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Abstract. The paper presents a computer analysis of the properties of a piezoelectric composite consisting of porous piezoceramic 
rods regularly arranged in an elastic matrix (piezocomposite with a connectivity of 1-3). The porous piezoceramic PZT-4 is used 
based on porous piezoceramics as an active material. The calculation of material properties is carried out based on a multilevel 
approach. First, the effective moduli of porous piezoceramics are determined, and then a 1-3 piezocomposite with rods having the 
calculated homogeneous properties is analyzed. The simulation uses the homogenization method based on the Hill lemma and 
the finite element method, as well as approximate analytical models. The effective properties of 1-3 composite are determined for 
various percentages of porosity of piezoceramic rods, which are a composite of 3-0 connectivity. Calculations were performed in 
the software package ACELAN-COMPOS. The calculated properties are used in finite element models to evaluate the effectiveness 
of composite materials in sensors and energy harvesting devices. Two cases of stiffness of an isotropic matrix are considered, 
which correspond to the stiffness of a porous composite at 50% and 80% porosity. The electromechanical properties, such as 
electro-mechanical coupling coefficient and output potential, for different transducers models made from the proposed 
composite are analyzed. 

Keywords: Piezoelectric material; Porous piezoceramics; Composite; Energy harvesting; Homogenization; Modeling; Finite 
element method. 

1. Introduction 

The use of piezoelectric generators as elements of energy storage devices is becoming more and more widespread, including 
in wearable devices, vehicles, road surfaces. Piezo generators are classified as "green" energy sources that do not harm the 
environment during operation. The growing interest in research into piezoelectric materials for energy storage is evidenced by a 
large number of reviews published in recent years. In this way, we can note the review of reviews (!) in 2021 [1] and the reviews [2–
8] not mentioned in [1], which appeared in 2021–2022. Multiple biomedical application for piezocomposites were presented in 
papers [9, 10]. The variety of applications includes medical equipment production, implants, on-body energy harvesting. For 
energy harvesting devices, the most used designs of piezoelectric generators are beam or plate elements, consisting of 
piezoelectric and elastic layers. Cymbal transducers and stack-type designs are also popular. 

To increase the efficiency of piezoelectric transducers, research is being carried out to find the optimal configuration of the 
device: size, shape, electroplating and loading scheme, materials used. Nevertheless, despite many studies, the problems of 
determining efficient designs of piezoelectric generators and the problems of searching for piezomaterials with improved 
characteristics for energy storage devices remain very relevant. At the same time, the use of piezocomposite materials is one of 
the most promising areas for improving the quality of piezoelectric transducers. The most well-known and well-studied are 
fibrous piezocomposites or piezocomposites of 1-3 connectivity according to Newnham's terminology [11], containing rod 
piezoceramic elements in an elastic dielectric matrix.  

Among the large number of works on 1–3 piezocomposites, we note, for example, analytical and computer investigations of 
the effective moduli presented in [12–19]. Other references can be found in the review [20]. Piezocomposites with 1-3 connectivity 
have high values of several characteristics important for applications: hydrostatic piezoelectric charge coefficient hd , hydrostatic 
voltage coefficient hg , thickness mode electromechanical coupling coefficient tk , hydrostatic figure of merit (HFoM) h hd g , etc.  

Macrofiber composites, originally developed for aviation industry, have also found their application into energy harvesting 
devices [21-24]. These miniature micropower generators are made in the form of thin beams and include piezoelectric fibers 
located in a dielectric medium. The fibers are placed in a single multilayer structure with interdigitated electrodes located on the 
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side surfaces of the beams on both sides. A comparative analysis of piezoelectric generators made of monolithic and composite 
piezoceramics, carried out in [23], showed a significant efficiency of using macrofiber composites. 

To improve the characteristics of the 1-3 piezocomposite, it is possible to vary the materials of the piezoelectric fibers and the 
elastic dielectric matrix. Thus, porous materials can be used for the composite matrix, which have a lower Young's modulus and 
Poisson's ratio can change significantly [12, 24–28]. In [12], the approximations of the effective medium method were used, and in 
[27, 28], applying the approaches from [12], topological optimization of the porous structure of the matrix was carried out. In [25, 
26], the Mori-Tanaka method was realized to determine the effective moduli, first for a porous matrix, and then it was also used 
to analyze 1–3 piezocomposites. In this case, in [25, 26], the location of pores relative to the direction of polarization was also 
varied, which, however, is difficult to implement in practice. 

In [29], a 0-3 composite with piezoelectric particles in a porous matrix was simulated and it was noted that the use of a porous 
matrix does not improve the electromechanical properties of the 0-3 composite. However, the piezosensitivity coefficients were 
not analyzed in this study. 

