

Integrating Legacy Applications into Service Oriented

Architecture Middleware

A thesis is submitted in fulfillment of the requirements for the degree of

Masters of Science

In

Computer Science

By

Makaziwe Makamba

Supervisor: Prof. Mamello Thinyane

Computer Science Department

 Private Bag X1314

ALICE

5700

December 2012

ii

Declarations

I, the undersigned hereby declare that the work that is contained in this thesis is my own

original work, and it has not been submitted to any educational institution for similar or any

other degree. Any information that is extracted from other sources is acknowledged.

Name: M. Makamba

Date: December 2012

iii

Dedications

I dedicate this work to my mother, Thobeka Makamba, who has been there for me,

supporting and guiding me. Thank you Mom for the unwavering love that you show me. To

my Dad, Zamikhaya Gxabe who has been there for me, Thank you “Khaya” for every

support and motivation that you have given me. I also dedicate this to my late brother,

Akhona Makamba, who believed in me, who had amazing support in every direction that I

took, who motivated me in all spheres of my life. To my lovely sister Nxonxo and Lazola

Makamba, you guys know how to keep me smiling; thank you so much for the support that

you gave me. I love you guys dearly. To all my family thank you for being there for me. I

also thank everyone who supported me during the course of my study.

iv

Acknowledgements

I would like to thank God Almighty for giving me strength throughout this journey, without

you Lord I can do nothing.

There is no achievement in this life without the help of many known and unknown

individuals who have contributed to our lives. This work is the result of a lifetime of learning

and development from supervisors, friends, colleagues, family and supporters who invested

their time and energy in my life, I am grateful for the unwavering support. We are all the sum

total of what we have learned from other people, and we owe any measures of success to the

input of those people.

Here are the people who made this work possible, and they were there during the inception,

incubation and the development of this project.

To my supervisor Prof Mamello Thinyane, thank you for your support, encouragements,

guidance, willingness and perseverance on making this work possible. Thank you so much.

To my Mother who supported me throughout this journey, thank you.

To my Dad and family, I’m grateful for the support and encouragements.

To my Dearest friends Bulie and Thembelani, Thank you so much for the support, motivation

and for being there for me. I love you guys….!

I would also like to thank my sponsor Telkom, without you my dream of pursuing my Master

degree would not have been achieved.

To all my friends and colleagues in Computer Science department thank you so much for

your support. Without your help this work wouldn't be complete. To Norbert Jere, Thank you

so much for your input in this work. May God bless you!

This work was undertaken within the Telkom Centre of Excellence in ICT for Development

which is funded by the DTI through the THRIP programme and Industry Partners.

v

Abstract

Information and Communication Technology (ICT) is a dynamic approach that is widely

recognized as an innovative and powerful tool for socio-economic development, it is a key

catalyst for the emergence of knowledge economy. ICT have been used to develop

applications, promote transparency and efficiency in multiple services such e-Learning, e-

Government, e-Health and e-Judiciary especially for Marginalized Rural Areas (MRAs). The

ICT approach is designed to bridge the digital divide. This approach has been widely

deployed in many programs and it has led to the development of a new field which is

Information and Communication Technology for Development (ICT4D). Within the context

of ICT4D there are arrays of e-services that have been deployed to improve the impoverished

communities. Some of these applications have failed to bring the changes that were designed

to bring in the community due to the use of old architectures. There is therefore a need to

develop a system that will integrate legacy applications into contemporary architectures. To

solve the problem of the legacy applications we have developed TeleWeaver Service

Oriented Architecture (SOA) middleware into which we integrate an e-Commerce and e-

Learning applications into SOA middleware. For this integration system there are specific

technologies that were used to integrate legacy applications into SOA middleware: RESTful

web services using the slim API, SOAP via Nu-SOAP technologies were used to integrate

these legacy applications. Specific methodologies were used to achieve the objectives of this

research. The literature review, brainstorming, interviews and development of the system are

some of the methods that were used to achieve the objectives of this study.

The research methodology is mainly through experiments and to study TeleWeaver SOA

middleware architecture. Interviews were conducted to analyze and understand the

community needs, since the application discussed in this thesis is tested and implemented for

a rural community. The community is called Dwesa, and falls under the ICT project within

the Siyakhula Living Lab (SLL). A basic prototyping and Unified Modeling Language

(UML) was created to design the system.

This thesis presents the design and implementation of a system that integrates legacy

applications into an SOA middleware that brings flexibility and effectiveness to these ICT e-

services. The research focuses on integrating legacy applications into Service Oriented

vi

Architecture (SOA) middleware. It seeks to bring flexibility to e-services that are developed

for MRAs. The use of SOA architecture that supports re-usability and interoperability of

application provides effectiveness to the e-services. The novelty of the system is in its

flexibility, usability and sustainability. SOA is an approach that provides a separation

between the interface of the service and its underlying implementation. One of the

achievements of the integration project is its ability to connect to SOA middleware. This

increases the effectiveness of these e-services. The usability and performance evaluations are

conducted to test and evaluate the system within the SLL on the TeleWeaver platform.

vii

Publications

The following publications were submitted during the course of this research:

 M. Makamba and M. Thinyane. Implementation of an Adapter Component to Integrate

Legacy Applications into an SOA Middleware. Southern Africa Telecommunication Networks

and Applications Conference – SATNAC, East London, Eastern Cape, South Africa 2011.

M. Makamba, N Twele, Miss D Masuku, S Lutshete, L Sonamzi and M Thinyane.

Enhancing Information and Communication Technology Solutions for Rural Communities.

IST African Conference, held in Tanzania. 2012

viii

List of Acronyms

API Application Programming Interface

 Development

DOSGI Distributed Open Service Gateway Initiative

GWT Google Web Toolkit

ICT Information and Communication Technology

ICT4D Information and Communication Technology for

My-SQL My Structured Query Language

OSGI Open Service Gateway Initiative

OTS Off the Shelf

PHP Hypertext Preprocessor

RHS Reed House System

SLL Siyakhula Living Laboratory

SOA Service Oriented Architecture

SOAP Simple Object Access Protocol

SSO Single Sign On

UML Unified Modeling Language

URI Uniform Resource Identifier

URL Uniform Resource Locator

WSDL Web Service Definition Language

XML-RPC Extensible Markup Language- Remote Procedure Call

ix

Table of Contents

Declarations ... ii

Dedications ... iii

Acknowledgements ... iv

Abstract ... v

Publications ... vii

List of Acronyms .. viii

Table of Contents .. ix

Table of Figures .. xiv

Table of Listings ... xvi

List of Tables ... xvii

1. Chapter 1: Introduction .. 1

1.1 Introduction .. 1

1.2 Research Context .. 2

1.3 Research Problem ... 4

1.4 Research Questions ... 5

1.5 Aims and Objectives of the Project ... 5

1.6 Research Methodology ... 6

1.7 Overview of research objectives ... 7

1.8 Research Motivation ... 8

1.9 Dissertation Overview: ... 9

1.10 Conclusion .. 10

2. Chapter 2: Literature review and Technology review 11

2.1 Introduction .. 11

2.2 Application modernization .. 12

2.3 Research Location- Dwesa and SLL intervention .. 15

2.3.1 Siyakhula Living Lab ... 16

2.3.2 ICT for rural areas .. 16

2.3.3 The Legacy e-Services ... 17

2.3.3.1 The e-Commerce Services ... 17

x

2.3.3.2 The e-Health Service.. 18

2.3.3.3 The e-Government Service ... 18

2.3.3.4 The e-Judiciary Services .. 18

2.3.4 SOA under SLL intervention .. 19

2.4 Technologies for Modernizing and Integrating Legacy Applications 19

2.4.1 Service Oriented Architecture (SOA) Platforms 20

2.5 Origin of SOA .. 22

2.6 Reason for Using SOA approach .. 22

2.7 Web Services .. 26

2.7.1 XML-RPC.. 27

2.7.2 WSDL .. 28

2.7.3 SOAP ... 28

2.7.3.1 Nu-SOAP .. 28

2.7.4 REST Web services .. 29

2.8 SOA Middleware .. 29

2.8.1 TeleWeaver SOA Middleware .. 30

2.8.1.1 OSGI ... 32

2.8.1.2 TeleWeaver Middleware and Libraries employed for integration

system ... 35

2.9 Application Programming Interface .. 37

2.10 Application Integration ... 37

2.10.1 Advantages and benefits of application integration 39

2.10.2 Ways of Integrating Applications ... 40

2.10.2.1 Manual Application Integration .. 41

2.10.2.2 Semi-Automated Application Integration 42

2.10.2.3 Fully Automated Application Integration 42

2.10.3 Challenges of application integration .. 43

2.11 Related Work .. 44

2.11.1 The iWay middleware .. 44

2.11.2 SAP NetWeaver ... 45

xi

2.12 Conclusion .. 45

3. Chapter 3: Methodology Perspective on Integrating Legacy Applications into

SOA middleware and System Requirements .. 47

3.1 Introduction .. 47

3.2 System requirements ... 47

3.3 Methodology use to achieve integration project .. 50

3.3.1 Requirement Elicitation .. 50

3.3.1.1 Interviews .. 51

3.3.1.2 Observation ... 51

3.3.1.3 Brainstorming .. 52

3.3.1.4 Prototyping .. 53

3.3.1.5 Literature Review .. 55

3.3.1.6 Developing a Working system ... 56

3.3.1.7 Testing and Evaluation Method .. 56

3.4 Requirement Analysis ... 57

3.4.1 Functional requirements ... 58

3.4.2 Non Functional Requirements .. 59

3.5 Conclusion.. 62

4. Chapter 4: System Design .. 63

4.1 Introduction .. 63

4.2 System Architecture.. 63

4.3 System Modules or Components ... 64

4.3.1 Third Party application Modules... 65

4.4 System Integration .. 65

4.5 Design Frameworks .. 66

4.5.1 Presentation layer ... 67

4.5.2 The Business logic ... 68

4.5.3 Third Party Application .. 68

4.6 User Interface ... 69

4.7 Use-case Scenarios ... 70

xii

4.8 Conclusion.. 75

5. Chapter 5: Implementation and Development of the system 76

5.1 Introduction .. 76

5.2 Legacy applications .. 77

5.3 System Organization ... 77

5.4 Moodle Application .. 78

5.5 Os-Commerce Legacy Application ... 80

5.6 Developing Application using Slim API ... 80

5.7 Developing a Slim API ... 81

5.8 API that Connects with Legacy Application .. 82

5.9 Rest Client .. 83

5.10 Rest Client method for Consuming Services ... 84

5.11 The e-Commerce Client Side .. 84

5.12 GWT .. 85

5.13 TeleWeaver connection with 3rd part applications 85

5.14 TeleWeaver Components .. 87

5.15 System implementation Technologies ... 99

5.15.1 Linux platform ... 99

5.15.2 PHP Platform ... 99

5.15.3 Apache web server ..100

5.15.4 MySQL ...100

5.15.5 Maven 2 ..100

5.16 Slim API ..101

5.17 Conclusion ...101

6. Chapter 6: System Testing and Validation ..102

6.1 Introduction ...102

6.2 System Component Testing ...102

6.3 Testing Process ..102

6.4 Testing the API ..103

6.5 Testing the TeleWeaver Middleware ..105

xiii

6.6 TeleWeaver Connecting with Slim API ...107

6.7 Usability testing ...109

6.8 Validation and Evaluation of the system ..113

6.9 Conclusion...114

7 Chapter 7: Discussion and Conclusion..115

7.1 Introduction ...115

7.2 Summary of the thesis ..115

7.3 General Discussions...117

7.4 Addressing the research objectives ...119

7.5 Future Work ..121

7.6 Overall Conclusion ..122

References ..123

Appendix A: System installation ...133

xiv

Table of Figures

Table 1. Research Objectives overview. .. 7

Figure 2.1: An SOA and point to point view integration (Kumar, et al. 2006). 23

Figure 2.2: Old system without SOA platform (Reitman, et al. 2007) 24

Figure 2.3: System with SOA Contemporary Architecture Adopted from (Reitman, et al.

2007) ... 25

Figure 3.1.Prototype of the system .. 55

Figure 4.1 An e-Commerce System architecture .. 64

Figure 4. 2: Initial System integration when using Nu-Soap .. 65

Figure 4.3 System design frameworks. .. 67

Figure 4.4: Use case Diagrams for e-Commerce application .. 71

Figure 4.5.Use Case Diagram for e-Learning Moodle application.. 72

Figure 4.6. Application integration system. .. 73

Figure 4.7. Sequence diagram for application integration system. .. 73

Figure 4.8: End User diagram for e-Commerce applications .. 74

Figure 4.9: End –User diagram for Moodle application. .. 75

Figure 5.1. Core components of Moodle Application... 78

Figure 5.2. Structure of the folder system on Os-Commerce. ... 80

Figure 5.3: Structure of Slim Packages .. 81

Figure 5.4: Basic Rest Client structure. ... 83

Figure 5.5: Rest Client that retrieves the list of specials in the catalog 84

Figure 5.6 The e-Commerce Application ... 85

Figure 5.7. TeleWeaver Architecture (Reed House Systems TeleWeaver Middleware v5.3. R.

Werteln). .. 86

Figure 5.8 TeleWeaver components arrangement .. 88

Figure.5.9. Nu-Soap Result ... 92

Figure 5.10 Moodle connection with REAT API .. 93

Figure 5.11 Moodle registering methods on slim API .. 94

Figure 5.12. Slim API connecting with Moodle database .. 94

xv

Figure 5.13 Moodle response ... 95

Figure 5.14. TeleWeaver connecting with Moodle Components. ... 95

Figure 5.15 The e-Commerce results using rest API .. 96

Figure 6.1. A response of TeleWeaver SOA Middleware. .. 106

xvi

Table of Listings

Listing 5.1 Moodle core service component back end connection with database 79

Listing 5.2 Slim API for registering methods.. 82

Listing 5.3: SLIM API connection with e-Commerce Database. .. 83

Listing 5.4: TeleWeaver connection with e-Commerce legacy application 87

Listing 5.5: Nu-SOAP Server .. 89

Listing 5.6 : WSDL information when using Nu-SOAP API. .. 90

Listing 5.7 Connecting Nu-SOAP with e-Commerce Database ... 91

Listing 5.8. Nu-SOAP for testing services ... 92

Listing 6.1. Testing API ... 104

Listing 6.2. Testing API connection with e-Commerce database 104

Listing 9.1 Connection between TeleWeaver Middleware and Moodle Application......... 135

Listing 9.2 Slim API .. 135

Listing 9.3. The e-Commerce connection with TeleWeaver Middleware 136

Listing 9.4 Nu-SOAP services ... 136

xvii

List of Tables

Table 1 Research Objectives overview. .. 7

Table 5.1 An e-Commerce REST Client Firefox add on. ... 96

Table 5.2 Moodle REST Client Firefox add on. .. 97

1

1. Chapter 1: Introduction

This introductory chapter presents both the aim and the context of this research. In its

discussions, it provides a detailed account of the research problems together with the

motivation leading towards engaging in the research. While discussing these aspects, the

research brings up the general overview of fundamental reasons for integrating legacy

applications into an SOA middleware. The key objectives of this research are also provided

with a detailed methodology. The chapter also outlines the general research overview as well

as its research deliverables.

1.1 Introduction

Application modernization is a main arena that is used by many companies to reduce the cost

of ownership; enhancing application flexibility, as well as the performance, efficiency and

usability of legacy applications. It is a broad term that covers the design of the applications,

the analysis of the architecture, implementation and the methodology of modernizing these

legacy applications (HP services, 2009). It includes the transforming of application, data and

infrastructure from a rigid legacy environment to a modern environment taking advantages of

today’s open standards applications which includes Service Oriented Architecture (SOA)

(HP services, 2009).

This arena is used to improve the structure of existing applications, to enhance the

performance of legacy applications and to improve the value of the existing systems.

Application modernization strategy implies both acquisition and deployment of modern

technologies along with their associated skills to replace legacy applications (Howard, 2009).

Legacy applications have become a serious problem in many organizations. They present a

series of challenges to the organizations. They are difficult to modify, require a high cost of

maintenance and they do not meet today’s business demand.

For these stated reasons many organizations are considering a move to new architectures that

offer benefits such as reducing the cost of maintenance, increasing agility and improving

respectively the compliance. However it is important to modernize applications based on an

2

architecture that is built on open standards. Developing new applications uses current

architectures is expensive and time consuming; hence modernizing the existing applications

is a cost-effective solution which provides a better way to upgrade the standard of the legacy

applications which is cost effective. Instead of replacing the old system, modernizing legacy

application seems perfect as it revives the core application systems by integrating them into

new platforms, and gives them modern interfaces. To this regard maintaining a stand-alone

legacy application is not only time consuming but also very expensive, hence application

modernization is preferable in many companies.

The application modernization approach has been considered in the Siyakhula Living

Laboratory (SLL) intervention, to provide sustainability and flexibility to the existing

applications. This approach is highly adopted in this intervention as it enhances the

performance of legacy applications. The next chapter gives explicit details of the application

modernization approach under SLL context. The following section provides details about the

research context.

