Research Article Open Access

On α-Fuzzy Soft Irreducible Spaces

Majd Hamid Mahmood

Department of Mathematics, Collage of Education, Mustansiriyah University, Baghdad, IRAQ.

Contact: mgmg227@yahoo.com

Article Info

Received 26/08/2022

Accepted 04/12/2022

Published 30/03/2023

ABSTRACT

We define fuzzy soft irreducible sets, α -fuzzy soft irreducible sets in fuzzy soft topological spaces and study the properties including (fuzzy soft continuity; fuzzy soft homeomorphism and fuzzy soft topological properties) on α -fuzzy soft irreducible sets.

KEYWORDS: Fuzzy soft irreducible sets; fuzzy soft connected space; fuzzy soft continuous map.

اا خلاصة

سوف نعرف المجاميع الضبابية الميسرة الغير قابلة للاختزال، المجاميع الضبابية الغير قابلة للاختزال- α في الفضاءات الضبابية الميسرة وسوف ندرس الخواص التي تتضمن (الاستمرارية الضبابية الميسرة، التكافؤ الضبابي الميسرة) التبولوجية الضبابية الميسرة) على المجاميع الضبابية الغير قابلة للاختزال- α .

INTRODUCTION

The fuzzy sets introduced in 1965 by Zadeh L. A. [12], Soft set introduced in 2001 by Molodtsov D. [8]. Fuzzy soft set introduced and studied in [1], [4], [7], [9] (simply \mathcal{F} - set). α -fuzzy soft sets defined in [5] (simply $\alpha \mathcal{F}$ - set). Soft topological space defined in [10]. Fuzzy soft topological space introduced and studied in [2],[6],[11].

In this research, we define fuzzy soft irreducible sets. α -fuzzy soft irreducible sets in fuzzy soft topological spaces and study the properties including: fuzzy soft continuity, fuzzy soft homeomorphism and fuzzy soft topological properties on α -fuzzy soft irreducible sets.

Definition 1.1. [7] For a universal set Ω ; \wp set of parameters and soft set (f, \wp) . If each soft element \varkappa in (f, \wp) is associated with $\eta \in [0,1]$, then the resulting set is called a fuzzy soft set $(\mathcal{F}$ - set).

Definitions 1.2. [7]

For a soft set (F,E), F: $E \rightarrow P(\Omega)$ where $F(e_i) \in P(\Omega)$, $\forall e_i \in E$ the set of parameters, and for a family of \mathcal{F} -sets generated by the same soft set (F,E), $\{(f, \wp) \mid \lambda : \lambda \in \Lambda, \text{ where } \Lambda \text{ is an infinite index set}\}$,

(1) the \mathcal{F} -union is defined by

 $(h, \mathscr{D}) = \widetilde{U}_{\lambda}$ (f, $\mathscr{D})_{\lambda} = \{x: x(e_i, F(e_i)^{\kappa i})\}$, where $\kappa i = \{\max \kappa i_{\lambda} : ki_{\lambda} \text{ are the memberships of each soft}\}$

element in the soft set and $i \in \xi$, ξ is an infinite index set $\}$,

(2) the \mathcal{F} -intersection is defined by:

 $(h, \wp) = \widetilde{\cap}_{\lambda} (f, \wp)_{\lambda} = \{ x : x = (e_i, F(e_i)^{\kappa i}) \}$, where $\kappa i = \{ \min \kappa i_{\lambda} : k i_{\lambda} \text{ are the memberships of each soft element in the soft set and } i \in \xi, \xi \text{ is an infinite index set} \}$,

(3) \tilde{A} is $\tilde{\mathcal{F}}$ - subset of \tilde{B} , $\tilde{A} \subseteq \tilde{B}$ if each $\tilde{\mathcal{F}}$ - element in \tilde{A} is in \tilde{B} .

(4) $\widetilde{\Phi}$ is the null \mathscr{F} - set where each soft element associated to η =0, $\widetilde{\Omega}$ is the universal \mathscr{F} - set where each soft element associated to η =1.

Example 1.3.

For
$$\Omega = \{a,b\}$$
, $\wp = \{e\}$. Let $\widetilde{G} = (e,\{a^{0.2},b^{0.3}\})$, $\widetilde{L} = (e,\{a^{0.4},b^{0.5}\})$, $\widetilde{\Phi} = (e,\{a^0,b^0\})$ and $\widetilde{\Omega} = (e,\{a^1,b^1\})$ be $\widetilde{\mathcal{F}}$ - sets, \widetilde{G} \widetilde{U} $\widetilde{L} = (e,\{a^{0.2},b^{0.3}\})\widetilde{U}(e,\{a^{0.4},b^{0.5}\})$ = $(e,\{a^{0.4},b^{0.5}\})=\widetilde{L}$ \widetilde{G} $\widetilde{\cap}$ $\widetilde{L} = (e,\{a^{0.2},b^{0.3}\})\widetilde{\cap}(e,\{a^{0.4},b^{0.5}\})$ = $(e,\{a^{0.2},b^{0.3}\})=\widetilde{G}$ $\widetilde{\Omega}$ $\widetilde{\cap}$ $\widetilde{L} = \widetilde{L}$, \widetilde{L} \widetilde{U} $\widetilde{\Omega} = \widetilde{\Omega}$ $\widetilde{\Omega}$ $\widetilde{\Omega}$ \widetilde{L} = \widetilde{L} , \widetilde{L} \widetilde{U} \widetilde{U} = \widetilde{L} \widetilde{U} \widetilde{U} = \widetilde{L} \widetilde{U} \widetilde{U} = \widetilde{L} \widetilde{U} \widetilde{U} = \widetilde{U} \widetilde{U} = \widetilde{U} .

Definition 1.4.[11] For a non- empty universal set Ω , \wp set of parameters, \mathfrak{F} the collection of \mathfrak{F} - sets

generated from the \mathcal{F} - set $\widetilde{\Omega}$ (the non-null universal F-set), if F satisfies the following axioms:

- (a) $\widetilde{\Phi}$, $\widetilde{\Omega}$ are in \mathfrak{F} .
- (b) The intersection of any two \mathcal{F} set belongs to .
- (c) The union of members of sets is in \mathfrak{F} .

Then, is called (\mathfrak{F} - topology).

A triple (Ω, \emptyset) is called \mathcal{F} - topological space over Ω (simply \Im -Space),

the sets of \mathcal{F} are \mathcal{F} - open sets denoted by \mathcal{F} o - sets and their complements are called \(\)c- sets.

