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Abstract. A bridge vibration measurement method by Unmanned Aerial Vehicles (UAVs) based on a Convolutional Neural Network 
(CNN) and Bayesian Optimization (BO) is proposed. In the proposed method, the video of the bridge structure is collected by a UAV, 
then the reference points in the background of the bridge and the target points on the bridge in the video are tracked by the Kanade-
Lucas-Tomasi (KLT) optical flow method, so that their coordinates can be obtained. The BO is used to find the optimal hyper-
parameter combination of a CNN, and the CNN based on BO is used to correct the bridge displacement signal collected by the UAV. 
Finally, the natural frequency of the bridge is extracted by processing the corrected displacement signals with Operational Modal 
Analysis (OMA). Moreover, a steel truss is used as the experimental model. The number of reference points and the shooting time 
of the UAV with the optimal correction effect of the BO-based CNN are obtained by two groups of comparative experiments, and 
the influence of the distance between structure and reference points on the correction effect of the BO-based CNN is determined 
by another group of comparative experiment. The static reference points are not required for the proposed method, which evidently 
enhances the applicability of UAVs; the conclusion of this paper has great guiding significance for the actual bridge vibration 
measurement. 

Keywords: Bridge vibration, Unmanned aerial vehicles, Correction effect, Convolutional neural networks, Bayesian optimization.  

1. Introduction 

Damage identification of bridge structures is an essential process in the long-term service of bridges, and measuring vibration 
is indispensable in the process of damage identification [1]. Strain gauges [2] and acceleration sensors [3] are the traditional sensors 
to measure the vibration of bridge structures, but due to the disadvantages of the contact measurement methods, they are gradually 
replaced by non-contact measurement ones such as Laser Doppler Vibrometer (LDV) [4] and Global Positioning System (GPS) [5]. 
With the development of computer vision, LDV and GPS are gradually replaced by some optical measurement methods with higher 
precision and lower cost. Kanade-Lucas-Tomasi (KLT) optical flow method (called KLT in this paper) [6] is a target tracking 
technique, which is the improvement of Lucas-Kanade (LK) optical flow method [7]. The inter-frame motion information of target 
points is obtained by tracking the target points on a set of images stored in the form of frames by KLT. KLT performs well in target 
tracking [8], which has been applied to vibration measurement of bridge models [9]. 

Fixed cameras are used in traditional optical measurement methods. However, it may be difficult to select appropriate 
installation locations for fixed cameras under some conditions (such as cross-valley bridges), hence, UAVs have become popular 
in bridge measurement [10,11]. Due to the movement of UAVs during the measurement, the false displacement is included in the 
measured displacement results [12]. Homography transformation is a commonly used method to correct the displacement 
measured by UAVs [13]. However, the premise of this method is that there exist at least four static reference points on the plane of 
measurement points, and that assumption is difficult to meet in field measurement. Though the modal parameters of a bridge can 
be obtained through the differential filtering technique [14] from the displacement signals measured by UAVs without using any 
reference points [15], however, the real displacement signals cannot be obtained by this method. The real displacement signal of 
the bridge can be extracted from the original displacement signal measured by UAVs by Empirical Mode Decomposition (EMD [16]) 
or a filter combined with Fourier Transform (FT [17]) and inverse Fourier transform (IFT [18]) without reference points [19], however, 
the premise of EMD is that the frequency of the bridge is very different from the motion frequency of the UAV and the premise of 
the FT filter is that the frequency of the bridge is roughly known, both are not always practical. On the other hand, the world 
coordinates of the target points can be recovered by the three-dimensional reconstruction method, and the target points 
displacement time-history curve can be obtained [20]. Similarly, this method requires that the plane of the reference points is 
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parallel to that of the target points, and the distance between two planes is also needed to be known in advance, and that is difficult 
to meet in the field measurement. It can be seen that the existing techniques for correcting the displacement measured by UAVs 
are extremely strict for the reference point selection limit the UAV applications, so it is very important to find a more advanced 
technique to make the measurement work more feasible. 

