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Abstract
We investigate the use of artificial intelligence (AI)-based techniques in learning to play
a 2-player, real-time strategy (RTS) game called Hunting-of-the-Plark. The game is
challenging to play for both humans and AI-based techniques because players cannot
observe each other’s moves while playing the game and one player is at a disadvantage
due to the asymmetric nature of the game rules. We analyze the performance of different
deep reinforcement learning algorithms to train software agents that can play the game.
Existing reinforcement learning techniques for RTS games enable players to converge
towards an equilibrium outcome of the game but usually do not facilitate further explo-
ration of techniques to exploit and defeat the opponent. To address this shortcoming,
we investigate techniques including self-play and strategy diversity that can be used by
players to improve their performance beyond the equilibrium outcome. We observe that
when players use self-play, their number of wins begins to cycle around an equilibrium
value as each player quickly learns to outwit and defeat its opponent and vice-versa. Fi-
nally, we show that strategy diversity could be used as an effective means to alleviate the
performance of the disadvantaged player caused by the asymmetric nature of the game.

Keywords: Real-time strategy game, asymmetric game, deep reinforcement learning, strategy
diversity

1 Introduction

Real-time strategy (RTS) games have recently emerged as an attractive means of analyz-
ing and evolving interactions between two or more players within a competitive setting. RTS
games are characterized by several complex features including large action and state spaces,
sparse rewards, and imperfect information in real-time about other players’ moves. These fea-
tures make it difficult for non-expert human players or simple computer algorithms to master
RTS games. But at the same time, these features make RTS games an effective mechanism for
understanding and responding in complex human-machine interactions such as cyber-security
and military war-games [1, 2]. To address the complexity of playing RTS games, researchers
have recently proposed deep reinforcement learning (RL) algorithms such as Alpha-Star with
remarkable success in games such as StarCraft-II and Capture the Flag [3, 4]. However, the
learning process or training used in these algorithms requires considerable time and comput-
ing resources to achieve expert level capability. Drawing inspiration from these results, in this
paper, we investigate the suitability of different deep RL algorithms paired with a technique
to diversify across a player’s strategies and quickly improve its performance, in the context
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of a 2-player anti-submarine warfare game called Hunting-of-the-Plark (HOTP). HOTP is an
asymmetric, pursuer-evader game where the pursuer has superior capabilities in terms of its
mobility and in perceiving the evader. This puts the evader at a distinct disadvantage even
if it is able to predict the pursuer’s movement strategy using deep RL. Most of the existing
techniques on deep RL algorithms for playing RTS games are focused on outperforming the
previously winning computer algorithm or champion human player, and win the game [4, 5].
A systematic comparison of the performances of different deep RL algorithms for learning to
play a game is not the primary focus. Also, there has been limited focus on techniques that
could break out of repeated stalemate outcomes in a game by disrupting the opponent, for
example, when both players consistently play with equilibrium strategies. To address these
issues, we make two main contributions in this paper. First, we analyze the performance of
different deep RL algorithms including advantage actor critic learning (A2C), proximal policy
optimization (PPO) and deep Q-networks (DQN) along with using techniques like self-play
for modeling the opponent’s moves and learning to play HOTP more effectively. We then in-
vestigate techniques to improve the disadvantage faced by the evader due to the asymmetry in
the game using improved exploration of the game’s problem space and strategy diversification
approaches. We have evaluated our techniques within several rounds of game-play of HOTP
within an AI gym environment. Our results show that the A2C algorithm achieves the best
performance in terms of learning time and convergence of rewards for both players as com-
pared to other deep RL algorithms. While self-play has been shown to be a suitable means
to hone a player’s abilities against its opponent, we show that if both players use self-play
it results in each player repeatedly cycling around an equilibrium value around 50% wins.
Finally, we show that strategy diversification by automatically switching between different
learned strategies can be used by the disadvantaged player in the asymmetric game to break
this cycle and improve its performance.

Our research results can be applied in several other domains that involve interactive decision-
making between competing machine-machine or human-machine teams. For instance, one of
the principal challenges in adversarial AI [6] is to guarantee that AI-enabled systems deployed
in the real world can continue to operate robustly and reliably while interacting with other hu-
mans or machines around them that could potentially misguide the AI to produce incorrect or
undesirable outputs. The self-play technique proposed in this paper could be used to address
the adversarial AI problem by learning to identify malicious actions by agents or humans that
are interacting with the AI and determining appropriate response strategies that ensure the
AI’s safe and risk-free operation. Closely related to adversarial AI, gamification techniques
have been used very successfully to enable humans learn new strategies to solve a difficult
problem. Examples include developing defenses against cyberattacks by playing an Escape
Room game [7], solving medical diagnosis problems as a clinician game [8] and, developing
problem solving skills by playing different roles in an ancient history-based game [9]. The
strategy diversity technique proposed in this paper could be used in such scenarios to develop
new strategies to defeat the opponent, for instance, by a cyber-defender to rapidly misdirect
cyberattackers into wasting their attacks on decoys or low-value targets. Finally, war-gaming
is a crucial exercise used for training military personnel [10]. Recent challenges in war-
gaming environments such as the Alpha Dogfight trials [11] have demonstrated that deep
RL-based techniques can outperform expert humans and sophisticated AI agents in complex
tasks like air combat maneuvers. Our research advances this direction by developing deep RL
techniques that respond strategically to aspects such as delayed or unavailable observations of
the enemy, and asymmetric capabilities of the two sides. These results could be used to inform
AI as well as humans to develop improved and appropriate responses in rapidly-evolving and
complex war-gaming scenarios. In general, our research results are relevant to general ma-
chine learning scenarios where interactions with adversarial entities could be used to develop
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new skills towards gaining a competitive edge and overcoming the adversary.
The rest of the paper is structured as follows: in the next section we discuss related work

followed by a description of the main rules for playing HOTP. We then describe a formal
representation of the game, the deep RL algorithms used to learn to play the game and the
different movement patterns used by the deep RL algorithms on the evading player during
learning. Sections 5 and 6 describe our experimental methods and evaluation of the RL algo-
rithms and techniques to improve players’ performances while playing the game, and finally
we discuss future research directions and conclude.