Example 1.5.

For $\Omega = \{a, b\}, \wp = \{e\}.$ Let $\widetilde{N} = (e, \{ a^{0.8}, b^{0.7} \}),$ $\widetilde{D} = (e, \{ a^{0.5}, b^{0.4} \}), \widetilde{K} = (e, \{ a^{0.6}, b^{0.2} \})$ $\widetilde{\Phi} = (e, \{a^0, b^0\}), \widetilde{\Omega} = (e, \{a^1, b^1\})$ Let $\mathfrak{F}_1 = {\{\widetilde{\Phi}, \widetilde{\Omega}, \widetilde{N}, \widetilde{D}\}}, \mathfrak{F}_2 = {\{\widetilde{\Phi}, \widetilde{\Omega}, \widetilde{N}\}}$ $\mathfrak{F}_3 = \{\widetilde{\Phi}, \widetilde{\Omega}\}.$ Then, \mathfrak{F}_1 , \mathfrak{F}_2 , \mathfrak{F}_3 are \mathfrak{F} - topologies over Ω .

But $_{4} = {\widetilde{\Phi}, \widetilde{\Omega}, \widetilde{D}, \widetilde{K}}$ is not a ${\mathfrak{F}}$ - topology on Ω since $\widetilde{D} \cap \widetilde{K} = (e, \{ a^{0.5}, b^{0.2} \}) \notin \mathcal{F}_4$.

Definition 1.6. [11]

Let \tilde{A} be a \mathfrak{F} - set in \mathfrak{F} - topological space (Ω, \wp) . The \mathfrak{F} - interior of \tilde{A} (or \mathfrak{F} - int (\tilde{A})) is defined by \mathfrak{F} - in(\widetilde{A}) = \widetilde{U} { \widetilde{G} : \widetilde{G} is \mathfrak{F} o- set and $\widetilde{G} \subseteq \widetilde{A}$ }.

Definition 1.7. [11]

Let \widetilde{M} be a \mathfrak{F} - set in \mathfrak{F} - topological space (Ω, \emptyset) . The $\mathfrak F$ - closure of $\widetilde M$ (or \mathfrak{F} - $\operatorname{cl}(\widetilde{M})$) is defined by $\mathfrak{F} - \operatorname{cl}(\widetilde{M}) = \widetilde{\cap} \{\widetilde{C} : \widetilde{C} \text{ is } \mathfrak{F}c - \text{set and } \widetilde{M} \subseteq \widetilde{C} \}.$

Remarks 1.8.

1- \mathcal{F} - int (\tilde{A}) is the largest \mathcal{F} - set contained in \tilde{A} . 2- \mathcal{F} - cl (\tilde{A}) is the smallest \mathcal{F} - set containing \tilde{A} .

Examples 1.9.

$$\begin{array}{lll} \text{1- For } \Omega = \{s,d\}, \ \varnothing = \{e\}. \ \text{Let} \\ \tilde{\mathcal{C}} = (e,\{\ s^1,d^0\ \}) \ , \ \widetilde{\mathcal{D}} = (e\,,\{\ s^0\,,d^1\ \}) \\ \widetilde{\Phi} = (e,\{\ s^0,d^0\ \}), \ \widetilde{\Omega} = (e,\{\ s^1,d^1\ \}) \ , \\ \widetilde{\mathfrak{F}}_1 = \{\widetilde{\Phi},\widetilde{\Omega},\widetilde{\mathcal{C}},\widetilde{\mathcal{D}}\} \\ \text{The sets } \widetilde{\Phi},\widetilde{\Omega},\ \widetilde{\mathcal{C}} \ \text{and } \widetilde{\mathcal{D}} \ \text{are } \mathscr{F}_0 \ - \ \text{sets and } \mathscr{F}_0 \ - \ \text{sets}, \\ \mathfrak{F}_{1^-} \ \text{in}(\widetilde{\mathcal{C}}) = \widetilde{\mathcal{C}} \ , \ \mathfrak{F}_1 \ - \ \text{in}(\widetilde{\mathcal{D}}) = \widetilde{\mathcal{D}} \ , \ \mathfrak{F}_1 \ - \ \text{cl}(\widetilde{\mathcal{C}}) = \widetilde{\mathcal{C}} \ , \ \mathfrak{F}_1 \ - \ \text{cl}(\widetilde{\mathcal{C}}) = \widetilde{\mathcal{C}} \ , \ \mathfrak{F}_1 \ - \ \text{cl}(\widetilde{\mathcal{D}}) = \widetilde{\mathcal{C}} \ , \ \mathfrak{F}_1 \ - \ \text{cl}(\widetilde{\mathcal{D}}) = \widetilde{\mathcal{C}} \ , \ \mathfrak{F}_1 \ - \ \text{cl}(\widetilde{\mathcal{D}}) = \widetilde{\mathcal{C}} \ , \ \mathfrak{F}_1 \ - \ \text{cl}(\widetilde{\mathcal{D}}) = \widetilde{\mathcal{C}} \ , \ \mathfrak{F}_1 \ - \ \text{cl}(\widetilde{\mathcal{D}}) = \widetilde{\mathcal{C}} \ , \ \mathfrak{F}_1 \ - \ \text{cl}(\widetilde{\mathcal{D}}) = \widetilde{\mathcal{C}} \ , \ \mathfrak{F}_1 \ - \ \text{cl}(\widetilde{\mathcal{D}}) = \widetilde{\mathcal{C}} \ , \ \mathfrak{F}_1 \ - \ \text{cl}(\widetilde{\mathcal{D}}) = \widetilde{\mathcal{C}} \ , \ \mathfrak{F}_1 \ - \ \text{cl}(\widetilde{\mathcal{D}}) = \widetilde{\mathcal{C}} \ , \ \mathfrak{F}_1 \ - \ \text{cl}(\widetilde{\mathcal{D}}) = \widetilde{\mathcal{C}} \ , \ \mathfrak{F}_1 \ - \ \text{cl}(\widetilde{\mathcal{D}}) = \widetilde{\mathcal{C}} \ , \ \mathfrak{F}_1 \ - \ \text{cl}(\widetilde{\mathcal{D}}) = \widetilde{\mathcal{C}} \ , \ \mathfrak{F}_1 \ - \ \text{cl}(\widetilde{\mathcal{D}}) = \widetilde{\mathcal{C}} \ , \ \mathfrak{F}_1 \ - \ \text{cl}(\widetilde{\mathcal{D}}) = \widetilde{\mathcal{C}} \ , \ \mathfrak{F}_1 \ - \ \text{cl}(\widetilde{\mathcal{D}}) = \widetilde{\mathcal{C}} \ , \ \mathfrak{F}_1 \ - \ \text{cl}(\widetilde{\mathcal{D}}) = \widetilde{\mathcal{C}} \ , \ \mathfrak{F}_1 \ - \ \text{cl}(\widetilde{\mathcal{D}}) = \widetilde{\mathcal{C}} \ , \ \mathfrak{F}_1 \ - \ \text{cl}(\widetilde{\mathcal{D}}) = \widetilde{\mathcal{C}} \ , \ \mathfrak{F}_1 \ - \ \text{cl}(\widetilde{\mathcal{D}}) = \widetilde{\mathcal{C}} \ , \ \mathfrak{F}_1 \ - \ \text{cl}(\widetilde{\mathcal{D}}) = \widetilde{\mathcal{D}} \ , \ \mathfrak{F}_2 \ - \ \text{cl}(\widetilde{\mathcal{D}}) = \widetilde{\mathcal{D}} \ , \ \mathfrak{F}_2 \ - \ \text{cl}(\widetilde{\mathcal{D}}) = \widetilde{\mathcal{D}} \ , \ \mathfrak{F}_2 \ - \ \text{cl}(\widetilde{\mathcal{D}}) = \widetilde{\mathcal{D}} \ , \ \mathfrak{F}_2 \ - \ \text{cl}(\widetilde{\mathcal{D}}) = \widetilde{\mathcal{D}} \ , \ \mathfrak{F}_2 \ - \ \text{cl}(\widetilde{\mathcal{D}}) = \widetilde{\mathcal{D}} \ , \ \mathfrak{F}_2 \ - \ \text{cl}(\widetilde{\mathcal{D}}) = \widetilde{\mathcal{D}} \ , \ \mathfrak{F}_2 \ - \ \mathbb{C} \ - \ \mathbb{C} \ , \ \mathfrak{F}_2 \ - \ \mathbb{C} \ , \ \mathfrak{F}_2 \ - \ \mathbb{C} \ , \ \mathfrak{F}_2 \ - \ \mathbb{C} \ , \$$

