
J. Appl. Comput. Mech., 9(3) (2023) 637-655  
DOI: 10.22055/jacm.2022.41125.3704  

ISSN: 2383-4536 
jacm.scu.ac.ir 

 

Published online: August 28 2022 

 

Shahid Chamran 

University of Ahvaz 

 
 

 

  Journal of 

     Applied and Computational Mechanics 

 

 

Research Paper  

Stress-driven Approach to Vibrational Analysis of FGM Annular 

Nano-plate based on First-order Shear Deformation Plate Theory 

Mojtaba Shariati1 , Mohammad Shishehsaz2 , Reza Mosalmani3  
 

1 
Department of Mechanical Engineering, Shahid Chamran University of Ahvaz, Ahvaz, Iran, Email: mojtaba.shariati456@gmail.com 

2
 Department of Mechanical Engineering, Shahid Chamran University of Ahvaz, Ahvaz, Iran, Email: mshishehsaz@scu.ac.ir 
3
 Department of Mechanical Engineering, Shahid Chamran University of Ahvaz, Ahvaz, Iran, Email: mosalmani@scu.ac.ir 

 

Received June 16 2022; Revised August 18 2022; Accepted for publication August 18 2022. 

Corresponding author: M. Shishehsaz (mshishehsaz@scu.ac.ir) 

© 2022 Published by Shahid Chamran University of Ahvaz 

Abstract. Vibrational behavior of small-scale functionally graded annular plate based on the first-order shear deformation theory, 
and non-local stress-driven model is investigated. For the first time, generalized differential quadrature rule is utilized to solve 
the governing equation and related boundary conditions. The convergence, accuracy, and efficiency of the generalized differential 
quadrature rule are investigated using problem-solving for different situations. The effects of parameters such as size parameter, 
inhomogeneity coefficient of functionally graded materials, thickness to outer radius ratio, inner radius to outer radius ratio, and 
boundary conditions on the natural frequency of the structure have been investigated. Results show that, unlike the strain-driven 
model, the non-local stress-driven theory predicts the same behavior for all boundary conditions and increasing the size 
parameter has led to a stiffening behavior and an increase in the natural frequency of the structure.  

Keywords: Size effect, vibrational response, functionally graded material, circular nanoplate, First-order Shear deformation plate 
theory. 

1. Introduction 

The tendency of humans to use tools to make things easier has led to the use of materials with new properties. Some 
materials produced by scientists and even some materials found in nature have extraordinary properties. The use of functionally 
grade materials (FGM) in nano-dimensions has greatly helped to build accurate and important tools in industry and medicine. 
They have many applications in drug delivery [1-3], reducing the size of computer chips [4-6], elimination of pollutants [7, 8], high 
energy density batteries [9, 10], high-sensitivity sensors [11, 12], longer-lasting medical implants [13, 14], aerospace components 
with enhanced performance characteristics [15-18], etc. For example, a US nanotechnology company has developed contact 
lenses that can be used instead of large virtual reality headsets without affecting the individual's vision. In another example, 
nano-sensors are built to detect a heart attack and nano-materials have been discovered to prevent the spread of bacteria. These 
important properties have prompted engineers to research new materials, including nano-materials.  

As mentioned, the properties of materials in very small dimensions (nano) are different from the properties of the same 
materials in large dimensions and this difference has led to the introduction of new theories about the behavior of nano-
materials. Examining the properties of materials in a laboratory is very difficult and expensive [19-21]. Also, using the molecular 
dynamics method to study the behavior of materials in the nano-scale has a high computational cost [22-25]. Therefore, the best 
way to study materials in nano-dimensions is to use non-classical mechanical continuum approaches. Theories related to nano-
materials are more complex than classical theories. Some of the theories developed in relation to nano-materials are nonlocal 
elasticity theory [26-30], strain gradient theory [31-37], surface effect theory [38-45], couple stress theory [46-52], doublet 
mechanics [53-55] and etc. 

Romano and Barretta [56] proposed a new classification of nonlocal elasticity. Regarding this classification, there are two 
different definitions of fully nonlocal integral elasticity. The first is a strain-driven nonlocal integral model which was adopted by 
Eringen [57, 58], and stress-driven nonlocal integral model. In the first model, the nonlocal stress is defined by an integral 
convolution of elastic strain with an averaging kernel dependent on a nonlocal parameter. Strain-driven could be applied to many 
nano-structural problems with unbounded domains that the involved fields that vanish at infinity. This is one of the most well-
known modified continuum mechanics theories that includes small scale effects that are used by many researchers to simulate 
the nonlocality of nano-structure in the last decade [59-61]. Furthermore, this was replaced with an equivalent differential 
equation under boundary conditions that vanish at infinity. This equivalent form was later utilized to simulate and analyze the 
mechanical characteristics of nanoscopic structures over bounded continuous domains. A comprehensive review on the 
application of the nonlocal differential-based models for modeling size-effects in nano-structures can be found in Rafii-Tabar et al. 
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[62]. However, Romano et al. [63] showed that, when suitable constitutive boundary conditions are added for bounded domains 
then the integral convolutions can be replaced with differential relations. Additionally, the associated elastic problems are ill-
posed when the constitutive boundary conditions are incompatible with equilibrium conditions. Another point is emerging 
serious difficulties and undesirable results. On the other hand, Romano and Barretta [56] showed that, in the stress-driven 
nonlocal integral model, the nonlocal elastic strain is defined by an integral convolution of stress with an averaging kernel 
dependent on a nonlocal parameter. They showed that, this model is well-posed for structures defined on bounded domains and 
suffers from no inconsistencies. This approach was applied to several static and dynamic problems of the nano-structures [64-70]. 
In contrast to the strain-driven nonlocal models, the results calculated from the stress-driven model exhibit a hardening behavior 
when nonlocality is increasing and have been confirmed by Shariati et al. [71]. 