2 Related Work

The main focus of research on agents that learn to play computer games including RTS
games has been on how to determine winning strategies, that is, sequences of moves or ac-
tions that result in wins or higher rewards to the agent, by searching through the game-tree
representation of a game. For larger games like Chess, Checkers and Go, and RTS games
like StarCraft-II and Capture-The-Flag, it is infeasible to search through the entire game tree
due to its large size. Probabilistic search methods like Monte Carlo Tree Search (MCTS) [12]
have been the algorithm of choice for searching large game trees. Recently, MCTS has been
extended with deep machine learning in algorithms such as AlphaGo and AlphaZero [13, 14].
Here, suitable moves provided by human experts or learned via self-play are used help guide
the search towards winning outcomes. Results from these algorithms have shown that soft-
ware agents using them can defeat human champion players in Chess, Go, Checkers and many
other turn-based, strategic board games.

A more complex game-play setting is called partial observability where there is uncer-
tainty in the information available to a player at each of its turns during the game, due to
limited observability of the opponent’s moves or noisy sensor data. This makes it difficult
for a player to infer the current game state, or, in other words, which node in the game tree
the game-play is currently at before making its move. Examples of partial information games
include Reconnaissance Blind Chess, Poker, Hanabi and RTS games like StarCraft-II and
Capture-the-Flag, and the game analyzed in this paper, HOTP. To handle partial observability,
extensions of MCTS algorithms called Information Set MCTS [15], Belief state MCTS [16],
Libratus [17] and zero shot coordination [18] have been proposed. In these algorithms, in-
stead of calculating a single best response move to its opponent’s move, a player calculates
a set of best responses to each of the opponent’s possible moves. The player then discards
the opponent moves that are less likely to occur based on any partially observed information
it might have obtained, for example, via using a ’probe’ move to reveal the current state in a
part of the game board. RTS games, specifically, add yet another level of complexity beyond
partial observations, in that players no longer take alternating turns but can make moves in
parallel or asynchronously while playing the game. Other challenges in RTS games include
sparse rewards, delayed rewards and the credit assignment problem. To address these issues,
researchers have proposed algorithms like AlphaStar [4] that use a technique called league
play, where a player is matched up with opponents of increasing expertise levels while it is
learning to play the game. Results from playing StarCraft-II using Alpha-Star showed that
the agent could defeat human champions. In contrast to the games discussed above, a player
in HOTP has no information or zero observability of its opponent’s moves. Consequently, a
player’s information set cannot be pruned via inference like in partial observation games and
players have to rely on histories of past game plays to learn from opponent’s past behavior.

Recently, techniques to reduce the computational complexity of searching the game tree
within the deep RL algorithm, and methods to make players’ moves explainable to a hu-
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man have also been researched [19–22]. These approaches could be used to complement
the techniques in this paper to build faster and more human-interpretable techniques that can
play HOTP, while addressing the player’s limited observability of each others moves and the
asymmetric nature in the game.

3 Hunting-of-the-Plark: Game Rules and Challenges

Hunting-of-the-Plark (HOTP) is an asymmetric, pursuit-evasion type, Naval warfare game
that was first developed in 1987 under the title of Subsunk. The rules of the game were sub-
sequently formalized in 2015 in [23]. Recently, a computer-based version of the game was
developed by Montvieux Inc. along with a software interface for programming RL algo-
rithms [24] to encourage the application of AI within military war-gaming problems.

Figure 1: Screenshot of the Hunting-of-the-Plark game interface towards the end of a game
showing the Pelican (white triangle), Panther (yellow circle), sonobuoys (green circles) and
torpedoes (black rectangles).

HOTP is played on a rectangular game board that is divided into 900 hexagonal cells. The
game has two players, a submarine called the Panther, that is the evader, and an aircraft called
the Pelican, that is the pursuer. Panther’s objective is to enter from the bottom of the board
and exit from the top, while Pelican’s objective is to detect and sink Panther using its on-board
sensors, sonobuoys and torpedoes, respectively, before Panther exits the board. The number of
each sensor that Pelican can carry is limited by a finite carrying capacity. Pelican and Panther
take alternating turns and each gets 36 turns before the game ends. To play the game, Panther
can start at any location that is within a 10-cell radius from the bottom-center of the board,
and at each turn, it can move up to 2 cells from the location at the end of its last turn. Pelican
can start at any location on the board, and at each of its turns, it can make up to 20 moves, one
cell at a time and choose to deploy one of its available sensors at each cell visited during its
movement. Sonobuoys do not move beyond their deployed location and can sense underwater
movement (due to a torpedo or Panther) up to a range of 5 cells around them. Torpedoes
can move 3 cells in the first turn and 2 cells in the second turn following their deployment in
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the direction of their closest object (another torpedo or Panther). Pelican can become aware
of Panther’s presence if it visits (flies over) a cell currently occupied by Panther. However,
Panther’s presence information that is revealed to Pelican is partial and delayed - Pelican does
not know the exact cell in which the fly-over happened and the information becomes available
to Pelican only at the end of its turn. Consequently, Panther could move to a different cell
during its turn before the Pelican gets its next turn and returns to one of its previously visited
cells to deploy a torpedo. If a torpedo ends up in the same cell as the Panther, it either
sinks, sustains damage or survives with one-third probability for each outcome; two damages
sustained during the game sinks Panther. Panther wins if it is able to escape from the top of
the board or if the Pelican exhausts all its torpedoes without sinking the Panther. The Pelican
wins if it is able to sink the Panther before the end of the game. Any other outcome results in
a draw. A detailed description of the game rules is available in [23].