$$s^{0.4}, d^1\})\widetilde{U}(e, \{s^{0.5}, d^1\}) = (e, \{s^{0.5}, d^1\}) = \widetilde{F}$$

 $\mathfrak{F}_2 - \operatorname{cl}(\widetilde{F}) = (e, \{s^{0.5}, d^1\}) \widetilde{\cap} (e, \{s^1, d^1\}) = \widetilde{F}.$

α_δ- IRREDUCIBLE SPACE

In this section we will define and study $\alpha \mathfrak{F}$ irreducible spaces, with examples.

Definition 2.1.

The \mathfrak{F} - set \widetilde{M} in \mathfrak{F} - topological space (Ω, \emptyset) is called $(\alpha \mathcal{F}_0$ -set) if: $\widetilde{M} \cong \mathfrak{F}$ - int $[\mathfrak{F}$ - cl (- int (\widetilde{M}))]. And is called (α%c-set) if: \mathfrak{F} - cl $[\mathfrak{F}$ - int $(\mathfrak{F}$ - cl $(\widetilde{M}))] \cong \widetilde{M}$.

Remarks 2.2.

1- $\alpha \mathcal{F}$ - int (\tilde{A}) is the largest \mathcal{F} - set contained in Ã.

2- $\alpha \mathcal{F}$ - cl (\tilde{A}) is the smallest \mathcal{F} - set containing \tilde{A} .

3- for
$$\alpha \mathcal{F}$$
-set $\widetilde{M} = \{x_{ij} : x_{ij} = (ei, \{h_j^{kij}\})\}, \widetilde{M}^c = \{x_{ij} : x_{ij} = (ei, \{h_j^{1-kij}\})\},$

 $\forall kii \in [0,1].$

4- The complement of αFo-set (αFc-set) is αFcset (α%o- set).

Remark 2.3.

Every Fo- set (Fc-set) is α Fo-set (α Fc-set) but the converse is not true in general.

The contra positive is true also, i.e. if the set is not α Fo-set (α Fc-set), then it is not Fo-set (Fc-set).

Examples 2.4.

For $\Omega = \{a, b\}, \ \wp = \{e\} \text{ and } \widetilde{M}, \ \widetilde{N}, \ \widetilde{C}, \ \widetilde{D} \text{ are } \mathfrak{F}$ sets defined as follows:

$$\begin{split} \widetilde{M} &= (e, \{a^{0.5}, b^{0.6}\}), \widetilde{N} = (e, \{a^{0.3}, b^{0.4}\}) \\ \widetilde{\mathcal{C}} &= (e, \{a^{0.8} b^{0.7}\}), \widetilde{D} = (e, \{a^{0.5} b^{0.4}\}) \\ \widetilde{\Phi} &= (e, \{a^0, b^0\}), \widetilde{\Omega} = (e, \{a^1, b^1\}) \\ \text{Let } \mathfrak{F} &= \{\widetilde{\Phi}, \widetilde{\Omega}, \widetilde{M}, \widetilde{N}, \widetilde{\mathcal{C}}\} \text{ be } \mathfrak{F} \text{ - topology on } \Omega. \\ \text{Since } \widetilde{\mathcal{C}} &\in \mathfrak{F}. \text{ Then, } \widetilde{\mathcal{C}} \text{ is } \mathfrak{Fo} \text{ - set so it is } \alpha \mathfrak{Fo}\text{-set, } \\ \alpha \mathfrak{F} \text{ - int}(\widetilde{\mathcal{C}}) &= \widetilde{\mathcal{C}} \end{split}$$

 $[\alpha \mathfrak{F} - \operatorname{cl} (\alpha \mathfrak{F} - \operatorname{int}(\tilde{\mathcal{C}}))]$ is the smallest $\alpha \mathfrak{F} \operatorname{c}$ - set containing \tilde{C} which is equal to \tilde{C} .