1.2 Research Context

This research takes into context the operations of the Siyakhula Living Lab (SLL), which is

based in Dwesa, a marginalized rural community that is located on the wild coast of the

former Transkei in the Eastern Cape Province of South Africa. The Siyakhula Living Lab

(SLL) is an Information and Communication Technology for Development (ICT4D)

intervention that explores the use of Information and Communication Technologies (ICTs) in

marginalized rural areas through the development of different applications to improve the

impoverish communities.

The major focus of the SLL is intended to develop and field-test the prototype of simple, cost

effective and robust integrated telecommunication platforms to be deployed in marginalized

rural communities (Jere et al., 2009b; Njenje, 2008; Tarwireyi et al., 2007). Its objective are

to build a large capacity of technically skilled human resource in the field of ICT4D and e-

Commerce platform and develop the community through the exposure of multi-function

distributed communication platforms such as e-Commerce, e-Learning, e-Government and e-

3

Health- which are the applications that allow easy access to the information and to the

community.

One of the aims of the SLL is to provide new technologies and skills to the Mbashe

Community in Dwesa with the hope of developing and improving their lives and reducing the

digital divide between the communities and the technologically advanced professionals (Pade

el at., 2009). One of the predominant needs of the community is to be able to access

information without any difficulties. The details on the activities of Dwesa and the inter-

actions as well as intra-actions inside the SLL will be discussed in the second chapter of this

research report.

The research projects that have been conducted discovered that maintaining existing

applications is expensive and time consuming; hence many companies have decided to

modernize by integrating them into the new (SOA) platforms such as middleware and create

web services, to improve the existing application structures and their functionality.

The main focus of this research is on adopting a platform that allows legacy applications to

be re-usable, valuable, cost-effective and flexible while expanding their functionality,

through modernizing and integrating these applications. The application modernization

concept is considered as a better option than the total replacement of the existing

applications.

Application modernization is an interesting major phenomenon in ICT4D interventions,

enterprises and in modernization environments because of its offers or advantages in

renewing or transforming applications. Application modernizations have enabled the

sustainability of ICTs in rural areas and have increased the number of applications that have

been developed for rural areas. There are many stand-alone applications that are developed

within the Siyakhula Living Lab, which need to be integrated into Service Oriented

Architecture (SOA) middleware to reduce the cost of maintenance and improve the

efficiency of these applications. This research focuses on integrating the legacy applications

into the SOA middleware platforms.

4

The SOA approach is preferable when modernizing legacy applications. The SOA has

become vital architecture that provides a flexible access across the various applications in a

distributed system. It also supports the different integration platforms as it support

communication across the different platforms and services. Therefore, organizations use it

for the modernization of their existing applications.

This approach is adopted in ICT4D to integrate legacy applications into a middleware

platform. The SOA platform allows ICT4D e-services to be deployed in a flexible and re-

usable manner. SOA is also an architecture that allows a great flexibility in adapting the

Information Technology (IT) infrastructure to support business needs. It is an architecture

whose goal is to achieve loose coupling among interacting software agents (He Hoa, 2003).

The SOA is highlighted as a very user-friendly mechanism to modernize the legacy

applications and to support various communication platforms of the services (He Hoa, 2003).

It allows e-Services to be deployed in a distributable and appropriate manner. In view of this

research, the SOA approach is used to modernize the existing applications and integrate

legacy applications into the new middleware platforms, which allow the interoperability and

re-usability of the existing applications. All this is done in order to leverage the existing

services and to improve the performance of the legacy applications, along with minimizing

the problems that are presented by legacy applications.

1.3 Research Problem

The main problem that this research aims to solve is how to integrate legacy applications,

specifically Os-Commerce and e-Learning applications and third-party applications into SOA

middleware.

The above stated legacy applications are the stand-alone applications that have been

deployed under the Siyakhula Living Lab (SLL) intervention. The major problem with these

applications is that they are unsustainable, inflexible and are not effective. Since they require

high maintenance cost. They are difficult to modify and to meet ongoing business demands.

They do not adequately meet today’s compliance demands.

5

Ron Wertlen (2010) stipulates that the effectiveness of these legacy applications can be

improved only if these applications can collaborate with each other in the same environment.

Hence he suggests the development of a TeleWeaver middleware platform for the integration

of these. Since there is a problem with disparate systems when it comes to maintaining and

modernizing them, it is difficult to improve the stand-alone application performance as it

requires the understanding of each application’s architecture and language of each

application. For the community to access information effectively over an e-Service platform,

there is a need to modernize these existing applications.

There is therefore a need to provide mechanisms to integrate legacy applications into these

new architectures in a manner that leverages the services capabilities that are available in the

new architectures. At the same time there is a need for improving the e-Services that are

offered on these new architectures/platforms. However, TeleWeaver SOA middleware have

been deployed in Reed House System (RHS), which is a company that is affiliated with SLL,

to create a platform that will allow these applications to collaborate with each other.

1.4 Research Questions

This research aims to answer the following questions:

1. What are the advantages and benefits of integrating legacy applications into SOA

middleware?

2. What is the best way of integrating the 3
rd

 party applications specifically e-Learning, Os-

Commerce application and OTS packages into SOA middleware?

3. What are the different techniques focusing on Nu-Soap, XML-RPC, Soap, Slim and Rest

that can smoothly integrate legacy services into SOA middleware?

1.5 Aims and Objectives of the Project

The purpose of this research is to investigate the best ways of integrating legacy e-Services

into SOA middleware within the SLL context. The SLL has many software applications that

are stand-alone and there is a middleware platform that is developed for the integration of

legacy applications. The problem is how to integrate these existing applications into the new

single platform. The focus is on identifying the application modernization techniques that

6

will allow the smooth integration and reduce the risk of losing old applications’ context along

with how to integrate the legacy applications into a TeleWeaver SOA middleware.

The other purpose is to undertake the integration of related

third-party applications into SOA

middleware. Therefore there is a need to evaluate and test the effectiveness of this integration

process. To implement and deploy this system will improve the performance of the existing

applications, while increasing the scalability and re-usability of these legacy applications. To

implement a system that allows existing e-Services to be interoperable, flexible and easy to

use to the end users will increase the effectiveness of these legacy services.

The main objective of this research is to integrate legacy applications specifically Moodle

and e-Commerce applications into TeleWeaver SOA middleware.

The following are the sub-objectives of this research:

1 To identify the advantages of integrating legacy applications into SOA middleware.

2 To investigate integration and application modernization techniques.

3 To identify the best way of integrating e-Services specifically e-Commerce and Moodle

applications into TeleWeaver SOA middleware.

4. To investigate web services technologies, Application Programming Interface (API),

library that can be used to integrate the e-Services into SOA middleware.

5. To implement the integration of e-Commerce and Moodle applications.

6. To evaluate the effectiveness of the integration system.

1.6 Research Methodology

The methodology used in this research includes three main areas.

 Comprehensive literature reviews, based on understanding the concept of application

modernization, integration platforms and the web services.

 Conduct different experiments, to study and understand the architecture of the

TeleWeaver SOA middleware.

7

 Analyze the environment of the new platform and system requirements.

The second area of this methodology is to engage in interviews to develop the application

modernization and integration of e-Services into new SOA platform. The interviews are

conducted to analyze and understand the needs of the community, since these applications

are developed for the Dwesa community, it is essential to know what the community wants.

The interview trips are conducted in order to understand the community and to analyze and

understand the architecture and the way that TeleWeaver Middleware works. A Unified

Modeling Language (UML) will be used to design the system. Usability evaluation and

performance evaluation are performed to test and evaluate the system. The system will be

tested to validate it against the specified system requirements. Functional testing will be

carried out to investigate the functionality of the system as well as usability testing that is

conducted to check if the system is user-friendly. This is also used to check the performance

of the integrated applications. The last step is to implement the system and evaluate the

effectiveness of this system.

1.7 Overview of research objectives

The following table will give an overview of the research objectives, how to address them

and the chapter where these objectives are addressed.

Table 1 Research Objectives overview.

Research objectives How to address Chapter addressed

1. Identify the advantages of

integrating legacy

applications into SOA

middleware.

This will be achieved

through literature review

Chapter Two

2. To investigate

integration and

application modernization

techniques.

Through literature

reviews and

experimentation

Chapter Two

3.To identify the best way

of integrating e-Services

specifically e-Commerce

This will be achieved

through development of

Chapter Five

8

and Moodle application

into TeleWeaver SOA

middleware

the system

4. To investigate web

service techniques, API,

Libraries that can be used

to integrated legacy

applications into SOA

middleware

Literature Review and

development of the

system

Chapter Two and Chapter

Five

5. To implement the

integration of e-

Commerce and Moodle

application.

Through developing a

working system

Chapter Five

6. To evaluate the

effectiveness of the

integration system.

Through system testing,

experiment and

evaluation.

Chapter Six

1.8 Research Motivation

This research is motivated by different factors including the extensibility of TeleWeaver

functionality to provide the best and flexible integration techniques of legacy applications (e-

Learning and e-Commerce) into SOA middleware. Application modernization is also another

factor that motivated the development of this project. Improving the functionality and the

architecture of the legacy applications is another factor that motivated this project. The

benefit of using modern SOA is also another factor that motivated this project.

Transforming the traditional applications into new architectural platforms and the availability

of TeleWeaver SOA middleware that allows different applications to be integrated into a

single platform and to be reusable is also one major motivating factor. Another inspiration to

this research is the leveraging of legacy applications to make them flexible, interoperable and

extensible. The need is to improve the visibility of these legacy e-Services and hence to

improve the usability of e-Commerce and e-Learning applications. Providing a user friendly

system that provides a great satisfaction to end users or the community also motivated the

9

development of this research. Providing the Dwesa community with a quick and user friendly

system is another factor that motivated this research. An e-Commerce shopping portal has

been developed for Dwesa community, but the utilization has been minimal due to low

usability of the art and crafters interface on the portal. Therefore modernizing and integrating

this application into a new SOA platform will be effective in improving the functionality and

accessibility of this service. Since e-Learning is an application that equips the community

with knowledge; there is a need to provide the mechanism to integrate this application so that

the community can easily access the information from this service.

1.9 Dissertation Overview:

The structure of the research is structured as follows:

Chapter 2 is a literature review. It reviews literature that is relevant to the application

modernization and the integration of legacy application into SOA middleware. It also

reviews the ICT4D concept and describes the number of technologies used in ICT4D context.

Further, it discusses the new architecture platform that is used in SLL.

Chapter 3 provides a detailed discussion of the methodologies that are used in integrating the

e-Service legacy into TeleWeaver middleware. It also explains the new SOA middleware

platform that is used to integrate these applications, and the technique used to modernize

legacy applications.

Chapter 4 deals with a system design and provide the specification keys of the system

requirements. The chapter illustrates the design of the system. It provides the functional and

nonfunctional requirements of the system. It explains the whole system through the use of

UML and use case diagram.

Chapter 5 covers the implementation of the system, describing the implementation of the

system and explaining the codes and PHP scripts that allow the smooth integration of legacy

application.

Chapter 6 includes system testing and experimental results. In this chapter the research

evaluates the effectiveness of the application integration. It provides the feedback that is

received from the end-users.

10

Chapter 7 provides the discussion and conclusion of this project. It gives an overview of the

achievements and the summary of the research. This chapter also discusses the best ways to

improve the integration of legacy application. The summary of all challenges and the

successes of this system are discussed in this chapter. Lastly it gives the summary of the

entire research project.

1.10 Conclusion

The problem facing the SLL e-Services has been identified; hence this research aims to

integrate and modernize these legacy applications into TeleWeaver SOA middleware. The

integration of ICT services is intended to make the existing application to be flexible and

interoperable. The application should improve the performance of the legacy applications

while providing the end-user with a user-friendly system and a modern user interface. The

next chapter discusses the literature review that was conducted during the research process

11

2. Chapter 2: Literature review and Technology review

This chapter reviews the literature that is relevant to the integration of e-Service applications

into SOA middleware platform. It also discusses more about application modernization, how

application modernization has been done previously and how it is currently done. We looked

into techniques that are used to modernize legacy application and the tools that can be used to

integrate legacy applications and OTS packages under SLL intervention. We also looked at

the benefits of modernizing and integrating legacy applications. We have provided explicit

details of SOA middleware platform that is used within the SLL intervention and how the

application integration is done.

2.1 Introduction

This chapter introduces the area where this project is conducted and applied, which is Dwesa

a Marginalized Rural Area (MRA) in the Eastern Cape region. It elucidates more about

application modernization techniques that can be used to modernize the existing e-Services

that have been developed for SLL, the advantages and benefits of application modernization

on the SLL intervention will also be discussed. It also gives a brief explanation about

application integration, Service Oriented Architecture (SOA) platforms, e-Services, ICT4D

platforms, as well as the projects that have been developed for Dwesa community.

An overview of our test bed SLL is given in this chapter, which is a lab where a number of e-

Services have been developed. It goes into detail on the role of application modernization in

ICT4D in MRAs and how application modernization and integration application under

ICT4D assist to overcome the challenges that MRAs encounter.

This chapter gives the challenges facing the Dwesa community and protocols for eliminating

those challenges and ways of minimizing the digital divide through the use of ICT. In

addition to that, it discusses the challenges of using a traditional architecture in Dwesa, and

also gives a brief discussion of TeleWeaver, which is a middleware that has been developed

for SLL and the benefits of using TeleWeaver middleware. Finally it will explain more on

the benefits of integrating e-Services into TeleWeaver SOA middleware. This chapter

discusses more about the application integration and the benefits of integrating legacy

12

applications into SOA middleware and the ways of integrating these legacy applications. The

ways which application integration is done in the enterprise environment and how SLL

intervention is integrating these applications is also to be explained in this chapter.

2.2 Application modernization

Application modernization is a process of adapting the existing applications to modern

standards to improve effectiveness and to enhance the performance of the existing

applications (Howard, 2009). Application modernization moves existing application from the

legacy hardware to new and innovative environment. It replaces the Information Technology

(IT) systems with advanced packages. With the current economic downturn, many

organizations are now considering legacy application modernization as an alternative to

expensive and risky new-application development (Aberdeen Group, 2009).

Many project such as SLL seek to enhance the effectiveness of legacy applications and to

improve, and maintain legacy services for MRAs communities. However, maintaining legacy

application and infrastructure software in a legacy environment consumes a disproportionate

percentage of IT budget. It is discovered that the average companies, spend from 60 to 85

percent of their IT budget maintaining legacy applications that fail to meet the changing

competitive needs of the business (Howard, 2009).

Application modernization is the continuous evolution of an organization’s existing

applications and infrastructure software, with the goal of aligning IT with shifting business

strategies (Howard, 2009). However, this implies that the acquisition and deployment of

modern architectures, contemporary technologies along with their associated skill and sets

capabilities improve legacy services.

Legacy applications have become a significant problem in many organizations. They are

difficult to modify and do not adequately meet today’s compliance demands (Aberdeen

Group, 2009). For these reasons, many organizations including SLL are considering the

move to new technologies and architectures. However, while it is possible for many

organizations and SLL intervention to develop applications from scratch, that fully utilize

new architecture and new technologies, but the approach is expensive and risky. The flexible

13

strategy that a growing number of organizations are embracing is to modernize their legacy

applications.

Application modernization based on an open architecture offers the benefits of reduced total

cost of ownership, increased agility, reduced reliance on legacy skill sets, and improved

system functionality. It also improves the effectiveness of legacy services and enhances the

sustainability of these existing services. It also reduces the cost of maintaining these

applications by optimizing business processes to save labor costs, eliminating ongoing

maintenance, support fees for expensive, proprietary legacy infrastructure and automating

previously manual processes. This is to further reduce the cost of labor and reducing the need

to extend or modify applications, through the use of re-usable service-oriented architecture

(SOA) components (Howard, 2009).

The cost reduction can happen only when project or labs such as SLL can adhere to key

principles; such as leveraging packaged applications, use lower-cost software platforms and

consolidating technologies.

To reduce the cost, the use of SOA middleware platform that uses the modern technology

such as TeleWeaver Middleware is essential. The modern platforms combined with SOA

create the next-generation IT environment or enabler, where orchestrated application

components combined with computing resources in multiple locations. This forms a virtual

environment with a single point of management, control, and access. The SLL intervention

supports exactly such architecture where it can be used by multiple end users.

Many organizations consider using packaged applications, these packaged applications

should adhere to SOA standards and work with the organization’s underlying architecture.

“Using an assortment of highly proven IT modernization approaches, organizations can

consolidate technologies and technology providers while determining the best combination of

modernization approaches for each application” (Howard, 2009). The modernization

approaches depend mostly on the needs of each project, as each project differs in architecture

and programming language.

14

The Aberdeen group reveals that many companies are seeing substantial reductions in

development cost and generating improvement in operational and development agility by

modernizing their legacy services and adopting new development processes (Aberdeen

Group, 2009).

The Gartner group reported that many companies are leveraging the tools based approach

coupled with a strong base of organizational capability to drive down modernization costs

and realize substantial improvements in software agility (Gartner Group, 2009).