Shishehsaz et al. [72] and Shariati et al. [73] analyzed the vibrational behavior of functionally graded size-dependent circular 
and annular nano-plates using the stress-driven nonlocal integral elasticity as well as the strain gradient theory in conjunction 
with the classical plate theory. They studied the influences of various parameters such as the size-effect parameter, material 
heterogeneity index, the aspect ratio of the inner to outer radii, and the effects of different boundary conditions on the vibrational 
behavior of the nano-plate, based on different types of boundary conditions. They indicated that the natural frequencies of the 
FGM nanoplate increase with an increase in the heterogeneity index n and the increase in size-effect parameter show a similar 
effect in both models. An important question that arises from previous studies is; Can the non-local model be used for any 
geometry, inhomogeneity coefficient and size parameter according to the efficiency of the stress-driven model based on the 
classical plate theory? Or the stress-driven model based on the first-order shear deformation theory should be used? To answer 
this important question, first, the governing equations of the structure were obtained in the framework of the non-local stress-
driven model based on the first-order shear deformation theory. Then, using the generalized differential quadrature rule (GDQR) 
numerical solution, the natural frequency of the structure with different boundary conditions for the mentioned parameters was 
calculated and compared with the results of non-local stress-driven model based on the classical plate theory. As it is known, 
when the ratio h/(b-a) is less than 0.2, the FSDT can be used to obtain natural frequencies (b and a are the outside and inside 
radiuses of the annular plate, respectively). Regarding this, the aspect ratios a/b and h/b are chosen in such a way that with the 
ratio h/(b-a) is less than 0.2. 

Therefore, for the first time, the vibration behavior of functionally graded annular plates was analyzed using combination of 
the first-order shear deformation plate theory, and non-local stress-driven model. The convergence, accuracy, and efficiency of 
the GDQR are shown by various examples. Limited research on nanoplates has been done using this method, while much more 
research has been done on beams. It should also be noted that most researchers have used the generalized differential 
quadrature method (GDQ) to solve the equations, while in this study the generalized differential quadrature rule (GDQR) has been 
used. 

2. FGM Annular Nano-plate 

An annular nano-plate of thickness h, inner and outer radii a and b is shown in Fig. 1. To obtain the equations of motion and 
study the vibrational response of the small-scale annular nano-plate based on Mindlin plate theory and stress-driven nonlocal 
integral elasticity, an axisymmetric cylindrical coordinate system (r, z) is used.   

Ceramic and metal are the selected material used for the FGM nano-plate and the material properties, Young’s modulus E and 
the mass density ρ  were assumed to vary along the thickness according to Eq. (1). Additionally, it is assumed that the Poisson’s 

ratio ν  is constant in the thickness direction. 

(1)  ( ) ( ) ( ) ( )1 ,    1 ., , , ,n n n n
c m c mE r z t E V E V z t Vr Vρ ρ ρ+ − + −= =  

where n is a gradient index and the subscripts m and c refer to the metal and ceramic constituents, respectively. Also, V is the 
volume fraction of the ceramic material, and it is assumed such as: 

(2)  
2

   ,   
2 2 2

z h h h
V z

h

+
= − ≤ ≤+  

3. First-order Shear Deformation Plate Theory based on the Local Elasticity 

Based on the first-order shear deformation plate theory (FSDT), the component of displacement field ur and uz in the radial 
and transverse directions, respectively, are assumed to vary as follows [74]: 

(3)  ( ) ( ) ( ) ( ) ( )0 0, , , , ,     , , , .r zu r z t u r t z r t u r z t w r tφ= + =  

 

Fig. 1. Configuration of an annular nano-plate and coordinate system. 
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where u0 and w0 are the displacement components of the mid-plane surface in the radial and transverse directions. Also, φ  is 
angular rotation of the normal to the middle surface in radial direction [75]. Also, the non-zero strain component, based on the 
strain-displacement relationship, is given by [74]: 

(4)  
0 00 0 01

,   ,     .r r r z
rr rr rr rz

u u wu u u u
z z z z

r r r r r r z r rθθ θθ θθ

φ
ε ε κ ε φ ε κ γ φ

∂ ∂∂ ∂ ∂ ∂
= = + = + = = + = + = + = +
∂ ∂ ∂ ∂ ∂ ∂

 

where 0
rrε  and 0

θθε  are the normal radial and hoop local elastic strains associated with the mid-plane surface. Also, rrκ   and 