Another direction in the modification of composites is associated with the use of porous piezoceramics, which has recently 
come to be regarded as a promising active material for energy storage devices [2, 7, 8, 30–33]. Porous piezoceramics, in comparison 
with dense ones, have a lower acoustic impedance, higher piezosensitivity, and a number of high quality factors or figures of 
merit. Some studies have shown that the piezoelectric modulus 33d does not depend on the porosity for ceramics with a 3-0 
connectivity (piezoelectric material with closed porosity), but with increasing porosity, the rigidity decreases. Thus, it is possible 
to obtain a higher output potential in piezoelectric energy harvesting elements that use this piezoelectric module. One of the 
types of such structures is a piezocomposite of 1-3 connectivity. 

Present research, to some extent, combines approaches to the use of porous piezoceramics in piezoelectric fibers of the 
composite with 1-3 connectivity and to the variation of matrix materials with different stiffnesses. Namely, in this paper, the 1-3 
piezoelectric composites are considered, in which porous piezoceramics is used as a piezoactive material. The aim of this work is 
to investigate the electromechanical properties of converters made of such a composite, in particular, the electromechanical 
coupling coefficient (EMCC) and the output potential, for various percentages of ceramic porosity and for various elastic 
stiffnesses of the matrix material. Since a complete model of a composite with pores is difficult for finite element analysis, the 
study is carried out based on a step-by-step calculation of the effective properties of composites: first for porous ceramics, then 
for a representative volume of a composite with a connectivity of 1-3. The paper presents a comparative analysis of the results of 
calculations to determine the effective properties of the composite and calculations based on the finite element method for a 
representative volume with 1-3 connectivity and an analytical approach. The effective material properties are then used for 
further calculations of the transducer models. 

2. Computer and Mathematical Models 

2.1 Computer Models of Composites  

To calculate the effective properties of both porous piezoceramic material and 1-3 piezocomposite, we use the ACELAN-
COMPOS finite element package, the capabilities of which are described in detail in [35, 36]. This package implements the solution 
of the homogenization problems described below in representative volumes with a wide range of input characteristics that allow 
us to control the internal structure of the composite. ACELAN-COMPOS is able to create cubic representational volumes composed 
of cubic finite elements for 3-0 connectivity composites, i.e. with a closed structure of inclusions, 3-3 composites, i.e. with an open 
structure of inclusions, and 1-3 composites. Examples of representative volumes of 3-3, 3-0 and 1-3 composites are shown in Fig. 1. 

The 3-3 composite shown in Fig. 1(a) can be obtained by mixing two materials with different properties or can represent a 
material with high porosity. Along each phase of such composite, connected paths can be laid along any of the three coordinate 
directions. The 3-0 composite shown in Fig. 1(b) is a structure that can describe a body with inclusions or pores. The properties of 
such composites are dependent on the distribution of pores or inclusions. In some cases, the pores or inclusions are isolated and 
have a simple shape; in others they may intersect and form complex areas. However, in the 3-0 composite, the second phase 
cannot be traversed along the representative volume in any direction from start to finish. Figure 1(c) shows 1-3 composite. 
Combining elastic matrix with electro elastic rods allows to build both effective and reliable piezo transducers. 

As noted above, a combination of 3-0 and 1-3 bond types of connectivity can be useful in terms of achieving efficient 
electromechanical properties. Therefore, here, as the active part of the transducer, we use 3-0 porous piezoceramic material that 
fills the rods in 1-3 composite. An isotropic elastic material is used as a matrix in the transducer. 

 
(a) (b) (c) 

Fig. 1. Examples of Representative volumes of 3-3 (a), 3-0 (b) and 1-3 (c) composites. 
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2.2 Mathematical Model for Piezoelectric Bodies 

For piezoelectric body V  with heterogeneous material properties we will assume the following differential equation system 
[36, 37] 

, dij j i i if u u+ = +ɺɺ ɺσ ρ α ρ , , 0j jD = , (1) 

( )E
kl d kl kij ijkl kijc e E= + −ɺσ ε β ε , ( ) S

d kl d kl ki i ikl ikD D e E+ = + +ɺ ɺς ε ς ε κ , (2) 

, ,( ) / 2kl k l l ku u= +ε , ,k kE =−ϕ , (3) 

where ijσ  and klε  are the components of the stress and strain tensors, îD  and kE  are the components of the electric induction 
and electric field vectors, iu  are the components of the displacement vector, ϕ  is the scalar function of the electric potential, ρ  
is the density, if  are the components of the mass force density vector, dα , dβ , dς  are the damping coefficients, E

ijklc  are the 
components of the fourth order tensor of elastic stiffness moduli, evaluated at constant electric filed ( E ), kije  are the components 
of the third order tensor of piezoelectric moduli, S

ikκ  are the components of the second order tensor of dielectric permittivities, 
evaluated at constant strains ( S ), which are often denoted by S

ikε . Here material constants can depend on spatial coordinates kx , 
and the usual symmetry conditions are satisfied:, E E E

ijkl jikl klijc c c= = , ikl ilke e= , S S
ik ki=κ κ . 