Then, $\alpha \mathcal{F}$ - int $[\alpha \mathcal{F}$ - cl $(\alpha \mathcal{F}$ - int $(\tilde{\mathcal{C}}))$] which is the largest $\alpha \mathfrak{F}o$ - set contains $\tilde{\mathcal{C}}$ which is equal to $\tilde{\mathcal{C}}$. So \widetilde{C} is $\alpha \mathcal{F}$ o-set, similarly for $\widetilde{\Phi}$, $\widetilde{\Omega}$, \widetilde{M} and \widetilde{N} are $\alpha \mathcal{F}$ oset.

 \widetilde{D} is (Fc-set) since it's the complement is Fo – set \widetilde{M} , and \widetilde{D} is $(\alpha \Re c\text{-set})$ since its complement is $\alpha \mathcal{F}_0$ - set \widetilde{M} , \widetilde{D} is not \mathcal{F}_0 - set since $\widetilde{D} \notin \mathcal{F}_0$ and \widetilde{D} is not αFo-set since by definition,

$$\alpha \mathfrak{F} - \operatorname{int}(\widetilde{D}) = \widetilde{N}$$

 $\alpha \mathfrak{F} - \operatorname{cl}(\alpha \mathfrak{F} - \operatorname{int}(\widetilde{D})) = \alpha \mathfrak{F} - \operatorname{cl}(\widetilde{N}) = \widetilde{D}$

 $\alpha \mathfrak{F}$ - int $[\alpha \mathfrak{F}$ - cl (- int (\widetilde{D}))] = $\alpha \mathfrak{F}$ - int $[\widetilde{D}]$ $=\widetilde{N}$ and $\widetilde{D} \not\subseteq \alpha \mathfrak{F}$ - int $[\alpha \mathfrak{F}$ - cl $(\alpha \mathfrak{F}$ - int $(\widetilde{D}))] = \widetilde{N}$.

Definition 2.5.

The \mathcal{F} - topological space (Ω, \emptyset) is called $\alpha \mathcal{F}$ irreducible if the intersection of any two non-null αγο - sets is a non-null set otherwise it will be said to be $\alpha \mathcal{F}$ - reducible.

Examples 2.6.

1- For $\Omega = \{a, b\}$, $\wp = \{e\}$ and \widetilde{M} , \widetilde{N} , \widetilde{C} are F - sets defined as follows: $\widetilde{M} = (e, \{a^{0.3}, b^{0.5}\}), \widetilde{N} = (e, \{a^{0.2}, b^{0.1}\})$ $\widetilde{C} = (e, \{ a^{0.02} b^0 \}), \widetilde{\Phi} = (e, \{ a^0, b^0 \}),$ $\widetilde{\Omega} = (e, \{a^1, b^1\}),$ let $\mathfrak{F} = \{\widetilde{\Phi}, \widetilde{\Omega}, \widetilde{M}, \widetilde{N}, \widetilde{C}\}\$ be \mathfrak{F} - topology over Ω . Since $\widetilde{\Phi}$ $\widetilde{\Omega}$, \widetilde{M} , \widetilde{N} , \widetilde{C} are Fo-sets, then $\widetilde{\Omega}$, \widetilde{M} , \widetilde{N} , \widetilde{C} are αδo-set. Since the intersection of any two nonnull αFo - sets is a non-null set. Then, (Ω, \wp) is $\alpha \mathfrak{F}$ - irreducible space.

2- For $\Omega = \{p, m\}, \wp = \{e\}$. Let 3- $\widetilde{U} = (e, \{ p^1, m^0 \}), \widetilde{V} = (e, \{ p^0, m^1 \})$ $\widetilde{\Phi} = (e, \{p^0, m^0\}), \widetilde{\Omega} = (e, \{p^1, m^1\})$ With \mathfrak{F} - topology $\mathfrak{F} = \{\widetilde{\Phi}, \widetilde{\Omega}, \widetilde{U}, \widetilde{V}\}\$

Since $\widetilde{\Phi}$ $\widetilde{\Omega}$, \widetilde{V} , \widetilde{V} are Fo-sets then they are α Fo-sets. Since $\widetilde{\cap}$ Ũ =(e, $\{p^1,$ m^{0})) \cap (e,{p⁰, m¹})=(e,{p⁰, m⁰})= $\widetilde{\Phi}$ then the \mathfrak{F} topological space be $\alpha \mathcal{F}$ - reducible.

Definition 2.7.

In \mathfrak{F} - topological space (Ω, \wp) , the $\alpha\mathfrak{F}$ - set \tilde{A} is $\alpha \mathcal{F}$ - dense if \tilde{A} intersect with any non-null $\alpha \mathcal{F}$ o sets in 3.

Example 2.8.

1- For $\Omega = \{m, n\}$, $\wp = \{c\}$ set of parameters and \widetilde{Z} , \widetilde{D} , \widetilde{K} are \widetilde{K} - sets are defined as follows: $\widetilde{Z} = (c, \{m^{0.2}, n^{0.7}\}), \widetilde{D} = (c, \{m^{0.3}, n^{0.09}\})$ $\widetilde{K} = (c, \{ a^{0.4} b^1 \}), \widetilde{\Phi} = (c, \{ a^0, b^0 \}),$ $\widetilde{\Omega} = (c, \{a^1, b^1\})$ Let $\mathfrak{F} = \{\widetilde{\Phi}, \widetilde{\Omega}, \widetilde{Z}, \widetilde{D}, \widetilde{K}\}\$ be a \mathfrak{F} - topology over Ω . Then, $\widetilde{\Phi}$, $\widetilde{\Omega}$, \widetilde{Z} , \widetilde{D} and \widetilde{K} are α Fo-sets, \tilde{Z} is $\alpha \tilde{g}$ - dense set since $\tilde{Z} \cap \tilde{D} \neq \tilde{\Phi}$,

 $\tilde{Z} \cap \tilde{K} \neq \tilde{\Phi}$ and $\tilde{Z} \cap \tilde{\Omega} \neq \tilde{\Phi}$.

Similarly, $\overline{\Omega}$, is $\alpha \mathcal{F}$ - dense set.

2- For $\Omega = \{m, n\}$, $\wp = \{e\}$,

Let $\tilde{R} = (e, \{ m^1, n^0 \}), \tilde{S} = (e, \{ m^0, n^1 \})$ $\widetilde{\Phi} = (e, \{ m^0, n^0 \}), \widetilde{\Omega} = (e, \{ m^1, n^1 \})$

With \mathfrak{F} - topology $\mathfrak{F} = \{\widetilde{\Phi}, \widetilde{\Omega}, \widetilde{R}, \widetilde{S}\}\$, the elements of F are αFo-sets.