θθκ  are the principal curvatures of the deflected surface and rzγ  is out of plane shear strain.  
Using Hamilton's principle, the equations of motion and boundary conditions of annular plate based on the FSDT are derived 

such as [74]: 

(5)  
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(6)  
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( )

0 01        0      or       0      2       0     or       0 

                              3       0     or       0
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M φ
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where, the stress resultants rrN , Nθθ , rQ , rrM  and Mθθ , as well as the mass moments of inertias I0, I1, and I2 are defined as: 

(7)  

( ) ( )

( ) ( )

2
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4. FSDT based on Nonlocal Elasticity, Stress-driven Model 

Based on the FSDT, the components of strain tensor can be written such as: 

(8)  ( ) ( )
( )2 11 1

,    ,    .rr rr rr rz rzE E Eθθ θθ θθ

ν
ε σ νσ ε νσ σ γ τ

+
= − = − + =  

using Eq. (7) and Eq. (8) leads to: 

(9)  
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where A, B, C, and D are the stiffness coefficients and defined as follows: 

(10)  ( ) ( )
( )

/2
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−
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Finally, the mid-plane surface strain, 0
rrε  and 0

θθε , the curvature, rrκ  and θθκ , and the out of plane shear strain, rzγ , can be 

obtained by using Eq. (9) such as: 

(11)  
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The stress-driven model (SDM) proposed by Romano and Barretta [56] for nano-beams, is used to capture the size effects in 
axisymmetric vibrational behavior of annular nano-plates based on classical plate theory [76]. In this section based on SDM and 
first-order shear deformation theory by assuming the non-local elasticity for the radial strain of the mid-plane surface, 0

rrε , radial 
curvature rrκ , and the out of plane shear strain, rzγ , it can be written; 

(12)  
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0
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b
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where Lϕ  is the averaging kernel with the following properties: 
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(13)  ( ) ( ) ( ) ( ) ( )
0

0   ,     1   ,    lim  .L L L
L

r r dr r f r dr fϕ ϕ ϕ ρ ρ
+

+∞ +∞

→
−∞ −∞

≥ = − =∫ ∫  

and L is the characteristic length that can describe the size effects. In Eq. (13), f is any continuous test field [76]. In this study, 
exponential kernel function used for the analysis is expressed by Eq. (14). It can be proven that the following function fulfils all 
the necessary properties given by the set of Eq. (13): 

(14)  ( ) 1
exp

2L

r
r

L L
ϕ

  = −   
 

Using Eq. (14), Eq. (12) can be converted to the following stress-driven nonlocal differential equations, Eq. (15), with the 
constitutive boundary conditions in Eq. (16) as: 

(15)  
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using Eq. (4) into Eq. (15), the stress resultants can be obtained such as Eq. (17): 
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The equations of motion for the annular nano-plate based on the SDM and FSDT can be obtained by substituting Eq. (17) into 
Eq. (5) such as: 

(18)  
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Also, substituting Eq. (4) into the Eq. (16), the constitutive boundary condition can be obtained as follows by: 
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It can be concluded that by setting the parameter L equal to zero in Eq. (18), the equation of motion for the annular plate 
based on the local FSDT can be achieved. 

The different states of the possible boundary conditions for the annular plate are shown in Figs. (2-5).  

 

Fig. 2. Clamped inner condition and (a) clamped, (b) knifed support, (c) simply support, and (d) free outer. 
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Fig. 3. Knifed support inner edge and (a) clamped, (b) knifed support, (c) simply supported, and (d) free outer. 

 

Fig. 4. Simply inner edge and (a) clamped, (b) knifed support, (c) simply support, and (d) free outer edges. 

 

Fig. 5. Free inner edge and (a) clamped, (b), knifed support, (c) simply support, and (d) free outer edges. 

The boundary condition can be obtained by using Eq. (6) and Eq. (17). The associated mathematical relations are given in 
Table 1. Using the oscillating response assumption, the appropriate solutions for u0(r,t), w0(r,t) and ( ),r tφ  can be obtained such 
as: 

(20)  ( ) ( ) ( ){ } ( ) ( ) ( ){ }0 0 ,   ,  ,   ,  ,     ,    ,   ni tu r t w r t r t u r w r r e ωφ φ=  

where the natural frequency of the annular nano-plate is nω . Also, to analyze the influence of effective parameters on the 

natural frequencies of the FGM annular plate, the non-dimensional variables are defined such as Eq. (21): 
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The non-dimensional governing equations and the corresponding constitutive boundary conditions can be obtained by 
substituting Eq. (21) into Eq. (18-19), as follows: 
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Also, on using Eq. (21), the boundary condition in Table 1 can be recast in a non-dimensional form as given in Table 2. 

Table 1. Boundary condition and mathematical relation of annular plate based on SDM and FSDT. 
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Table 2. The non-dimensional mathematical relations based on the possible boundary conditions for the annular plate in question. 
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5. Method of Solution  

The high-order differential equations related to Euler beam and plate fourth-order differential equations have been solved 
using the generalized differential quadrature rule (GDQR) [77] as a general numerical method. In the present study, the free 
vibration of the FGM annular nano-plate based on the stress-driven model and Mindlin’s plate theory is governed by a system of 
fourth-order differential equations, which is constrained by six boundary conditions on each edge. 

