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Artificial intelligence (AI) has recently gained popularity, becoming a buzz 
word in the fields of science, technology, engineering and mathematics. 
AI aims to teach a computer how to replicate human intelligence to 
perform human tasks. Machine learning (ML) is a subset of AI that uses 
data to teach a machine how to imitate human behaviour. The overall goal 
of ML is to have a computer perform a task that a human performs, based 
on prior collected data, with high accuracy, quickly and automatically. The 
‘holy grail’ for ML is to have a computer outperform the prediction ability 
of humans. While the purpose of ML is clear, ML has no standard model 
and is almost exclusively task-specific.

ML performs statistical operations on data sets to learn underlying 
patterns. The three most common ways a machine can learn are through 
supervised, unsupervised and reinforcement learning. Each way of 
learning is specific to the available data and/or the operators’ goals. 
Supervised learning uses labelled data to understand the correlation 
between inputs and outputs. Unsupervised learning finds hidden patterns 
within data sets. Reinforcement learning determines optimal decisions 
based on feedback from the interaction between an agent and an 
environment. In 2021, there were a total of 13,646, 7,774 and 11,567 
publications specifically under the labels ‘supervised’, ‘unsupervised’ and 
‘reinforcement’ learning, respectively, according to the Scopus database 
(https://www.scopus.com). The number of publications of these three 
learning styles have been steadily increasing, picking up momentum from 
approximately 2010 (Figure 1). In this primer review article, we focus on 
supervised and unsupervised ML, as reinforcement learning is an 

algorithm that has not yet found applications in healthcare, particularly in 
cardiac electrophysiology (EP).

The earliest ML models are linear and non-linear least squares regression, 
which aim to learn functions of a defined form from data, and have been 
around for centuries.1–3 In terms of modern ML, the first application is 
considered to be the mathematical model depicting the activity of 
interconnected neurons described by McCulloch and Pitts in 1943.4 This 
model has progressed and is known today as an artificial neural network 
(ANN or NN). In 1959, Samuel created a NN type model, which used a form 
of reinforcement learning to teach a computer to play checkers.5 This 
work showed the feasibility of a computer mimicking human learning. 
Since then, many other ML models have been developed that have 
attempted to model human intelligence.

In the field of healthcare, ML has been leveraged to better equip clinicians 
and patients with the ability to make confident decisions for better care. 
ML is in the infant stages of being implemented as part of clinical practice 
and typically entails the use of data derived from sources such as 
electronic health records (EHR), ECGs and implantable devices. The 
amount of medical data available is rapidly increasing as new technologies 
are being incorporated in clinical and everyday settings, such as 
smartwatches capturing biological signals. For instance, the onset of 
Parkinson’s disease could be predicted in individuals 75% of the time 
before an actual diagnosis is made using an ML model that operated on 
wireless signals collected from remote sensors.6 While these advances 
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are promising, much work needs to be done to establish and expand the 
use of ML in healthcare.

In the field of cardiac EP, ML is an active area of research, in the early 
testing phase for adoption into clinical practice for specific applications. 
The cardiac EP community has shown an increased interest in the subject. 
Clinical practitioners are eager to understand what ML entails and 
participate in determining the usefulness of these technologies in their 
practice and decision making. The overall goal of this ML primer review is 
to provide an overview of supervised and unsupervised ML models and to 
explain how they operate and how they have recently been used in 
cardiac EP studies.

