a company’s
leadership in cutting-edge innovations, such as those related to
recycling or biomaterials. Instead of pushing innovation in the
absence of obvious market demands, the use of technologies that
enable businesses to anticipate and meet their consumers’ evolv-
ing demands will provide a competitive advantage. In this jour-
ney, the chemical sector needs strong allies in order to keep up
with the constantly shifting standards for environmental sustain-
ability. What was considered to be sustainable development fifty
years ago is not considered to be sustainable development today,
and the rate at which new solutions are required has reached an
all-time high. Effectively promoting research and innovation has
emerged as one of societal major priorities.[7,8] The timeframe
for a game-changing material/catalyst discovery process, from
concept to market, can take up to a few decades,[9] which can-
not be afforded in a sustainability-focused world. In the field of
research, the scientific method is the golden standard to drive
innovation.[10]However, it often follows a straight and segregated
process, which means that the lab chemist, the theoretical and
computational researcher, the industrial engineer, and lastly the
government authorities, seldom communicate during the pro-
cess. Closing the loop only at the end leads inevitably to bottle-
necks and delays. The successful development of new chemicals,
though, is only half the battle. There is a need for well-defined
metrics, real-time monitoring of chemical production and finally
dynamic analysis and responses to lessen the severity of unfore-
seen events. As well as methods for constant improvement and
adaptation of the processes in response to changes in demand
and legislation.

1.3 AI as a Driver for Sustainability
The leveraging of the unprecedented volume of data that

chemical industries produced over the course of the last few de-
cades poses a considerable challenge. AI is a key enabling tech-
nology in the journey toward sustainability. Nonetheless, AI has
seen only a modest uptake in the chemical sector. Limitations to
widespread AI adoption stem primarily from a scarcity of quanti-
tative tools for gauging the true benefit in terms of sustainability
metrics. The task is complicated by the blurriness of these metrics,
with no comprehensive set of quantitative sustainability indicators
available at the time of this publication.

As a consequence, research on AI has focused more on tech-
nical advancements[11] with only few studies clearly reporting
the impact of the technology in terms of sustainability indicators
(from economical, to environmental and societal). If a chemical
company wants to successfully transition from the traditional pro-
cess industry to the AI-based one, it will need a clear road-map
outlining how various factors of sustainability will be affected by
various types of AI technology. Liao et al.[11] reviewed 63 articles
at the interface of the chemical industry and artificial intelligence
in an effort to identify methods that facilitate the assessment of
how the adoption of a particular AI technology affects various
aspects/indicators of sustainability.

In light of their findings, we will begin by discussing how AI
has recently been applied to quantify and measure the sustainabil-
ity of chemical processes. And secondly, we will present recent
advances in AI technologies for the design of chemical processes
with the primary objective of being environmentally friendly.

We conclude with few considerations on the sustainability of
AI, a topic that is vastly undervalued in comparison to AI for sus-
tainability.[12]

2. AI to Measure Sustainability of Chemical Processes
Sustainability metrics were built on top of the 12 Green

Chemistry (GC) principles[13] and today are gaining increased
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3. How AI Has Been Used to Improve Sustainability
of Chemical Processes

While on one handAI can be used to conduct a purely analyti-
cal evaluation of the viability of a chemical process, on the other,
it can be utilized to directly optimize that process. Even if litera-
ture is scarce, we attempt to present few works where any of the
sustainability indicators have been estimated before and after the
adoption of AI. We split the review into two different categories:
(1) research and development (2) production.

3.1 R&D
Research and Development (R&D) is thriving in the chemi-

cal industry, focusing on the discovery and development of new
chemical reactions or new catalytic species in a variety of applica-
tions. However, the long-term effects of integrating AI into R&D
procedures are largely unexplored at this time.

In a general discovery pipeline, a few investigated chemicals
are chosen as candidates for the solution of a specific challenge
in a target application (e.g. catalyzing a chemical process with
enzymes). These compounds are then tested and analyzed. The
process is iterated until suitable species are identified which sat-
isfy a figure of merit (e.g. reaction yield), often limited to the
research scenario.

While several R&D teams apply ML and AI to improve the
discovery process,[57–61] none perform their analysis to directly
optimize sustainability metrics, and few compare their value to
the AI-free approach. Few works focus their optimization based
on sustainability indicators. AI is known to reduce time for the
design, experiment, and computation, which can indirectly reduce
environmental impact and costs. However, time reduction is rarely
quantified in detail. In the field of heterogeneous catalysis funded
by the NCCR catalysis Suvarna et al.[62] focused on the develop-
ment of anMLmodel which predicts the space–time yield of 1425
catalysts (an indicator of process and material efficiency), extract-
ed from literature, involved in the methanol synthesis from CO