Eqs. (1)–(3) differ from the usual equations of dynamic piezoelectricity by the presence of terms characterizing the attenuation 
(damping) properties. As noted in [36, 37], if 0d =ς  we obtain the equations of the theory of piezoelectricity with Rayleigh 
damping, which is like generally accepted in the finite element application. When the equality d d=β ς  is satisfied, the system (1)–
(3) is consistent with the mode superposition method. In the case of static problems, the damping is absent, and Eqs. (1)–(3) 
completely coincide with the standard equations of linear static piezoelectricity theory. 

The system of differential equations (1)–(3) must also be supplemented with boundary conditions, and for transient problems 
it is also necessary to set the initial conditions. The boundary and initial conditions here do not differ from those usually accepted 
in the theory of piezoelectricity [35, 36]. 

2.3 Homogenization Technique and Computation of Effective Moduli 

For piezoelectric composites, several formulations of homogenization problems are known destined to determine effective 
moduli. All these methods are a generalization of known approaches used for dielectric and elastic composite media. In the case 
of piezocomposites, these methods become much more complicated, due to the coupling of mechanical and electric fields caused 
by the piezoelectric effect, and the obligatory presence of anisotropy in the piezoelectric phase, which determines a large number 
of effective moduli to be defined. Among a significant number of investigations devoted to the homogenization problems for 
piezoelectric composite media, we note the papers [13, 14, 18, 19, 29, 30, 38-45], which describe various popular analytical, 
numerical-analytical, and numerical approaches. 

However, since real porous piezomaterials have a complex irregular porosity structure, when formulating and solving the 
homogenization problem, it is preferable to consider the internal structure of the porous material, including the types of 
connectivity, pore sizes and scatter of their values, as well as various local effects. This can be done by constructing a 
representative volume element (RVE) of the appropriate type, and then solving the homogenization problem in this volume 
numerically using the finite element method. Then the formulation of the homogenization problem can be carried out by the 
method of effective moduli [34, 35, 39, 43, 44]. We use this technique in the present study. 

According to this method, we will solve the static problem of piezoelectricity in a RVE V  with special essential boundary 
conditions on its boundary VΓ = ∂ . For a static problem, all variables in the Eqs. (1)–(3) depend only on spatial coordinates kx , and 
do not depend on time t . Therefore, Eqs. (1), (2) can be rewritten in the standard form 

, 0ij j =σ ,  , 0j jD = , (4) 

E
kl kij ijkl kijc e E= −σ ε , S

kl ki ikl ikD e E= +ε κ . (5) 

Boundary conditions in the effective moduli method should provide constant fields of strains, stresses, electric field, and 
electric induction for a homogeneous comparison medium. Usually, these boundary conditions are chosen to be linear on kx  for 
displacements and electric potential 

0l k klu x= ε , 0k kx E=−ϕ , kx ∈ Γ , (6) 

where 0 0kl kl=ε ε  and 0kE  are the components of the symmetric tensor of the second order and the vector, which are constant. 
A homogeneous comparison medium has constant effective moduli effective moduli effE

ijklc , eff
ikle , effS

ikκ , and its constitutive 
relations between electromechanical fields, which we mark with the subscript “0”, are similar to (5)  

eff eff
0 00

E
kl kij ijkl kijc e E= −σ ε ,       effeff

0 00
S

kl ki ikl ikD e E= +ε κ  (7) 

Obviously, for a homogeneous medium, the functions 0l k klu x= ε , 0k kx E=−ϕ  are the solution to the boundary value problem 
(3)–(6) in RVE V  with effE E

ijkl ijklc c= , 
eff

ikl ikle e= , 
effS S

ik ik=κ κ  and determine the constant mechanical fields 0klε , 0ijσ , and the constant 
electric fields 0kE , 0iD , related by Eq. (7). 

In addition, solutions of the boundary value problems (3)–(6) with inhomogeneous moduli E
ijklc , kije , S

ikκ , and with effective 
moduli effE

ijklc , eff
ikle , effS

ikκ , are interconnected by important equalities [39, 43] 0kl kl< >=ε ε , 0k kE E< >= , 

0kl kl kl kl kl kl< >=< >< >=< >σ ε σ ε σ ε , 0i i i i i iD E D E D E< >=< >< >=< > , (8) 

where angle brackets mean volume averaging 

1
( )

| | V
dV

V
<•>= •∫ . (9) 
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By virtue of equalities (8), the composite medium and the homogeneous comparison medium under the same external 
influences (6) will have the identical average potential energies 0U U< >= , where /2kl kl i iU D E=< + >σ ε , 0 0 0 0 0( ) / 2kl kl i iU D E= +σ ε , if 
the equalities 0ij ij< >=σ σ , 0i iD D< >=  are fulfilled. 