Machine Learning Models
Supervised Learning
Within ML, the most common type of learning is supervised. Supervised 
learning uses data that has both inputs and outputs. Other names for 
input data are ‘features’ or ‘independent variables’ and likewise, output 
data are called ‘labels’, ‘targets’, ‘dependent variables’, or ‘ground truth’. 
Simply put, supervised learning uses data sets with both x and y variables, 
and the goal of a supervised learning algorithm is to optimise a model to 
predict y from x. Due to the nature of big data, supervised ML models 
usually operate on a large number of input features to determine a 
singular or few output values. Typically, supervised learning models 
contain parameters, commonly called learnable, that are adjusted via an 
optimisation procedure during the learning process. For supervised ML 
models, there are two types of tasks which they can learn to perform. The 
first task is classification, where output data and, accordingly, the ML 
models’ predictions are discrete, representing different classes (i.e. 0/1; 
true/false; A/B/C, e.g. from 12-lead ECG, predict AF, occurrence – yes, or 
no?). The second is regression, where output data and the corresponding 
ML models’ predictions can be any continuous numerical value (i.e. 0.84; 
11.3%; -2.6 kg, e.g. from an echocardiogram, what is the volume of the left 
ventricle?). Below we focus on the most common supervised ML models, 
how they operate and how they have recently been applied in cardiac EP 
studies.

Typical Supervised Learning Models
Least Squares Regression
Least squares regression operates by minimising the square of errors 
between ground truth and the model’s predictions. These models are of a 
defined form with learnable parameters that are subject to an optimising 
procedure (i.e. a linear function is of the form y = mx + b where m and b 

are learnable parameters). The simplest case of least squares regression, 
linear or multilinear regression, is an ML method that fits a linear equation 
to input data to predict an output. It assumes that all the features in a data 
set are linearly proportional to the outputs and minimises the errors in 
determining the linear relationship. Ridge regression and lasso regression 
are two common variations of linear regression which aim to minimise the 
error of a linear regression model by also minimising or completely 
removing the effects of low correlating features on the predictions; this is 
done by introducing penalty terms to the linear regression model. Logistic 
regression is a non-linear least squares regression which fits a logistic 
function to data by minimising the error between the correct and predicted 
output labels. Typically, logistic regression is used for binary classification 
where the ground truth is either class 1 or class 2 and the model 
incorporates a decision boundary (usually 0.5) to classify the predictions 
to either class. Linear and logistic regressions tend to work wonderfully 
on many data sets and often outperform more complex ML algorithms, 
but as powerful as they tend to be, they are often too simple to capture 
the behaviour of complex systems due to the rigidity of defining the 
model’s structure.7,8 Illustrations of linear and logistic regressions are 
shown in Figure 2A and B, respectively.

In cardiac EP, there have been several studies using least squares 
regression to predict different outcomes, ranging from predicting the 
likelihood of AF recurrence to what wattage catheter ablations perform 
better.9–15 Least squares regressions have been preferred in these studies 
because they are easy to implement, can learn the key features (from EHR 
data/clinical covariates or ECG biomarkers, or in performing survival 
analysis), and are interpretable. Least squares regressions are often 
included with other ML algorithms to help find the best performing model. 
For example, in the study by Jia et al. lasso regression was first used to 
determine the most relevant features, which were next used in a logistic 
regression to predict AF recurrence within a year post radiofrequency 
ablation.13 These two least squares regression methods performed well in 
conjunction because the penalty terms in lasso regression helped eliminate 
low corresponding features and logistic regression learned on the most 
important features, ignoring noise induced by low corresponding features. 
Another example is by Howell et al. who applied a lasso regression model 
on short-term cardiac resynchronisation therapy (CRT) responses to 
identify CRT patients who most needed early heart failure care.15 Least 
squares regressions have also been used in simulation cardiac EP studies: 
Maleckar et al. showed that logistic regression predicted the risk of 
arrhythmia in post myocardial infarction patients from late gadolinium 
enhancement MRI (LGE-MRI) and patient EHR; the simple logistic regression 
model slightly outperformed other more complex ML models.12

Support Vector Machines
Support vector machines (SVM) are ML models that typically solve 
classification problems by defining a decision boundary to split data into 
different classes.16 The decision boundary is defined as a plane or curved 
surface in the space of the input data to differentiate the classes. In the 
simplest binary case, the decision boundary is a linear discriminator and 
is called a hyperplane. Two support vectors (H1 and H2) are determined as 
an up and a down shift from the decision boundary and are defined by 
data points. The distance between the two support vectors is called the 
margin, which is a variable used in the optimisation procedure. Using an 
iterative process, the optimisation procedure maximises the margin and 
minimises the amount of incorrectly predicted labels. Variations of SVM 
exist to classify complex non-linear data, where the hyperplane is typically 
replaced with a (bending) hypermanifold. An illustration of SVM is shown 
in Figure 2C.