With the advancement of neural networks in recent years, they have gradually been applied to solve the problem of unstable 
shooting of UAVs [21, 22]. The characteristic relationship between the target points on the measured bridge and the reference 
points on the background can be learned by the Feedforward Neural Network (FNN) when the bridge structure is stationary, and 
the coordinates of the target points can be predicted by the trained FNN when the structure is vibrating. Finally the real bridge 
displacement can be obtained through processing each frame in series [23]. Though the false displacement caused by UAVs can be 
eliminated by this method, however, the two-layer FNN is obviously difficult to achieve high precision. With the development of 
deep learning [24], CNNs [25] with higher feature extraction ability were applied to the field of UAV measurement. A CNN was used 
to detect vehicles based on UAV images, and its robustness was confirmed [26]. The cracks in bridge images taken by UAVs can be 
accurately detected by a CNN [27]. A CNN was used to predict the real displacement of a bridge to obtain better displacement 
correction effect of UAV measurement [28] than that of a FNN [23], however, the factors affecting the experimental results (such as 
the number of reference points and measurement time, etc.) and the hyper-parameters of the CNN affecting the network 
performance were not deeply investigated, which will be explored in this paper. Some CNN hyper-parameters, such as learning 
rate, number and size of convolution kernels, number of network layers and mini-batch size, are important to a network 
performance [29]. And it is difficult to manually select the best combination of hyper-parameters before network operation.  

The optimization of network hyper-parameters is a key step to get a network with good performance. Grid search is a 
traditional hyper-parameters optimization method, which is time-consuming as it obtains optimal hyper-parameters by trying all 
of their possible combinations [30, 31]. Random search [32] is based on the assumption that the random sample size is large enough. 
The principle of Bayesian Optimization (BO) [33] is that the probability model of the objective function is established to select the 
optimal hyper-parameters to evaluate the real objective function, so as to optimize the hyper-parameters. Compared with grid 
search and random search, BO considers the previous hyper-parametric information, so as to achieve better robustness [34]. Hence, 
BO is used more widely to optimize the hyper-parameters of CNNs [35, 36].  

The hyper-parameters of a CNN are optimized by BO in this paper. The correction effect of a BO-based CNN on UAV 
displacement measurement results is not only affected by the hyper-parameters, but also affected by some other variables in the 
measurement. In this paper, the bridge model video is collected by a UAV, the target points and the reference points are tracked 
with the KLT, and their coordinates on each frame can be obtained, which are used to train and optimize the CNN to eliminate the 
false displacement and the displacement time-history curves can be obtained. Finally, the natural frequency of the model can be 
extracted from displacement signals by OMA [37, 38]. Three comparative experiments are set up in this paper to explore the 
influence on the correction effect of the number of reference points, the shooting duration of the UAV and the distance between 
the model and reference points.  

2. Methods 

2.1 KLT optical flow method 

The unchanged pixel value of each point and the small motion of each point between adjacent frames are presumed in the 
KLT. Moreover, spatial consistency is another premise of the KLT, that is, the adjacent pixels have similar motion between adjacent 
frames.  

The target points selected in the first frame are used to calculate the inter-frame vector to realize target tracking by KLT. 
Suppose �  is a constant size window, which is centered on the position of a target point on each frame image and �� and �� are 
the motion of the target point along the x-axis and y-axis between frames; the motion, � � ��� ���

�, can be obtained by minimizing 
the value of the following formula [6]: 

� = ∬ [	2(� + �) − 	1(�)]2�(�)�� 

�
 (1) 

where � is the residual error, 	1 is the image of the previous frame, 	2 is the image of the next frame, �(�) is the weight function, 
� = [� �]� , (�, �) are the coordinates of the pixels in the window, � .  