The last two equalities underlie a convenient way to calculate the complete set of effective moduli based on solutions to the 
set of boundary value problems (3)–(6) with some nonzero components 0klε  or 0kE . 

In particular, we choose some fixed indices p , q  ( p , 1,  2,  3q= ), and assume in the boundary conditions (6) the following 
values 

00 ( ) / 2kl kp lq lp kqS= +ε δ δ δ δ , 0 0kE = , (10) 

where 0 constS = , kpδ  is the Kronecker symbol.  
Then, after solving the boundary value problem (3)–(6), (10), it is necessary, using (9), to find the average stresses ijσ  and the 

average components of the electric induction vector jD , which determine the effective elastic stiffness moduli and effective 
piezoelectric moduli, respectively 

eff
0/E

ijpq ijc S= σ , eff
0/jpq je D S= . (11) 

Then, we choose some fixed index 1,  2,  3p= , and accept in the boundary conditions (6) such values ( 0 constE = )  

0 0kl =ε , 00k kpE E= δ , (12) 

Now, the solutions of the problems (3)–(6), (12) allow us to find once again the effective piezoelectric moduli and the effective 
permittivities from the average stresses and from the average electric inductions 

eff
0/pij ije E=− σ , eff

0/S
jp jD E=κ . (13) 

For a piezoelectric composite with an arbitrary class of physical anisotropy and/or for an irregular RVE with a pronounced 
geometric anisotropy, nine homogenization problems (3)–(6) must be solved to determine the full set of effective moduli: six 
problems (3)–(6), (10) with mechanical effects at p q m= = , 1,  2,  3m= ; 2p= , 3q= ; 1p= , 3q= ; 1p= , 2q= ; and three 
problems (3)–(6), (12) with electrical influences at 1,  2,  3p= . In this case, the effective stiffness moduli and dielectric moduli 
should have the same symmetry as the moduli of a conventional dense piezoelectric material, and the same type piezomoduli 
found from the solutions of the problems (3)–(6), (10) by (11) and from the solutions of the problems (3)–(6), (12) by (13) should be 
equal [44]. These statements are not entirely trivial, since the effective moduli are found from numerical solutions of different 
boundary value problems. Naturally, in the numerical solution of homogenization problems, the corresponding equalities are 
satisfied up to the computational errors. 

Hereinafter, we will apply for material moduli the Voigt notations generally accepted in the theory of piezoelectricity. 
According to these notations, instead of tensors, we use the matrix of elastic stiffnesses Ecαβ  of size 6 6x , the matrix of 
piezomoduli of size 3 6x , and the matrix of dielectric permittivity coefficients of size 3 3x . Then the following correspondence 
laws are adopted between the components of matrices and tensors: ,  ,  ,  1,  2,  3i j k l= ; ,  1,  2,  ..., 6=α β ; E E

ijklc c= αβ ; ikl ie e=
β

; ( )ij ↔ α , 
( )kl ↔ β , (11) 1↔ , (22) 2↔ , (33) 3↔ , (23) (32) 4↔∼ , (13) (31) 5↔∼ , (12) (21) 6↔∼ .  

Note that piezoceramic materials that are used in industrial applications have an anisotropy class 6mm , and their moduli 
matrices have the form 

11 12 13

11 13

33

44

44

66

0 0 0

0 0 0

0 0 0

0 0

sym 0

E E E

E E

E
E

E

E

E

c c c

c c

c

c

c

c

 
 
 
 
 
 =  
 
 
 
 
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15

15

31 31 33

0 0 0 0 0

0 0 0 0 0

0 0 0

e

e

e e e

 
 
 =  
 
 

e ,   
11

11

33

0 0

0 0

0 0

S

SS

S

 
 
 =  
 
  

k

κ

κ

κ

, (14) 

and 66 11 12( ) / 2E E Ec c c= − . 
Then, if the RVE does not have a pronounced anisotropy, then the matrices of effective moduli of porous piezoceramics also 

have the structure (14). During calculations, we verified that the homogeneous piezoceramic had the same anisotropy class. 
The described homogenization method maintains the energy balance between the composite and a homogeneous 

comparison medium based on the Hill lemma and is valid for piezoelectric composites of any connection with conditions of full 
contact between materials of different phases, and also for composites with extreme phase properties [44, 46]. If there are 
imperfections on the interface, it is necessary to modify this method to take into account the integral values on the interface 
boundary [47]. 