Figure 1: Number of Publications per 
Year: Supervised, Unsupervised and 
Reinforcement Machine Learning Styles 
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SVM have been used in cardiac EP studies to accomplish various tasks 
from predicting the presence of AF in ECG to forecasting which patients 
would have a positive outcome from cardiac resynchronisation therapy.17–21 
SVM were preferred in these studies because they are easily interpretable, 
are able to handle high-dimensional data and can be used in conjunction 
with other ML models. Overall, SVMs are one of the easiest ML models to 
implement. An example of SVM in cardiac EP is the study by Nguyen et al. 
in which ECG features were extracted with another ML model, and then 
subsequently used as inputs to an SVM for prediction of AF from a single-
lead ECG.19 Shenglei et al. applied SVM to predict, from LGE-MRI and ECG 
features as well as clinical data likelihood of sudden cardiac death or 
heart transplant in patients with dilated cardiomyopathy and low ejection 
fraction.18 Additionally, Narayan et al. used an SVM, which outperformed a 
neural network, to predict future ventricular tachycardia and mortality 
within 3 years from ventricular monophasic action potentials.20 
Comparatively, SVM performed well because the data was of low 
dimensionality. 

Artificial Neural Networks
While NNs can be used in specific cases in unsupervised learning, 
typically, they are used to solve supervised learning problems for both 
regression and classification predictions.22,23 For the simplest supervised 
learning version of NN, the multilayer perceptron model, a type of dense 
NN, uses numerous layers of nodes interconnected through different 

strengths/weights to represent the synaptic connection between neurons. 
Typically, the input data are operated upon, transformed, and then passed 
to the next layer as its input. This process is repeated through all layers 
until arriving at the output layer, which is the prediction. Most commonly, 
a loss function is defined as the difference between prediction and 
ground truth, and through a process called gradient descent/
backpropagation, the strengths/weights connecting layer to layer are 
updated iteratively until the optimal model is achieved when the loss 
function ceases to decrease. In addition to the multilayer perceptron, 
there are other types of NN developed to learn on different types of data 
sets.

Originally derived from studying the biological process of light activating 
specialised cells in a cat’s eye, convolutional neural networks (CNN) 
overlap learnable filters (multi-dimensional array of weights) on regularly 
spaced data, like image pixels or ECG signals, to learn common features.24 

Gradient descent/backpropagation is performed to optimise the model by 
adjusting the learnable filters. Likewise, recurrent NNs are a form of 
dense NN that handle series data, typically time series, to learn important 
features as they evolve. Some of the most popular recurrent NN styles are 
long-short term memory and gated recurrent unit, which incorporate a 
framework that retains only the most important information from prior 
points in the series.25,26 NNs have become the most popular type of ML 
models. As they typically require very large data sets to learn from and 