Based on GDQR method, the nth order derivatives of functions U(s), W(s), and ( )sΦ  at any discrete point of a domain are 
approximated by a weighted linear sum of the function values at all discrete points s = si (i =1, 2,…, N) [77] such that: 
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and the weighting coefficients in Eq. (24-25) are defined as follows: 
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where L(x) is a Lagrange interpolation function with the following properties [77]: 
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and the first and second derivatives of the Lagrange interpolation function have been explicitly obtained in [78, 79]. 
The equation of motion and the constitutive boundary conditions, Eq. (21-22) can be written into the following form by using 

Eq. (23): 
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Also, the boundary conditions for the inner edge can be obtained using Eq. (23) and Table 2 as follows: 
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Finally, the boundary conditions for the outer edge can be written as:  
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(36)  { } { } ( ) ( ) { } ( ) ( )
2 2 2 2

1 3 1 32 2
1

1 1 1 1

1
, 0 , , 0,     0.

N N N N
N

rr rr c N cNk k Nk k Nk k Nk k
k k k k

U
N M A B E L E B D E L E Wν ν

α α

+ + + +

= = = =

      = ⇒ Ψ + − Ψ + ϒ + Φ − ϒ = =        ∑ ∑ ∑ ∑  

(37)  

{ } { } ( ) ( ) { } ( ) ( )

( ) ( ) ( )

2 2 2 2
1 3 1 32 2

1 1 1 1

2 2 2
1 3 22

1 1 1

1
, 0 , , 0, 

0 0.

N N N N
N

rr rr c N cNk k Nk k Nk k Nk k
k k k k

N N N

r N cNk k Nk k Nk k
k k k

U
N M A B E L E B D E L E

Q E L E E

ν ν
α α

+ + + +

= = = =

+ + +

= = =

      = ⇒ Ψ + − Ψ + ϒ + Φ − ϒ =        
  = ⇒ Θ +Φ − Θ + ϒ =   

∑ ∑ ∑ ∑

∑ ∑ ∑
 

In a similar form as shown in Refs. [80, 81], the assembled form can be presented such as Eq. (38) by rearranging Eq. (28) to Eq. 
(37): 

(38)  
[ ] [ ]
[ ] [ ]

{ }
{ }

[ ] [ ]
[ ] [ ]

{ }
{ }

{ }
{ }

2
0 0 0

0
bb bd b b

n
db dddb dd d d

S S U U

Q QS S U U

                     −Ω =                            
 

where, 

(39)  

{ } { } ( ) ( ) ( ) ( ) ( ) ( ){ }
{ } { } { }

1 1 1 1 1 1
1 6 3 1 3 6 1 1 1 1 1 1

6 7 2 2 1 2 2 2 1 1 1

,..., , ,..., = , , , , , , , , , , , ,

, ,..., , , , ,..., , , .

N N N N N N N Nb

N N N N Nd

q q q q q U W U W U W U W

U U U U U U W U W

+ +

+ − − −

= Φ Φ Φ Φ

= = Φ Φ
 

Applying the matrix sub-structuring method, Eq. (38) can be written into the following generalized eigenvalue equation: 

(40)  [ ] [ ]( ){ } { }2 0n dS Q U−Ω =  

where, 

(41)  [ ] [ ] [ ][ ] [ ] [ ] [ ] [ ][ ] [ ]1 1
    ,        dd db bb bd dd db bb bdS S S S S Q Q Q S S

− −= − = −  

The non-dimensional frequencies of the annular nano-plate, Ωn, can be obtained by solving the Eq. (40). 



 Mojtaba Shariati et al., Vol. 9, No. 3, 2023 
 

Journal of Applied and Computational Mechanics, Vol. 9, No. 3, (2023), 637-655   

644 

Table 3. Mechanical properties of FGM annular nano-plate. 

k=2/12 0.3ν =  7860mρ =  (Kg/m3) 3600cρ = (Kg/m3) 211mE = (Gpa) 380cE =  (Gpa) 

Table 4. Comparison of solution in Ref. [82] (GDQ with N=16)and numerical method for first dimensionless natural frequency of the annular plate 
(Lc = 0, n = 0, N = 10). The inside B.C. is clamped. 

 

 

 

 

 

 
Table 5. Comparison of solution in Ref. [82] (GDQ with N=16)and numerical method for first dimensionless natural frequency of the annular plate 

(Lc = 0, n = 0, N = 10). The inside B.C. is simply supported. 

 

 
 
 
 
 
 
 
 
 
 
 
 

6. Validation of the Solution Method 

A comparison has been made with other articles to check the correctness of the results. Also, the convergence of the obtained 
frequencies for the two models of stress-driven method and strain gradient theory has been investigated for different values of 
the size parameter in different boundary conditions. The mechanical properties of the FGM annular nano-plate are shown in 
Table 3. 