Since $\tilde{R} \cap \tilde{S} = \tilde{\Phi}$, So \tilde{R} , \tilde{S} are not $\alpha \mathcal{F}$ - dense set. Definition 2.9.

The \mathcal{F} -topological space (Ω, \emptyset) is $\alpha \mathcal{F}$ - connected if there are no proper, non-null α %0 - separated sets \widetilde{C} , \widetilde{D} in $\widetilde{\Omega}$ such that \widetilde{C} \widetilde{U} \widetilde{D} = $\widetilde{\Omega}$, if $(\Omega, \mathfrak{F}, \wp)$ is not $\alpha \mathcal{F}$ - connected, then it is said to be $\alpha \mathcal{F}$ disconnected space.

Examples 2.10.

1- For $\Omega = \{m, n, L\}$, $\wp = \{e\}$, let $\tilde{R} = (e, \{ m^1, n^0, L^1 \}),$ $\tilde{T} = (e, \{ m^0, n^1, L^0 \}),$ $\widetilde{\Phi} = (e, \{ m^0, n^0, L^0 \})$ and $\widetilde{\Omega}$ =(e,{ m¹, n¹, L¹}).

With \mathfrak{F} - topology $\mathfrak{F} = {\widetilde{\Phi}, \widetilde{\Omega}, \widetilde{R}, \widetilde{T}}$, the elements of F are αFo-set.

Since $\tilde{R} \cap \tilde{T} = \tilde{\Phi}$ so \tilde{R} , \tilde{T} are non-null α soseparated sets. Then, the space $(\Omega, \mathfrak{F}, \wp)$ is $\alpha\mathfrak{F}$ disconnected space.

2- For $\Omega = \{m, n\}$, $\wp = \{c\}$ and \widetilde{M} , \widetilde{N} , \widetilde{C} are \mathfrak{F} sets defined as follows:

 $\widetilde{M} = (c, \{m^0, n^{0.06}\}),$ $\widetilde{N} = (c, \{ m^{0.07}, n^{0.08} \})$ $\tilde{C} = (c, \{ a^{0.09} b^1 \}), \tilde{\Phi} = (c, \{ a^0, b^0 \})$ and $\widetilde{\Omega} = (c, \{a^1, b^1\})$.

Let $\mathfrak{F} = {\widetilde{\Phi}, \widetilde{\Omega}, \widetilde{M}, \widetilde{N}, \widetilde{C}}$ be a \mathfrak{F} - topology on Ω . Then, $\widetilde{\Phi}$, $\widetilde{\Omega}$, \widetilde{M} , \widetilde{N} and \widetilde{C} are α so-sets,

since there are no proper, non-null αδο - separated sets. Then, the \(\mathcal{F} \) - topological space

 (Ω, \wp) is $\alpha \mathfrak{F}$ - connected.

In the next theorem we provide the equivalents of αδ - irreducible space.

Theorem 2.11.

For $(\Omega, \mathcal{F}, \wp)$ space, the next statements are equivalent:

1. The space (Ω, \emptyset) is $\alpha \mathcal{F}$ - irreducible.

2. Any $\alpha \mathfrak{F}o$ - set in (Ω, β) and non-null is $\alpha \mathfrak{F}$ dense.

3. Any $\alpha \mathcal{F}_0$ - set in (Ω, β) is $\alpha \mathcal{F}$ - connected.

Proof.

(1) \Leftrightarrow (2) Since the $\alpha \mathcal{F}$ - set \tilde{A} in a \mathcal{F} - topological space (Ω, \wp) is $\alpha \mathfrak{F}$ - dense if \tilde{A} intersects with any non-null $\alpha \mathcal{F}_0$ - sets so the condition (1) is equivalent to (2).

(1) \Longrightarrow (3) Let \tilde{A} be $\alpha \mathcal{F}$ o - set in \mathcal{F} and suppose \tilde{A} is $\alpha \mathcal{F}$ - disconnected so there exist two non - null $\alpha \mathcal{F}$ o - sets \widetilde{M} , \widetilde{N} in \mathfrak{F} such that $\widetilde{A} = \widetilde{M} \ \widetilde{\cup} \ \widetilde{N}$; $\widetilde{M} \ \widetilde{\cap} \ \widetilde{N} = \widetilde{\Phi}$, which is contradiction with (1).

(3) \Longrightarrow (1) If $(\Omega, \mathfrak{F}, \wp)$ is $\alpha\mathfrak{F}$ - reducible space, then the intersection of any two non-null $\alpha\mathfrak{F}$ o - sets is a null set, i.e. If \widetilde{M} , \widetilde{N} are two non-null $\alpha\mathfrak{F}$ o - sets, then $\widetilde{M} \cap \widetilde{N} = \widetilde{\Phi}$, so $\widetilde{M} \cup \widetilde{N}$ is $\alpha\mathfrak{F}$ -disconnected set which contradicts (3).

Definition 2.12.

Let $(\Omega_{}, \wp_{})$ be a \mathfrak{F} -topological space and let $\tilde{A} \subset \tilde{\Omega}$. If the family $\mathfrak{F}_{A} = \{\tilde{M}^{*}: \tilde{M}^{*} = \tilde{A} \cap \tilde{M}, \tilde{M} \in \mathfrak{F}\}$ exists and it is \mathfrak{F} -topology on A. Then, \mathfrak{F}_{A} called the relative \mathfrak{F} -topology on \tilde{A} induced by the \mathfrak{F} -topology \mathfrak{F} over Ω . Note that $(A, \mathfrak{F}_{A}, \wp_{})$ is called a \mathfrak{F} -subspace of

 $(\Omega,\mathfrak{F},\wp)$.

Example 2.13.