 

Fig. 1. Principle of displacement correction by BO-based CNN. 
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2.2 Convolutional Neural Network 

The principle of eliminating false displacement from the UAV displacement signal with a BO-based CNN is shown in Figure 1. 
The first set of coordinates of the target points and the reference points can be obtained by KLT from the video of the stationary 
bridge, then they are used respectively as the input and output of the network to train and optimize the network. Then the structure 
will be excited to vibrate, and the second set of coordinates of the target points and the reference points are obtained by KLT and 
the coordinates of the reference points are used as the network input to predict the target-point false displacement caused by the 
ego-motion of the UAV. Finally, the real displacement of the target points can be obtained by subtracting the predicted false 
displacement from the KLT-obtained displacement of the target points during vibration.  

In the Step 1 of Figure 1, the input data size of the CNN is 2� × �1, and the output data size is 2� × �1, where � and � are, 
respectively, the numbers of the reference points and the target points, �1 is the number of the training samples determined by the 
video duration of the static structure. In the Step 2 of Figure 1, the input data size of the CNN is 2� × �2, and the output data size is 
2� × �2, where �2 is the number of test set determined by the video duration of the vibrated structure. The coordinates of reference 
points and target points are the continuous coordinate sequences obtained by KLT, and the displacement time-history curve of a 
point of interest can be obtained from its continuous coordinate sequence. 

The basic framework of the CNN in this paper is shown in Figure 2, where �  is a positive integer, and the section depth of 
network is determined by � + 1. 

The features of the input data are extracted by the convolution layers, which are the core of a CNN. The size and number of 
convolution kernels are closely related to the CNN ability to extract the characteristics of the input data [39]. The convolution 
process is shown in Figure 3, where, the stride is the movement distance of the convolution for scanning the input data.  

 

 

Fig. 2. Structure of the CNN. 

 

 

Fig. 3. Convolution process. 
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The activation function layer is introduced to map the data nonlinearly, so that any nonlinear function can be approximated 
by a network. In this paper, the function used in the activation function layer is Leaky Relu, and its expression is [40]: 

�! = { �! , �! ≥ 0
%&'() × �! , �! < 0 (2) 

The linear combination output of the previous layer can be normalized as shown in Equation (3) by the batch normalization 
layer to make the data distribution consistent, so as to speed up the training of the CNN and reduce its sensitivity to network 
initialization [41]: 

�! = + ( �! − -(�)
√/2(�) + 0) + 2 (3) 

 
where, � = (�1, �2, ⋯ , �4) , and 5 is the batch size, �! is the output, -(�) and /(�) are, respectively, the mean and standard 
deviation of all elements in �, 0 is a minimal quantity, + and 2 are constants. 

All neurons in the previous layer are connected with each neuron of the fully connected layer as shown in Figure 4 to integrate 
the local information transmitted from the previous layers. The input data is processed by the fully connected layer according to 
the following formula: 

�! = ��! + 6 (4) 

where, �! is the layer output and �! is the layer input, 6 and � are, respectively, the bias and weight of the fully connected layer. 
The loss function of the regression layer is expressed as follows: 

7 = 1
2 ∑(9! − �!)2

:
;

!=1
 (5) 

where 7  is the loss of the network, : is the size of data set used to calculate the loss, 9! and �! are, respectively, the target output 
and the CNN prediction. With the network training, 7  continues to decrease. 

 

Fig. 4. Connection of neurons of fully connected layer. 

 

Fig. 5. Training process of CNN. 
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Table 1. The ranges of hyper-parameters. 

Initial 
learning rate 

Epoch 
Mini-batch 

size 
Convolution kernel size of 
the first convolution layer 

Convolution kernel number of 
the first convolution layer 

Convolution 
kernel stride 

Section 
depth 

[0.0001, 1] [50, 300] [10, 70] [2, 6] [64, 128] [1, 4] [1, 4] 

2.3 Hyper-parameter optimization 

2.3.1 Hyper-parameters 

The hyper-parameters of the CNN optimized by BO in this paper include the initial learning rate, training epoch, mini-batch 
size, convolution kernel size, convolution kernel number, convolution kernel stride and section depth. The initial learning rate, 
training epoch, mini-batch size and section depth will be discussed in this section. 