Application modernization allows applications to be flexible in a manner that will allow

developers to modify and integrate legacy applications into an SOA middleware platform

(Howard, 2009). Application modernization helps to cut the cost of maintaining old systems

and the development cost. Hence SLL intervention is intending to use application

modernization techniques to improve the performance of legacy application and to enable the

flexibility for the existing applications. Application modernization allows organizations to

maximize the use of their existing application assets as they move toward more agile and

cost-effective technology environments (Oracle, 2008).

As application modernization allows existing applications to be easily integrated into these

new architectures, it also allows the Off the Shelf (OTS) packages to be integrated into the

middleware in a smooth and flexible manner. It enables organization to rapidly evolve to

business process level as it allows application to be cost-effective. The application

modernization projects involve creating new business value from existing applications,

incrementally transforming legacy systems into new reusable business components, or

leveraging existing enterprise skills and improving productivity (Software AG, 2008). It

improves and enhances productivity by leveraging existing skills. Application modernization

also offers secure, high-performing services for new customers and enables seamless cross-

channel operations.

There are lots of legacy e-Services that have been developed under the SLL context that need

to be modernized and integrated into a new SOA middleware platform. In this chapter we

discussed the legacy e-Services and their functionality that were developed under the SLL

15

banner, these e-Services are stand-alone and there is a need to modernize in a standardized

manner and integrate them into SOA middleware to improve their performances. It is hoped

that modernizing and integrating legacy applications into SOA middleware will provide

effectiveness and flexibility to these legacy systems. Modernizing legacy application is

critical. Therefore the road-map is essential. To design a strategic modernization road map,

one have to start with an assessment of the current state of the environment and a

desired future state vision of the system. In addition, the architectural design must be

checked. It is vital for the assessment to consider the following factors as input on a road map

(Summa, 2006). Direct and peripheral project goals, functionality and timeliness. It is good

to consider internal and external integration points, dependencies between applications and

infrastructure components. A well-structured interview, questionnaires, brainstorming and

meetings are the best tools used to obtain stakeholder input for road-map decisions and

priorities (Summa, 2006). The following section will give details about research area and the

e-Services that have been developed.

2.3 Research Location- Dwesa and SLL intervention

Dwesa is a marginalized rural area in Eastern Cape region, it is where this project is

conducted and implemented. It is located on the Wild coast of the former Transkei in Eastern

Cape of South Africa. Dwesa is an area where lots of people are illiterate but creative; they

have a skill of making art craft (Dalvit, et al. 2007). It is a representative of many

marginalized rural realities in South Africa. Dwesa has a magnificent nature reserve where

lots of tourists comes and visit. With such areas having an illiterate community and a nature

reserve on it, the University of Fort Hare and Rhodes University have come together and

developed as many e-Services as possible, such as e-Commerce, e-Health, e-Government and

many more that will help this community to be able to sell their products online.

Dwesa is characterized by a lack of infrastructure, poverty, lack of services and isolation in

terms of knowledge and information (Human resource council, 2005). The lack of basic

access deprives the community from knowing what is happening globally, or around the

world. The lack of access to information and knowledge is a major factor for the digital

divide.

16

2.3.1 Siyakhula Living Lab

Siyakhula Living Lab is one of the Southern African labs. It is based in the Eastern Cape, of

South Africa. It is a multi-stakeholder operation that consists of academia, industry,

government and marginalized communities to assist user-driven innovation in the

Information and Communication Technology for Development (ICTD) domain, and it is

supported by COFISA and RSA Department of Science and Technology (Dalvit et al., 2007).

Siyakhula began in 2006 as a joint initiative between the Telkom Centres of Excellence at

Rhodes University and University of Fort Hare, with an aim of developing and field-testing

robust, cost effective and integrated e-business/telecommunication platforms (Sustain Living

lab, 2011). University of Fort Hare and Rhodes University are joined together to run the

projects under the banner of SLL, means “we are growing together”, as a part of ICT for

development in the Eastern Cape region under the Dwesa Community.

The main idea behind the SLL is to facilitate activities in rural ICT applications and services

in a multi-channel environment and deep rural context. The main objective of SLL is to

develop and field test the prototype of a simple cost-effective and robust and integrate e-

services and telecommunication platforms to be deployed in a marginalized and semi

marginalized rural communities (Living Labs networks, 2011). Another objective of SLL is

to enlarge capacity of technically skilled human resources in the field of e-services and

ICT4D, also to evolve to a multi-functional distributed communication platforms and

centralized models. The SLL intervention aims to deliver real capability and develop real

skills while demonstrating the practical validity of the use of ICT4D in government. It

provided the community with a distributed access to various services such as e-Commerce, e-

Government, e-Learning and e-Health. SLL is located under the Dwesa community. SLL has

made a tremendous progress in improving the quality of life in Dwesa community through

deployment of ICT infrastructures, such as networking, e-services, e-skills and Digital

Access Nodes.

2.3.2 ICT for rural areas

Information and Communication Technology for Development is focusing on supporting

strategies for building a digital economy comprising of: e-finance, e-transactions, e-

17

Commerce, e-trade and e-content and creating an enabling environment for the knowledge

economy (World Developments, 2009). There is a need to build e-security capacity for

securing networks and infrastructure for the knowledge economy, improving government

services to citizens and business, and strengthening the role of small and medium-scale

enterprises and other stakeholder groups in the digital/knowledge economy through ICTs

(World Developments, 2009). In developing economies innovative use of ICT services is

changing people’s lives and providing new opportunities. For an example, banking services

and job search text messaging services can be delivered through mobile phones and portable

devices. Some ICT identified by many authors are: e-Government, e-Commerce, e-Health, e-

Learning, e-Agriculture, e-Postal, voice telephone they provide a basic access to information

and interactive communication (Dymond et al, 2003).

2.3.3 The Legacy e-Services

There are lots of legacy e-Services that have been deployed at Dwesa which are discussed in

the following paragraphs. These e-Services have been developed to help people who live in

marginalized rural areas such as Dwesa, who had to travel long distances to obtain required

products, and also to help people who have skills of creating art and craft to be self-

employed. The explained legacy e-services need to be modernized and integrated into the

SOA middleware platform to accelerate their performances and functionalities.

2.3.3.1 The e-Commerce Services

The e-Commerce application is one of the applications that have been implemented for the

Dwesa community by one of the Fort Hare and Rhodes researchers. The e-Commerce

services involves the purchase of goods and services over computer networks by businesses,

individuals, governments or other organizations (Schneider, 2003). The aim of this

application is to generate income in these communities. Since art and craft makers in Dwesa

with skills of making art craft, it was seen as a need to develop a service that allows people to

sell everything they make online. This application helps the Dwesa community to sell their

artifacts, by doing that it makes them self-employed and create lot of attraction from tourist,

as well as creating a job opportunities for community. This elaborates how ICT4D and SLL

intervention has helped rural areas create job opportunities and minimize crime because

youth is occupied by designing art and craft and earning a living. Some of the people in

18

Dwesa are old but can write poems and sell them online. The propagation of e-commerce

applications in rural areas has resulted to the increase among a number of community

members who sells the products. This exposes the advantages of using ICT in communities.

2.3.3.2 The e-Health Service

The e-Health is one of the services that have been implemented for this community this

application helps people from this area to be able to buy medicine online without travelling

100km to go to town and buy medicine. The ICT is improving these communities by

developing such services. Government and researches are also trying to bridge the digital

divide, by developing applications that will make life easy for people who are living in

marginalized rural areas.

2.3.3.3 The e-Government Service

This application provides services to the user to be able to access the government services

online. Since it is a long distance to go to town when you are at Dwesa, this kind of

application will help people to make the child birth certificate online, it will not be necessary

to travel 100km to make a child birth certificate.

2.3.3.4 The e-Judiciary Services

The judiciary system is the entirety of courts and judicial authorities in a state or in another

sovereign organisation such as the European Union (E-European, 2006). This system is for

handling legacy issues and to resolve legal disputes and to ensure that the law is applied

correctly and coherently. Dwesa legal issues have always been discussed at the chief’s house

under a tree, and once the issues have been resolved, the people are dismissed (Scott, 2010).

However after a short period of time nobody remembers everything correctly, that results in a

contradiction between the community members because each has his or her own way of

theory of what was discussed the last time. The e-Judiciary services augments traditional

judiciary processes by making available a way of safe guarding vital legal data, and

guaranteed persistence and availability of data. It also makes legal information easily

available to the public (Scott, 2010).

All these above services were developed to improve the community and to bridge the digital

divide. These applications have been developed to enable rural community to access

19

information of different sectors over the network, however the problem with these e-services

are disparate and that makes it difficult for them to be modified and maintained, hence this

project is focusing on the integration of these legacy applications into the SOA platform.

However there are many technologies and methods that need to be implemented to integrate

and modernize the existing systems which will be discussed.

2.3.4 SOA under SLL intervention

There is a lot that has been done by SLL to modernize the existing applications, such that

there is new SOA middleware that has been developed to integrate these applications under

SLL banner. SOA has provided a flexible mechanism to integrate these existing services.

SLL has been using new architecture such as SOA to modernize the legacy applications

under ICT4D context. The evolution of the architectures presents the mechanism that makes

legacy applications re-usable, inter-operable and valuable, while extending the functionalities

of these services. A lot has been done by SLL intervention and ICT4D to improve the life of

MRAs inhabitants, starting from developing e-Services to developing middleware platform

for these areas. This shows the importance of embracing innovative architectures and

technology for MRA environments.

A growth propagation of ICT4D interventions has necessitated the exploration of innovative

solutions for the provision of e-Services in marginalized rural areas. However, ICT itself

cannot be elixir to all problem that are faced by marginalized rural areas, it provides new

communication channels for rural areas and offer new approach to reduce the gap between

ICT illiterate and ICT literate communities; but communities have to be involved by

cooperating with the SLL to promote changes, hence Fort Hare and Rhodes have developed

e-Services platforms to enhance the standard of living in those impoverished communities.

2.4 Technologies for Modernizing and Integrating Legacy

Applications

There are several methods and technologies of modernizing and integrating legacy

applications into an SOA middleware. One of the tools is SOA architecture. SOA is an

20

architecture that allows services to be integrated, re-usable and interoperable (Bradley, 2008).

SOA is a vital tool that will be used to modernize these applications as it will allow them to

have a great flexibility (Bradley, 2008). Web services are also phenomenal protocols that are

essential for modernizing and integrating existing services. Different methods have been

implemented in the enterprise environment to address the problem of application integration;

hence this project is exploring ways to integrate legacy applications into SOA middleware

platform under SLL intervention. The following section will describe the tools and the

methodologies of modernizing and integrating legacy applications into an SOA middleware.

2.4.1 Service Oriented Architecture (SOA) Platforms

Service Oriented Architecture (SOA) is becoming a great innovative architecture in software

industry, which supports re-usability and interoperability of applications (Makamba and

Thinyane, 2011). It is an attractive architecture as it lowers the integration costs, for greater

innovation and transformation at the line of business level. “SOA is an approach for

designing, implementing, and deploying information systems, such that the system is created

from components, implementing discrete business functions” (Sonic Software and

AmberPoint, 2005). It is built on the standards of the World Wide Web leading to cost-

effective implementations on a global basis with broad support by vendors (Sonic Software

and AmberPoint, 2005). However, SOA have services that are loosely coupled components

that allow more flexibility than older technologies with respect to re-using and re-combining

the services to create new business functions, both within and across enterprises. It creates

designs which embody business processes and enhance the ability to outsource and extend

processes to business partners. It enhances legacy applications and processes so that the

usefulness of existing services can be preserved and improved.

SOA architecture is more concerned about enhancing business performance by re-using the

legacy applications and by allowing the easy integration of legacy services, along with

several dimensions including cost reduction and streamlining the implementation of new

business models. “SOA is an evolution of distributed computing designed to allow the

interaction of software components, called services across the network” (Sonic Software and

AmberPoint, 2005). The SOA components, called services, can be distributed across

geography, across enterprises, and can be reconfigured into new business processes as

21

needed (Sonic Software and AmberPoint, 2005). These services are message oriented and

have interfaces, can be on heterogeneous systems across networks and geography providing

platform independence and location transparency.

These services communicate by standard protocols providing a broad range of

interoperability and are commonly called web services. The web services will be discussed

later in this chapter. The contextualization of an SOA platform is revolutionizing how

distributed applications are organized, also to offer opportunities on modernizing legacy

applications. The sustainability of legacy application projects in SLL is a critical factor;

however the re-use of software components should be seen as a driver towards both social

and financial sustainability. The SOA architecture allows legacy application systems to be

integrated as a services that leverage’s existing investments. It support re-usability and

extensibility of services, it helps expand and enhances business models. It helps applications

to be cost-effective, flexible and sustainable.

The SOA platform provides mechanisms to front-end legacy applications behind a services

interface with no changes to the existing system. SOA applications components are usually

designed to be event-driven, they respond to the messages as they arrive. The implementation

of SOA components relies on skills, methods, and an SOA infrastructure, for them to support

the SOA applications perform the work in a reliable, flexible, scalable, and secure manner.

It is essential for these e-Services that have been developed for SLL intervention to embrace

this contemporary architecture to upgrade the standard of these e-services. Since these e-

Services that have been developed for the Dwesa community are using the traditional

architecture, that makes them to difficulty to maintain and sustain, therefore using SOA

platform will improve the existing systems. One of main goals of SOA is to allow this

business agility in different ways and advanced technologies; different due to the

capitalization on Web standards, inherent flexibility of the SOA design, due to the inclusion

of legacy systems, and to the availability of off-the-shelf SOA infrastructure and services

(Software, AG. 2008)

22

The use of SOA can accelerate the growth and proliferation of e-Services for Marginalized

Rural Areas (MRA's) by enabling easy integration of third-party services through Web

Services interfaces. The introduction of SOA provides explicit details of the technology that

can be used to meet the goals of SLL intervention.

2.5 Origin of SOA

The former analyst at Gartner, 1994 Alexander Pasik, invented the term SOA for a class on

middleware that he was teaching in 1994. Alexander was working on SOA before the

extensive Mark-up Language or Web Services were invented, but the basic SOA principles

have not changed. Pasik was driven to create the term SOA because “client/server” had lost

its classical meaning (Josuttis, 2007). Many business companies have adopted the SOA

platform because of its offerings.

2.6 Reason for Using SOA approach

The reason many industries use SOA is because it promotes the notion of modularity,

providing overwhelming flexibility and superior economics for addressing business demands

and improving applications. SOA provides a conducive environment where developers offer

their product as re-usable and interoperable services (Josuttis, 2007). It is a strategic

approach to the future of business, and also allows customers to consume services such as

web based application and be alert of all available services. The Figure 2.1 below illustrates

the way SOA functions and the reason organizations choose SOA over old architecture such

as point to point platform.

23

Figure 2.1 An SOA and point to point view integration (Kumar, et al. 2006)

Figure 2.1 shows the benefits of using SOA for integration. This highlights the advantages of

SOA: it enables the easy process of integrating widely disparate system applications, the

SOA allows loose coupling of services. It enables application functions to be distinct units,

which makes for the developer to re-use the application (Kumar, et al. 2006). SOA

establishes visibility into the relationships and interdependencies of components so that

developers can foresee the impact of changes within the application, in that way it accelerates

the developer’s productivity (Kumar, et al. 2006). This visibility is important in reducing the

risk associated with change and ensuring the desired results. The next diagram depicts the

way that old architecture was working. This is an example of many e-Services that are

developed for SLL intervention. These services have similar functionality that needs data

redundancy, such as login.

24

Figure 2.2 Old system without SOA platform (Reitman, et al. 2007)

This diagram show how the repeated data happens when using old architectures. The users

have to enter credentials for every service, which is data redundancy and it consume the time

of the client. The disadvantage of using these old architectures in MRAs is because many

people in rural areas are old, they cannot remember password for service. Hence we moved

to the new architecture such as SOA.

Figure 2.3 below illustrates the advantages of SOA platforms. This diagram gives more

details about the SOA platforms. It also shows why SOA is a preferable architecture in many

organizations.

25

Figure 2.3 System with SOA Contemporary Architecture Adopted (Reitman, et al.

2007)

Figure 2.3 demonstrate the main reason that motivates many organizations to use current

architectures such as SOA. It is because of their ability to allow the Single Sign On (SSO).

This is an architecture that allows the user to enter credentials for only one service, and then

gets into other services automatically. This is the main reason why we use SOA middleware

in SLL intervention; this eliminates the data redundancy and saves time for the user to search

for the intended information.

The SOA platform also focuses on allowing users to seamlessly integrate fairly large existing

e-Services functionalities to form ad hoc applications, which are effective and sustainable. It

also allows applications to be modernized with infrastructure and it supports different

integration platforms. One of the focuses of SOA is helping developers on creating shared

services that are necessary for sharing within a reasonable domain.

Service Oriented Architecture is an architectural paradigm that may be used to build

infrastructures enabling those with needs and those with capabilities to interact via services

across disparate domains of technology and ownership (Reitman, L. 2007). The other

26

benefits of using SOA are risk reduction – control dependencies; manage impact of change;

enforce policies, manage SLAs (Oracle and IDG, 2009). Business value ensures project

investments yield business value. Cost effective and efficiency, promote consolidation,

standardization and re-use.