Although the rules of the HOTP game appear straightforward, the interactions between
the players can lead to complex scenarios. We identify three major factors contributing to
HOTP’s complexity:

• Large decision spaces: In HOTP, Pelican and Panther both have to make multiple,
sequential moves at each of their turns - 20 moves for each Pelican’s turn and 2 moves
for each Panther’s turn. Consequently, the decision space for selecting the best move
from the set of available moves at each turn is a 20 dimensional space for Pelican and
2 dimensional space for Panther. The exponential size of the decision space makes the
decision problem for selecting the best move infeasible to solve for either player using
deterministic game search algorithms.

• Limited information availability between players: Pelican can only infer partial in-
formation about Panther’s location if it is within range of a deployed sonobuoy while
Panther gets no information about Pelican’s movement strategy or deployed sensors at
any point in the game. This inability to fully observe the opponent’s moves leaves each
player uncertain about the current state of the game. To ameliorate this uncertainty,
each player needs to consider either every possible state of the game or the set of most
likely states of the game calculated from the most recent information, if any, about the
opponent’s moves. Decision making under uncertainty introduces an additional level of
complexity for the players to play the game effectively.

• Asymmetric interactions among the players: HOTP game rules make the game
asymmetric with Panther at a disadvantage as it has less mobility compared to Peli-
can (2 moves versus 20 moves at each turn) and has no information about Pelican’s
visited locations, or sonobuoy and torpedo deployment locations. In contrast, to sym-
metric or zero-sum games, asymmetric games are more difficult to play because each
player can no longer determine the opponent’s strategy as the mirror image of its own
strategy. Consequently, to respond effectively to opponent strategies, each player has
to build a model of the opponent based off past interactions, use this model to de-
termine opponent’s likely strategies and then calculate appropriate responses to those
strategies. Building precise opponent models from interaction histories introduces yet
another level of complexity in playing asymmetric games.

To address the aforementioned complexities of HOTP, we make two contributions. First,
we evaluate different deep RL algorithms to train agents that can autonomously play HOTP.
Then, we investigate techniques that can be used by Panther to craft incrementally complex
game-playing strategies so that it can overcome its disadvantage due to the inherent asymmet-
ric nature of the game.
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4 Learning to Play Hunting-of-the-Plark using Deep Reinforcement
Learning

Figure 2: Schematic of the Actor-Critic Algorithm [25]

RL algorithms are a class of machine learning algorithms that use a reward based frame-
work to enable an agent to learn how to perform sequential, decision-making tasks [26]. RL
is formalized using a mathematical model called a Markov Decision Process (MDP). For-
mally, the MDP underlying RL is given by (S,A, T,R, γ) where S denotes the set of states,
A denotes the set of actions for an agent, T denotes a state to action transition function spec-
ifying the forward dynamics model of the game where T (s, a, s′) is the probability of the
agent reaching state s′ when it takes action a at state s, R : S × A → < denotes a reward
function that gives a reward received by the agent by taking action a at state s, and γ is a
discount factor. The objective of the agent is to determine a state to action mapping called
a policy that maximizes the reward it receives while taking the actions towards performing
the task. Mathematically, the policy π : S → P (A) is given by a state to action mapping
that prescribes a probability distribution P (A) over the action set. The objective of the RL
algorithm is to determine an optimal policy that maximizes the expected rewards, that is,
π∗ = arg maxπ E(

∑∞
t=0 γ

tR(st, at)).
RL algorithms can be broadly classified into two categories called value-based and policy-

based. In the former, the agent learns an approximation of the expected future rewards from
each state in its state space, called the value function, while in the latter, it directly approxi-
mates the policy function using a gradient-based technique. Deep RL algorithms implement
the RL algorithms’ policy using a deep neural network called a policy network, that is pa-
rameterized using a set of network edge weights denoted by θ. The objective of deep RL
algorithms is to determine the value of parameter θ so that the policy realized via the policy
network maximizes the reward the agent receives while performing its task. The reader is
referred to [26] and [27] for excellent overviews of RL and deep RL algorithms respectively.

We have used three recent deep RL algorithms - one value function approximation based
algorithm, Deep Q-networks (DQN) [28], and two policy gradient-based algorithms, Prox-
imal Policy Optimization (PPO) [29] and Advantage Actor-Critic Learning (A2C) [30], for
learning to play the HOTP game. DQN is a value-based RL algorithm that tries to estimate
the action-value function by using a deep neural network. Formally, the action-value func-
tion is specified as a table of state-action pairs called the Q-table, denoted by Q(s, a). Each
state-action pair entry in the Q-table is updated using the equation: Q(si, ai) ← Q(si, ai) +
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α(Ri + γmax′aQ(si+1, a
′) − Q(si, ai), where α is a learning rate parameter. The Q-table

entries are updated until convergence, and, at that point, they give the optimal Q-values,
Q∗(s, a). When the agent performs its task, it selects actions corresponding to optimal Q-
values, which guarantees that it maximizes its expected rewards. In DQN, because the num-
ber of state-action pairs can be very large, instead of representing the Q-values as a table,
they are estimated using a function approximator such as a neural network with parameter
θ. The Q-function is then denoted as Q(s, a, θ) and the objective is to determine the opti-
mal value for parameter θ, θ∗, such that Q(s, a, θ∗) ≈ Q∗(s, a). For determining θ∗, the
loss for the i-th update of the Q-function is given by Li(θi) = Es,a,r,s′ [(yi − Q(s, a; θi))

2]
where yi = Ea′∼π[r + γmaxa′ Q(s′, a′; θi−1)|St = s,At = a] and the expectation is taken
over transitions of the form state, action, reward, next state tuples denoted in the equation
by (s, a, r, s′). The loss is minimized using a stochastic gradient descent approach. Another
extension in the DQN algorithm over the conventional Q-learning algorithm is an experience
replay buffer where transitions made during learning are added to the replay buffer. The loss
and its gradient are then computed using a mini-batch of transitions sampled from the replay
buffer. Further details of the DQN algorithm are in [28].