The performance of the network can be improved with appropriate hyper-parameter combination. The training process of a 
CNN is shown in Figure 5. The weights will be tremendously adjusted when the learning rate is too high, resulting in the training 
reaching a suboptimal result. While, if the learning rate is too small, the convergence speed of the model is slow. The mini-batch 
is the subset selected from the total training samples to save training time, while an over-small batch size cannot save the training 
time, while the network generalization ability will be compromised for an over-large batch size [42]. One training epoch is a forward 
and back propagation of the network training process shown in Figure 5. The prediction ability of the network is improved with 
the increase of the number of training epochs. But more epochs will increase the training time. With the deepening of the network 
hierarchy, the degree of feature abstraction of input data extracted by the network is improved, and the prediction effect of the 
model is better. However, the over fitting in the model training process can be caused for a very deep network. 

2.3.2 Bayesian optimization 

In this paper, the high-performance network is obtained by optimizing the CNN hyper-parameters. The BO process, shown in 
Figure 6, is to find the hyper-parameter combination that makes the network perform best in the validation metric, and its 
expression is as follow: 

�∗ = '=>�?� @(�)
  � ∈ B  (6) 

where '=>�?� represents the function to find the independent variable corresponding to the minimum value of the objective 
function, �∗ is the optimal combination of hyper-parameters and B is the range of hyper-parameters, which is shown in Table 1. 
And @(�) is the objective function need to be minimized, that is, the loss of the validation set when the corresponding hyper-
parameter combination is used by the model, and its expression is as follows: 

@(�) = ∑ (�!∗ − �!)D
!=1 9  (7) 

where 9 is the size of the validation set. In the process of network validation, the validation set includes the coordinate set of the 
target points and the reference points, where �! is the ? − 9ℎ sample point of the target point coordinate set. The coordinate set of 
the reference point in the validation set are taken as the network input, and that of the corresponding target points (prediction set) 
can be predicted by the network, where �!∗ is the ? − 9ℎ sample point in the prediction set. In this paper, the size of the validation 
set accounts for 20% of the total training samples of the network. 

As shown in Figure 6, a probability model (Gaussian process) is established by BO based on the previous evaluation results of 
the objective function to find the hyper-parameter combination that minimizes the objective function value. The process of BO is 
as follows:  

(1) A group of hyper-parameter combination �0 is randomly selected within the value range of hyper-parameters shown in 
Table 1;  
(2) The �0 is taken as the hyper-parameter combination of the network to be trained, so as to obtain the corresponding objective 
function @(�0);  
(3) The probability distribution of @(�) value corresponding to � can be calculated and predicted through the Gaussian process 
by using all the input (�, @(�)); 
(4) The optimal � can be determined by the acquisition function [33] in the probability distribution;  
(5) The � obtained from Step (4) is taken as the hyper-parameter combination of the network to be trained, so as to obtain the 
corresponding objective function @(�);  
(6) Before the maximum iteration number is reached, the (�, @(�)) obtained in Step (5) will be used as the input of the network 
to continuously update the probability model to obtain a new (�, @(�)), and when the maximum iteration number is reached, 
according to Equation (5), the � corresponding to the minimum value of all objective functions @(�) obtained in Step (5) is the 
optimal hyper-parameter combination �∗. 

3. Experiment 

3.1 Experimental process 

In this paper, the steel frame shown in Figure 7a is used as the bridge model for experiment, which has 9.8 m span and 56 
nodes on its front plane (Figure 7b). The model is composed by hollow round bars (Figure 7c) and bolt balls (Figure 7d). The model 
is hinged at both ends as shown in Figure 7e. As shown in Figure 8, the tool used to collect bridge model video is a quad-rotor UAV 
(Mavic Air 2, Da-Jiang Innovations, Shenzhen, China), with an image resolution of 3840 × 2160 and an acquisition frequency of 30 
frames/s. Because the natural frequency of the model used in this experiment is low, the image acquisition frequency of the UAV 
can meet the experimental requirements. When the frequency of the measured object is high, a UAV with higher acquisition 
frequency can be selected. When the amplitude of the measured object is large, the distance between the UAV and the measured 
object can be increased to ensure that the target points can be tracked. 
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Fig. 6. The Bayesian Optimization process. 