The solution of these problems in representative volumes of a complicated structure is possible only numerically, and the 
finite element method is usually used for this purpose. We used the ACELAN-COMPOS package, whose finite element 
technologies are described in detail in [34, 35]. The ACELAN-COMPOS package has variety algorithms for generation composite 
structures of 3-0, 3-3, and 1-3 connectivity that support many input parameters of representative volume elements. In the present 
study, it was used to calculate 3-0 and 1-3 piezocomposites. 

3. Results and Discussion 

3.1 Numerical Results for 3-0 Composite 

ACELAN-COMPOS supports two main inclusion distribution algorithms for 3-3 and 3-0 composites.  
In the 3-3 composite, both phases are three-dimensionally connected, and each phase can be passed through from the 

beginning to the end of the representative volume element (RVE) in three spatial directions. For an algorithm that generates a 3-3 
composite, one component, which we will call Phase 1, is initially structurally interconnected, and all inclusions are contained in 
Phase 2. The process of modeling the composite starts with splitting the RVE into equal clusters. In each cluster the set of finite 
elements is selected on the surface. The sets for neighbor clusters are built with the respect for connectivity. The size of each 
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cluster is limited to 512 or 2048 elements, but the whole RVE can have much more elements. Splitting RVE into clusters allows to 
perform the algorithm of material distribution in parallel. The connectivity of the Phase 2 is checked on every step before adding 
next element to Phase 1. Only elements that can be excluded from Phase 2 without breaking its connectivity are considered as 
candidates for Phase 1. Setting the surface elements to connect clusters limits the minimum percentage of Phase 1 material to 
15% but reverting the algorithm by swapping labels for Phase 1 and Phase 2 allows to set the limit of 5-95% for each phase.  

In case of modeling 3-0 composites, percent of inclusion is not the only parameter to consider. There are multiple possible 
inclusion distributions, depending on the manufacturing process. Inclusions can have similar size or may be vary from small to 
large. The surface of the RVE may have inclusions or not. In some cases, inclusions can intersect and form larger structures with 
unpredictable shape. We consider both solid-solid 3-0 composites and solid-air porous composites, both types can be constructed 
in ACELAN-COMPOS package. For such composites connectivity is guaranteed only for Phase 1, and Phase 2 may be 
interconnected or not, depending on the inclusion percentage. 

This approach was used in our previous works [48, 49] and [30] which was focused on electromechanical properties of 3-0 
composite presented on Fig. 2.  

When modeling porous ceramics, cavities arising in the composite were simulated as a pseudo-material with the dielectric 
constant of air and artificial elastic properties 10 orders of magnitude smaller than that of ceramics. This approach makes it 
possible to use a unified process for assembling the global stiffness matrix of the problem. 

Numerical results for 3-0 composite made with PZT-4 are presented in Table 1 [30]. 
Here, in the calculation, we assumed that the pores are located randomly in the composite, are isolated, and slightly differ in 

volume from each other. Since porous piezoceramics are created artificially using pore formers, the pore sizes and total porosity 
are quite controllable parameters. To model such a composite, we used the 3-0 algorithm of the ACELAN-COMPOS package with 
representative volumes containing 2n  finite elements along each axis with 5n = . The pore sizes varied from 4 to 8 finite 
elements, but the algorithm allowed the pores to stick together within the domain (regular region containing 38 512=  finite 
elements). An example of such a representative volume is shown in Fig. 2 on the left. The accuracy of the results was checked as 
follows. Since the 3-0 algorithm of the ACELAN-COMPOS package generates a volume with a partially random porosity structure, 
the calculations were carried out several times, the relative error was determined, and the average values were calculated. The 
size of the representative volume was determined by a compromise between the speed of calculations and the stabilization of 
results in calculations with different n . Such an approach, as is known [50-52], makes it possible to simulate composites with a 
random structure that has some controllable parameters. More complex algorithms with an irregular mesh of finite elements [51-
53] were not used here, since if applied to piezoelectric composites, the calculations would be too expensive, but the spread of the 
initial values of material properties and data on the internal structure does not require high accuracy in calculating the effective 
moduli. 

 
 

 
 

Fig. 2. Representative volumes for 3-0 composite generated in ACELAN-COMPOS package. 
 
 

Table 1. Effective moduli of porous ceramics. 

% of porosity 0 10 20 30 40 50 60 70 80 

ρ , 103, kg/m3 7.5 6.75 6 5.25 4.5 3.75 3 2.25 1.5 

eff

11

Ec , GPa 139 115.6 92.5 68.5 50.5 33.4 20.7 12.6 6.8 

eff

12

Ec , GPa 77.8 61.5 46.6 31.4 21.0 11.6 6.2 2.8 1.3 

eff

13

Ec , GPa 74.3 58.2 42.5 28.2 18.7 10.6 5.2 2.4 1 

eff

33

Ec , GPa 115 95.3 72.3 54.2 39.1 27.2 16.3 9.1 4.7 

eff

44

Ec , GPa 25.6 22.3 18.3 14.4 11 7.4 4.4 2.3 1 

eff

31
e , C/m2 -5.2 -4.23 -3.14 -2.07 -1.32 -0.75 -0.43 -0.21 -0.1 

eff

33
e , C/m2 15.1 13.38 11.37 9.59 7.68 5.93 3.93 2.30 1.25 

eff

15
e , C/m2 12.7 10.96 8.96 6.91 5.00 3.30 1.95 1.00 0.44 

eff

11 0
/S

κ ε  730 663 582 509 439 349 263 191 122 

eff

33 0
/S

κ ε  635 567 492 413 345 270 199 130 75 
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Table 2. Effective moduli of 1-3 composite with matrix 1. 