Re-use is a core principle of SOA, but users need to be able to discover existing services that

might already meet their requirements (Oracle and IDG, 2009). ICTD has selected SOA as it

is an essential platform to achieve measurable, sustainable, effective, lowering cost and

improving efficiency and increase visibility of the services. These services are called a web

service, which allows applications to be interoperable. Different SOA tools and methods for

modernization and integrating legacy applications will be discussed below.

2.7 Web Services

“A web service is a network accessible interface to application functionality, built using

standard Internet technologies” (Kuntal, 2011). Web services are the interoperable services

that are available over the internet, uses standardized XML messaging system and are not

tied to any operating system or programming language (Tutorial Point, 2010). Web services

are standardized ways of transferring data and call functions across the different network,

programming language, network and operating system. Web services are the applications

components that communicate using open protocols. However, web services are self-

contained and self-describing application that can be discovered through the use of UDDI

(Nichol, 2008). They can be used by other applications and they use basic XML-PRC and

HTTP protocols. A web service is a platform that uses SOAP, WSDL and UDDI elements

for the communication with other applications (Nichol, 2008). The use of web service is to

connect existing applications and re-use application components

Web services use open, XML-based standards and transport protocols to exchange data with

clients. They provide a standard means of inter-operating between different software

applications, running on a variety of platforms and frameworks (David, 2004).

Web Services are the services that are interoperable and they communicate over the network

regardless of the language and operating system they resides on. These services can be

invoked and respond over Internet (Somalenge, 2010). Since the different applications had a

27

problem to interact with each other due to the use different programming languages, form of

communication and operating system. These applications had a barrier of understanding

one-another. To re-write the applications is expensive and time consuming, hence web

services became a solution to that issue. The main objective of the web services is to allow

services to be interoperable. Now the legacy application can interact with the modern

application via web services without any hindering. The legacy application can expose each

application as a web services with a detailed methods and functions. There are several

alternatives for the messaging system, one can use XML-RPC or SOAP protocol for

messaging, both of which will be described later in this chapter.

2.7.1 XML-RPC

XML-RPC is a language that can be used on a different platform and environment but it still

expresses the complex message (Laurent, et al., 2001). XML-RPC is a Remote Procedure

Calling protocol that works over the Internet. XML-RPC is a simple protocol that uses XML

messages to perform RPC's. Requests are encoded in XML and sent via HTTP POST. XML

responses are embedded in the body of the HTTP response. Since XML-RPC is platform-

independent, it allows diverse applications to communicate (Josuttis, 2007). It is the easiest

way to start web services. However, unlike SOAP; XML-RPC has no corresponding service

description grammar. It is a layer that is responsible for encoding messages in a common

XML format so that messages can be understood at either end.

An XML-RPC message is an HTTP-POST request. The XML-RPC API allows developers to

make XML-RPC calls to the IP Board for information. XML-RPC is a popular and robust

method that is used for remote API calls, however XML-RPC is still utilized and IP Board

provides a robust library to handle dealing with XML-RPC communications (Laurent, et al.,

2001). IP Board uses this library when handling communication with a remote IP. XML-RPC

library is a tool that can be utilized to facilitate calls to and reading response from XML-

RPC. XML provides a language which can be used between different platforms and

programming languages, and still express complex messages and functions.

28

2.7.2 WSDL

WSDL is an XML grammar for specifying a public interface for a web service (Cerami,

2007). This public interface includes information on all the public available functions, data

type information for all XML messages, binding information about the specific transport

protocol to be used, and address information for locating the specified service. WSDL is not

necessarily tied to a specific XML messaging system, but it includes built-in extensions for

describing SOAP services (Cerami, 2007). Using WSDL, a client can locate a web service

and invoke any of the public available functions. With WSDL tools, this process can be

entirely automated, enabling applications to easily integrate new services with little or no

manual code. It gives explicit details of a web service to a client.

2.7.3 SOAP

SOAP is lightweight protocol that exchanges data between peers in a decentralized,

distributed environment using XML (Gudgin, et al. 2007). It gives a mechanism for

expressing application semantics by providing a modular packaging model and encoding

mechanisms for encoding data within modules. SOAP is made up of three parts which are

SOAP envelope, SOAP encoding rule and SOAP RPC presentation. The major goal for

SOAP is simplicity and extensibility. SOAP provides a flexible mechanism for extending a

message in a decentralized and modular way without prior knowledge between the

communicating parties. One of the design goals of SOAP is to encapsulate and exchange

RPC calls using the extensibility and flexibility of XML (Gudgin, et al. 2007).

2.7.3.1 Nu-SOAP

Nu-Soap is the library used in this project to write web services. Nu-SOAP is a rewrite of

SOAPx4 that is provided by Nu-Sphere as a group of PHP classes that allows developers to

create and consume SOAP web services (Crugnalo, 2006). Nu-SOAP is a good choice for

creating and consuming PHP SOAP services. It delivers a complete SOAP implementation

for PHP, without relying on any extra PHP extensions, which makes it easy to use. It comes

under the LGPL.

Nu-Soap does not require any PHP additional classes. Nu-SOAP is a technology that makes a

suitable platform for PHP developer to create web service platforms. SOAPx4 library was

29

used to write SOAP client and SOAP servers and consume SOAP web services; however that

generated a problem because developers had to write an overall WSDL document from

scratch (Crugnalo, 2006). With Nu-SOAP the WSDL document is automatically created

when creating soap a server portal.

All the above mentioned tools are essential for modernizing applications and required for

integrating existing applications into SOA middleware. For SOA middleware to smoothly

integrate legacy systems, all the mentioned protocols and tools are required. To avoid failure

of the integration project and to use certain tools and protocol there is a need to know and

understand the SOA middleware that is being used, and how it exposes its interfaces.

2.7.4 REST Web services

REST is a Resource Oriented Architecture designed to leverage the existing HTTP methods

to create simpler web services (Aaron, 2008). Rest uses standardized features such as URIs,

HTTP protocols, and HTTP status code to design desired web service. REST is more flexible

and addresses advanced quality of services requirements. REST is well designed for basic

and ad hoc integration of applications.

2.8 SOA Middleware

Middleware is computer software that is designed to automatically carry out a logic operation

and provide services to other software applications (Bradley, 2008). SOA middleware is a

platform that allows the integration of internal systems and legacy applications, to reduce the

complexity of web applications, and cost of maintenance for these services (Makamba and

Thinyane, 2011). It is also known as a platform that acts as a plumber or glue between

different software components (James, 2012). It is software that lies between the operating

system and service applications; it resides on top of the operating system and communication

protocols. It connects disparate applications and enables web server to display dynamic web

pages based of the client request form. The development of middleware is stimulated by the

enormous growth of stand-alone applications. Companies and organizations are now building

enterprise-wide information systems by integrating previously independent applications,

together with new developments (Schneider, 2003). This integration process has to deal with

legacy applications. A legacy application can only be used through its specific interface, and

30

cannot be modified. In many cases, the cost of rewriting a legacy application would be

prohibitive. Middleware is there to help to optimize the functionality of stand-alone

application, as it connects these applications it allows them to collaborate in the same

environment. It makes things easier for developers, when they want to enhance the usability

and functionality of the applications. It provides uniform, standard, high-level interfaces to

the application developers and integrators, so that applications can be easily composed, re-

used, ported, and to inter-operate. It supplies a set of common services to perform various

general purpose functions, in order to avoid duplicating efforts and to facilitate collaboration

between applications.

 The role of SOA middleware is to make application development easier, improve

functionalities and usability of legacy applications by providing common programming

abstractions, masking the heterogeneity and by hiding low-level programming details.

2.8.1 TeleWeaver SOA Middleware

TeleWeaver is a lightweight, custom built OSGI container which supports online and off-line

services, targeted at MRA’s in Southern Africa (ReedHouseSystem, 2011). TeleWeaver is an

optimized OSGI container, which is built using Equinox OSGI implementation, and presents

benefits of ESB architecture to ICTD environment. It is a customized OSGI container that is

developed to fit in the context ICT4D environment, also to help MRA's by allowing

integration of legacy applications that were developed for MRA's to be effective and

sustainable. Its conceptualization is the outcome of the work done in SLL, which furthered

inefficiency and unsuitability of stand-alone applications. TeleWeaver platform improves

legacy applications that have been developed for marginalized communities such as Dwesa

by allowing the integration of these applications into it (ReedHouseSystem, 2011). The

TeleWeaver middleware is a very robust and low-maintenance architecture; at the same time

it allows external developers to deploy their software extensions to the platform. The

TeleWeaver middleware has been developed by ReedHouseSystem (RHS), an ICTD

software company based in Graham’s town and affiliated with the Siyakhula Living Lab. It is

the middleware that comes with service adapters and support rural entrepreneurs

(ReedHouseSystem, 2011). TeleWeaver is an open source technology that offers blueprints

31

for services. It is poised to become a next generation enabler for rural tele-centre and access

node (ReedHouseSystem, 2011).

TeleWeaver allows different applications to be re-usable, interoperable and integrated, also

to optimize the legacy applications. For the integration of the legacy e-Services TeleWeaver

is essential, as it allows applications to be easily accessible and maintainable. It speed up

project implementation and reduces the total cost of ownership for projects, by simplifying

the transition from point to point and increase architecture business process changes.

Deploying a new application or process utilizing SOA constructs and making its resources

available through services requires essential perception of SOA principles. Most of the

applications that were developed for SLL are stand-alone applications that require high

maintenance cost, and present inefficiency, TeleWeaver is a solution to the above mentioned

issues. TeleWeaver uses different tools, such as Java EE, OSGI container, Spring-

Framework, Apache-CXF, for development and it can integrate with any other technology

such as PHP, Python, and ASP (Reed House System, 2011).

TeleWeaver has an OSGI container that enables software to run on a Java platform. Through

OSGI container, TeleWeaver is hybrid architecture that offers several services. It uses series

of technology for the development environment, such as IDE eclipse for developing

application, Maven, POM, and Archetype as a Building tools. It uses GWT as an interface,

OSGI container, and subversion as a repository. TeleWeaver has GWT that communicate

with API of the services within the OSGI container. The IDE eclipse is a developing tool that

is used to develop applications, and bundles in TeleWeaver. Maven is a building tool that is

used to clean the code and detect the debug, without a developer to look for error in a code,

it speeds up the process of developing application by presenting where the error is allocated

and what is required, and how to fix it.

POM is the fundamental unit of work in Maven (Tutorial Point, 2010). It is an XML file that

contains information about the project and configuration details used by Maven to build the

project. The POM file contains the dependences of the applications. POM contains important

32

goals for the Maven project; it contains project dependencies, plug-ins that can be executed.

It also embeds information such as group-id, artifant_Id, project version, and URL

description and developers details.

Archetype it is a generic tool that allows the inheritance of components. it is a tool or temple

that allows developers to quicken the development, as it inherits the common functions of

modules. This tool minimizes the process of writing the same code for common components,

it allows developers to write a code for different modules, and inherit the code for common

functions, and hence it speeds up the development process.

It uses several tools for the deployment environment, tools such as, JRE, Equinox as a

services environment, Data transaction layer, Validation layer and security layer. JRE is

being used as a service environment, while the Equinox has been utilized as a run time

framework that allows developers to implement services as a set of bundles. Security is use

to check the users’ credentials and validation is for checking authentication and authorization

of the end users.

TeleWeaver uses Google Web Toolkit (GWT) as a user interface. This interface typically

eliminates a bad design pattern, by separating business logic from presentation logic. GWT is

a front end module in TeleWeaver that allows a client to view the service functionality. It is a

tool that allows developers to create user friendly interfaces, without writing an HTML code.

GWT is selected due to its flexibility and usability. It is a tool that allows components to

have API and different implementation code but to have a single view interface.

2.8.1.1 OSGI

Open Service Gateway Initiative (OSGI) is a mature technology with a broad range of

adoption (Tim, 2012). It is essential for managing transaction bundles and for remote

services. OSGI is used for various reasons but its main focus is modularity. Big systems are

difficult to understand and hard to maintain because of different relationships between

complex components, OSGI comes as a solution in this issue. Most of the applications are

complex and have more external dependences, an OSGI has a class-loader for library classes

33

and it also allows developers to number the versions of library that are used. OSGI is mostly

used for bundles; its bundles are like JARs with a better isolation. It is also used for a well

design of a code with a good exhibit of modularity properties, for simple reuse and easily

switches to implementation. The modularity properties rely well on classes being cohesive

and loosely coupled. For OSGI bundles to work there must be cohesive and loosely coupled.

To design a distinct bundle a bundle manifest is an excellent guide.

OSGI services are actually less verbose and much faster. Still, much of the service-oriented

mindset applies to OSGI modularity. The services are agents of modularity between systems.

The difference is that Web services generally allow communication between systems

distributed over some distance via the Internet, whereas in OSGI local services connect

subsystems (modules) that interact to form complicated applications. These local services are

extremely important in the OSGI model of modularity. These services, when done properly,

are what allow truly loose coupling between modules. It is extremely important to ensure that

each module is blind to the internal operations of other modules, so that they cannot have any

dependencies but express the output. It makes the modules inter-changeable parts.

OSGI is a container that allows different components to reside on it; it allows modules or

components to interchange information. It is services platform and modules system for Java

programming language that implements a complete dynamic component model (Tim, 2012).

These components are separated and they do not know each other’s internal operation, and

they do not know that they are residing on the same container. They also do not know how

each component operates; they communicate when they have to get method from other

component, or when it is necessary. So if one component is not working it will not affect the

other components, which is the beauty of using the OSGI container. By having stand-alone

components we avoid the mess that happened on the stack applications, whereby if one

component is dead the whole system will not function. By having separated components it

become easier for developers to add other components within the container, within a small

amount of time. Unlike when dealing with stack applications whereby a developer has to

understand the whole application architecture in order to add other services on the

application. OSGI minimizes the time of coding, of understanding each application’s

34

architecture and it increases the productivity of the company by allowing separated

components within the container. The components within the container can be called

remotely, can be installed, stopped, removed and resumed without requesting a reboot of a

system. Any framework that implements OSGI provides an environment for modularization

of applications into bundles.

OSGI contains bundles; a bundle is a group of Java classes and additional resources equipped

with a detailed manifest file on all its contents and also additional services needed to give the

included group of Java classes’ sophisticated behaviors, to the extent of deeming the entire

aggregate a component (Jack, 2007). Bundles are also known as normal jar files with an extra

manifest of headers. OSGI has specified many services and these services have been

specified in a Java interface, bundle can implement these interfaces and register services with

a services registry. A service registry is what allows a bundle to detect the new additional

service or remove services.

DOSGI

Dynamic Open Services Gateway Initiative (DOSGI) is a service invoker that exposes all the

components that reside within the container and eliminate the challenges that each third party

had to face when having to access the components inside the container. TeleWeaver uses

DOSGI as a center of communication within the container. DOSGI removes the governance

of each application by exposing all the essential details for each component. It is also a

framework that enables deployment of web services as OSGI bundles, which in turn enables

deployment and supports multiple versions of a web service. DOSGI communicates with all

the components within the container, making it easier for the third

party applications to

access all the components in the container. Unlike previously, whereby the third-party had to

know the setup rules of communicating such a name, package, URL and the list of methods

and classes of each components when it want to communicate with it. It became a challenge

for a

third- party application when it wanted to access different components as it has to know

all the above mentioned protocols when it wants to access components. The components

within the container interact and they have different names, packages, methods, URL and

classes. One had to know all these contexts of components when wanting to access it. This

has become a huge problem when one wants to access the different components. With the

35

help of DOSGI the third-party has to know only a URL of the service invoker (DOSGI) and

package of the component that want to communicate with. Now the third-party or end user

has to pass a method that it wants to be retrieved to a service invoker, the services invoker

checks which method is contained by which components and gets a response from that

component and passes it to

a third- party. Instead of the user to talk to each module, it

communicates with DOSGI to retrieve the information that it wants. DOSGI abstracts the

important content of each component from xml file that is in a drop-box within the container,

that xml file in the drop-box inside the container specifies the name, package, methods and

classes of the component.

The drop-box is the box where each component has to drop its xml file so that the invoker

can see what name of the component and which classes and methods are exposed by it. It is

designed to reside within the OSGI container.

DOSGI uses the Apache CXF the Apache CXF Distributed OSGI sub-project provides the

Reference Implementation of the Distribution Provider component of the OSGI Remote

Services Specification. It implements the Remote Services functionality using Web Services,

leveraging SOAP over HTTP and exposing the Service over a WSDL contract. Starting from

versions, URL, Java interfaces can also be exposed and consumed as Restful JAX-RS

services (Apache, 2010).

SOA middleware will enable applications to be re-usable and also more usable through using

Single Sing On (SSO) functionality. There is a lot that has been done by ICT4D context

under SLL. The following paragraph will explain more about libraries that were used to

integrate legacy applications into TeleWeaver, ICT for community development and the aim

of it and how ICT helps in improving the lives of MRA's, how it helps in overcoming the

challenges of MRAs and the benefits of using ICT4D in SLL.

2.8.1.2 TeleWeaver Middleware and Libraries employed for

integration system

TeleWeaver is the main platform that is used for integrating these legacy services.