Figure 2: Supervised Machine Learning Models

A
Linear regression line

Y

X

Y

X

Y

X

Errors

Decision boundary

Decision boundary

Logistic
regression curve

B

C
D

Support vector 
H2

Support vector
H1

Input Layer

Hidden Layer

Output Layer

Margin
Class 1 Class 1

Class 1 Class 1

5
 In

p
u

ts

(A) Linear regression finds the line of best fit to predict the output from inputs X. By minimising the errors, the parameters are tuned to determine the optimal line. (B) Logistic regression finds the optimal 
tunable parameters which minimise the error between the logistic curve and the data. The input features, X, are used to predict an output. The decision boundary divides the output predictions into 
class 1 or class 2. In this example, the logistic regression model incorrectly classified the pruple circle furthest right. (C) Support vector machine finds the optimal decision boundary to split the two 
classes. In this simple case the hyperplane is a linear line. To find the optimal decision boundary, the margin is maximised by increasing the distance between the two support vectors, (H1 and H2) while 
also minimising the amount of incorrectly labelled data points. The purple circles above the decision boundary would be incorrectly classified and vice versa for the blue squares below. (D) Neural 
network framework is made up of three fully interconnected layers, of which the first is a five-node input layer, the second is a three-node hidden layer, and the last is a 1-node output layer. A forward 
pass takes 5 inputs and operates upon them, layer by layer, until a prediction is made and the difference between the prediction and the ground truth is used to define a loss function. The purple and 
blue are interconnecting weights of various positive and negative strengths, respectively.
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can take a long time to train, it is common to first apply other simpler ML 
models to see if they can solve the problem at hand. Figure 2D shows a 
simple illustration of an NN.

In a recent explosion in popularity, NNs are being widely used in cardiac 
EP, from predicting AF or congestive heart failure from heart rate 
variability biomarkers, to predicting the presence of acute myocardial 
infarction from an ECG.27–44 NN models have been preferred in these 
studies because they can practically operate on any data type, and they 
inherently learn feature importance and the relationships between 
features. These studies have demonstrated the advantages of NN in 
handling raw ECG data, raw LGE-MRI signals, electroanatomic mapping 
(EAM) data, and overall, in learning from high dimensional complex 
data. An example of NN in cardiac EP is using a CNN on a 12-lead ECG 
to predict the new onset of AF within a year from baseline ECG in 
patients with no prior history of AF.43 Because the filters in a CNN can 
capture key patterns in the ECG, this approach was able to distinguish 
the signature of early remodelling of the atrial myocardium. Another 
study trained a CNN on registered ischaemic scar masks from LGE-MRI 
to segmented CT images to learn to detect the presence of ischaemic 
scar tissue from CT images alone.32 Popescu et al. developed an 
approach to risk assessment of sudden cardiac death due to arrhythmias 
which combined NNs with survival analysis to construct patient-specific 
survival curves offering accurate predictions of up to 10 years; the 
methodology allowed for estimation of uncertainty in predictions for the 
input data.40 The NNs learned on raw cardiac images and clinical 
covariates, and with this approach, significantly outperforming standard 
survival models.

Random Forest
Random forest operates by defining many thresholds, or branches, in a 
multitude of randomly determined decision trees to predict either 

classification or regression outputs, typically based on majority rules or 
averaging.45 To create many distinct random decision trees, a method 
called bootstrapping is used, which randomly selects features in the 
data set to create a sub-data set for training a distinct decision tree, 
which is subsequently aggregated with other distinct decision trees.46 

Aggregation of many distinct trees increases the model’s ability to 
correctly predict, but also makes the model more complex. For binary 
classification, each split in an individual decision tree decreases the 
impurity of the subgroup, i.e. maximises the number of similar classes in 
the next set of branches (Figure 3). Typically, each separation operates 
to minimise the Gini index or entropy in each split. Minimising either 
value incorporates measuring how much information is gained by 
setting a threshold and grouping the data. Similarly, for regression 
problems, each split in the tree finds the minimum difference between 
predictions and ground truth (minimal square of error) for each input 
individually to determine the optimal split. For both processes, splitting 
continues until the maximum number of branches/splits is reached or 
until splitting quits optimising the branch. The last splits on a branch 
are called leaves. An example of a random forest model is shown in 
Figure 4.

Random forest algorithms are a popular approach in cardiac EP and 
have been used in studies ranging from predicting left atrial appendage 
flow velocity to predicting 30-day mortality post ST-elevation myocardial 
infarction.47–55 Random forest models were useful in these studies 
because a decision path to the correct prediction could be found in the 
majority of distinct trees. Random forest models have been shown to be 
particularly useful in providing interpretability due to each split being a 
defined threshold that offers insight. These advantages were 
demonstrated in using post ST-elevated myocardial infarction EHR data 
to predict mortality; the algorithm was able to find proper splitting 
because there were many features with high importance that alone 
were able to correctly predict outputs.55 Rouhi et al. showed that 
through extracting custom features from ECGs, a random forest model 
was able to detect AF.48 Pičulin et al. were able to predict the progression 
of hypertrophic cardiomyopathy 10 years out using a random forest 
model.52 Additionally, both of these studies by Rouhi et al. and Pičulin et 
al. offered model interpretable, i.e. a meaningful insight into the model’s 
decision making. Shade et al. used a random forest model that 
combined in silico data for substrate arrhythmia inducibility with imaging 
and clinical data to predict risk of sudden cardiac death due to 
arrhythmia in sarcoidosis patients.51 Random forest was able to predict 
well on this data set because it can split the multimodal data many ways 
to inform its decision and incorporate the correlation between the 
different data types.