For $\Omega = \{m, n\}$, $\wp = \{c\}$ and \widetilde{M} , \widetilde{N} are \mathfrak{F} -sets defined as follows:

$$\widetilde{M} = (c, \{m^1, n^{0.6}\}), \widetilde{N} = (c, \{m^0, n^{0.4}\})$$

 $\widetilde{\Phi} = (c, \{a^0, b^0\}), \widetilde{\Omega} = (c, \{a^1, b^1\})$

Let = $\{\widetilde{\Phi}, \widetilde{\Omega}, \widetilde{M}, \widetilde{N}\}\$ be a \mathscr{F} - topology over Ω .

$$\widetilde{A} \widetilde{\subset} \widetilde{\Omega}$$
, $\widetilde{A} = (c, \{m^{0.1}, n^{0.6}\})$

$$\widetilde{M}_{A}=(c, \{m^{1}, n^{0.6}\}) \widetilde{\cap} (c, \{m^{0.1}, n^{0.6}\})$$

$$= (c, \{m^{0.1}, n^{0.6}\}) = \tilde{A}$$

$$\widetilde{N}_{A}$$
= (c,{m⁰, n^{0.4}}) $\widetilde{\cap}$ (c,{m^{0.1}, n^{0.6}})

$$= (c, \{ m^0, n^{0.4} \}) = \widetilde{N}$$
.

Then,
$$\mathfrak{F}_A = \{ \widetilde{\Phi}_A, \widetilde{\Omega}_A, \widetilde{M}_A, \widetilde{N}_A \}$$

$$= \{ \widetilde{\Phi}_{A}, \widetilde{A}, \widetilde{N}_{A} \}$$

is relative \mathfrak{F} - topology on \tilde{A} .

Proposition 2.14.

Let (Ω, \wp) be a \mathfrak{F} - topological space and $\widetilde{A} \subset (\Omega, \mathfrak{F}, \wp)$. If \widetilde{G} $\alpha \mathfrak{F}$ - dense in $(\Omega, \mathfrak{F}, \wp)$, then \widetilde{G} is $\alpha \mathfrak{F}$ - dense in \widetilde{A} .

Proof.

Let \tilde{G} be $\alpha \mathfrak{F}$ - dense in (Ω, \wp) . To prove \tilde{G} is $\alpha \mathfrak{F}$ - dense in \tilde{A} ,

i.e., to prove $\widetilde{G} \cap \widetilde{M} \neq \widetilde{\Phi}$, $\forall \widetilde{M} \subset \widetilde{A}$.

Let $\widetilde{M} \subset \widetilde{A}$, \widetilde{M} is $\alpha \mathfrak{F}$ o - set in \mathfrak{F} , $\widetilde{M} \neq \widetilde{\Phi}$, then, $\widetilde{M}^* = \widetilde{A} \cap \widetilde{M} = \widetilde{M}$

since given that \tilde{G} is $\alpha \mathcal{F}$ - dense in $(\Omega, \mathcal{F}, \wp)$.

Thus, $\widetilde{G} \cap \widetilde{M} \neq \widetilde{\Phi}$; $\forall \widetilde{M} \neq \widetilde{\Phi}$, for each \widetilde{M} in \mathfrak{F} , $\widetilde{M}^* = \widetilde{M}$.

Implying, $\widetilde{G} \cap \widetilde{M} \neq \widetilde{\Phi}$; $\forall \widetilde{M} \neq \widetilde{\Phi}$, for each \widetilde{M} in \mathfrak{F}_A . So \widetilde{G} is $\alpha \mathfrak{F}$ - dense in \widetilde{A} .

Theorem 2.15.

If (Ω, \emptyset) is $\alpha \mathfrak{F}$ - irreducible space, then any non-null $\alpha \mathfrak{F}$ 0 - set is also $\alpha \mathfrak{F}$ - irreducible.

Proof.

Let (Ω, \wp) be $\alpha \mathfrak{F}$ - irreducible space, \tilde{Y} be non-null $\alpha \mathfrak{F}$ o-set and \tilde{G} be a non-null $\alpha \mathfrak{F}$ o - set in $(Y, \mathfrak{F}_{V}, \wp)$.

Since \widetilde{Y} is $\alpha \mathfrak{Fo}$ - in $(\Omega, \mathfrak{F}, \wp)$ so \widetilde{G} is $\alpha \mathfrak{Fo}$ - in $(\Omega, \mathfrak{F}, \wp)$ by theorem 2.8. and theorem 2.10., then \widetilde{G} is $\alpha \mathfrak{F}$ - dense in \widetilde{Y} and \widetilde{Y} is $\alpha \mathfrak{F}$ - irreducible set.

Definition 2.16.

For $\alpha \mathfrak{F}$ - topological spaces (Ω, \wp) and

 (U,∂,\wp) , we say a map

 $J: (\Omega, \mathfrak{F}, \wp) \to (U, \partial, \wp)$ is $\alpha \mathfrak{F}$ - continuous if the inverse image of any $\alpha \mathfrak{F}$ o - set in ∂ is

αγο - set in.

The next theorem shows that $\alpha \mathfrak{F}$ - continuous image of $\alpha \mathfrak{F}\text{-irreducible}$ set in is $\alpha \mathfrak{F}$ - irreducible set.

Theorem 2.17.

For $J: (\Omega, \mathfrak{F}, \wp) \to (U, \partial, \wp)$ be $\alpha \mathfrak{F}$ - map from a \mathfrak{F} - topological space $(\Omega, \mathfrak{F}, \wp)$ into \mathfrak{F} - topological space (U, ∂, \wp) . Then, the $\alpha \mathfrak{F}$ - continuous image of $\alpha \mathfrak{F}$ - irreducible set in

 (Ω, \emptyset) is $\alpha \mathcal{F}$ - irreducible set in (U, ∂, \emptyset) .

Proof.

Let \tilde{A} be $\alpha \mathfrak{F}$ - irreducible set in $(\Omega, \mathfrak{F}, \wp)$, \tilde{G} , \tilde{H} are two non -null $\alpha \mathfrak{F}$ o - sets in (U, ∂, \wp) such that $\tilde{G} \cap J(\tilde{A}) \neq \tilde{\Phi}$, $\tilde{H} \cap J(\tilde{A}) \neq \tilde{\Phi}$, $J^{-1}(\tilde{G})$, $J^{-1}(\tilde{H})$ are two non-null $\alpha \mathfrak{F}$ o - sets in $(\Omega, \mathfrak{F}, \wp)$, since \tilde{A} is $\alpha \mathfrak{F}$ - irreducible set.