PPO and A2C fall under the class of policy gradient-based RL algorithms. In these al-
gorithms, the policy to be learned is again parameterized by θ. The general idea in policy
gradient RL algorithms is to repeatedly perform three steps until convergence: a sampling
step where multiple trajectories are sampled using the current policy, a policy evaluation step
where a performance measure for the current policy is calculated from the sampled trajecto-
ries, and a policy update step where the policy parameter θ is updated using the performance
measure calculated in the policy evaluation step. Mathematically, let τi = (si,t, ai,t : t =
0...|τi| denote the i-th sampled trajectory, and, N , the number of sampled trajectories. For the
policy evaluation step, the performance measure of the policy as a function of current value
of parameter θ is given as J(θ) = Eτ∼pθ(τ)

∑
tR(st, at)] ≈ 1

N

∑N
i=1

∑
tR(si,t, ai,t). The

policy update step is given by θ ← θ + αOθJ(θ), where α is the learning rate parameter and
OθJ(θ) = 1

N

∑N
i=1(

∑T
t=1Oθlogπθ(ai,t|si,t))(

∑T
t=1R(si,t, ai,t).

The actor-critic framework extends the policy gradient RL approach by separating the
policy evaluation and policy update steps. The critic component is responsible for the pol-
icy evaluation step and updates the Q-value function, denoted by Q̂ω(s, a), where ω is a
Q-function parameter. The actor component takes the updated Q-value provided by the critic
and does the policy update step using gradient descent: ∆θ = αOθ(logπθ(s, a))Q̂ω(s, a). In
the next step, the critic uses the updated policy determined by the actor for its value update.
The combination of value- and policy updates enables the actor-critic algorithm to learn more
efficiently than using a value-based or policy-based approach separately. Figure 2 illustrates
the interaction between the critic’s value update and actor’s policy update steps. A variant of
the actor-critic algorithm that we have used here, advantage actor-critic (A2C), substitutes the
Q-function with an advantage function, Aω(si, ai) = R(si, ai) + γQomega(si+1, ai+1) −
Qω(si, ai), inside the actor’s policy update step. This results in favoring policy updates to-
wards higher reward actions. The interested reader is referred to [27] for further details of the
A2C algorithm.

Finally, the proximal policy optimization (PPO) algorithm resolves a deficiency of the
gradient descent in the policy update step of the A2C algorithm by limiting the step size of the
loss function of θ using a clipped function, LCLIP (θi) = Êi[min(ri(θi)Âi, clip(ri(θ), 1 −
ε, 1 + ε)Âi], where ri(θ) = πθ(ai|si)

πθold (ai|si)
gives the ratio between the action probabilities after

and before the policy update, Ai is the advantage function and ε is a hyper-parameter. This
prevents the algorithm from making too small updates to θ and converging too slowly, or,
making very large updates to θ and overshooting θ’s optimal value. Further details of the PPO
algorithm are in [29].
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4.1 HOTP Game State and Action Spaces, Reward Function

For use with a deep RL algorithm, the HOTP game has been modeled in the form of a state
space comprising possible states in the game and a corresponding action space, comprising
actions that Pelican and Panther could take at each state. The different attributes or features
of the HOTP state space that are available to the Pelican and Panther are given in Table 1. In
the HOTP game implementation, Panther is given access to the Pelican features marked with
an asterisk, but these features are not included in Panther’s reward function. So, although the
Panther has this information, it does not utilize the information in its learning and behaves
agnostic to this information. We use Spel and Span to denote the features that are available to
Pelican and Panther respectively.

Table 1: Features of the HOTP game state space that are available to Pelican and Panther
respectively. ∗: feature available but not used for learning.

State Space Feature Notation Pelican Panther
Board size (width X depth) W ×D Yes Yes

(measured in hexes)
Pelican location xpel, ypel Yes No∗

Madman status mm ∈ {0, 1} Yes No∗

No. of Pelican moves Mpel Yes No
remaining per turn

Max. sonobuoy range rsb Yes No∗

No. of sonobuoys nsb Yes No∗

remaining
Sonobuoy location xsb, ysb Yes No∗

Sonobuoy On/Off onsb ∈ {0, 1} Yes No
No. of torpedoes ntor Yes No∗

remaining
Torpedo speeds vtor ∈ {0, 1, 2, 3} Yes No∗

Torpedo location xtor, ytor Yes No∗

No. of Panther moves Mpan No Yes
remaining per turn
Panther location xpan, ypan No Yes

Each player, Pelican and Panther, has 8 possible actions at each state that it can take to
move to one of the 8-neighbor cells from its current location. We denote the actions a0 through
a7 in a clockwise manner starting the cell directly north of the player’s current location, as
shown in Figure 3(a). If an action takes either player to a cell outside the game board limits,
the action is flagged as illegal and the player remains at its previous cell.