TeleWeaver exposes various interfaces for the integration of applications. This is to enable

the easy integration application process. To integrate disparate services, certain mechanisms

36

have to be used. For these two legacy applications to be integrated into TeleWeaver, certain

tools such as Web Services and APIs are required to be used, to enable easy integration

procedure.

Since web services make it possible for diverse applications to discover each other and

exchange data seamlessly via the Internet. In this project RESTful web service has been used

to exchange data.

The main goal of using this web service architecture is to allow administrators such as art and

craft designers and school teachers, to upload their products, information on the applications

through TeleWeaver. The administrators will be able to create, edit and delete their personal

accounts, information about products, and products through a RESTful web service interface.

RESTful web services leverage URIs to allow clients to have an access to service’s resources

(Aaron, 2008). REST allows developers to make more dynamic services without affecting

client links to the resource.

Google Web Toolkit.

Google Web Toolkit (GWT) is a component that resides within TeleWeaver. It is a core

application view component. It is also known as a front-end tool. This is a component that

allows an administrator to view services that are available in TeleWeaver, to upload products

and information to the applications. The beauty of using this tool is that it separates the

business logic from the presentation logic, hence it become easier for developers to maintain

the system. The view application components know nothing about the implementation of the

core service components in the system. When an administrator wants to view the certain

components, GWT sends a message to API. It's the API that communicates with the

implementation methods of the application and retrieves back information required by the

administrator. In this context GWT separates pattern. It optimizes the system functionalities

and leverage’s developers operation. The only aspect that GWT understands is that there is

an API that can communicate with the implementation method of the services. Its main goal

is to present the service that is available, and to allow administrators to upload information

and the product to applications.

37

2.9 Application Programming Interface

API is a main core service component that links the third party application with TeleWeaver

middleware. It is the major component that allows communication between Middleware

components and the third party components. The contextualization of API in this system is to

allow components on third-party services to communicate with the middleware. This API is

the main mechanism that allows integration of application. It allows modules within legacy

applications to communicate with the API server. The API server will interact with the

service client and give back the required information. The API server is the mechanism

which interacts with the various modules within applications. It then gives the requested

information back to the client. When the administrator seeks to upload information to

application, she/he will upload it using GWT components. The GWT will initialize the

communication with the API, and then API will transfer the uploaded information to the

intended application. Then the information will appear on the legacy application.

The client sitting on the other side of application will retrieve the uploaded information. He

will able to view the new product that is uploaded by the art and craft entrepreneurs. Hence

this system integration is assumed to make the legacy applications flexible and effective.

These above mentioned tools are here to make sure the system works accurately. These tools

enable the user to interact with the system. These are here to make system integration easy

and efficient. With these tools integration of legacy applications is easy, fast, and effective.

However, we will need to see how the user interacts with the system. Later in this chapter

there will be a demonstration of how user communicates with the system. The role of the

user will be elucidated explicitly. All the above mentioned libraries are the libraries that

TeleWeaver uses to integrate legacy applications.

2.10 Application Integration

Application integration is typically a complex and costly process, in which different

techniques are required for different technologies (Karen, J.B.2011). Many companies have

different applications that are built over different languages which uses different technology

that run on different platforms and have similar functionality such as log in, profile and

database, these applications need to be integrated into a platform to reduce the redundancy of

38

data. Application integration is an important aspect in software industry. Many companies or

industries have experienced problems with multiple stand-alone applications as they are

difficult to modify, expensive and they consume lot of time. These stand-alone applications

can be integrated into SOA platforms, for them to be effective, valuable and efficient.

Application integration has long been seen as a stumbling block to any new software

implementation; however, new tools are making the process easier and spurring a faster

return on investment (Karen, 2011).

 In many businesses data should flow seamlessly from application to application, and most

users are dealing with soiled environments where data stays within a specific application

(Karen, 2011). This can be fixed by integrating applications, unfortunately without

integration, end users are stuck manually entering data into multiple systems and

applications, a process that is often haphazard, ineffective and plagued with errors. As a

result, business decision-makers do not have the visibility, agility and flexibility needed to

make serious and often critical business decisions, which decrease productivity in the

company.

The integration of application into a TeleWeaver middleware presents flexibility to the

services as well as the extensibility. Using SOA integration of legacy applications will

leverage the existing investments. SOA and TeleWeaver provide a mechanism to front- end

system without a modification on the existing application. Integrating legacy applications

increases the flexibility of connecting clients with the e-Services. It allows end users to have

more access to different services in a high speed and flexible manner that result in socio-

economic development of the community. Integration of legacy applications into

TeleWeaver offers a visibility of services as well as easy access to the e-services. The

integration of e-Commerce and e-Learning applications into the TeleWeaver SOA

middleware increase the development productivity, also to reduce the processing time for the

applications and provide user friendly applications. Application integration allows

applications to be flexible and interoperable.

39

2.10.1 Advantages and benefits of application integration

One of the main benefits of integrating applications is that it eliminates the cost of

maintaining stand-alone applications. It gives a value to an existing application. It improves

the performance of legacy application as it integrates these applications into new innovative

environments. It allows application to be effective at a lower cost. It eliminates the entering

of the same data on disparate application and eliminates the consumption of time of stand-

alone systems. It cuts development cost of applications and makes application to be fast and

effective. It allows developers concentrate less on developing a code, rather than allocating a

routine code task. It makes changes easily with no internal disruption. It provides more

delivery channel and allows modification of applications.

Integrating applications into an SOA middleware presents a number of advantages.

Application integration improve the time and monetary costs of maintaining legacy systems

as it allows easy integration of third party tools that help the entire system to be more

malleable and dynamic. Integrating legacy application exhibits positive impact on

applications. It leverages the existing system by optimizing the functionalities and

sustainability of these applications. Integrating legacy applications provides fast delivery

flexible and reliable access to processes and information regardless of the platform (Karen,

2011). Lot of time have been spent on IT budget, for maintain the existing application.

According to Gartner Group amount of 60% and 80% of IT budget is spent simply on

maintaining existing mainframe systems and applications besides being expensive, a lot of

time has to be spent looking at each application architecture when something has to be

modified(Bradley, 2009).

Integrating legacy applications provides fast delivery, flexible and reliable access to

processes and information regardless of platform or data access. Gartner Group recently

estimated that between 60% and 80% of IT budget is spent simply on maintaining existing

mainframe systems and applications besides being expensive, a lot of time has to be spent

looking at each application architecture when something has to be modified (Gartner, 2008).

 Application integration ameliorates legacy application effectiveness by allowing real time

communication between services. Another advantage of integration legacy applications is

40

that applications become easy to modify, flexible and sustainable. Applications become

efficient and effective. Integrating legacy applications improve the effectiveness of the

legacy applications and preserve the value for these applications. It make applications easy to

use by end users (Karen, 2011), and allows applications to meet the new customer needs, or

business requirement. Integrating applications makes a rapid productivity for a company, as

it makes a work easier for developers, it enhances developer’s productivity. It provides a real

time communication between multiple services and clients.

“Integrating existing applications will save the budget in organizations or companies as it

reduces the cost of maintenance for these applications and it makes user friendly interfaces

for each application” (Karen, 2011). Having applications that are integrated in a single

environment will provide an easy access to the applications and flexibility, especially for

MRAs environment, as SSO will be provided to make an easy access across multiple

applications.

To support the expansion of services and improve functionalities and operations, ICT4D

decided to standardize its software portfolio, while at the same time integrating applications

to gain a clearer view into its revenue pipeline. The ability to utilize AIA was a key deciding

factor, since it would streamline the process and allow data sharing and integration between

the disparate applications (Rafael, 2007).

2.10.2 Ways of Integrating Applications

There are various ways of integrating applications, Manual application integration, Semi-

automated application integration and fully automated application integration (Microsoft,

2009). One of the effective ways of integrating legacy applications is to preserve and update

the critical business processes by developing an incremental application integration road

map. Road map helps by reducing the chances of unsuccessful application integration

project. It provides criteria that must be followed to successful integrate legacy applications.

Criteria involve certain steps which includes, Application assessment, Target definition,

Technical understanding of each application and certain recommendations. This process with

41

these distinct steps leads to a decision point of accurate integrating existing services. This

accurately determines how to best integrate legacy applications.

The first important step is Define target; to define what structure the application portfolio

should take following the modernization effort (Dickerson, 2003). Give an attention to

resource constraint issues by tracking the effort required to complete each portion of

integration. Application Assessment: to analyze your existing applications, preferably in an

automated fashion, to determine their complexity and structure. This assessment can help to

set the criteria for identifying and isolating your business rules.

Technical Understanding of application is essential; to better understand the nature and usage

of the applications from a user perspective and developer’s perspective. The final step is a

Road Map; a synthesis of knowledge gained during the earlier steps, combined with detailed

metrics on the applications provides pipelines of how to proceed with your effort (Dickerson,

C. 2003). The above mentioned criteria of integrating application are necessary when

integrating legacy applications, as they determine accuracy of method that will be used. They

are the primary step of integrating applications. The method of integrating must proceed after

these criteria. For ICT4D intervention it is important to draw out these approaches to

integrate numerous services that developed for MRAs, to avoid the risks and failures of the

integration project.

Different enterprise environment has been integrating legacy applications use different

methods and technology. Below are the ways that enterprise environment has been used to

integrate their legacy services.

2.10.2.1 Manual Application Integration

Manual application integration requires people to act as the interfaces between applications

and enable the integration between them. People may enter the same information into

multiple systems and read information from those systems to respond to customer requests.

In other cases, a person may need to read customer information from one database, and then

re-enter it into another database used for another purpose (Microsoft, 2003). Manual

42

application integration becomes more complex, however, when your organization becomes

more complex, and can lead to inaccuracies in data. As the amount and complexity of your

data increases as the number of applications increase, you will require more and more people

to maintain such an environment. An environment that relies heavily on manual integration is

generally very inefficient, and does not grow as easily as other application integration

processes.

2.10.2.2 Semi-Automated Application Integration

Semi-automated application integration combines individual software components and test

them as a group (Microsoft, 2003). Semi-automated application integration generally requires

more technology investment. In this case, all of the steps before and after managerial

approval may be automated, but a person is required in the middle of the process. In other

cases, human intervention may be needed to transform data that is required in another

system.

2.10.2.3 Fully Automated Application Integration

Fully automated application integration is another way of integrating application, by

exterminating people from the business process, although they are required to maintain the

solution (Microsoft, 2003). This type of integration consists of applications communicating

through a series of interfaces and adapters. Although fully automated application integration

removes the dependency on people, such systems can be more expensive to implement and

may not be practical for many business problems (Microsoft, 2003). In many cases, you will

still require people to make business decisions, and it is often more efficient to have a person

control a technical process as well. For these reasons, you should decide where fully

automated application integration is appropriate on a case-by-case basis. This system is

subjected to create errors and it is expensive.

A lot of challenges were encountered during the integration process; these challenges will be

discussed in the paragraph below.

43

2.10.3 Challenges of application integration

Application integration has its own challenges which include controlling and coupling of data

formats and concurrence. Some of the most significant technical challenges of designing an

application integration environment involve identifying the technical needs for your solution

and determining the combination of products and services that will provide for those needs.

Because this segment of the market is still evolving rapidly, you should pay particular

attention to the maturity of integration technologies, methodologies, and standards.

Organizational issues in application integration can be particularly tricky when you are

working in a decentralized enterprise or in a business-to-business (B2B) scenario. However,

these scenarios often have the greatest need for an effective application integration

environment. Therefore, it is particularly important to resolve any organizational issues

earlier on, so that you can focus on resolving the technical challenges of application

integration.

One of the challenges of integrating applications is that it is rare to find one application that

provides all of its software needs (Karen, 2011). There are many reasons that application

integration is challenging. The first is that, it is rare for a company to have a single

application that provides all its software. Connecting various systems, companies need

comprehensive integration capabilities that can deliver business value at a lower total cost of

ownership. Another challenge is that a developer will not know which application component

is important to the user, a lot of time might be spend on integrating components that are not

of use to the companies. That is the biggest problem with all of these disparate challenges.

 IT developers or managers in enterprise environment, overwhelmed with the prospect of

having to mitigate these problems, may choose to do nothing, sticking with the status quo, or

will integrate applications on an ad-hoc basis using a variety of integration methodologies

(Karen, 2011). The challenge is the complexity of legacy applications. For application

integration to be effective a lot of tools and technologies are required, to deliver a

comprehensive, sustainable integration solution and simplify the integration experience for

customers.

44

Another challenge for application integration is that most people do not see the big picture

when it comes to integration. They see the immediate applications that need to be brought

together but they do not understand that good integration requires a very specific, calculated

approach. Companies should match the complexity of the solution with the complexity of a

problem that needs to be solved.

The developer must consider which style of integration they need to use to solve their

business requirement, is the integration happening at the presentation layer, the business

process layer, or the data layer. Companies must have modules that orchestrate the specific

requirement for integration. That allows developer to defined services as re-usable

components for future integrations. Most of the challenges that developers encounter during

the integration of legacy applications is that, it is time consuming to integrate these

application due to the complexity of these applications. The last mile of integration which is

a final delivery of connectivity, some refer to it as a reliable figure, since it is an SOA based

way of integrating legacy applications with the modern architecture and supports business

initiatives (Seagull, 2011). Below is discussion of how other industries have used middleware

platform to integrate their legacy applications. The following paragraphs will explain what

kind of middleware that were developed, and their functionalities and how they assist in the

integration of legacy applications

2.11 Related Work

Integration of services has been done by different companies but the integration of e-

Learning and e-Commerce has not been put into consideration. There are a lot of middleware

that have been developed to integrate services. The following section will give more details

about the middleware that is used in enterprise environment.

2.11.1 The iWay middleware

The iWay SOA middleware is there to overcome the challenges relating to SOA (Freival,

2006). It isolates business requirements from changes in infrastructure and liberated business

to better align IT with business goals. With iWay SOA middleware, services can be

introduced while allowing the experts to retain control of the underlining applications and

providing end users with the most user-friendly access to resources. It provides a best

45

interoperability for more infrastructure components than any other company in the market

today.

The iWay makes all aspects of your existing environment work in concert (Freival, 2006).

This includes non-standard legacy applications that are typically ignored by other SOA

vendors. The iWay middleware have suites, the suite of iWay product enables business to

expose functionalities and information resources from a wide variety of perspective. It

provides a true agility and flexibility for the enterprise. Without writing a code, services and

interfaces can be rapidly developed and deployed so that services consumers can use the

automated business process.

The iWay SOA middleware also have services managers that are considered as an open

transport ESB to provide a single platform for SOA, EDA and extend to B2B services design

development. An iWay SOA middleware can run stand-alone or can be directly deployed on

another vendor’s platform or open source platform. The iWay SOA middleware includes

support for a wide variety of existing software so that customers can keep and use any

applications and middleware they choose and take advantage of any existing standard

(Freival, 2006). It enables rapid incremental business process changes.

2.11.2 SAP NetWeaver

Sap NetWeaver is another middleware that focuses on integrating the services. SAP

NetWeaver middleware makes it possible to integrate heterogeneous IT landscapes and move

forward to SOA roadmap, as it provides a functionality and scalability needed to integrate the

legacy world with SAP on an enterprise level (Laurent, 2010). SAP NetWeaver process a

bulk of messages in one service call (mapping and routing). This middleware reduces context

switches, enables mass operations on the database and it is useful for asynchronous

scenarios.

 2.12 Conclusion

This chapter has reviewed all the literature that is related to the integration of legacy

application into the middleware platform. This is to achieve the second objective of this

research, which is stated in chapter one of this thesis. The technologies that are discussed in

46

this chapter are vital, as they describe the advantages and how to integrate these legacy

applications into SOA middleware. These technologies give a clear road map on integrating

the legacy application. The next chapter discusses more about methodologies that were used

to modernize and integrate legacy applications.

47

3. Chapter 3: Methodology Perspective on Integrating Legacy

Applications into SOA middleware and System Requirements

In this thesis there are specific methodologies that were used to explore the application

integration process; these methodologies are discussed in the following sections. Each

section followed its context and cooperating methodologies. The main objective of this

chapter is to explore the methods of integrating legacy services into SOA middleware.

This chapter gives the methodology perspective on how to integrate existing application into

TeleWeaver middleware under SLL intervention in order to achieve the stated objectives in

Chapter One. It also gives an overview of system requirements and the tools required for the

implementation of this project. It demonstrates more on the methods of integrating existing

application under SLL context. This will highlight explicit details of the modules that are

used to develop the integration application system. The description of the system front and

back ends will also be discussed later in this chapter as well as system entities and the user

role. This chapter illustrates how this research aims to achieve the stated objectives.

3.1 Introduction

This chapter discusses the methodologies used to integrate legacy application into SOA

middleware. However we discovered that there are several technologies and methods that are

available for the development of integration portals. Several methods have been used in the

enterprises environment for integrating legacy applications, therefore this chapter will reveal

the methods used for integrating existing applications under SLL context.

The system requirements will be discussed later in this chapter. System analysis and

requirements elicitation will be discussed through various methods. Functional and non-

functional requirements of the system will be discussed later in this section, the user

interaction with the system, and various roles of the user with the system will be elaborated.