Then, $J^{-1}(\tilde{G}) \cap \tilde{A} \neq \tilde{\Phi}$, $J^{-1}(\tilde{H}) \cap \tilde{A} \neq \tilde{\Phi}$, $(J^{-1}(\tilde{G}) \cap \tilde{A}) \cap (J^{-1}(\tilde{H}) \cap \tilde{A}) \neq \tilde{\Phi}$ $(J^{-1}(\tilde{G}) \cap J^{-1}(\tilde{H})) \cap \tilde{A} \neq \tilde{\Phi}$

 $J^{-1}(\tilde{G} \cap \tilde{H}) \cap \tilde{A} \neq \tilde{\Phi}$ so

 $\left(\,\tilde{G}\,\,\widetilde{\cap}\,\,\widetilde{H}\,\right)\,\widetilde{\cap}\,J(\,\tilde{A})\neq\widetilde{\Phi}$

 $(\widetilde{G} \widetilde{\cap} J(\widetilde{A}))\widetilde{\cap} (\widetilde{H} \widetilde{\cap} J(\widetilde{A})) \neq \widetilde{\Phi}$

where $(\tilde{G} \cap J(\tilde{A}))$, $(\tilde{H} \cap J(\tilde{A}))$ are non-null α o-sets

so $J(\tilde{A})$ is $\alpha \mathfrak{F}$ - irreducible set in (U,∂,\wp) .

Definition 2.18.

For two $\alpha \mathfrak{F}$ - topological spaces (Ω, \wp) and (U,∂,\wp) a map $J:(\Omega,\mathfrak{F},\wp) \to (U,\partial,\wp)$ is $\alpha \mathfrak{F} c$ - map if the image of any $\alpha \mathfrak{F} c$ - set in (Ω,\wp) is $\alpha \mathfrak{F} c$ - set in (U,∂,\wp) .

Theorem 2.19.

Let $J: (\Omega, \mathfrak{F}, \wp) \to (U, \partial, \wp)$ be an $\alpha \mathfrak{F}c$ - bijective map from a \mathfrak{F} - topological space $(\Omega, \mathfrak{F}, \wp)$ into a \mathfrak{F} - topological space (U, ∂, \wp) , if $(\Omega, \mathfrak{F}, \wp)$ is $\alpha \mathfrak{F}$ - irreducible space, then

 (U,∂,\wp) is $\alpha \mathcal{F}$ - irreducible space.

Proof.

Let \tilde{B} be $\alpha \mathfrak{F}$ - set in (U, ∂, \wp) to prove (U, ∂, \wp) is $\alpha \mathfrak{F}$ - irreducible since J is bijective. Then, there exist \tilde{A} in

$$\begin{split} &(\Omega,\wp) \text{ such that } J\left(\tilde{A}\right) = \tilde{B} \\ &\text{since } (\Omega,\mathfrak{F},\wp) \text{ is } \alpha\mathfrak{F} \text{ - irreducible space }, \\ &\text{then } \alpha\mathfrak{F}\text{- cl}(\tilde{A}) = \widetilde{\Omega}, \\ &\text{since } J \text{ is bijective } \alpha\mathfrak{Fc} \text{ - map}, \\ &\text{then } J\left(\alpha\mathfrak{F}\text{- cl}\left(\tilde{A}\right)\right) = J\left(\widetilde{\Omega}\right) = \widetilde{U}, \\ &J\left(\alpha\mathfrak{F}\text{- cl}\left(\tilde{A}\right)\right) = \alpha\mathfrak{F}\text{- cl}\left(J\left(\tilde{A}\right)\right) \\ &\alpha\mathfrak{F}\text{- cl}\left(J\left(\tilde{A}\right)\right) = \widetilde{U} \Longrightarrow \alpha\mathfrak{F}\text{- cl}\left(\tilde{B}\right) = \widetilde{U} \end{split}$$
 Thus \tilde{B} $\alpha\mathfrak{F}\text{- dense set in } (U,\partial,\wp)$ By theorem 2.8. (U,∂,\wp) is $\alpha\mathfrak{F}$ - irreducible space

Theorem 2.20.

Let $J: (\Omega, \mathfrak{F}, \wp) \to (U, \partial, \wp)$ be an $\alpha \mathfrak{F}$ - continuous bijective map from a \mathfrak{F} - topological space (Ω, \wp) into a \mathfrak{F} - topological space (U, ∂, \wp) , if $(\Omega, \mathfrak{F}, \wp)$ is $\alpha \mathfrak{F}$ - reducible space, then (U, ∂, \wp) is $\alpha \mathfrak{F}$ - reducible space.

Proof.

Let \tilde{B} be $\alpha \mathfrak{F}$ - set in (U,∂,\wp) to prove that (U,∂,\wp) is $\alpha \mathfrak{F}$ - reducible . Since J is bijective, then there exist \tilde{A} in (Ω,\wp) such that $J(\tilde{A})=\tilde{B}$ since $(\Omega,\mathfrak{F},\wp)$ is $\alpha \mathfrak{F}$ - reducible space which provides $(\Omega,\mathfrak{F},\wp)$ is an $\alpha \mathfrak{F}$ - disconnected space. Again, J is bijective $\alpha \mathfrak{F}$ - continuous map and so (U,∂,\wp) is an $\alpha \mathfrak{F}$ - disconnected space, and therefore (U,∂,\wp) is $\alpha \mathfrak{F}$ - reducible space .

Definition 2.21.

The map f from $\alpha \mathfrak{F}$ - space $(\Omega, \mathfrak{I}, \wp)$ to $\alpha \mathfrak{F}$ - space (U, ∂, \wp) satisfy:

(1) f is $\alpha \mathcal{F}$ - continuous.

(2) f is $\alpha \mathcal{F}$ - bijective.

(3) f^{-1} is $\alpha \mathcal{F}$ – continuous (or f is $\alpha \mathcal{F}$ - open).

Is called $\alpha \mathcal{F}$ - homeomorphism.

The next corollary show that the $\alpha \mathcal{F}$ - irreducible space is $\alpha \mathcal{F}$ - topological property.

Corollary 2.22.

Let J be $\alpha \mathfrak{F}$ -homeomorphism from $\alpha \mathfrak{F}$ -topological space $(\Omega, \mathfrak{F}, \wp)$ onto $\alpha \mathfrak{F}$ -topological space (U, ∂, \wp) . If $(\Omega, \mathfrak{F}, \wp)$ is $\alpha \mathfrak{F}$ -irreducible space, then (U, ∂, \wp) is $\alpha \mathfrak{F}$ -irreducible space.

Proof.

Directly from Definition 2.19. and Theorem 2.20. The next corollary show that the α %-reducible space is α % - topological property.

Corollary 2.23.