4.2 Overcoming Game Asymmetry

HOTP game rules make the game asymmetric as Pelican and Panther have disparate capa-
bilities and information about each other during the game. As shown in Table 1, Panther is at
a disadvantage compared to Pelican because it has access to less information about the game
state. For example, before taking each of its turns, Pelican could infer Panther’s approximate
location if Panther is within range of any of its deployed sonobuoys, and determine possible
locations to move through and deploy sonobuoys and torpedoes. Panther, on the other hand,
is not able to get any information about the location of Pelican or its deployed sonobuoys, and
cannot determine potentially safe locations to move to. Pelican can also move 10 times faster
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(a) (b) (c) (d)

Figure 3: (a) Possible actions of Panther, and, different movement patterns used by Panther:
(b) Move North, (c) Diamond, (d) Zig-Zag on the Hunting-of-the-Plark game board. The area
between the red dashed line area and the bottom of the board are the locations from which
Panther could start its movement.

than Panther (upto 10 Pelican moves for 1 move of Panther in each turn). We investigate two
methods to overcome this disadvantage, for Panther, as mentioned below:

• Environment Exploration. Explore the environment during learning more effectively to
infer possible placement locations of Pelican’s sonobuoys and avoid them, and,

• Strategy Diversity. Prevent Pelican from discerning Panther’s movement strategy by
diversifying across different Panther movement strategies, so that Pelican cannot place
sonobuoys on Panther’s route to detect it.

To achieve Panther’s exploration objective, we considered three deterministic or guided
movement patterns with increasing spatial distribution or coverage. The different Panther
movement patterns are illustrated in Figure 3(b)-(d) and described below:

• Non-guided (random) (NG). (not shown in Figure 3) In the non-guided pattern, Panther
selects a random direction from its current location to move to. It is used as a baseline
to compare the effect of the other, guided exploration patterns.

• Move North (MN). This is the basic, naive movement pattern provided with the HOTP
game implementation, where at each move Panther moves to the cell that is directly
north of its current location.

• Diamond (DI). The diamond movement pattern adds non-determinism to the Move
North pattern. It is executed by selecting a diamond-center location Cdia at random on
the board and executing a spiral pattern (approximated as a diamond shape) with radius
Rdia centered at Cdia. Panther moves in a Move-North pattern to reach the perimeter
of the diamond pattern from its start location at the bottom of the board, as well as to
continue towards the top of the board after finishing the diamond pattern.

• Zig-Zag (ZZ). In the zig-zag pattern, Panther moves upwards using a zig-zag or ladder-
like pattern, with Rzig and Rzag denoting the height and width of each leg of the ladder
respectively.

Note that although these movement patterns are used by the Panther only during the explo-
ration phase of its RL algorithm, they end up influencing both Panther’s final learned move-
ment strategy to evade Pelican as well as Pelican’s learned sonobuoy and torpedo placement
strategy to capture Panther.
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For strategy diversity, we investigated a mechanism where Panther switches between the
different strategies it has learned until it finds a strategy that performs best in terms of wins
over a certain time window (measured in number of games). The Panther continues to use
this best performing strategy until its number of wins over the time window falls below the
second best strategy’s performance, possibly due to the Pelican adapting its strategy. When
this happens, Panther starts another strategy switching cycle to determine the new best strategy
against Pelican.

Algorithm 1: Training and testing procedure for Pelican and Panther agents in
HOTP game experiments.

input : RLalg: RL algorithm to use for training agents
agpel, agpan: Pelican and Panther agents (post warm-up)
ttrain: No. of training iterations
nbat: No. of batches to split training into
ntest: No. of games to test trained agents with
is_SelfPlay: {True, False}

output: agpel, agpan: Trained Pelican and Panther agents

1 Procedure train-and-eval-agents(RLalg, agpel, agpan, ttrain, nbatch, ntest)
2 ag0pel, ag

0
pan ← agpel, agpan

3 tbat ← ttrain/nbat
4 for i = 1 to nbat do
5 if not is_SelfPlay then
6 (agpel,opp, agpan,opp)← (ag0pan, ag

0
pel)

7 end
8 else
9 (agpel,opp, agpan,opp)← (agi−1pan, ag

i−1
pel )

10 end
11 for tbat iterations do
12 agipel ←Train agi−1pel playing against agpan,opp using RLalg
13 end
14 for tbat iterations do
15 agipan ←Train agi−1pan playing against agpel,opp using RLalg
16 end
17 for ntest iterations do
18 Record outcome - win, loss, draw, rewards of agipel and agipan playing

against each other
19 end
20 end

5 Methods

We have addressed three main research questions to validate the performance of our pro-
posed techniques:

1. How do the three deep RL algorithms, DQN, PPO and A2C, compare in terms of con-
vergence of rewards as well as the magnitude of rewards for both Pelican and Panther?
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2. Do the different movement strategies - Move North (MN), Zig-Zag (ZZ, and
Diamond(DI), used by Panther to explore the environment during training, influence
the rate at which it learns to respond and win against the Pelican?

3. Does strategy diversity enable Panther to improve its performance if it is faced with
a stronger Pelican and overcome its disadvantage due to the asymmetric nature of the
game rules?

Materials and Equipment. All our experiments were performed within the AI gym en-
vironments for the HOTP game available at [24]. The experiments were run on a server with
200GB RAM, four 2.7GHz 12-core Intel Xeon CPUs each with 19 MB cache, two Quadro
P5000 GPU each with 16 GB RAM, with Ubuntu 20.10 as the operating system. For eval-
uating the performance of the different deep RL algorithms and different Panther movement
strategies, we performed a series of experiments while varying the RL algorithm and the set-
tings of the game. Each experiment consisted of three phases, as mentioned below:

• Warm-up. During this phase Pelican and Panther start with an untrained policy net-
work (with random weights) and play 30 games to train their respective neural networks.