Reference [82] investigates the vibrations of annular plats made of isotropic homogeneous materials. In this reference, the 
effects of the ratio of inner diameter to the outer diameter and the boundary conditions on the natural frequency have been 
investigated by GDQ solution using local first-order shear deformation. To evaluate the efficiency of the solution method 
proposed in this paper, GDQR, the value of the first symmetric natural frequency for various boundary conditions is calculated 
and compared with the reference results mentioned in Tables 4-5. In order to achieve the results based on the local FSDT for 
isotropic homogeneous material, the size parameter, Lc, and the composite heterogeneity index n have been considered equal to 
zero. As can be seen, the results of the method presented in this article have good accuracy.  

Also, the convergence rate of the first symmetric dimensionless frequency of FGM annular plate is evaluated for different 
values of the size parameter, aspect ratio h/b=0.1, a/b=0.2 and the inhomogeneity index n=1 and any boundary conditions for the 
inner and outer edge of the annular plate. The results are shown in Figs. 6-9 as the magnitude of N is increased. As observed, The 
GDQR method is well applicable to the vibrational analysis of the FGM annular plate, with a fast convergence rate as N 
approaches 10. 

7. Result and Discussion 

According to the equations of motion derived based on the nonlocal SDM and FSDT, there are a few parameters that influence 
the vibrational behavior of the FGM annular nano-plate. These factors can be grouped as the material and geometry related 
factors; namely the size parameter Lc, heterogeneity index n, aspect ratios h/b, a/b, and the boundary conditions as shown in Figs. 
2-5.  

To investigate the effect of size parameter Lc, the ratio of the fundamental (first axisymmetric) natural frequency of the 
presented structure based on the nonlocal SDM and FSDT to the fundamental natural frequency of that based on local FSDT, 

, , ,SDM FSDT local FSDTΩ Ω versus the size parameter Lc is generated based on different types of conditions for four cases 
with { }0.05,  0.1/h b= and { }0.2,  0.3/a b= . These results are shown in Fig. 10-13. Additionally, to investigate the effect of aspect 
ratios a/b and h/b, the ratio of the fundamental natural frequency of the presented structure based on the nonlocal SDM and 
FSDT to the fundamental natural frequency of that based on the SDM and CLPT, , , ,SDM FSDT SDM CLPTΩ Ω versus the aspect ratios a/b and 
h/b are plotted for different types of conditions as shown in Figs. 14 to 21. Finally, to assess the effect of heterogeneity index n on 
the vibrational behavior of the FGM annular nano-plate, the fundamental frequency of the presented structure based on the 
nonlocal SDM and FSDT is calculated for the cases with aspect ratios / / 0.1a b h b= = and { }.0.00,  0.05, 0.10cL = Also, these 
results are shown in Figs. 22 to 25. These results are based on the values of 0.3 and 20 selected for the Poisson's ratio and the 
number of divisions for the presented numerical solution (GDQR), respectively, and the other mechanical properties of the FGM 
annular nano-plate are given in Table 3.     

Outside B.C.s   h/b  Solution method  

2

1 1
b h Dω ρΩ =    

a/b =0.1 a/b =0.2 a/b =0.3  

Clamped 
0.05 

Ref. [82],   26.534 33.533 43.599 
GDQR (Present work) 26.535 33.534 43.600 

0.1 
Ref. [82],   24.629 30.841 39.398 

GDQR (Present work) 24.628 30.841 39.398 

Simply support 
0.05  

Ref. [82],   17.460 22.262 29.256 
GDQR (Present work) 17.461 22.262 29.255 

0.1 
Ref. [82],   16.575 21.057 27.379 

GDQR (Present work) 16.575 21.057 27.379 

Free  

0.05 
Ref. [82],   4.215 5.155 6.623 

GDQR (Present work) 4.216 5.154 6.623 

0.1 
Ref. [82],   4.150 5.079 6.516 

GDQR (Present work) 4.151 5.080 6.516 

Outside B.C.s  h/b  Solution method  

2

1 1
b h Dω ρΩ =    

a/b =0.1 a/b =0.2 a/b =0.3 

Clamped  

0.05 
Ref. [82],    22.294 26.242 33.003 

GDQR (Present work) 22.294 26.241 33.002 

0.1 
Ref. [82],   21.200 24.916 31.010 

GDQR (Present work) 21.199 24.916 31.102 

Simply support 
0.05 

Ref. [82],   14.324 16.618 20.852 
GDQR (Present work) 14.324 16.618 20.852 

0.1 
Ref. [82],   13.874 16.164 20.219 

GDQR (Present work) 13.874 16.163 20.218 

Free 
0.05 

Ref. [82],   3.437 3.332 3.416 
GDQR (Present work) 3.437 3.331 3.416 

0.1 
Ref. [82],   3.400 3.309 3.398 

GDQR (Present work) 3.400 3.309 3.397 
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Fig. 6. Evaluating the convergence rate of the first symmetric dimensionless frequency of FGM annular plate, based on the different size parameters 

and (a) C-C, (b) C-KS, (c) C-SS, and (d) C-F boundary conditions with n=1, h/b=0.1 and a/b=0.2. 