2
hydrogenation. However, they do not recommend an alternative
catalyst with a promising space-time yield increase. Ten et al.[63]
implement a computer-aided molecular design framework where
the selected molecules are optimized for desirable properties and
at the same time meet the safety and health criteria. They conduct-
ed a case study in order to determine the most effective molecule
to use as a solvent in the process of removing hydrogen sulfides,
carbon dioxide, and mercaptans from natural gas in order to make
it suitable for transport and sale. However, in order to evaluate
the molecular performance, they make use of standard predictive
models (the Group Contribution Method), and they only integrate
safety and health considerations during the performance analysis
stage and not during the design stage. Angello et al.[64] report a
simple closed-loop workflow to discover general reaction con-
ditions for the heteroaryl Suzuki-Miyaura cross-coupling. They
identified conditions that double the average yield with respect to
the reference approach. Polykovskiy et al.[65] developed a frame-
work based on conditional adversarial autoencoders to generate a
novel inhibitor of Janus kinase 3, implicated in rheumatoid arthri-
tis, psoriasis, and vitiligo. Their method optimizes for numerous
properties, including synthetic accessibility (SA). Even if theirAI
approach is not directly related to a sustainability indicator, it can
be used as a starting point to improve upon more conventional
techniques.

3.2 Production
If we take a step up from the laboratory (R&D) to the chemi-

cal factory (production), we can see that the long-term viability
of AI adoption has been more thoroughly evaluated, despite the
fact that data-driven technology adoption is still in its infancy.
Diverse studies and articles highlight the positive impact of AI at
the manufacturing level.[66,67] Maintenance is a key operation for

take advantage of newer deep-learning models, since for the train-
ing of more complex neural networks often larger data sets are re-
quired.[37,38] No literature to date was found where deep-learning
models were employed. In view of the recent advancement on
ChatGPT[39] and the relevance of language models in capturing
chemical knowledge[40–42] we foresee that new datasets can be ex-
tracted from existing literature, with the main goal of improving
sustainability metrics thanks to state-of-the-art AI models. These
new AI models would be able to quickly evaluate LCA impact
categories over a broad spectrum of chemicals and processes and
could be a key tool to convince the earlier adoption of LCA at the
stage of designing a new chemical process.

2.2 MFA
Achieving a circular economy in production is one of the most

important steps that must be taken in order to successfully make
the chemical industry more sustainable. For instance, a byprod-
uct of one process can be used as feedstock in another process.
Material flow analysis has become increasingly popular as a
means of tracking the flow of materials throughout a process and
of locating and quantifying the points at which material flows are
produced, reused, consumed, and lost.[43] The MFA spans from
the individual chemical process, to broader economic impacts[44]
or even planetary considerations.[45–47] We foresee great potential
in the combination ofMFA andAI. One example is teaching anAI
system to predict the combined effects of two different chemical
pathways into a final product within the boundaries of the system.
If, for example, the first alternative produces fewer byproducts
than the second, but the second alternative’s byproducts can be
used as feedstock in another process, then AI could learn to rec-
ommend the second option.[48]

2.3 TEA
The term techno-economic analysis, or TEA, refers to a meth-

od that combines the operational costs, capital costs, and eco-
nomic costs of, for instance, equipment sizing. This method is
used to quantify the economic sustainability of processes. There
is already some application of artificial intelligence in this area,
such as assisting with the sizing of distillation columns[49] and the
cost of the energy[50] they use.

By optimizing complex chemical processes like the produc-
tion of ethylene, AI has also assisted in lowering operational
costs and the carbon footprint.[51] In some cases, the greatest
challenge is finding a single set of operating parameters for a
chemical process that simultaneously maximizes profit and mini-
mizes environmental impact. Schweidtmann et al.[52] presented a
multi objective optimization strategy to balance these two factors
(space time yield vs E-factor or % impurity) which allowed to
find improved operating conditions for the nucleophilic aromatic
substitution reaction.

2.4 Energy and Exergy Analysis
If a system is brought to its reversible equilibrium with its

environment the maximum amount of useful work that can be
extracted from this system is called exergy. Exergy destruction
corresponds to a degradation of both energy and material in a sys-
tem.[53] Lowering the energy, respectively exergy, consumption of
a chemical process also improves its environmental and economi-
cal sustainability. Therefore, it is a vital indicator of sustainability
and an opportunity for AI contributions. Because calculations of
exergy are dependent on thermodynamic information for the mol-
ecules involved in the chemical process of interest, artificial intel-
ligence already demonstrated its value directly predicting exergy
values for a series of applications.[54–56]
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tools available for calculating emissions[85,86] as well as recent lit-
erature on this important and overlooked topic.[87–91]

5. Conclusions
AI is a promising sustainability driver to mutate the chemical

industry. However, its wide adoption is somehow delayed by the
lack of data and, therefore, examples that help understand and
quantify its impact. In this brief perspective we tried to hint at the
examples on how AI as been employed so far to either measure
sustainability or improve sustainability of chemical processes.We
foresee that more recent advances in the field of AI (deep learn-
ing) will facilitate, with renewed vigor, the transition to more sus-
tainable practices. And the more examples will be generated, the
more trust will be created in the adoption of these technologies,
enabling the chemical industry to match the ambitious goals of the
long-term EU strategy for the year 2050.
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