• Training. In this phase, each agent starts with the trained model after the warm-up
phase and further trains the policy network against its opponent using the train-and-eval-agents
method described in Algorithm 1. The training procedure is divided into batches. At
the start of each batch, each agent selects the opponent to train against (lines 5 − 10).
If the agents are not using self-play, the opponent is the initial, post-warm opponent
agent. If using self-play, the opponent is the trained opponent model from the previous
training batch. The training is done using the deep RL algorithm being evaluated and
the opponent agent’s model is kept fixed during the agent’s training (lines 11 − 18).
Each iteration consists of 30 games between the agents.

• Evaluation. At the end of each batch, the performance of the trained models of each
agents are evaluated by playing ntest games against each other (lines 17− 19). To even
out first mover advantages during the games, Pelican is the first mover in half of the
games, while Panther is for the remaining half.

Table 2: Rewards for different Pelican and Panther actions and game outcomes in
plark-env-v0 environment.

Player Action Reward
Pelican Drop sonobuoy, low spacing −0.2

(sonobuoy ranges overlapping)
Pelican Drop sonobuoy, high spacing +0.5

(sonobuoy ranges not overlapping)
Either Illegal Move −0.1

Either Win Game +1

Either Lose Game −1

Game Settings and Rewards. HOTP can be played on three different board sizes or maps:
small (10× 10), medium (10× 10) and large (30× 30) hexes. We used the gym environment
called plark-env-v0 for our experiments. In this environment, Pelican has up to 10 moves
at each turn in the small and medium maps, and up to 20 moves for each turn in large map,
while the Panther has 1 move each turn in all (small, medium and large) maps. For most of our
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Table 3: Pelican and Panther Variables Names and Possible Values.

Pelican Variables
Training Type NO: No learning

RL: RL only (no self-play)
SP: Self-play w/ RL

Gaming Resources n: No. of sonobuoys available to drop
Panther Variables

Training Type NO: No learning
RL: RL only (no self-play)
SP: Self-play w/ RL

Start location FS: Fixed start loc
RS: Random start loc

Movement Pattern NG: Not-Guided
(during exploration MN: Move North
phase of RL) ZZ: Zig-Zag

DI: Diamond
Trained Against (NO/RL/SP)n: Trained against Pel-(NO/RL/SP)-n

experiments, we used the small map. The action-reward structure for the plark-env-v0
environment is given in Table 2.
Agent Naming Convention. Pelican and Panther agents can have numerous configurations
depending on the different variables that characterize their behavior and training procedure.
To concisely and legibly identify the configuration of a Pelican or Panther agent, we have
used an agent naming convention based on the variables that determine the agent’s behavior, as
given in Table 3. Each agent is identified with a string given by <agent-prefix>-<var1>-<var2>-....
For example, for Pelican agent, Pel-NO-5 denotes a Pelican agent that does not use any
learning to determine sonobuoy placement locations and drops 5 sonobuoys at fixed, pre-
determined locations, Pel-SP-3 denotes a Pelican agent that drops 3 sonobuoys at locations
that are learned using RL with self-play, and Pan-RL-FS-ZZ-SP3 denotes a Panther agent
that uses RL for training, starts from a fixed location at every game with Zig-Zag as its ex-
ploration method during RL training, and trains against a Pel-SP-3 Pelican. There are
additional variables for the agent configurations depending on the deep RL algorithm used
and its hyper-parameters, parameters used during training the RL algorithm, etc. For the
sake of legibility of agent names, we have specified these additional variables alongside the
respective experiments.

6 Experimental Results

In this section, we discuss the results of the experiments we performed to validate the
aforementioned research questions:

6.1 Performance Comparison of Different Deep RL Algorithms

For our first experiment, we evaluated the performance of three deep RL algorithms,
DQN, PPO and A2C, for learning to play HOTP. The training and testing procedure used
for this experiment is shown in Algorithm 1. The different inputs of the algorithm used for
these experiments were RLalgo = {DQN,PPO,A2C}, ag0pel = Pel-NO-5, ag0pan =

Pan-NO-RS-ZZ-NO5, ttrain = 104, nbat = 4, ntest = 100. The different hyper-parameters
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used in our experiments for the different RL algorithms are given in Table 4. Most of the
hyper-parameters are set of default values given in stable-baseline2. For some of the hyper-
parameters, we used a hill-climbing technique to determine suitable values that gave better
performance. The results of the experiments without and with self-play for both Pelican and
Panther and are shown in Figure 4. Our main findings were that DQN and PPO failed to
converge even after 105 training iterations and Pelican could never learn to effectively place
sonobuoys to detect the Panther. A2C was the most effective RL algorithm as both Pelican
and Panther learn to play the game after the first batch of training iterations. These results
indicate the purely value-based or policy gradient-based RL algorithms like DQN and PPO
are not suitable for learning to play HOTP game quickly, especially for the Pelican, as the
large state and action spaces coupled with sparse rewards for most actions end up requiring
substantial times for these algorithms to explore the state-action space effectively for deter-
mining a suitable policy. In contrast, the interspersing of policy evaluation update and policy
update by the critic and actor respectively in A2C first enables the Pelican to learn a policy
to capture the Panther, and subsequently enables both agents to learn policies to defeat each
other.

Table 4: Hyper-parameters of the different RL algorithms used in our experiments.

Parameter DQN PPO A2C
Gamma 0.99 0.99 0.99

Number of Steps N/A 128 5

Value Function Coefficient N/A 0.5 0.25

Entropy Coefficient N/A 0.01 0.01

Learning Rate 5× 10−4 2.5× 10−4 1× 10−4

Exploration Fraction 0.1 N/A N/A
Prio. replay False N/A N/A

(a) (b) (c)

Figure 4: Comparison of different deep RL algorithms, (a) DQN, (b) PPO, (c) A2C, for
learning to play the HOTP game by Panther and Pelican agents. Solid (dashed) lines show
scores for agents using (not using) self-play during training.