 

 
Fig. 7. Evaluating the convergence rate of the first symmetric dimensionless frequency of FGM annular plate, based on the different size parameters 

and (a) KS-C, (b) KS-KS, (c) KS-SS, and (d) KS-F boundary conditions with n=1, h/b=0.1 and a/b=0.2. 

 

 
Fig. 8. Evaluating the convergence rate of the first symmetric dimensionless frequency of FGM annular plate, based on the different size parameters 

and (a) C-C, (b) C-KS, (c) C-SS, and (d) C-F boundary conditions with n=1, h/b=0.1 and a/b=0.2 
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Fig. 9. Evaluating the convergence rate of the first symmetric dimensionless frequency of FGM annular plate, based on the different size parameters 

and (a) KS-C, (b) KS-KS, (c) KS-SS, and (d) KS-F boundary conditions with n=1, h/b=0.1 and a/b=0.2 

 

 
Fig. 10. The effect of size parameter Lc on the frequency ratio of the annular FGM,

, ,
,

SDM FSDT local FSDT
Ω Ω with (a) C-C, (b) C-KS, (c) C-SS, and (d) C-F 

conditions with n=1. 

 

 
Fig. 11. The effect of size parameter Lc on the frequency ratio of the annular FGM,

, ,
,

SDM FSDT local FSDT
Ω Ω with (a) KS-C, (b) KS-KS, (c) KS-SS, and (d) KS-F 

conditions with n=1. 
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Fig. 12. The effect of size parameter Lc on the frequency ratio of the annular FGM,

, ,
,

SDM FSDT local FSDT
Ω Ω with a (a) SS-C, (b) SS-KS, (c) SS-SS, and (d) SS-F 

conditions with n=1. 
 

 

 
Fig. 13. The effect of size parameter Lc on the frequency ratio of the annular FGM,

, ,
,

SDM FSDT local FSDT
Ω Ω a (a) F-C, (b) F-KS, (c) F-SS, and (d) F-F 

conditions with n=1. 

7.1 Size parameter, Lc, effect on the vibrational behavior 

Firstly, the fundamental natural frequency of FGM annular nano-plate for different cases with aspect ratios 

{ }/ 0.2,  0.3h b= and { }/ 0.2,  0.3a b=  with different types of boundary conditions for two models, local and nonlocal SDM based 

on FSDT, are extracted. Then the frequency ratio, , ,SDM FSDT local FSDTΩ Ω is determined and plotted versus the size parameter Lc in Figs. 

10-13.  
According to Figs. 10-13, the vibrational frequency is well dependent on the size parameter as well as the type of boundary 

condition imposed on the plate edges. As can be seen, with the increase in size parameter Lc, the frequency ratio increases for all 
types of boundary conditions and aspect ratios. This indicates that the use of nonlocal SDM and FSDT leads to stiffening of the 
structure and thus the value of natural frequency increases compared to the local FSDT model. This phenomenon is very similar 
to the strain gradient theory [31-37] that has been proven physically (statistically) based on the theories for rubber-like materials 
by deriving a physically based strain gradient continuum by Jiang et al. [35].  

Furthermore, these results show that for modeling structures in nanoscale with any boundary conditions, non-local models 
must be used instead of the local model. It is also observed that the amount of increase of the frequency ratio is different for 
different values of the aspect ratios a/b and h/b, which will be investigated in terms of their effect on the vibrational behavior of 
the structure. 

7.2 Aspect ratio, a/b, effect on the vibrational behavior 

The fundamental natural frequency of FGM annular nano-plate for different types of boundary conditions, size parameters, 

{ }0.00,  0.05, 0.10cL = and aspect ratio h/b=0.1 is extracted based on the SDM together with the CLPT and FSDT. Then the 

frequency ratio, , , ,SDM FSDT SDM CLPTΩ Ω is determined and plotted versus the aspect ratios a/b in Figs. 14-17. In this case, the result for 

Lc=0.00 is nominated “local”. 
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Fig. 14. The effect of aspect ratio a/b on the frequency ratio of the annular FGM, R2,with (a) C-C, (b) C-KS, (c) C-SS, and (d) C-F conditions with 

h/b=0.1, and n=1. 
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Fig. 15. The effect of aspect ratio a/b on the frequency ratio of the annular FGM, R2 ,with (a) KS-C, (b) KS -KS, (c) KS -SS, and (d) KS -F conditions and 

h/b=0.1, and n=1. 
 

 

 

Fig. 16. The effect of aspect ratio a/b on the frequency ratio of the annular FGM, R2 ,with (a) SS -C, (b) SS -KS, (c) SS -SS, and (d) SS -F conditions with 
h/b=0.1 and n=1. 
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Fig. 17. The effect of aspect ratio a/b on the frequency ratio of the annular FGM, R2 ,with (a) (a) F -C, (b) F -KS, (c) F -SS, and (d) F -F conditions with 
h/b=0.1, and n=1. 