Unsupervised Learning
Unsupervised learning aims to learn the underlying patterns within a data 
set without explicitly knowing how data is correlated, i.e. to find patterns 
within data x without having the labels y. Typically, unsupervised learning 
aims to cluster instances into distinct groups which are most similar to 
each other. Defined clusters are often used to infer labels for use in a 
supervised machine learning model. Another common form of 
unsupervised learning is dimensionality reduction, which aims to 
transform the data set to reduce noise and size. Typically, dimensionality 
reduction is used in conjunction with another model to improve 
performance. Altogether, unsupervised learning is ideal for learning 
unbiased information about data and can function on data without many 
data points (i.e. data sets with a low number of patients in the cohort). 
Here, we discuss some of the most popular unsupervised ML models.

Figure 3: Binary Classification Split

Class 1 Class 2

Impurity is decreased by choosing a threshold that maximises the grouping of data points of the 
same class. The top branch is pure and is a leaf of the decision tree, whereas the bottom split is 
83% pure and could be split again.
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Typical Unsupervised Learning Models
k-means
k-means is an unsupervised ML model that aims to cluster data entries 
that are most similar to each other.56 Prior to training the model, a set 
number of clusters, k, are chosen to fit the data set and are each given an 
initial centroid location in the data space. Each cluster is defined by 
conglomerating all data points whose Euclidean norm is closest to the 
clusters’ centroid. Through minimising the distance between all data 
points in a cluster and the cluster’s centroid, the centroid’s location is 
updated in an iterative manner until the data points stop swapping 
between clusters or a maximum number of iterations is reached. Typically, 
k-means is easy to implement and is a powerful tool for clustering 
separable data, but is defined by a strict algorithm and may not be able to 
capture information from complex data sets. Additionally, k-means is 
affected by outliers. An example of k-means is shown in Figure 5A.

In cardiac EP, k-means clustering has been used in studies, from finding 
clusters in data on heart rate variability, to finding scar tissue by 
clustering similar LGE-MRI pixels together.57–62 Unsupervised k-means 
models were preferred in these studies because they are easy to 
implement, are highly interpretable and perform unbiased learning. 
These studies have demonstrated the advantage of k-means in 
operating on small data sets and in discovering unknown underlying 
patterns. An example of k-means in cardiac EP was the study by 
Schrutka et al. which used measurements from electrocardiographic 
imaging (ECGI) and common 12-lead ECG to cluster patients with cardiac 
amyloidosis.60 k-means determined patterns of overlapping information 

between ECGI and ECG measurements that help to create a cardiac 
amyloidosis diagnostic test. In another study, k-means was performed 
on atrial ECG and EAM data to discover five distinct clusters in persistent 
AF patients that could be used for a more complete characterisation of 
the persistent AF substrate.62 Wang et al. applied k-means to MRI data 
to find if left bundle branch block precedes dilated cardiomyopathy.57 
Two clusters were found with features that distinguished patients who 
did and did not have dilated cardiomyopathy preceding left bundle 
branch block. These findings could better equip clinicians with 
predictors to CRT success.