6.2 Performance Comparison of Different Pelican versus Panther Match-ups

For our next set of experiments, we evaluated the effect of different Pelican and Panther
encounters. For all our experiments under this category, we used A2C as the RL algorithm
for both agents, training was done over 10, 000 iterations. We investigate two research sub-
questions under this category:
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1. Learning Improvement Via Exploration. Under what conditions is exploration of
the environment effective in improving Panther’s performance towards overcoming the
game asymmetry?

2. Learning Transferability. Can a Panther perform well against a weaker or stronger
Pelican than the one it trained against?

Table 5 shows the results for pairings between different training regimes of Panther and
Pelican agents. The values in each cell denote the number of wins out of 100 games received
by the Panther in that cell’s row while playing against the Pelican in the corresponding col-
umn. Because 50 out of 100 wins is the break even point for each player, we consider Panther
to have overcome the asymmetry in the game if it gets more than 45 wins. For representing
the table data compactly, we have used the agent naming convention in Table 3 with the sub-
columns inside each column representing more aggressive explorations by Panther going from
left to right. So, FS-MN represents a Panther that uses fixed start location with a MN move-
ment pattern to explore during learning, FS NG Panther has fixed start location but random
exploration during learning, while RS NG Panther has random start locations and random
exploration during learning. We make two main inferences from the experiment results:

1. Exploration with self-play improves Panther scores against weaker or equal Pelican.
When Panther plays against a weaker Pelican than it trained against, or, trains using
self-play while the Pelican it plays against also uses self-play during training, exploring
the environment improves Panther scores. This can be attributed to the relative ineptness
of the Pelican’s weaker learned strategy that leaves holes for the Panther to escape if it
explores the environment more effectively. For example, in the green-highlighted cells
in Table 5, Panther wins nearly 100% when it is faced against a weaker Pelican that did
not use learning. Similarly, for the blue-highlighted cells, Panther’s wins improve to
nearly 50% or more to overcome the game asymmetry while playing against an equal
Pelican due to more exploration coupled with self-play.

2. Exploration by Panther is not effective against a stronger Pelican. When Panther plays
against a stronger Pelican than it trained against (non-highlighted cells) without using
self-play it performs poorly with around 10% wins. This is because, due to the asym-
metric nature of the game, no matter how much exploration Panther does it has ’no way
out’ against the stronger Pelican. Finally, the orange-highlighted cells show that Pan-
ther with self-play performs poorly against a weaker Pelican. A possible explanation
for this is that exploration along with self-play in these cases likely results in Panther
overfitting its strategy to Pelican during training, making it less adaptable to different
Pelican sonobuoy placement strategies during evaluation.

Clearly, an astute Pelican would train to be equal or stronger than the Panther, and, leave
Panther at a disadvantage due to the asymmetry in the game. To alleviate this, we next evaluate
different exploration and strategy diversity techniques for the Panther.

6.3 Evaluation of Different Panther Environment Exploration Strategies

For our next set of experiments, we evaluated the effect of improved Panther exploration of
the environment (game board) on its learned evasion strategy while using three different ini-
tial movement patterns, Move-North, Diamond and Zig-Zag, described in Section 4.2. Recall
that Panther’s initial movement pattern enables it to explore the environment during its initial
training phases and better exploration enables Panther to infer possible locations of Pelican’s
sonobuoys and evade them to improve its performance in the game. In each of the exper-
iments, Pelican agents used are Pel-RL-5, that is, they use RL to train against Panther
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Table 5: Performance of different Panther models (rows) in terms of no. of wins out of 100
games/average rewards against different Pelican models (columns).

Pel-NO-3 Pel-RL-3 Pel-NO-5 Pel-RL-5

Start location (SS):
Move method (MM):

FS FS RS
MN NG NG

FS FS RS
MN NG NG

FS FS RS
MN NG NG

FS FS RS
MN NG NG

Pan-RL-SS-MM-RL3 98 99 94 17 8 14 0 0 7 22 9 7

Pan-SP-SS-MM-RL3 26 17 17 18 45 64 1 3 0 52 41 67

Pan-RL-SS-MM-RL5 48 42 92 16 11 26 83 81 95 34 18 19

Pan-SP-SS-MM-RL5 97 4 33 13 48 58 39 0 0 7 47 47

Panther Fixed Start Loc. Panther Random Start Loc.

(a) (b)

(c) (d)

(e) (f)

Figure 5: Average wins and losses out of 100 games for Pelican and Panther versus no. of training
iterations used to train the agents, with different Panther initial movement patterns, (a)-(b) Move North,
(c)-(d) Diamond with radius=2, 4, 6 (e)-(f) Zig-Zag, with step-size=2, 4, 6.
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and can deploy up to 5 sonobuoys. Panther agents are varied over Pan-AA-SS-MM-RL5,
where AA={RL, SP}, SS={FS, RS}, and MM={MN, MNR, DI,DIR, ZZ, ZZR}, giv-
ing 24 possible Pelican-Panther matchups. Other parameters used for the experiments are
RLalgo = {A2C}, ttrain = 104, nbat = 4, ntest = 100 games. Pelican and Panther wins (out
of 100 games) are recorded after every 1000 training iterations. Figure 5 shows the results of
our experiments with dashed (solid) lines showing training without (with) self-play. Our re-
sults show that, as expected, the naive initial movement strategy Move-North (MN) is the least
effective for Panther as it results in fewer than 20 wins with fixed start locations, as shown
in Figure 5(a). When Panther starts at random locations using MNR pattern, in Figure 5(b),
it makes the learning task harder for Pelican, and Panther’s wins improve to about 20 with-
out self-play and 40 with self-play. Diamond (DI and DIR) and Zig-zag (ZZ and ZZR) are
more effective strategies than MN due to their improved exploration of the environment and
they give notably higher wins than MN or MNR, as shown in Figures 5(c)-(f). Also, Panther’s
number of wins increases with fewer training iterations, indicating that the training takes less
time to converge. We observe an interesting game dynamics in Figures 5(d)-(f): Panther and
Pelican wins start to follow a cyclic pattern - as soon as each player learns a strategy to defeat
its opponent decisively, the opponent too starts to learn a counter-strategy and soon ’turns the
tables’. The cycle pattern in the number of wins continue until both players converge to the
50% win mark, which corresponds to the equilibrium outcome in the game.