 

 

Fig. 7. Experimental model: (a) Bridge model; (b) Model node; (c) Hollow round bar; (d) Bolt connecting balls; (e) Supports. 

 

 

Fig. 8. The UAV used in experiment. 
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Fig. 9. Experimental layout. 

 

Fig. 10. The uncorrected bridge vibration displacement signal. 

The experimental layout is shown in Figure 9. Some reference points are on the same lanes, the other reference points are 
from different planes of the model background. The distances between the model and two planes are respectively about 100 m and 
300 m. The horizontal distance between the reference points and the model ranges from 2 m to 600 m, and the vertical distance 
between them ranges from 0 m to 25 m. The target points are the 13th to 17th nodes and the 41st to 45th nodes of the model. The 
KLT, CNN, BO and data processing are realized using MATLAB (MathWorks Inc., Na-tick, MA, USA) software. 

3.2 Experimental scheme 

Three comparative experiments are set up to study the influence of the number of reference points (�;), the UAV shooting 
duration of the static model (G ) and the distance between the model and reference points (H) on the correction effect of the BO-
based CNN on displacement measurement results of the UAV. �; , G  and H are independent to each other. Firstly, G  is kept 
unchanged and �; is changed. By comparing the experimental results with different �;, the optimal �; is obtained. Here, all 
reference points are from different planes at different distance from the model. Then �; is kept unchanged and G  is changed, the 
correction results obtained with different G  are compared to obtain the most appropriate G . Here, changing G  leads to change of 
the number of the CNN samples. Finally, G   and the same number of the reference points are kept unchanged, the correction effects 
of two planes at different distances from the model are compared to study the influence of H on correction effect. 

4. Experimental Results and Analysis 

For better comparison, the measurement results of Node 15 of the model are taken for display. 

4.1 Influence of IJ on the correction effect 

As shown in Figure 1, the uncorrected displacement signal can be obtained by KLT from the bridge video collected by a UAV. 
The uncorrected bridge vibration displacement signal is shown in Figure 10, it can be seen from the figure that the signal has 
serious drift caused by the UAV's ego-motion during the measurement. The signal correction in the experiment is realized by a set 
of algorithms combined with CNN framework and BO, that is, CNN the training process and the optimization process of BO are 
carried out together, as shown in Figure 6. 
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Fig. 11. The results of BO when G  is 5 min: (a) Result at �; of 5; (b) Result at �; of 10; (c) Result at �; of 20; (d) Result at �; of 30. 

 

Fig. 12. The displacement time-history curves when G  is 5 min: (a) Result at �; of 5; (b) Result at �; of 10; (c) Result at �; of 20; (d) Result at �; of 30. 

 
To explore the influence of �; on correction effect of BO-based CNN, the correction results with �; of 5, 10, 20 and 30 are 

compared when G  is 5 min, and the total number of the CNN samples is 9000 in each of the four cases. The results of BO for the 
CNN in the four cases are shown in Figure 11, in which the maximum iterations number is 30. Therefore, the minimum value of 
the objective function in the scatter diagram (Figure 11) is the optimal case of the hyper-parameter combination defined in Equation 
(5). 

The target points displacement time-history curves (Figure 12) can be obtained from the optimized CNN which is the network 
in the case of the minimum value of the objective function (Figure 11); the time-history curve at �; of 5 and 30 are poor, which 
have evident drift, while that at �; of 10 and 20 are relatively better. As shown in the Figure 12, the time-history curves fluctuate 
around the horizontal line. The more drift the curves have, the farther the curves are away from the displacement of 0. The Root 
Mean Square (:KL [43] ) can represent the drift degree of the displacement curves [28]. The :KL at �; of 5, 10, 20 and 30 is, 
respectively, 4.436, 1.805, 1.922 and 3.120, which shows that the correction effect of BO-based CNN on displacement is the best at 
�; of 10. 