Principal Component Analysis
When data is not easily separable or there are too many features in the 
data for another ML model to fit, principal component analysis (PCA) can 
separate data, reduce noise, and reduce the number of features in the 
data.63,64 While PCA does not separate data into clusters, like k-means, it 
can be used to enhance the performance of another model. To separate 
the data set into principal components, a correlation matrix is defined that 
describes how much each feature of the data set correlates with another. 
Typically, PCA operates using either Eigen or single-value decomposition 
of the correlation matrix, which calculates the principal components 
describing the arrangement of the data. To reduce the data and remove 
noise, the original data set is transformed to an uncorrelated space by 
using the lowest principal components. Once data is reduced/transformed, 
it is common to either perform standard statistical measures or other 
unsupervised ML models to discover important patterns in the data set. 
An illustration of PCA is shown in Figure 5B.

Figure 4: Random Forest Model
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PCA has been used in multiple cardiac EP studies ranging from predicting 
different atrial arrythmias to predicting congestive heart failure.34,59,61,65–67 
PCA was preferred in these studies since it reduced the data size to help 
other ML models learn the most important features within a data set. 
Balaban et al. applied PCA to a segmentation of the left ventricle to 
determine the lowest principal components of the ventricles’ shape for 
use in a Cox-lasso regression model to identify patients at the highest risk 
of sudden cardiac death, aborted sudden cardiac death, or ventricular 
tachycardia.66 PCA was applied by Selek et al. to predict congestive heart 
failure from heart rate variability biomarkers and other measurements by 
using only the lowest principal components.65 PCA has been applied to 
simulated vectorcardiograms to find the most important features so that 
patient-specific activation maps can be reconstructed.67

Conclusion
In this primer, we presented the most popular and most used models in 
cardiac EP research – ‘supervised’ and ‘unsupervised’ ML. In addition to 
describing and explaining the models, we included a rationale for their 
use in cardiac EP studies. Our hope is that this primer will help the 
cardiac EP community to understand how ML is used to address 

problems in arrhythmias and cardiac EP, and to provide a glimpse of the 
different rationales applied in choosing a particular ML approach. New 
ML methods are constantly being developed and often custom ML 
models are needed depending on the data structure and the problem at 
hand.

ML is making major and rapidly increasing changes to our field. While ML 
is typically viewed as a ‘magic wand’ or ‘black box’ to obtain desired 
results, without understanding the principles, the potential to encounter 
difficulties cannot be avoided. Potentially, the largest issue with ML is data 
unavailability. It is common for large data sets to have missing values, or 
the data needs to be converted to different forms (i.e. words to numbers). 
Additionally, data tends to be specific to a certain population and, overall, 
does not reflect a larger population. Lack of data diversity leads to ML 
models being trained for only specific tasks that cannot generalise to a 
broader population.

While there are many obstacles for ML in cardiac EP to overcome, the 
potential of ML is unprecedented. With proper understanding, our field is 
poised to be revolutionised by ML. Clinical decision-making involving ML 
is expected to become a more powerful force in combating rhythm 
disorders and heart disease, as ML algorithms will be better able to 
predict risk and diagnose patients accurately. 

Clinical Perspectives
•	 Machine learning, a branch of artificial intelligence, leads the 

current technological revolution through its remarkable ability to 
learn and perform on data sets of varying types, and is expected 
to change contemporary medicine.

•	 To achieve clinical acceptance of machine learning approaches 
in arrhythmias and electrophysiology, it is important to promote 
general knowledge of machine learning in the clinical 
community and highlight areas of successful application.

•	 The field of cardiac electrophysiology can leverage machine 
learning to enhance clinicians’ decision-making abilities and 
ensure better patient care.

•	 Supervised machine learning models operate to predict clinical 
electrophysiology outcomes by learning the correlations 
between input and clinical outcome.

•	 Unsupervised machine learning models analyse clinical 
electrophysiology data to learn hidden patterns which may 
determine distinct clinical phenotype clusters.

Figure 5: Unsupervised Machine Learning Models
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(A) k-means: Two clusters were found through grouping together all data points most similar to 
each other. Centroids are the mean values of all data points within each respective cluster. (B) 
Principal component analysis (PCA): The first and second principal components describe the 
arrangement of the data. A majority of the data’s variance is expressed in principal component 1. 
PCA transforms the data into a reduced and uncorrelated space to describe the data in its 
principal components.
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