6.4 Evaluation of Panther Strategy Diversity

For our final set of experiments, we investigated if strategy diversity via switching between
different strategies could be used as a means to break the cycle pattern in number of wins
of each player around the equilibrium. To clearly understand the effects of strategy diver-
sity, we only allowed Panther agents to switch between different strategies while the Peli-
can agent used the same strategy, without switching, in all the experiments. Three Panther
agents were first trained to play against a Pel-SP-5 Pelican yielding three Panther agents:
Pan-SP-FS-MN-RL5, Pan-SP-FS-ZZ-RL5 and Pan-SP-FS-DI-RL5. A Pelican agent
was then trained against the Panther using DI strategy, that is, Pan-SP-FS-DI-RL5. Note
that because Pelican had specifically learned to play and defeat DI Panther during training, DI
Panther got the least number of wins during testing. Each experiment was run for 100 games
with the trained Pelican agent versus Panther switching between two or more of the trained
strategies at intervals of 10, 20 and 30 games. Table 6 shows the results of the experiments. As
illustrated by the results, Panther can improve its wins from a low-performing movement strat-
egy, like DI, if it switches between the low-performing and another well-performing move-
ment strategy, like MN. The switching interval was not found to have a significant effect on the
number of wins of Panther, as shown by the low standard deviation values in the last column
of Table 6. Overall, these results are useful because Panther is not aware which Pelican it
is facing post-training, and it if maintains a collection of different strategies in its arsenal, it
could switch between them and improve its wins if faced against a superior Pelican.

7 Conclusions and Future Work

Deep RL algorithms have been recently investigated as a suitable means for playing dif-
ferent RTS games and our experiences with evaluating and extending different deep RL algo-
rithms for the HOTP game confirm this direction. Our main findings show that in a compet-
itive setting like HOTP, any one player or team cannot learn a perennially winning strategy
owing to the repeated, turn-taking nature of the game and players will repeatedly learn to

International Journal of Serious Games
ISSN: 2384-8766

Volume 10, Issue 1, March 2023
https://doi.org/10.17083/ijsg.v10i1.548



P. Dasgupta and John Kliem, Improved Reinforcement Learning in Asymmetric RTS Games page. 35

Table 6: Number of Panther wins out of 100 games, averages and stdev for different Pan-
ther movement patterns without (top three rows) and with (bottom four rows) switching, with
different Panther strategy switching intervals.

Movement Switching Interval
Pattern 10 20 30 Ave. Stdev
DI 16.8 16.8 16.8 16.8 0

ZZ 40.9 40.9 40.9 40.9 0

MN 57.7 57.7 57.7 57.7 0

ZZ ←→ DI 29.1 32.3 33.4 31.6 2.23

MN ←→ DI 38.3 41.5 44.1 41.3 2.91

MN ←→ ZZ 48.3 51.2 48.2 49.23 1.7

MN ←→ ZZ ←→ DI 40.1 38.8 39.4 39.43 0.65

defeat the opponent’s strategy resulting in cycles around an equilibrium value of around 50%
wins for each player. Using more diversity in movement strategies and switching between
multiple learned strategies while playing the game also appears to be a suitable means to
overcome the asymmetry of the game for the disadvantaged player. These results advance
the state-of-the-art techniques in AI for playing RTS games providing approaches that could
enable players to avoid repeated stalemate outcomes due to playing equilibrium strategies and
improve their performance in the game. Our results pave the way for investigating many open
problems and challenges in solving asymmetric RTS games like HOTP. RTS games have very
large decision spaces and players also have partial or no information about opponent moves,
and consequently, about the current state of the game before making a move. These chal-
lenges make it impractical to use state-of-the-art game-tree based search algorithms or vanilla
deep RL algorithms as the only means to solve these games. It makes sense to develop the-
ories and frameworks to investigate novel approaches that use clever tactics like focusing on
only ’useful’ parts of the game instead of the whole game board and adapting RL algorithms
to learn quickly in large decision spaces. Recently proposed approaches like rainbow algo-
rithms [31] that separately consider individual aspects from deep RL algorithms like deep
Q networks to reduce the computation complexity, and Munchausen RL [20] that makes ad-
justment to the reward function to enable the RL agent to learn to solve a task rapidly and
with fewer exploration indicate towards promising solutions to solve these issues. Applying
these concepts in the context of RTS games is one of the future directions we are investi-
gating. Another important direction in AI-based game playing techniques is to ensure that
the decision made by players can be understood and analyzed by humans. We are exploring
recently proposed techniques like saliency maps [22], history aware training [32] and graph
attention-based techniques [33] in the context of the HOTP game to address this direction. Fi-
nally, hierarchical RL techniques [34] are a promising direction to investigate for Panther and
Pelican to learn meta-strategies that could automatically determine when and which strategy
each player could switch to, to improve its performance. Overall, the research in this paper
provides a better understanding of some of the main challenges in asymmetric RTS games and
we envisage that this direction will lead to more efficient techniques for solving RTS games
and, more generally, for determining suitable strategies in competitive interactions between
humans and human-machine teams.
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