3.2 System requirements

To integrate legacy applications, certain tools and methods are essential requirements. This is

to avoid the failure of the integration project. For this project the requirements of the system

were met through the use of different methodologies: qualitative research, interviewing end

48

user, literature review, the study and understanding of integration and application

modernization techniques.

The first scenario was based on the field visit to Dwesa, to interview the community and

school teachers about integration of these services into SOA middleware. People from

different backgrounds were interviewed. The findings from the interviews confirm that

having e-Services integrated into Middleware will make easy access to the different

application and that will make it easier for art and craft people to upload their products on

Os-Commerce application using TeleWeaver. The crafters complained of slow business

flow. The system proposed in this research will accelerate the flow of the business for art and

craft entrepreneurs. It will also make it easier for school teacher to update e-Learning

application all the time. This ensures that integrating legacy applications into TeleWeaver

SOA middleware will improve the efficiency, sustainability and flexibility of these

applications. It also enhances the accessibility to these applications.

However, this application integration system will not only improve sustainability and

efficiency of these services, it will also improve the education system at Dwesa. The

administrator or teachers can upload information on TeleWeaver platform where ever they

are and the information appears on the e-Learning application. Now the students can view the

new updated information whenever they want, they no longer depend on the teachers to

arrive in order view the current information. This system is vital to learners, community,

teachers and art and craft entrepreneurs, as it accelerates the business for the community also

equip student with the information they need.

The interviews established that the Dwesa community is struggling to remember each

password for the different services due to different issues. By having applications integrated

into TeleWeaver middleware, will enable easy access for them as it allows Single Sing On

(SSO). The administrators have single credentials for different applications. The

administrator enters credentials once and the system automatically allows him or her to

access every service that he/she is authorized to access. This is to eliminate the password

problems, as this system is design to help rural community. It should be flexible and

accessible to them.

49

It is also discovered that the Dwesa community is struggling to grow their business as the e-

Commerce application is difficult to modify and to maintain. However, having these isolated

application integrated in single platform, it is easy to maintain and sustain these applications.

The second scenario was to study and understand the TeleWeaver middleware and its

functionality. Since these two services have to be integrated into TeleWeaver. It is essential

to know the full functionality of this middleware and the interfaces that it exposes and

support, also the language that it uses. It is important to know what is contained in the core

service components, noncore services component, view layer and data layer and service

broker of TeleWeaver.

To understand a layer where integration is going to take place, it is vital to know and fully

understand the middleware that these applications are integrated to. The most important part

in this integration application project we need to know which type of middleware is

TeleWeaver, and the interfaces that are exposing by this middleware, and the way of

integrating these two applications. There are different types of middleware, by knowing the

type of middleware will enable fast integration process and we will know where which layer

these applications will be integrated into.

The literature review has been done to understand the context and to fully understand the

existing applications that were developed and how other people integrated their services into

the middleware. To study and understand the e-Commerce and e-Learning applications and

how they were developed which language they are using so we could find the way of

integrating them in the middleware. Knowing every module of these applications will make

integration process very easy.

It is also important to understand the requirements of the application integration project and

ways of integrating the legacy applications into SOA platform. However, the most important

phenomenon is to understand how are these application are integrated. This proves that

methodology is important phenomenon in the integration project, this reduces the chance of

an unsuccessful project and the amount of time spent on integrating existing applications.

50

3.3 Methodology use to achieve integration project

 Requirement is an operation that a computer application must do for its users (Daryl, 2004).

It is a specific function or principle that the system must provide in order for it to merit. The

requirement focuses more on how system should operate or interact with the user, rather than

focusing on what are the steps that the system should follow do carry out the operations.

For this project specific system requirements have been considered to avoid the failure of this

project. The following section discusses the methods that were used to meet the objectives of

this study.

3.3.1 Requirement Elicitation

Requirement elicitation is the research methodology that was adopted in this research to

achieve, the sub-objective 2 which is mentioned in Chapter One, and to understand what the

community wants. This was done through the trips that the researcher has taken to the Dwesa

community to communicate with the community and other stakeholders. For this project the

developers need to take the initiative when developing a system for the users. Since users

they find it hard to articulate what they want. Then the first scope of the requirements

elicitation is to defining the problem, which is to integrate legacy applications into SOA

middleware.

These applications are ineffective and unsustainable. It is important to note that requirement

elicitation does not depend only on certain stakeholders but it involves everyone on the

development of the project. In this case the requirement elicitation depends on the

information gathered from the administrators of the system, such as art and craft people, the

developers and the analyst of the system. Despite this importance of understanding the

problem, this research has measured the effectiveness of various and essential requirements

elicitation techniques.

Requirement elicitation is a non-trivial procedure; hence the techniques have to be used in

this project. We cannot be sure of getting all the information that we want system to do by

just asking users, interview and other procedures or techniques must the conducted.

Requirement elicitation is not only a method that is conducted, there are also other methods

that we conducted to achieve the objectives of this study.

51

3.3.1.1 Interviews

The interview method was used in this research to understand what the community wants.

During regular visits to Dwesa to conduct computer literacy lessons to students, teachers and

other community members, informal interviews were conducted to elicit system requirements

based on end users’ perspectives. This was a vital exercise which enables the researcher to

collect information from the users' perspectives and also to investigate the challenges that

rural ICT users’ are facing. This enabled the developer to make changes on prototyping.

These informal interviews were primarily group discussions with teachers, headmasters and

community member. Questions asked in these informal interviews were essentially about

legacy application integration, legacy application management and functionality of the

legacy services, modernization, sustainability and effectiveness of existing systems. During

the discussions it was discovered that legacy application were not effective and they are

unsustainable. In such discussions issues related to difficulty of modifying and maintaining

existing applications and system in-flexibility were raised.

3.3.1.2 Observation

Before the integration took place, we needed to understand and identify the integration

technique that can be used to integrate these legacy application; however it is essential to

observe how legacy application works before integrating them into middleware, so to see the

improvement and the effectiveness of the integration process. The researcher conducted

meetings with crafters and school teachers, and the findings show that these legacy

applications are ineffective. The crafters and school teachers are the people who use these

applications.

 It was observed that legacy applications are not easy to maintain, not effective and time

consuming when system has to be updated. It is observed that whenever the application has

to be modified and updated, a person with a good programming background is required.

When the art craft entrepreneurs want to upload product on the system, someone with a good

background in computers is needed. This makes the applications to be unsustainable and not

effective, hence the e-Commerce business is slow, and because of the time one has to take to

upload the product on the application. For e-Learning is the same protocol as well, for the

school teachers to upload information on the system, someone with the better understanding

52

of the e-Learning application is required. This makes a slow development on the education

system of the MRA areas.

It was observed that maintaining legacy applications is very expensive and time consuming.

Therefore, it is important for the existing applications to be integrated into SOA platforms, to

improve the effectiveness of these applications also to allow these services to be reusable,

cost-effective and flexible while expanding their functionalities. SOA ameliorates the time

and monetary costs of maintaining legacy systems as it allows easy integration of third party

tools that help the entire system to be more malleable and dynamic. Based on the

observations, it is anticipated that the integration of these third-party applications into the

SOA middleware will improve e-services development, and provisioning in Marginalized

Rural Areas (MRA's) and ICT4D contexts.

3.3.1.3 Brainstorming

Brainstorming is a process for developing creative solutions to problems (Margaret, 2009).

Brainstorming is another method that was used to achieve the main objective of this research

of integrating legacy applications into SOA middleware. It is also another method that was

used to identify the modernization and integration technique. The researchers and

stakeholders have brainstormed during the research process and they came up with vital idea

of integrating these legacy applications.

Brainstorming involves spontaneous contribution of ideas from all members of the group and

it is a creativity technique of generating ideas to solve the problems (Davey, 2008). In this

thesis brainstorming was use to gather information on how the legacy system can be

improved, what the problem of these legacy applications is.

The brainstorming technique has been used in this research to evaluate the necessary system

requirement of this research and it has been done with the variety of stakeholders during the

meetings to discover the requirements. Brainstorming is a popular mechanism that is used to

find a solution to a particular problem (Davey, 2008). It is of advantage as it brings the

diverse experience of all stakeholders in to play during problem solving. It riches ideas

explored so that solution can be found for the problem. It helps to have different ideas from

different people and different background.

53

 Most of the solutions have been found during the discussion and the way the stakeholders

feel about the legacy application has been clarified. Idea reduction is another method that

was used to achieve the main objective of this research. As the stakeholders and the

developer brainstorm, there important ideas that researcher come up with. However, these

ideas need to be analyzed in order to achieve the stated objectives. Idea reduction is a process

of analyzing the ideas that were generated during the brainstorming (Michael, 2007). It is

useful tool that is used to evaluate the gathered information about the system requirement. As

the system is developed for MRAs environment, it is important for stakeholders to be

involved in pruning ideas, prioritizing, grouping ideas and define features. In this project idea

reduction has been used to analyze the ideas, and to find the way of integrating these

applications. Idea reduction is important when designing a system to involve all the idea

reduction approaches to have a clear idea of how the system will function, and how the users

want it to look like. In this project, using requirement elicitation and its techniques and

approaches have helped to design the system, since we are fully aware of what the users

desire to see.

3.3.1.4 Prototyping

Prototyping is known as a revolutionary approach to product development that allow

developers to design, visualize, and simulate products rapidly and cost-effectively (Autodesk,

2012). Douglas (2000) defined prototyping as a software development life cycle model in

which a software prototype is created for the demonstration of a conceptual solution to a

given problem. It is a fundamental method that is used by designers to acquire information

from stakeholders about the future design of the system.

Prototyping method was also adopted during the course of this research; this was to complete

the main objective and sub-objective 2, 5 and 6.

This method helps to deliver quality products faster than ever, create more innovative

concepts and engineer more accurate, develop compelling, realistic visualizations to

experience products before they are real and perform simulations to optimize designs (Van

Buskirk, 2010).

54

In this methodology the system goes through the cycle of defining system, developing,

implementing, testing and refinements. However, prototyping involves series of phases

which are the following.

 Defining basic system requirements.

 Developing a working prototype based on the system requirements of the integration

project.

 Deployment of the application integration system.

 Testing the system which includes the feedback from the users, developers and the

stakeholders.

 Adjusting the system requirements as per client's needs.

The benefits of using this method, it enables usability testing early in the development

process. It focuses on content and functionality. It reduces development time, development

costs. It exposes the developer’s potential future system enhancements. It also facilitates

system implementation since users know what to expect. Developers receive quantifiable

user feedback. Prototypes make it possible to get a formal approval of the design from both

programmers and the client, before you proceed to the development stage. Prototypes comply

with the wish to show fast results to the client. It results in higher user satisfaction. In this

project prototype has been used to deliver fast results and reduce development cost and time.

Using a prototype model, a fundamental and key functional requirement was provided based

on the basic system requirements. This has enabled a researcher to integrate and modernized

the legacy applications for the user's satisfaction. This has allowed researchers to experience

and get hands on, on the integration approaches. It has allowed the researcher to experience

current system functionality on the user's perspective and generate more requirements. As a

result prototypes have become a vital tool to identify and determine the system requirements.

The requirements elicitation techniques have been used to gather the information for

integrating existing applications for MRAs. These techniques deemed to achieve the

integration project success. This proves that certain requirements are important if one wants

55

to achieve application integration project. Figure 3.1 shows the steps involved during the

development of this project and all stages it went through.

Figure 3.1 Prototype of the system

These are the sequential stages this project went through to carry out results. The first was to

define the basic system requirements for this project. It is essential for the developments of

the system to understand the basic system requirements. This reduces the development time

and cost. It increases the chances of a successful integration project. Having a developed

working prototype is also important when working on the integration project.

3.3.1.5 Literature Review

This is another method that was used in this research to achieve the main objective of this

research. Using this method researches get to understand and identify the integration and

56

modernization techniques that can be used to integrate legacy applications. Literature review

is the first methodology that was applied to achieve stated objectives. This was to gather all

the information about application integration also this method has equipped the researcher

with essential information on how to integrate legacy applications. This method was used to

answer the first research question which includes identifying the advantages of integrating

legacy applications into SOA middleware. This was done by reviewing the literature to

understand the context of the research, as well as to identify the integration and

modernization techniques. Literature review has helped the researcher to identify the best

way of integrating legacy applications into SOA middleware.

3.3.1.6 Developing a Working system

Developing a working system is the method this research has adopted to meet the objectives.

Through working system this research was able to achieve the main objective of this research

also to answer the second research question. This method was used to undertake the

integration of related third- party applications into SOA middleware. This method also

achieves the main objective of this research which is to integrate e-Commerce and e-

Learning application into TeleWeaver middleware. Using this methodology, it is possible to

observe if the main objective of the system was achieved and successful.

3.3.1.7 Testing and Evaluation Method

The testing and evaluating method was used to accomplish the last objective of this research.

This method was used to test and evaluate the effectiveness of the integration platform. The

testing and evaluation method is the main method that answers all the research questions,

without this method it is impossible to see if applications are well integrated. To test the

system helps a developer to see if the system is working properly and if the system meets all

the stated objectives. The core functionality of the system is achieved method when this

method is adopted. The functional requirement and functional requirements are achieved

through this method.

The above methods were used to achieve the objectives of this project. However, the

requirements of the system are also explained in this chapter. The following section discusses

the essential requirements for this integration system. It is vital to analyze every requirement

57

of the system before developing the entire system. The following section elucidates the

requirement analysis of this system.

3.4 Requirement Analysis

A requirement analysis is the process of determining user expectations for a new or modified

system (Margaret, 2007). It involves frequent communication with system users to determine

specific feature expectations, resolution of conflict or ambiguity in requirements as

demanded by the various users or groups of users, avoidance of unnecessary features and

documentation of all aspects of the project development process from start to finish

(Margaret, 2007).

Data gathered during the interview with end users, stakeholders and developers shows the

lack of effective on the legacy application and unsustainable of the existing applications

(Margaret, 2007). It was discovered that legacy application are difficult to maintain and

require lot of time when they have to be updated. The developers from SLL are complaining

about running legacy application, as they are complex and time consuming.

This research has discovered that integrating these legacy applications into the TeleWeaver

middleware will make these legacy applications effective, easy to use and sustainable. The

critical components that the system should handle have been discovered which includes

communication between TeleWeaver middleware with the legacy application, enabling art

and craft entrepreneurs to upload their items on middleware. To allow an administrator to

upload the items on e-Commerce platform so that anyone can see the recent uploaded items,

by doing that, this will rapidly increase the business for these rural entrepreneurs. This will

also accelerate the education system for MRAs, as it improves the education system of those

isolated communities. Now the students can access the information at home using Moodle

system. This will ease the life of those communities and also satisfy the communities at

large. However the system must state the all the requirements including functional and non-

functional requirements.

Every integration project must have functional requirements and non-functional

requirements, the functional requirements for system must be clear indicated so that the user

58

can know what the system all about. The following section will give detailed discussion

about the function and non-functional requirements of this system.

3.4.1 Functional requirements

 Functional requirement are what the user need for the system to work, they are requirements

that we think of when describing systems function (Steve, 2007). Functional requirements are

an expression of the various expected system behavior’s expressed as services, tasks or

functions which the system is required to perform. Functional requirement is what capture

the intended behavior of the system (Ngwenya, 2010). The behavior is expressed in different

ways; it can be a task, service, operation, etc.

 The following functional requirements were determined in a brainstorming section with the

stakeholders. The primary requirement and the main objective of this project is to integrate

the legacy applications specifically e-Commerce and Moodle applications into SOA

middleware called TeleWeaver. This is performed under ICT4D context, to help rural

communities such as Dwesa. However, there are several functional requirements for this

project; the following are the functional requirements for this project.

1. The system should provide communication between legacy applications and the

TeleWeaver SOA middleware.

2. This system should provide vital communication between e-learning application, e-

Commerce and the TeleWeaver middleware.

3. It should allow the art and craft entrepreneurs to upload their items to TeleWeaver

middleware.

4. This system should enable TeleWeaver to transfer the uploaded item into e-

Commerce application so that the end users can see all the recent uploaded products

and send received message to TeleWeaver.

5. System also should be able to allow the teachers to upload information about various

subjects into TeleWeaver then the middleware sends it into the e-learning application

to update it with new information and the received response is also required.

59

6. The end users should be able to see the uploaded information from the legacy

applications perspective.

7. The system should enable the easy way for administrator to update the system at any

moments.

3.4.2 Non Functional Requirements

"A non-functional requirement is a statement of how a system must behave; it is a constraint

upon the systems behavior" (Mark, 2009). Non-functional requirements are constraints of

various attributes of the task or system. The non-functional requirement includes usability,

reliability, interoperability, scalability and security. They are few non-functional requirement

techniques that have been investigated in this project, which includes the following. These

following are the non-functional requirements that were determined through the

brainstorming sessions

1. Accessibility

 In this project there are several ways of accessing system. Accessibility is the process of

accessing the application without any barrier. The location of the system should be such that

the administrator and art and craft people are able to access it easily without any constraints.

There are several ways of accessing the system from the administrators’ perspective. The end

users can only access the system from the application point of view. The main advantage of

integrating and modernizing legacy application is that the administrators have easy access to

update and upload information to the system without any programming skills needed. It is

also easy for a system to be maintained.