% of porosity 0 10 20 30 40 50 60 70 80 

ρ , 103, kg/m3 5.25 5.05 4.88 4.69 4.5 43.1 41.3 39.4 3.75 

eff

11

Ec , GPa 63.6 61.2 58.3 54.4 50.5 45.4 40.5 36.3 32.7 

eff

12

Ec , GPa 27.7 26.6 25.2 23.1 20.9 18 15.3 12.8 10.9 

eff

13

Ec , GPa 28.2 26.7 24.8 22.5 20.3 17.8 15.4 13.6 12.2 

eff

33

Ec , GPa 62.2 58.9 55.1 51.2 47.6 44.3 40.8 38.3 36.7 

eff

44

Ec , GPa 16.4 15.8 15.1 14.3 13.5 12.5 11.6 10.8 10.2 

eff

31
e , C/m2 -1.3 -1.05 -0.785 -0.523 -0.33 -0.185 -0.108 -0.053 -0.025 

eff

33
e , C/m2 3.77 3.35 2.86 2.4 1.93 1.49 0.972 0.58 0.32 

eff

15
e , C/m2 3.66 3.26 2.81 2.31 1.83 1.3 0.845 0.465 0.221 

eff

11 0
/S

κ ε  51.4 46.5 40.7 35.2 30.1 24.1 18.3 13.1 8.61 

eff

33 0
/S

κ ε  159 142 124 104 86.9 68.2 50.5 33.2 19.5 

 

Table 3. Effective moduli of 1-3 composite with matrix 2. 

% of porosity 0 10 20 30 40 50 60 70 80 

ρ , 103, kg/m3 3 2.81 2.63 2.44 2.25 2.06 1.88 1.69 1.5 

eff

11

Ec , GPa 11.50 11.30 11.00 10.60 10.20 9.56 8.82 7.96 6.85 

eff

12

Ec , GPa 2.37 2.33 2.28 2.22 2.14 2.02 1.86 1.58 1.33 

eff

13

Ec , GPa 3.32 3.15 2.94 2.69 2.46 2.19 1.84 1.55 1.25 

eff

33

Ec , GPa 22.50 20.30 17.80 15.40 13.20 11.20 9.04 7.40 6.32 

eff

44

Ec , GPa 4.25 4.15 4.03 3.88 3.69 3.41 3.04 2.61 2.19 

eff

31
e , C/m2 -1.30 -1.05 -0.79 -0.52 -0.33 -0.19 -0.11 -0.05 -0.03 

eff

33
e , C/m2 3.77 3.35 2.86 2.39 1.93 1.49 0.97 0.58 0.31 

eff

15
e , C/m2 1.44 1.35 1.24 1.10 0.96 0.78 0.59 0.38 0.21 

eff

11 0
/S

κ ε  14.1 12.9 11.5 10.1 8.9 7.39 5.93 4.62 3.47 

eff

33 0
/S

κ ε  159 142 123 104 86.9 68.2 50.5 33.2 19.5 

 

The studies carried out have shown that for a certain configuration of the transducer, ceramics with a porosity of 40% 
demonstrate the highest EMCC [30]; however, in the general case, it is required to analyze each individual configuration of the 
transducer. In addition, the decrease in the strength of porous ceramic devices must be considered. As can be seen from Table 1, 
elastic moduli decrease with increasing porosity much faster than piezomoduli. As was noted in [30, 43], the piezomodulus eff

33d  
remains the almost unchanged with the increase of porosity. 

 

 
(a) (b) (c) 

Fig. 3. Representative volumes for 3-0 composite generated in ACELAN-COMPOS package. 
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3.2 Numerical Experiments for 1-3 Composite 

In this paper we study a composite with the geometry shown in Fig. 3. Piezoelectric rods with a square cross section are 
oriented along the Oz axis in an isotropic polymer matrix. The volume fraction of piezoelectric ceramics in the composite is 25%. 
In the course of numerical experiments, three representative volume elements were considered for the same material: with 1, 
with 4, and with 16 rods (Fig. 3(a), Fig. 3(b), Fig. 3(c), respectively). In addition to the number of rods in the investigated 
representative volumes, the size of the finite element changed. The problem of identifying the properties of a material with a 
representative volume in the form of a cube by the configuration shown in Figure 1 makes it possible to use a regular finite 
element mesh. In such a mesh, all elements have the same size and location in space with an accuracy of parallel transfer and 
differ only in the type of material. In this case, you can use caching of local stiffness matrices, calculating them only once for each 
material. Homogenization was performed for each representative volume and the difference in results was below 3%. Results 
obtained with model shown in Fig. 3(c) were used in this study, but it worth noting that even rough meshes can be sufficient for 
some composite types with regular structure.  