The Power Spectral Density (PSD) diagrams (Figure 13) can be obtained from the above time-history curves. As demonstrated 
in OMA [44], the peaks of the PSD curves correspond to the natural frequency of structure [38]. Figure 13 shows that the peaks of 
the PSD curves in the four cases are similar, which are at 3.365 Hz, 3.369 Hz, 3.370 Hz and 3.370 Hz respectively. However, the curves 
at �; of 5 and 30 have another peak close to 0 Hz, which are 0.043 Hz and 0.044 Hz respectively; these peaks do not correspond to 
the real natural frequency of the structure but are induced by the phenomenon of zero drift [15]. Therefore, to summarize the above 
analysis of time-history curves, the correction effect of BO-based CNN is the best when �; = 10. 
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Fig. 13. The PSD curves when G  is 5 min: (a) Result at �; of 5; (b) Result at �; of 10; (c) Result at �; of 20; (d) Result at �; of 30. 

 

Fig. 14. The results of BO when �; is 10: (a) Result at G  of 3 min; (b) Result at G  of 5 min; (c) Result at G  of 7 min; (d) Result at G  of 9 min. 

4.2 Influence of 	 on the correction effect 

The influence of G  on BO-based CNN correction effect is explored in this section. The previous section shows that the correction 
effect is the best at �; of 10. Therefore, �; is kept at 10, the correction effect of BO-based CNN is compared in this section under 
the four G  cases of 3 min, 5 min, 7 min and 9 min; the total numbers of the CNN samples in the four cases are 5400, 9000, 12600 
and 16200, respectively. The BO results in the four cases are shown in Figure 14. The displacement signals in the four cases are 
shown in Figure 15; there is drift in the time-history curve at G  of 3 min and its :KL is 2.183, while the :KL of the other three 
cases are respectively 1.805, 1.810 and 1.798, which are close to each other. The degree of consistency between time-history curves 
can be assessed by G:MN (Time Response Assurance Criterion) value [45]. The G:MN between the time-history curves at G  of 5 min 
and 7 min is 0.978, and that between the time-history curves at G  of 5 min and 9 min is 0.986, therefore, these three time-history 
curves are very close. According to the :KL and G:MN, the curve is stable at G  of 5 min, and with the increase of G , the change of 
curve is not obvious, which shows that the correction effect of BO-based CNN reaches the best at G  of 5 min. 

The PSD curves of the above displacement signals are shown in Figure 16, their peaks are at very similar locations, which are 
3.369 Hz, 3.369 Hz, 3.370 Hz and 3.368 Hz respectively. These frequencies obtained at �; of 10 are also very close to those obtained 
in the previous section, which proves the reliability of extracting the natural frequency of the structure at �; of 10. 
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Fig. 15. The displacement time-history curves when �; is 10: (a) Result at G  of 3 min; (b) Result at G  of 5 min; (c) Result at G  of 7 min; (d) Result at G  

of 9 min. 

 

Fig. 16. The PSD curves when �; is 10: (a) Result at G  of 3 min; (b) Result at G  of 5 min; (c) Result at G  of 7 min; (d) Result at G  of 9 min. 

4.3 Influence of O on the correction effect 

To explore the influence of the distance between the reference points and structure on the correction effect of the BO-based 
CNN, the correction results obtained for the reference points of two planes with different distances from the model are compared 
in this section at �; of 10 and G  of 5 min, and the total numbers of the CNN samples in both cases are 9000. The distances between 
the two planes and the model are about 100 m and 300 m, respectively. The BO results of two cases are shown in Figure 17. The 
displacement time-history curves are shown in Figure 18; the time-history curve has more drift for H =  300 �, while the curve is 
relatively stable for H =  100 �, and the RMS of two cases are 0.369 and 1.641, which show that the curve for H of 100 � is better 
than that for H of 300 �. The PSD curves (Figure 19) are obtained from the two displacement signals (Figure 18). The relative error 
of natural frequencies obtained in the two cases is only 0.029%. To summarize the above analysis, the closer the reference points 
are to the structure, the better the correction effect of the BO-based CNN. 
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Fig. 17. The BO results of different H: (a) Result at H of 100 m; (b) Result at H of 300 m. 