Let J be $\alpha \mathcal{F}$ - homeomorphism from

 $\alpha \mathfrak{F}$ - topological space (Ω, \wp) onto

 $\alpha \mathcal{F}$ - topological space (U, ∂, ω) . Then, if

 (Ω, \wp) is $\alpha \mathcal{F}$ - reducible space, then

 (U,∂,\wp) is $\alpha \mathcal{F}$ - reducible space

Proof. Directly from definition 2.21 and theorem 2.20.

Examples 2.24.

For $\Omega = \{m, n, L\}$, $\wp = \{e\}$ be the set of parameters.

 $\tilde{O} = (e, \{ m^{0.1}, n^0, L^{0.3} \}),$

 $\tilde{B} = (e, \{ m^0, n^1, L^0 \}),$

 $\widetilde{\Phi} = (e, \{ m^0, n^0, L^0 \}),$

 $\widetilde{\Omega} = (e, \{ m^1, n^1, L^1 \}),$

with \mathfrak{F} - topology $\mathfrak{F} = \{\widetilde{\Phi}, \widetilde{\Omega}, \widetilde{O}, \widetilde{B}\}.$

The elements of are α % o-sets.

Since $\widetilde{O} \cap \widetilde{B} = \widetilde{\Phi}$ so \widetilde{O} , \widetilde{B} are non-null $\alpha \mathfrak{F}$ o-separated sets, then the space $(\Omega, \mathfrak{F}, \wp)$ is

 $\alpha \mathfrak{F}$ - disconnected space and so $(\Omega$, $,\wp)$ is $\alpha \mathfrak{F}\text{-}$ reducible space.

Let $J: (\Omega, \mathfrak{F}, \wp) \rightarrow (U, \partial, \wp)$ be $\alpha \mathfrak{F}$ -homeomorphism,

 $J(\mathbf{x}_{ij}) = J(ei, \{h_i^{kij}\}) = (ei, \{h_i^{1-kij}\})\},$

 $\forall kij \in [0,1],$

where $J(\tilde{O}) = J((e, \{m^{0.1}, n^0, L^{0.3}\}))$

= $(e, \{m^{0.9}, n^1, L^{0.7}\}),$

 $J(\tilde{B}) = J((e, \{m^0, n^1, L^0\}))$

 $= (e, \{ m^1, n^0, L^1 \})$ and

 $J(\widetilde{\Phi}) = \widetilde{\Omega}, J(\widetilde{\Omega}) = \widetilde{\Phi}.$

Since J is $\alpha \mathfrak{F}$ -open map, then the images are $\alpha \mathfrak{F}$ 0 - sets in $(\mathbb{U},\partial,\wp)$.

Since $J(\tilde{O}) \cap J(\tilde{B}) = \tilde{\Phi}$, so \tilde{O} , \tilde{B} are non-null α for a separated sets, therefore (U,∂,\wp) is α for a disconnected space and so is an α for a reducible space.

CONCLUSIONS

We define \mathfrak{F} -irreducible sets, $\alpha\mathfrak{F}$ - irreducible sets in \mathfrak{F} - topological spaces, and provide equivalent definitions with examples. We also define $\alpha\mathfrak{F}$ -continuous and prove that the $\alpha\mathfrak{F}$ -continuous image of $\alpha\mathfrak{F}$ -irreducible set is $\alpha\mathfrak{F}$ - irreducible set. Define $\alpha\mathfrak{F}$ -close map, $\alpha\mathfrak{F}$ -homeomorphism and prove that $\alpha\mathfrak{F}$ -irreducible ($\alpha\mathfrak{F}$ -reducible) space is $\alpha\mathfrak{F}$ -topological property.

Disclosure and conflict of interest: The authors declare that they have no conflicts of interest.

REFERENCES

- [1] Abd Alrahman, Abd Allah S, Aslam M., Muhammad S.K.,"A study on fuzzy soft set and its operations", Annals of Fuzzy Mathematics and Informatics Volume 6, No. 2, (2013), pp.339-362.
- [2] Aras G. C., Bayramov S., "Some results on fuzzy soft topological spaces", Hindawi Publishing Corporation Mathematical Problems in Engineering, Vol. (2013), pp.1-10. https://doi.org/10.1155/2013/835308
- [3] Aygunoglu A., Vildan Cetkin, Halis Aygun, "An introduction to fuzzy soft topological spaces", Hacettepe Journal of Mathematics and Statistics, Vol.43, No. 2, (2014), pp.193 204.
- [4] Cagman N., Enginoglu S., Citak F.," Fuzzy soft set theory and its applications", IJFS, Vol.8, No.3, (2011), pp.137-147.
- [5] Hussain S.," On Weak and Strong Forms of Fuzzy Soft Open Sets", Fuzzy Information and Engineering, Vol. 8, No. 4, (2016), pp.451-463. https://doi.org/10.1016/j.fiae.2017.01.005

- [6] Mahanta J., Das P.K.,"Results on fuzzy soft topological spaces", Arunachal Pradesh, INDIA, arXiv:1203.0634v1, (2012), pp.791-109.
- [7] Maji P.K., Roy A.R., Biswas R., "Fuzzy soft sets", J.Fuzzy Math., Vol.9, No.3, (2001), pp.589-602.
- [8] Molodtsov D., "Soft set theory first results", Computers and Mathematics with Applications, Vol. 37, (1999), pp.19-31. https://doi.org/10.1016/S0898-1221(99)00056-5
- [9] Naz M., Shabir M., "Fuzzy soft sets and their algebraic structures", World Applied Sciences Journal, Vol.22, (2013), pp.45-61.
- [10] Shabir M., Naz M.," On soft topological spaces", Comput. Math. Appl. Vol. 61, (2011), pp.1786-1799. https://doi.org/10.1016/j.camwa.2011.02.006
- [11] Tanya B., Kandemir M. B., "Topological structure of fuzzy soft sets", Computer and Mathematics with Applications Vol. 61, (2011), pp.2952 2957. https://doi.org/10.1016/j.camwa.2011.03.056
- [12] Zadeh L. A., "Fuzzy sets", Inform. and Control, Vol. 8, (1965), pp.338-353. https://doi.org/10.1016/S0019-9958(65)90241-X

How to Cite

M. H. Mahmood, "On α-Fuzzy Soft Irreducible Spaces", *Al-Mustansiriyah Journal of Science*, vol. 34, no. 1, pp. 65–70, Mar. 2023.