When analyzing 1-3 composite, all options for the material of the rods from Table 1 were considered, the material of the 
matrix was presented in two versions, corresponding in stiffness in Ox3 direction and density to ceramics with a porosity of 50% 
(hereinafter referred to as matrix 1) and 80% (matrix 2). Matrix 1 had Young’s modulus equal to 27.2 GPa, matrix 2 – 4.7 GPa, 
Poisson’s coefficient was equal to 0.3 for both matrices. These Young’s moduli were chosen to match the stiffness of piezo 
material with porosity 50% and 80% in the direction of 3x axis. The selection of these values is based on the fact that 80% is the 

largest percentage of porosity that effective materials properties were obtained on the first step of this research. But since 80% 
pores in practice can lead to rather fragile structure, moderate porosity of 50% was also chosen.  

For most types of composites, the formation of a finer finite element mesh allows a more accurate solution to be obtained. So, 
in the case of 3-0 composite, the approximation of pores by spatial polygons consisting of cubes of the same size becomes more 
accurate as the size of finite elements decreases and their number increases. But for 1-3 composite, no significant difference was 
found between the simplest 512-element model and the 32768-element model. A significant role here is played by the simple 
shape of the common boundary between the two phases of the composite, on which excessive stresses, typical for models of 
composite materials with 3-0 connectivity, do not arise. At the same time, for the basic model with the simplest grid, solving a 
series of averaging problems in the ACELAN-COMPOS complex for 9 versions of piezoceramics and two versions of the polymer 
(162 boundary value problems in total) in the parallelization mode of tasks on a modern household computer takes about 90 
seconds, including post-processor processing and saving the results. Thus, it becomes possible to design iterative processes for 
selecting the configuration of the composite.  

ACELAN-COMPOS package was used to calculate the effective properties for both variants of composite. Numerical 
experiments were performed for the model with 16 rods.  

The results of calculating the effective moduli for two types of matrix materials by the averaging method for 1–3 composites 
are shown in Tables 2 and 3.  

  

(a) (b) 

Fig. 4. The change in the elastic properties of the composite with an increase in the percentage of porosity of the piezoceramic  
for matrix 1 (a) and 2 (b). 

  

(a) (b) 

Fig. 5. Changes in the piezoelectric constants of the composite with an increase in the percentage of porosity of piezoceramics 
for matrix 1 (a) and matrix 2 (b). 

 



 Thanh Binh Do et al., Vol. 9, No. 3, 2023 
 

Journal of Applied and Computational Mechanics, Vol. 9, No. 3, (2023), 763-774   

770 

  

(a) (b) 

Fig. 6. Changes in the relative dielectric permittivity of the composite with an increase in the percentage of porosity of piezoceramics 
for matrix 1 (a) and matrix 2 (b). 

  

(a) (b) 

Fig. 7. Elastic stiffness modulus eff

33

Ec  obtained on the basis of various approaches, for matrices 1 (a) and 2 (b). 

For clarity, the results for mechanical properties, for electromechanical properties and for dielectric permittivities are also 
presented in Figs. 4, 5 and 6, respectively.  

For composites with rod (fiber) inclusions, there are approximate asymptotic homogenization method for evaluating effective 
properties [15, 17]. In this study we focus on eff

33
Ec  that can be approximated by the following equations: 

2
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(15) 

where m represents material properties of the matrix, f represents material properties of the rods or fibers, λ  is the volume 
fraction of inclusion (fibers).  

The calculation results based on the homogenization method in ACELAN-COMPOS and on the approximate formulas [15, 17] 
are shown in Fig. 7. The relative difference between ACELAN-COMPOS results and theoretical approximations does not exceed 2%. 

At high porosity of piezoceramics, all methods show approximately the same values, however, at low porosity, the 
approximate method [15] gives less accurate results compared to the averaging method implemented in ACELAN-COMPOS. 

3.3 Numerical Experiments for Transducer with Composite Material 

The shape of a separate element of the transducer is shown in Fig. 8. The length of the transducer is 5 mm, the front is a 
square with 0.4 mm side. Both sides’ frontal surfaces have electrodes. On one end, the boundary conditions of the sliding 
embedding are set, and the other end is free from stresses for modal analysis. This model was created in COMSOL Multiphysics 
[54] software. 