2. Scalability

The system should expand within the extension of development environment. Currently, the

legacy application can only be maintained when the expert update it, it becomes difficult for

new art and craft to upload product on their own, as much as they are computer literacy, due

to complexities of the legacy applications it becomes difficult for the system to be updated.

This system is expected to function in a way that developers find easy to maintain the

application and modernized it.

60

3. Fairness

The major focus in this project is to provide a fair integration mechanism for SLL

developers, whilst bearing in mind the economic capacities of the target population.

Therefore, the system should consider programming background of the targeted area hence

the integration method should be fair enough, so that it does not require more maintenance

and to changing schemes that take into account the socio-economic status of the people

around the Dwesa area. Due to complications associated with legacy application it makes

business grow slow, therefore effectiveness of these applications in Dwesa community is so

low.

4. Affordability

Considering the legacy application complications, legacy applications are very expensive

when it comes to maintainability judging from the amount of budget that is put aside for

maintaining legacy application. Legacy systems are not affordable, hence it is considered for

SLL project to integrate this application so they can be sustainable and effective.

5. Flexibility

The system should be flexible enough to allow administrators such as rural ICT users to

upload information and products on e-Commerce application through TeleWeaver

Middleware. The system should have no impediments when administrators seek to upload

product information and course details.

6. Compatibility

This system should be able to operate with other components that are design for

interoperability, without having any barriers.

7. Extensibility

Having new components added to the system, the system should still function without drastic

changes on the architecture. The new components can be added on the system without major

changes on the system architecture.

8. Maintainability

61

This system designed should be easy to maintain. It should be easy to debug error and

modify system or functions. The contextualization of this system is based on easy maintain

of the applications. It should be easy to detect errors, fix errors and modify system without

having constraints. The components in this system are independent, that result to better

maintainability of the system.

9. Fault-tolerance

This system should be resistant and easy to recover from any components failure.

10. Modularity

The integration system comprises of well defined, independent components. All these

components are loosely coupled. They are independent and that leads to easy maintenance of

the whole system.

11. Usability

This system should be easy to use to administrators. This should have easy access to any

components that user have a credential to access.

12. Effectiveness

Integration system is design to be easy to use, and cost-effective. This should lead to the

effectiveness of this system. The integration of these legacy services should make this system

easy and flexible. As the administrators will be able to upload their item and information, this

will make the applications to be effective.

The importance of each of the above factors should reflect the objectives this system wants to

achieve. Design consideration is a complex process, with user and server constraints to

account for, complex business rules to accommodate, and the demands of the users to meet

and there are certain operations that must remain the same in the system (Spool, 2007).

Design consideration is a presentation of important information that needs to be considered

when designing the system. This improves maintenance, flexibility and effectiveness of the

system. It also reduces the chance of undesired outputs. For this system to design it, user

interaction with the system has to be considered. As we mentioned on chapter three, that this

62

system has to be affordable, hence we uses Free Open Source Software (FOSS). Due to the

advantages of free open-source software, FOSS will be off advantage for this system. Also

since this is meant for rural communities it has to be more flexible and easy to use.

This means that the software technologies used to develop the application should be those

that are freely available and obtainable without any costly charges that could have negative

effects on the revenues generated. This shows how the end user can access system without

constraints. This also shows how this system accommodates service components on it.

For the integration application project to work, certain tools have to be considered. This

enables the easy integration system. For this project there are several tools that make the

system work, these tools will be discussed in the following paragraph.

3.5 Conclusion

This chapter presented requirement procedures and the various methods that have been used

in this project. It also gave an explicit analysis of the whole system. The functional and non-

functional requirements of the system have been discussed in this chapter. The way the users

interacts with the system was also discussed with the diagrams that shows the user and

administrator interaction with the system. The technology that was used during the

development of the system was also presented in this chapter. This chapter demonstrated the

mechanisms that were used to integrate legacy application under SLL. The next chapter will

discuss the design of the system.

63

4. Chapter 4: System Design

The main focus of this chapter is to give explicit details on how this system looks like. The

functionality of this system gives the conceptual framework of the system. The design of this

project is represented in this chapter. The full details of how TeleWeaver connects with

legacy applications are also discussed later in this chapter.

4.1 Introduction

This chapter explains how this project is designed. The main objective is to illustrate how

legacy applications will be integrated into TeleWeaver Middleware under SLL intervention.

It also addresses the issue of application design. The application design in this thesis

addresses the issues of sustainability of legacy applications under SLL by providing a means

of generating flexibility and sustainability through integration of legacy applications, and

allowing administrators to upload and modifying existing services. The application design in

this context is termed as integrating legacy applications.

There are certain design aspects that need to be considered for designing this system. This

chapter discusses the system architecture and design frameworks and other aspects for

designing the system on the following sections. The architecture of the system is shown later

in this chapter.

4.2 System Architecture

System Architecture is a dynamic conceptual model that outlines the structure and behavior

of the system (Francois 2010). System architecture is also an overall view of the whole

system to ensure the robustness, cost-effective, flexibility, reliability and the strategic

solution to the main problem. System architecture focuses more on the high level planning of

the system, for development and implementation of the system, it elucidate the strategic steps

for solution. It explains the overall steps for creation of solution from blueprints (Gilkey,

1960). System architecture also elaborates the different components and libraries organized

to support reasoning about the structural properties of the system (Muller, 2010). The Figure

4.1 shows the conceptual design of the whole integration system.

64

 Figure 4.1 An e-Commerce System architecture

 4.3 System Modules or Components

The system components presented in Figure 4.1 shows the main integration of legacy

applications into TeleWeaver middleware. It illustrates the major interaction of the

components within the system. This elaborates how the application integration is done, and

how the components interact. It demonstrates how the third party applications are integrated

into TeleWeaver middleware. The interconnection of Os-Commerce components,

TeleWeaver, Services invoker, API are important aspect of this system. The following

section illustrates how these components operate.

 Google Web Toolkit is a view component that resides within TeleWeaver as stated in

Chapter Two. This component allows the administrator to view services on TeleWeaver. It is

used in this project due to its advantage of separating business logic from the logic layers.

More details of GWT in chapter two of this research. As mentioned in Chapter Two API is

another system component that is used in this research to connect TeleWeaver with

third-

party applications.

65

4.3.1 Third Party application Modules

The party modules are the modules that are available within the applications. These various

modules contain different information about legacy applications, such as e-Commerce;

contain information about product, products_id, reviews, specials and many more while

Moodle contains information such as course_id, end-users’ Id and course_infor. The modules

they communicate with the API, as it is depicted in the Figure 4.1. The Figure 4.2 illustrates

how the system was initially designed when using Nu-SOAP API.

Figure 4. 2 Initial System integration using Nu-Soap

Figure 4.2 shows the conceptual idea of integrating these two specified legacy applications

into TeleWeaver SOA middleware when using nu-soap API. The process of integrating

legacy applications using Nu-SOAP API is flexible and sustainable, but however it mainly

depends on how the middleware exposes its interfaces. A developer can smoothly integrate

legacy applications using Nu-SOAP API.

4.4 System Integration

System integration is a process of integrating the whole system, to improve the functionality

and effectiveness of the applications. System integration is defined as a process of gathering

different component into one system and ensuring that the subsystems function together as a

66

system (Francois, 2010). It is also known as a vital aspect of linking together various

applications to act as a coordinated system. In this project the legacy applications are linked

together with the TeleWeaver middleware to improve the effectiveness and flexibility of

these applications. Since legacy services are difficult to maintain and unsustainable,

integrating them into SOA middleware enhance its effectiveness.

This allows a client to view the desired data that stores in the applications database. This

enables the effective functionalities of legacy applications and improves the performance of

the applications. This leads to a better service delivery to the client means a flow of a

business to art and craft entrepreneurs. However, for this system is sustainable by the

developers, there is need for a design framework that present different layers of the system

and their functionalities. The following section will explain more about design framework of

this system.

4.5 Design Frameworks

“A framework is a set of common and prefabricated software building blocks that

programmers can use, extend or customize for specific computing solutions”(Clifton, 2003).

Frameworks are designed and built from collection of objects so both the design and code of

the framework may be reused and be effective (Clifton, 2003). The framework of this system

is designed using different layers, where developers can decide which layer is suitable for

integration of the application. The design of the TeleWeaver architecture is meant to have

three different layers, presentation layer, business logic layer and the third part service. The

Figure 4.3 illustrates the different types of layers that available in the Middleware, where

integration of application will take place. These three layers are discussed in the following

section.

67

Figure 4.3 System design frameworks

4.5.1 Presentation layer

This presentation layer is the top layer in this system where users can view the services that

are available in the middleware. This is the layer where integration of application takes place.

This is where an administrator checks all the services that middleware offers and select the

service that is of interest to him/her. In this layer the administrator is able to upload product

and information that seek to appear on the application. It is this layer where the administrator

maintains the services, especial the legacy services. These components add more flexibility

to the system, as it displays the data to the administrator and fetch a data from the

application. This layer enables art and craft and school teachers to delete unwanted data on

the application, also enable them to add data to the application without hindering. Although

the main functionality of this component is to display service to the user, it also allows art

and craft to add more items to the e-commerce application. This layer is separated from the

main core service component. It only displays the data and the major functions are operated

by the business logic layer.

68

4.5.2 The Business logic

The Business logic is the layer where the main core components take place. This is where the

API is residing on. It is where the main work occurs. It is directly connected to the third

party applications. This core services component controls the application's functionality by

performing detailed processing of business rules and task-specific behavior. It handles and

processes user requests and gives the output back to the user through appropriate views. This

is done through appropriate models and associated views. In our architecture this component

is mainly responsible for transporting data from the GWT presentation layer to the database

of the third part application. The business logic consists of different call methods such put,

delete, get and post method. These methods are used for creating, updating and getting data

and view data from the database of the application.

The business layer is the layer that directly interacts with the third part service. From the API

that residing on the core service component which is a business layer, it then communicates

with the implementation code of the third part application using calls methods. The

implementation part of the third party application, it then responds to the API and return the

requested data. However, when the administrator wants to upload data, she/he uploads on the

presentation layer of the middleware where GWT resides. The GWT send information

directly to Business logic layer where the API is sitting on, from the business layer then the

link to the legacy service implementation code. In this architecture the database of the

middleware does not perform the major role because from the business logic layer the

communication goes straight to the legacy application that is integrated.

4.5.3 Third Party Application

The third party application is the application that is stand-alone application. It is the

application that we seek to integrate it to the middleware. In this research the

third- party

applications that we focus on are two disparate application i.e. e-Learning and e-Commerce.

These applications are the applications that play a fundamental role in the development of the

rural areas. The e-Learning application is a service that provides learning tool to the students,

in that way it enhances the education standard of the rural areas. The teachers are able to give

more information to the student using this mechanism. The unavailability of the teacher will

not have great impact on the student as they are able to access information from the Moodle

69

application. Moodle is e-Learning application has been developed for the Dwesa community.

This enhances the education standard of the rural communities

The e-Commerce application is a legacy application that enables rural entrepreneurs to sell

their products online. As mentioned in Chapter Two that Dwesa is a community that has

many art and craft people. These people design colorful items that bring attention to the

tourist. SLL has developed an e-commerce application for these people so that the business

can flow. Even for people who are outside Dwesa can be able to buy product online.

However that was a vital plan of developing these community, but since these application are

legacy applications are hard to maintain and unsustainable. Since people in Dwesa do not

have good programming back ground and computer background, it is difficult for them to

keep the system up to date. As these applications are stand-alone application, it is assumed

that for these applications to be effective and sustainable they need to be integrated into

TeleWeaver SOA middleware.

These applications are integrated using API libraries, to allow communication between

different components and TeleWeaver middleware. The API as mentioned in previous

section it allow communication between TeleWeaver and the third party applications

components. The Figure 4.3 shows how this application integration works with third part

application. It illustrates more on how these legacy applications are integrated to TeleWeaver

SOA middleware.

4.6 User Interface

The system's user interface must allow users to interact or use it without major hurdles, as a

result, a very intuitive but easy to use GWT. Interface must be employed to enable users of

the system to operate the application. The GWT interfaces assist developers to speed up the

development as it separate patterns. This interface eliminates the bad design patter, by

separating presentation logic from the programming to the interface. This helps to maintain

look for the application. It minimizes the errors that can be created when fixing the interface.

As it mention on the above section, having interface separated from the core programming

code, accelerate the developers work. Also it presents the neat and stylish interface. This

70

interface does not know anything about the implementation code of the application, hence it

is easy to maintain this system.

The system consists of two kinds of users, administrators and clients with different levels of

privileges. Administrators have all privileges in the system which ranges from accessing

system configuration interfaces to assigning profiles to clients. In this case, the administrators

include teachers in the schools and the developer of the system. Clients are end users who

consume the services provided by the system. As a result they have limited levels of system

privileges to prevent the unauthorized use of the system, including accessing other people's

profiles which might lead to a violation of privacy rights.

4.7 Use-case Scenarios

A use case is a description of the interactions and responsibilities of a system, the system and

actors (Daryl, 2004). An actor may be a person, a group of people that uses the system. Use

case scenarios are defined as the behavior of the system as it responds to a request from

outside (Sparx System, 2007). The use-case scenarios are used to identify system

components and processes and can further help to identify system requirements and

functionalities when put to use (Pade and Palmer, 2009). Use cases also describe the

responsibilities of the system under design, without getting into implementation techniques.

The use case describes the various sets of interactions that can occur between the various

external agents, or actors (Alistair, 2000). It is known as a list of steps for interaction

between the user and the system.

 In this project the use-case scenarios are based on the roles of administrators and clients as

the primary actors. Figures 4.4 and 4.5 demonstrate the function of administrator and user's

on applications, e-commerce and Moodle application.

71

Figure 4.4 Use case Diagrams for e-Commerce application

72

The following use case diagram illustrates the way the user interacts with Moodle application

and gives details of Moodle application.

 Figure 4.5 Use Case Diagram for e-Learning Moodle application

73

Figure 4.6 Application integration system

 Figure 4.6 shows how the integration takes place and how these two applications are

communicating with TeleWeaver middleware. This figure shows the link between

TeleWeaver and Legacy applications.

Figure 4.7 Sequence diagram for application integration system

The Figure 4.7 shows how the entire system operates it explains the process of

communication between an administrator, TeleWeaver Legacy application, service invoker

and REST API. This sequence diagram explains in detail how are the operations linked and

how is the communication take place.

74

This sequence diagram illustrates the link between TeleWeaver and Moodle legacy

application. It describes the process of communication and the legacy application links with

TeleWeaver. This diagram shows how the Moodle application interacts with the

administrator via TeleWeaver middleware.

Figure 4.8 End User diagram for e-Commerce applications

The Figure 4.8 illustrates how the end-user interacts with e-Commerce applications. The use

case diagram show how the communication goes and it gives a detailed discussion of

interaction between the end user and the system.

75

Figure 4.9 End –User diagram for Moodle application

The above diagram shows how the end users interact with Moodle application. The use case

diagram gives details on how the uses interact with Moodle system

4.8 Conclusion

This chapter has presented the system design which gives an overview of the system

architecture. The design considerations and the goals associated were explained. Various

system components were explained and the way which these legacy applications are

integrated. The emphasis was on how these legacy applications are integrated on TeleWeaver

middleware and how these components communicate. The method of integrating these

services was also stated in this chapter. The vital way of integrating the stand-alone

application into SOA middleware was discovered and discussed in this chapter. The next

chapter explains the implementation of the system.

76

5. Chapter 5: Implementation and Development of the system

The previous chapter explained the design of the system. This chapter summaries the

implementation and development process of integration of legacy applications into the SOA

middleware. The details of connecting middleware and the legacy applications are explained

explicitly. The connection measures adopted in the system are also explained. Finally, the

usage of the system by administrators, teachers and the art and craft members is

demonstrated.

5.1 Introduction

This chapter presents the implementation and the development of this system which was

executed by two dynamic phases. The first phase involves the basic installation of software

packages and client-server architecture. This includes installation of Apache as a web server,

PHP as a server side scripting language and MySQL as a database management system.

There is PhpMyAdmin which provides Graphic Users Interfaces (GUI) for administration of

database. However, this is followed by installation of legacy applications which include Os-

Commerce and e-Learning applications. This is accompanied by installation of REST API

which is called Slim. Slim is a REST API that resides on top of Os-Commerce and e-

Learning application which uses REST client Firefox adds on to consume all the components

that available on these applications.

The second phase is where the deployment environment, which is TeleWeaver Middleware

have to be installed and development environment has to be created. This phase involves the

connection of legacy applications with TeleWeaver middleware. This includes connection of

legacy applications with REST API which seeks to connect legacy applications with

TeleWeaver SOA middleware. This involves the construction of Google Web-tool Kit

(GWT) which allows developers to upload items on it. GWT is the GUI on TeleWeaver side

where a developer can upload information so it can go through Slim API to legacy

application. This interface allows the developer to retrieve information from legacy services.

This horizontal dimension is where SOA middleware links with the dynamics of the legacy

77

applications and with all the assets located on the development and deployment environment,

to connect the middleware with the legacy services.