 

 

Fig. 18. The displacement time-history curves of different H: (a) Result at H of 100 m; (b) Result at H of 300 m. 

 

 

Fig. 19. The PSD curves for different H: (a) Result at H of 100 m; (b) Result at H of 300 m. 

 

Fig. 20. The optimized CNN structure at G  of 5 min and �; of 10. 
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Table 2. The optimal hyper-parameter combination of the network after BO at G  of 5 min and �; of 10. 

Initial learning 
rate 

Epoch 
Mini-

batch size 
Convolution kernel size of the 

first convolution layer 
Convolution kernel number of 

the first convolution layer 
Convolution 
kernel stride 

Section 
depth 

0.00016209 279 48 5 88 1 2 

 

According to Section 4, the BO-based CNN has the best correction effect at G  of 5 min and �; of 10. Moreover, the closer the 
reference points are to the structure, the better the correction effect of the BO-based CNN. The optimal hyper-parameter 
combination of the BO-based CNN at G  of 5 min and �; of 10 (for the case of the objective function value of 0.695 in Figure 11b) is 
shown in Table 2, and the corresponding CNN structure is shown in the Figure 20. 

5. Discussion and Conclusion 

5.1 Discussion 

(1) It can be seen from Section 4.1 that the correction effect of the BO-based CNN on the displacement signal is the best when 
�; is 10 among the four cases of �;, and when �; is 10, there is no other peak in the PSD curve to affect the extraction of the 
natural frequency. Poor correction effect of the BO-based CNN can be found in the cases with too few or too many reference points. 
When �; is too small, the feature relationship between the target points and the reference points may not be fully learned by the 
network to effectively predict the false displacement of the target points, while interference in network learning process can be 
caused by too many reference points to reduce the prediction ability of the network. 

(2) Section 4.2 shows that G  reaches the best correction effect at 5 min. As mentioned earlier, changing G  leads to changing the 
number of the CNN samples (�Q). The network prediction ability can be improved with the increase of �Q, which is relatively stable 
when �Q reaches a certain amount, and the network prediction ability even can be degraded by noise caused by too many samples. 

(3) Section 4.3 shows that, although the natural frequency can be easily extracted from the PSD curves of both H cases, the 
corrected displacement curve in the case of H = 100 � is better than that in the other case. It demonstrates that the correction 
effect of the BO-based CNN is better when the distance between reference points and structure is closer. The farther the reference 
point is from the UAV, the lower its resolution in the image, that is, the fewer pixels it occupies in the image. As the KLT tracks the 
pixels in an image, if the target points occupy only fewer pixels in the image, the tracking effect may be poor. This is why the 
farther the reference point is from the model, the worse the correction effect of the BO-based CNN is. 

(4) Although the optimal values of �; and G  have been determined through the experiment, the universality of the optimal 
values and the influence of H on correction effect still need to be verified through experiments in more practical scenarios in 
follow-up work. In addition, the real bridge measurement environment is more complex, so the method proposed in this paper will 
be tested in actual bridge measurement in follow-up work.  

5.2 Conclusion 

In this paper, a bridge vibration measurement method by a UAV based on BO and a CNN was proposed. The conclusions based 
on the experiment are as follows: 

(1) The correction effects of the BO-based CNN on the displacement measured by a UAV are the best when �; is 10 and G  is 5 
min. 

(2) The smaller the distance between the reference points and the structure is, the better the correction effect is. 
In this paper, based on the use of a UAV as a measurement tool, a CNN was used as a correction technology, and BO was used 

to optimize the network and improve the performance of the CNN. In addition, the influencing factors of the proposed method in 
the process of bridge vibration measurement also explored in this paper, which provided guides on how to determine the location 
and number of the reference points and the shooting time of UAVs in actual bridge displacement measurement. Experiments in 
this paper have shown that the reference points do not have to be on the same plane, so the method of correcting the bridge 
displacement measured by UAVs with a BO-based CNN has a good prospect in the actual bridge displacement measurement. 
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