Evaluation of efficiency was carried out based on two parameters: the EMCC and the output potential in the operating mode. 
To determine the EMCC, we used the following formula 

2 2

2

2

aj rj

dj

aj

f f
k

f

−
= , (16) 

where rjf  is the resonance frequency, ajf  is the antiresonance frequency, djk  is the dynamic EMCC, and the subscript j  denotes 
the number of resonance or antiresonance frequency. 

To determine the resonance frequencies, eigenvalue problems with zero potentials on two electrodes were solved, and to 
determine the antiresonance frequencies, the boundary condition on one of the electrodes was changed to the free electrode 
condition. 
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Fig. 8. Solid model of the transducer with internal square piezoelectric rod and with elastic isotropic filler.  

  

(a) (b) 

Fig. 9. Dependence of the output potential (a) and of the EMCC (b) on the percentage of porosity of the ceramic. 

Harmonic vibrations with a frequency of 1 kHz are considered as the operating mode of the transducer with one free 
electrode. This frequency is significantly lower than first eigenfrequency. The oscillations were created by applying distributed 
load with amplitude of 1000 N/m2 at the loose side of the transducer. Red arrows in Fig. 8 demonstrate the pressure applied to the 
free side of the device. The problem was considered in two settings: in the form of a model of two solid bodies (a rod and an 
isotropic matrix) and in the form of a single piezoelectric body with effective material properties. The use of effective material 
properties makes it possible to simplify the process of finite element modeling, because the geometry of the model has no 
internal boundaries that increase the number of elements, and boundary conditions are set on a smaller number of surfaces. In 
the presented numerical experiments for one structural element, the two-solid model consisted of 2291 volumetric elements; 
with the same settings of the partition module, the model based on effective moduli consisted of 536 elements. As the geometry 
of the device becomes more complex, the difference in the number of elements will increase. In this case we used model with 
one rod presented on Fig. 8. 

In the eigenvalue problem, the difference between the resonance frequency for the full compound model and for the model 
with effective properties does not exceed 0.5%, the difference in the output potential does not exceed 3%. All further numerical 
experiments were carried out for a model with effective properties. Figure 9(a) shows the dependence of the output potential 
under forced vibrations for all combinations of the porosity of the piezoceramics with the dense polymer matrix. In Fig. 9(b) 
shows a similar dependence for the EMCC at the first eigenfrequency. 

A less rigid design allows full use of the advantages of porous ceramics and obtain a significantly higher output potential, as 
seen in Fig. 9(a). For a more rigid isotropic matrix, this effect is not observed. The EMCC decreases in both cases, while for a stiffer 
matrix after 50% porosity, the EMCC, as seen in Fig. 9(b), begins to decrease much faster, since the stiffness of the matrix in this 
case coincides with the rigidity of a rod with 50% pores. Bars with less rigidity cannot fully realize their electromechanical 
properties in such a configuration.  

4. Conclusion  

The paper considered two-level modeling of piezo-active composites using porous ceramics as an active material. The studied 
composite had a connectivity of 1-3 and consists of piezoceramic porous rods and an isotropic elastic matrix. The properties of 
porous ceramics and 1-3 composites were found by averaging in the ACELAN-COMPOS package based on various 3-0 and 1-3 
models of representative volume elements. The effective properties of the final 1-3 composite were calculated for the two matrix 
materials. The stiffness of these matrices corresponded to the longitudinal stiffness of piezoceramic materials with a porosity of 
50 % and 80 %. In some cases, formulas known from the literature can be used to determine the individual material constants of 
1-3 composites. Using the finite element method, comparative numerical experiments were carried out for a complete model of 
several bodies and a model of one material with averaged properties. The adequacy of the second modeling step was verified by 
comparing the results for one fragment of a representative volume, considering the structure of materials and using effective 
properties. Eigenfrequencies and electromechanical coupling coefficient for different sets of material properties are determined. 
It was found that in the problem of forced vibrations, the output electric potential increases with growth of porosity. A certain 
feature was found in the case when the rigidity of the ceramic and the matrix coincide. In general, it can be noted that a 1-3 
piezocomposite made of porous piezoceramics shows good properties as a green energy piezoelectric generator at high porosity 
and with a soft elastic matrix. 
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Nomenclature 

ijσ  Components of stress tensor [N/m2] iu  Components of displacement [m] 

klε  Components of strain tensor ϕ  Electric potential [V] 

Di Components of electric induction [C⋅m−2] ρ  Density [Kg/m3] 

Ek Components of electric field vector [V/m] Ec  Tensor of elastic stiffness moduli 

e  Tensor of piezoelectric moduli Sk  Tensor of dielectric permittivities 

djk  Electromechanical coupling coefficient   
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