 

 
 

 

Fig. 18. The effect of aspect ratio h/b on the frequency ratio of the annular FGM,
, ,

,
SDM FSDT SDM CLPT
Ω Ω with (a) C-C, (b) C-KS, (c) C-SS, and (d) C-F 

conditions with a/b=0.2 and n=1. 
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Fig. 19. The effect of aspect ratio h/b on the frequency ratio of the annular FGM,

, ,
,

SDM FSDT SDM CLPT
Ω Ω with (a) KS-C, (b) KS-KS, (c) KS-SS, and (d) KS- 

conditions with a/b=0.2 and n=1. 
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Fig. 20. The effect of aspect ratio h/b on the frequency ratio of the annular FGM,

, ,
,

SDM FSDT SDM CLPT
Ω Ω with (a) SS-C, (b) SS-KS, (c) SS-SS, and (d) SS-F 

conditions with a/b=0.2 and n=1. 
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Fig. 21. The effect of aspect ratio h/b on the frequency ratio of the annular FGM,

, ,
,

SDM FSDT SDM CLPT
Ω Ω with (a) F-C, (b) F-KS, (c) F-SS, and (d) F-F conditions 

with a/b=0.2 and n=1. 
 

According to these figures, the vibrational frequency is well dependent on the aspect ratio a/b as well as the type of boundary 
condition imposed on the plate edges. It can be shown that in Figs. 14, 15(a), 16(a), and 17(a) for the plate with C-C, C-KS, C-SS, C-
F, KS-C, SS-C and F-C boundary conditions, with an increase in aspect ratio a/b, the aforementioned frequency ratio decreases. 
The highest and lowest value for this ratio belongs to the local and nonlocal model with the size parameter Lc=0.10. On the other 
hand, by increasing aspect ratio a/b, the difference between the results of the local and nonlocal model increases and indicate 
that using nonlocal SDM and FSDT is more vital to model the presented structure for the higher value of size parameter Lc and 
aspect ratio a/b. 

Based on Figs. 15(b, c), 16(b, c) and 17(d) for the plate with KS-KS, KS-SS, SS-KS, SS-SS and F-F boundary conditions, with the 
increase in aspect ratio a/b, the frequency ratio decreases. The lowest and highest value for frequency ratio belongs to the local 
and nonlocal model with the size parameter Lc=0.10. Except for the F-F boundary condition, by increasing aspect ratio a/b, the 
difference between the results of the local and nonlocal model increases and indicate that the use of nonlocal SDM and FSDT is 
more vital to model the presented structure for a lower value of size parameter Lc and higher value of aspect ratio a/b for 
mentioned boundary conditions except for the F-F boundary condition. Additionally, for the F-F boundary condition use of 
nonlocal SDM and FSDT is more vital to model the presented structure for a lower value of size parameter Lc and aspect ratio a/b. 

According to Figs. 15(d), 16(d) for the plate with KS-F and SS-F boundary conditions, with the increase in aspect ratio a/b for 
values up to nearly 0.35, the frequency ratio increases and decreases beyond that. Also, for these boundary conditions, the 
highest and lowest value for frequency ratio belongs to the local and nonlocal model with the size parameter Lc=0.10. Although, 
by increasing aspect ratio a/b, the difference between the results of the local and nonlocal model decreases. These results 
indicate that the use of nonlocal SDM and FSDT is more vital to model the presented structure for a lower value of size parameter 
Lc when the aspect ratio a/b increases and decreases from value 0.35. 

According to Figure 17(b, c) for the plate with F-KS and F-SS boundary conditions, with the increase in aspect ratio a/b for 
values up to nearly 0.25, the frequency ratio increases and decreases beyond that. Also, for these boundary conditions, the 
highest and lowest value for frequency ratio belongs to the local and nonlocal model with the size parameter Lc=0.10. Although, 
by increasing aspect ratio a/b, the difference between the results of the local and nonlocal model decreases. These results 
indicate that the use of nonlocal SDM and FSDT is more vital to model the presented structure for a higher value of size 
parameter Lc when the aspect ratio a/b increases and decreases from value 0.25. 
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7.3 Aspect ratio, h/b, effect on the vibrational behavior 

Like the previous section, the frequency ratio, , , ,SDM FSDT SDM CLPTΩ Ω is determined and plotted versus the aspect ratios h/b in Figs. 

18-21 for different types of boundary conditions and size parameters, Lc={0.00, 0.05, 0.1} and aspect ratio a/b=0.2. In this case, the 
result for Lc=0.00 is nominated “local” in Figs. 18-21. According to these figures, the vibrational frequency is well dependent on the 
aspect ratio h/b as well as the type of boundary condition imposed on the plate edges and with the increase in aspect ratio h/b, 
the frequency ratio decreases.  

According to Figs. 18, 19(a), 20(a) and 21 (a) for the plate with C-C, C-KS, C-SS, C-F, KS-C, SS-C and F-C boundary conditions, the 
highest and lowest value for frequency ratio belong to the local and nonlocal model with the size parameter Lc=0.10. Although, by 
increasing the aspect ratio h/b, the difference between the results of the local and nonlocal model increases. Except for the C-C 
boundary condition, this increase is less prominent for another mentioned boundary condition. In fact, this increase is more 
prominent for C-C boundary condition with larger aspect ratio h/b and size parameter Lc. These results indicate that the use of 
nonlocal SDM and FSDT is more vital to model the presented structure C-C boundary condition, for a higher value of size 
parameter Lc and aspect ratio h/b.  
Additionally, based on Figs. 19(b, c, d), 20(b, c, d) and 21(b, c, d), for the plate with KS-KS, KS-SS, KS-F, SS-KS, SS-SS, SS-F, F-KS, F-
SS and F-boundary conditions, the lowest and highest value for frequency ratio belong to the local and nonlocal model with the 
size parameter Lc=0.10. Although, by increasing the aspect ratio h/b, the difference between the results of the local and nonlocal 
model increases. Except for the F-F boundary condition, this increase is more prominent for another mentioned boundary 
condition with a larger aspect ratio h/b and size parameter  and using nonlocal SDM and FSDT is more vital to model the 
presented structure with mentioned boundary condition, for a higher value of size parameter Lc and aspect ratio h/b. 

7.4 Heterogeneity index, n, effect on the vibrational behavior 

To analyze the effect of heterogeneity index n on the vibrational behavior of the annular FGM nano-plate, the fundamental 
natural frequency of the presented structure is extracted for different types of boundary conditions, size parameters, Lc={0.00, 
0.05, 0.1} and aspect ratios a/b=h/b=0.1 based on SDM and FSDT. These results are shown in Figs. 22-25. In this case, the result for 
Lc=0.0 is nominated “local”. 

 
 
 

 

 
Fig. 22. Influence of material inhomogeneity parameter n and boundary conditions on the first natural frequency of annular FGM nano-plate with 

(a) C-C, (b) C-KS, (c) C-SS, and (d) C-F conditions and a/b = h/b = 0.1. 
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Fig. 23. Influence of material inhomogeneity parameter n and boundary conditions on the first natural frequency of annular FGM nano-plate with 

(a) KS-C, (b) KS-KS, (c) KS-SS, and (d) KS-F conditions and a/b = h/b = 0.1. 
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Fig. 24. Influence of material inhomogeneity parameter n and boundary conditions on the first natural frequency of annular FGM nano-plate with 

(a) SS-C, (b) SS-KS, (c) SS-SS, and (d) SS-F conditions and a/b = h/b = 0.1. 

 

 

 
Fig. 25. Influence of material inhomogeneity parameter n and boundary conditions on the first natural frequency of annular FGM nano-plate with 

(a) F-C, (b) F-KS, (c) F-SS, and (d) F-F conditions and a/b = h/b = 0.1. 

 
 According to these figures, increasing the material index, n, increases the value of natural frequency for all types of boundary 

conditions imposed on the plate edges. Also, with the increase in size parameter Lc, the difference between the results of the local 
and nonlocal model increase. This increase is more prominent for C-C, C-KS, C-SS, C-F, KS-C, SS-C and F-C boundary conditions 
and less prominent for other boundary conditions. These results indicate that the use of nonlocal SDM is more vital to model the 
presented structure with C-C, C-KS, C-SS, C-F, KS-C, SS-C and F-C boundary conditions for all values of size parameter Lc and 
aspect ratio h/b. 

8. Conclusion 

The non-local stress-driven method was utilized to analyze and investigate the vibration of functionally graded annular 
nano-plate. The equation of motion and related boundary conditions were solved by the generalized differential quadrature rule. 
The natural frequency of nano-plate was calculated for different boundary conditions, different inner and outer radiuses, 
different inhomogeneity parameters, different thicknesses, and different size parameters. The results are compared with those 
found in other articles. The accuracy of the numerical method used to solve this problem is very good. This method has also 
rapid (fast) convergence in solving this problem. The non-local stress-driven model predicts the same behavior for different 
values of a parameter while the strain-driven model predicts different behaviors. For example, the strain-driven method predicts 
stiffer behavior for some values of size parameter values and softer behavior for others, while the stress-driven method predicts 
the same behavior for all values of size parameter. According to the results obtained in this research, the use of stress-driven 
method along with generalized differential quadrature rule is suggested to engineers to solve similar problems. 
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Nomenclature 

E Elastic modulus [GPa] 0 0,rr θθε ε  The normal radial and hoop local elastic strains 

associated with the mid-plane surface 

ρ  Density [Kg/m3] φ  Angular rotation of the normal to the middle 

surface in radial direction 

ν  Poisson's ratio ,rr θθκ κ  The curvature of the nano-plate along r and θ  

axes 

n Heterogeneity index of the FG material , , , ,rr r rrN N Q M Mθθ θθ  Stress resultants 

m Indices specify the metallic phases of FG 

material 

, ,rr rzθθσ σ τ  Stress components  

c Indices specify the ceramic phases of FG 

material 

I0, I1, I2 Inertial constants 

V Volume ratio L, Lc The dimensional and non-dimensional 

material size parameter 

ur , uz Radial and transverse components of the 

displacement field 
Lϕ  Kernel function 

u0 , w0 Displacement functions along the radial 

and transverse axes of the nano-plate mid-

plane 

,n nω Ω  Natural frequency and dimensionless natural 

frequency 

A, B, D Elastic constants of the circular nano-plate L(x) Legendre interpolation function 

, ,rr rzθθε ε γ  Strain components    
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