5.2 Legacy applications

It must be noted that these two legacy application use PHP scripting language which make it

easier for Slim API to connect with every components of legacy applications. These

applications constitute of various components that contains different functionalities. The two

applications stated in the above section consist of core service components that connect to

each legacy applications database. However, these components are arranged in different

ways. For these applications to connect with the middleware, certain adjustments have to be

made. A service that leverages these legacy application components is essential. The

following section discusses more about the arrangements of the core services inside legacy

application. These applications contains of SQL database which comprises of many tables

that hold different function control parameters. Section 5.3 discusses more about system

organization of legacy applications and connection.

5.3 System Organization

This section is about piloting a conceptual framework and generating pertinent information

that will inform best integration of legacy application. Fundamentally, this project is about

assisting the Dwesa communities to develop their social capital as a foundation on which to

build-up and use community assets in a sustainable manner on which they can run their

business, also to enhance the education system. Therefore, integrating these legacy

applications involves innovation of these existing services and leverage’s the existing skills.

A brief presentation on the organization of the components inside existing applications and

the arrangement of platform that allow communication between components and the

middleware is highlighted in this section. The stated existing applications were design by

certain language, these services has dynamic components that connects to SQL database.

However, these components were arranged in a certain path. The next section covers on the

application arrangement, indicating where the Slim API resides on the legacy applications.

78

5.4 Moodle Application

Moodle is a legacy application that is developed using PHP scripting language (Dalvit el at,

2007). This application consists of different core service components that have different

functionalities. As mentioned in Chapter Three, this service is developed to assist in

improving the education system of impoverished communities. However, this application

needs to be integrated into TeleWeaver in order for it, to be effective, extensible and

sustainable. The following section represents the arrangement of Moodle components. This

service needs service adjustment for it to connect with the middleware. An API has to be

developed to allow smooth integration with TeleWeaver. The following snap shoot shows

the arrangement of components inside Moodle. These components can be retrieved by the

developer on the TeleWeaver side, once the application is integrated. The developer sitting

on TeleWeaver has to update information on Moodle so the end users can retrieve the new

updated information.

Figure 5.1 Core components of Moodle Application

79

Listing 5.1 Moodle core service component back end connection with database

 Listing 5.1 shows the back end of the code that creates and edits the course in the Moodle

application. It connects the core service components of Moodle into my SQL database. This

elaborate the dynamic transition that takes place for this integration system, the core services

of existing services communicate with database, then the RESTful service, connects with

these components using API. The SOA middleware make use of the method call, to

communicate with API, therefore the API itself send a message to the required service using

URI of the service required. This makes the integration system effective, reliable and

extensible. However, using restful services makes integration process sustainable. More

illustration of the RESTful services and the connection of SOA middleware will be explain

on the following sections.

This section shows the snap shot view of the system organization using the recommended

technologies discussed in Chapter Three. As mentioned in Chapter Three, slim API is

utilized to connect legacy application components so when the rest client seeks to consume

information can be able to retrieve it without any hindering.

80

5.5 Os-Commerce Legacy Application

 The Os-Commerce application is the application that uses a SQL database to store

information about its product. It is developed using a PHP script language. It consists of

multiple tables in a database. These dynamic tables contain different information for different

components. However, for the middleware to connect to this legacy application there is

certain criteria that need to be followed. Os-Commerce consists of various components, for

different functionalities. Each service has its own file, which contains information about the

services. For e-Commerce application to connect with TeleWeaver middleware, REST API

have to be developed which uses slim to connect with different components of legacy

applications. However, Slim API resides on top of e-Commerce application to allow smooth

connection between different components. Figure 5.2 elaborates how Slim API resides on

Os-Commerce application and the structure of e-commerce files.

Figure 5.2 Structure of the folder system on Os-Commerce

5.6 Developing Application using Slim API

Slim is a PHP micro- framework that is designed to create simple and flexible applications

and it comes with the minimal components, such as response, request, view and route. To get

started with Slim, PHP 5.2 + is required which allows developers to write an applications in a

procedural style or in 5.2+ style.

81

In Slim framework the general sequence of developing an API that connects with core

components of legacy applications is as follows.

 Download Slim package.

 Install the package.

 Configure / Set-up your project.

 Start developing an application.

The above steps are the essential criteria that need to be followed when a developer seeks to

use Slim package for connecting dynamic applications. On the demonstration below, the

developer needs to remove all the content that is contained in the index.php and begin to

write his/her own code. The file index.php act as a bootstrapping, hence the developer needs

to set-up his/her own route when want to use Slim. Figure 5.3 is the demonstration of how

slim package is structured and the components contain within Slim package.

Figure 5.3 A Structure of Slim Packages

5.7 Developing a Slim API

In RESTful web services the main arena that is required when developing a Slim API is to

include all the vital libraries that will make an application function properly. This includes

82

the perfect routing of the files, the correct methods that are used when want to consume the

service component of legacy application such as post, put, get and delete methods. However,

the snap shot below demonstrates how to use methods on slim API. This presents the

methods that are used in the e-Commerce application. This also shows how to register the

methods of slim API.

 Listing 5.2 Slim API for registering methods

5.8 API that Connects with Legacy Application

Slim API has several dimensions of connecting with existing service components, the initial

criteria is to register the services and declare the method that will be used. The second part is

to get a function that connects with the database of the component that needs to be retrieved.

For the product to be displayed the connection with the database is essential. The snap shot

below elaborates on how to connect slim API with existing service database, when using Get

method.

83

Listing 5.3 SLIM API connection with e-Commerce Database

5.9 Rest Client

This section presents the snap shot view of rest client add on, which is responsible for

consuming the components that are registered or declared on slim API. REST Client Firefox

add on, require a correct URI in order for it to consume the services. The below snap shot

retrieve the information of the product, and allow the upload of the items depending on the

method assigned on the API. Below is the snap shot that presents the rest client when it is

retrieving the information about product that is on e-Commerce application.

The snap shot below shows the rest client with request methods and the URL. This elaborates

how REST client functions.

 Figure 5.4 Basic Rest Client structure

84

5.10 Rest Client method for Consuming Services

It must be noted that rest client is the main method that allows the administrator to consume

all the services that are available on legacy application. It is the one that allows an

administrator to post new products on the catalog. This method allows the administrator to

view all the products that are available, to update the system, to delete unwanted products,

and to view the details of all customers.

The screen shot below presents the rest client method for retrieving the specials that are

available on e-Commerce catalog.

Figure 5.5 Rest Client that retrieves the list of specials in the catalog

5.11 The e-Commerce Client Side

Figure 5.6 shows the e-Commerce interface on the client side. This is how the integration

process appears on the client side after all. The client can only see this side of the application;

the connection transaction is hidden from the client.

85

Figure 5.6 The e-Commerce Application

All the products are uploaded on TeleWeaver using GWT, and go through Slim API to e-

Commerce application and the end user's view the application.

5.12 GWT

Google Web Tool kit is the graphic user interface that separates the presentation logic from

the business logic. It assists developers to design a clean and simple application. This helps

developers to speed up the development process. In this system GWT is used by

administrators and rural ICT users to upload information and images for these legacy

application. The administrator uploads item on GWT. As this system is designed to assist

rural community members, the interface must be designed in a manner that will be simple

and flexible for rural community member.

5.13 TeleWeaver connection with 3rd part applications

TeleWeaver is an open source technology that uses a standard compliant and tested packages,

it is an SOA middleware that developed using Java programming language. TeleWeaver uses

OSGI as a container. This middleware offers a blueprint for services to be integrated to it. It

uses certain software packages and programming language such as JAVA EE, Spring-

Framework, and Apache-CXF.

86

However, this middleware consists of several core service components. It comprises of core

service components that allows developer to view the services, it have non-core service

components, extension data component and core data components. The following screen shot

demonstrates the architecture of TeleWeaver middleware. Using this middleware the

integration took place at the presentation layer of the middleware, where GWT use a method

call and rest API to connect to legacy applications.

Figure 5.7 TeleWeaver Architecture (Reed House Systems TeleWeaver Middleware

v5.3. R. Werteln)

The Slim API connects with TeleWeaver using a method call. Figure 5.7 shows how

TeleWeaver connects with the third- party applications. As stated in Chapter Four that a

certain technology needs to be used, is restful web service to connect with legacy

applications. The data stored in each legacy database is accessed by core service component

87

of each application. Therefore slim API links with components of each legacy service. The

most important protocol in slim API is route and the URI of each component. TeleWeaver

connects with the each service using URI. The code below that elucidates all the details of

the TeleWeaver connection with legacy applications.

Listing 5.4 TeleWeaver connection with e-Commerce legacy application

 Listing 5.4 demonstrates how TeleWeaver connects with legacy application. This method

has to be implemented for smooth communication with slim API in third- party application.

The method of rest must be clearly stated, if developer seeks to post information to the

application, he/she must state the method on setRequestMethod. The code above elaborate

the essential method that one can use when want to retrieve information from the application

and the specific the URI of the service that one seeks to retrieve. The last method that is off

value when using this Slim API is to acquaint the setRequestProperty on the above code,

which data type is being used, is it Json or XML.

5.14 TeleWeaver Components

TeleWeaver is installed using and configured. It uses bundles and equinox to communicate

with the services inside OSGI container. It consists of numerous services that are used when

one want to run his/her bundles. There is a drop-box where the developer drops the jar file of

each project that has been developed. However, after dropping jar file on drop-box, there is a

configuration file that keeps records of the logs. Each time the jar file is dropped in a drop-

box the logs are created on the configuration file. However, before the developer run then

88

service on browser the logs must be deleted, then restart TeleWeaver, thereafter can run the

service of the browser. The screen shot shows the arrangement of TeleWeaver components.

Figure 5.8 TeleWeaver components arrangement

TeleWeaver uses bundles to communicate with all the services that reside on this platform,

all the services uses bundles, as discussed in Chapter Two that every service that is on

TeleWeaver treat each other as if they resides on different platform.

For this system there were several web services that were tried to integrate legacy

applications with TeleWeaver middleware. As an example, Nu-SOAP web services was tried

to link these legacy applications with TeleWeaver middleware.

89

Listing 5.5 Nu-SOAP Server

 This is the Nu-SOAP server this part of the application registers the components of the

legacy applications. This research has tried to register all the components of both legacy

applications. Listing 5.5 illustrates the way of registering components into Nu-SOAP server

using PHP. All the e-Commerce and Moodle components were registered to Nu-SOAP serve

in order to integrate these applications into TeleWeaver. The research has discovered that

these applications cannot be integrated into TeleWeaver middleware using Nu-SOAP,

Because of the unavailable interfaces that support the integration of Nu-SOAP system we

tried the RESTful Web service API. Listing 5.6 illustrates the system operation after

registering those components on Nu-SOAP API.

90

Listing 5.6 WSDL information when using Nu-SOAP API

This above listing WSDL shows the operation that takes place after registering legacy

applications components into the Nu-SOAP server. This operation shows all the vital

operation that the client has to know about e-commerce web service such as URI of the

service, name of the service, input and outputs of this legacy service. This is to alert the client

about the service that is intended to be used.

However this operation is vital, effective and reduces the time of search for the services. This

operation could not integrate our services into the middleware as stated in above section, due

to unavailability of interface that supports Nu-SOAP connection. The next section will depict

the way of connecting legacy service components with the database when using Nu-SOAP.

91

Listing 5.7 Connecting Nu-SOAP with e-Commerce Database

This above section explained how to register the service components when using Nu-SOAP

API. This section demonstrates the way of connection API with each service component

database. However as a main part of this research is to connect TeleWeaver with legacy

applications, it is also important to connect API with each component database. When using

Nu-SOAP connecting component with database is easy and flexible, the above list illustrates

the connection of this application.

 To see if the application does connect the database, the testing operation must take place.

For the developers to prove that this component connects, the result of the test must give the

positive result of the tested component. However, to test the connection, there is an operation

that needs to take place. The Nu-SOAP test side must be written and it is where the developer

checks if all services connect. This below list shows how is Nu-SOAP test side is created for

testing these legacy application components

92

Listing 5.8 Nu-SOAP for testing services

All the service components have to be tested to see if they connect with the database. This is

how to test the component connection when using Nu-SOAP. The Line 4 of the code

illustrates the way of testing the each components connection. The line with $result=$client-

>call ('products_new',array()id=> '1'); is where the developer changes the prodct that she/he

need to test, such as product, special and so forth. After changing the product in this part of

the API then goes to browser and type the URI of the component that needs to be tested. The

result will tell if the connection to the database is successful or not. Figure 5.9 shows the

result when the connection is successful.

Figure.5.9. Nu-SOAP Result

This above figure depicts the result of the available product in our e-Commerce store. This

shows that the connection with the database is successful. Using Nu-SOAP API is flexible

and easy, the integration part using this web service depends on the available interface that

the middleware support.

93

During the development of this research TeleWeaver middleware did not have the interfaces

that support the integration using this web services. It was only discovered after the

implementation of Nu-SOAP API that TeleWeaver does not yet support the integration of

this web service, hence we integrated using RESTful web service API.

Figure 5.10 Moodle connection with REAT API

The Figure 5.10 illustrates the connection of rest API with Moodle components. This figure

shows the positive results. The 200 OK on the response headers on the above figure shows

that the connection is successful and there is no error on the connection. When the REST

Client is not successful connected with component, it shows an error that says 404 not found.

That clearly means there is an error. However rest client is mechanism that is used by the

developer to test if the API is connecting with legacy applications components.

94

Figure 5.11 Moodle registering methods on slim API

The above figure demonstrates how the developer registered the Moodle components on slim

API. It also shows the methods that are used for these components. However the function for

connecting these components is also demonstrated. This figure demonstrates how to post a

method on REST API and the function of posting a component is also illustrated on the

above figure.

 Figure 5.12 Slim API connecting with Moodle database

The Figure 5.12 is shows the connection of Moodle database, specifically course component.

This shows explicit details of how the database connection is done for Moodle services. The

snap shot above illustrates how course module is connected to the database when using

REST API.

95

Figure 5.13 Moodle response

The above figure shows the results of Moodle components. This demonstrate that Moodle is

successful connected with Slim API. This figure shows that REST API connects with

Moodle database. These results show the courses that are available on Moodle database.

However before the developer integrate Moodle application using REST API. The REST

API has to be tested to confirm if it is connecting with the components database. Thereafter

the developer can easily integrate that application into TeleWeaver middleware.

Figure 5.14 TeleWeaver connecting with Moodle Components

The Figure 5.14 demonstrates the code that has been used for connecting TeleWeaver

middleware with Moodle components. This illustrates how Moodle components are called

when using REST API. This works both remotely and locally. This has be proved and tested

by the developer. However using this connection makes integration easy and flexible. When

the developers or administrators seek to call a different method for Moodle, they only specify

the component name and the method at highlighted code above, in the part where there is

http and IP address. The important part when connecting TeleWeaver with legacy

applications using REST API is the URI route of the component. A developer has to make

sure that route is correct, one error on the route specification gives an error and the system

96

will not connect. This above figure shows how Moodle is integrated into TeleWeaver

middleware.

 Figure 5.15 The e-Commerce results using rest API

The figure above illustrates the successful connection of rest API and e-Commerce database.

These are the result from e-Commerce components. This shows that the REST API is

successful connected with e-Commerce database. The connection of REST API and the e-

Commerce database makes work easier for TeleWeaver to connect with e-Commerce

components using REST API. Table 5.1 highlights the details on REST service.

Table 5.1 An e-Commerce REST Client Firefox add on

Method API route Description

GET Products/ This gets all the available

products from the database

GET Product/id This retrieves the specific

product-id from the

database

97

POST Product/id This method allows the

administrators to post a

particular product to the

database

DELETE Product/id The delete method deletes

the specified route from

the database

GET Specials/ This retrieves all the

specials from e-Commerce

database

GET Special/id It retrieves the specified

special-id from the

database

POST Special/id This allows a developer to

post a specific special-id

on the database

GET Reviews/ This retrieves all the

reviews that are available

on e-Commerce database

Table 5.2. Moodle REST Client Firefox add on.

Method API route Description

GET Courses/ This retrieves all the

courses that are available

from the Moodle database

98

GET Course/id This method retrieves a

specific course-id from

the database

POST Course/id It allows a teacher to post

a specific course to

Moodle database

DELETE Course/id This method deletes the

specified course-id from

the database

GET Tests/ It retrieves all the tests

that are available from the

database

GET Test/id This retrieves the specific

course-id from the

database

POST Test/id It allows the

administrators to post a

specific test to the

database.

GET Grade/id It retrieves the specific

grade from the database.

GET Grades/ This retrieves all the

grades that are available in

database

99

The RESTClient add-on is where one tests if the API is functioning. This RESTClient grants

various methods, where a developer can choose the method for each application component.

This has been used in this research to test different components using different methods.

5.15 System implementation Technologies

This section explains the tools and the technologies used to integrate these two services into a

TeleWeaver. This section describes the LAMP as a stack that was preferred for this project.

It was chosen for this application because as stated in the previous sections that most the

services that are deployed at Dwesa uses LAMP. The following section will give details of

Linux platform which uses PHP component.

5.15.1 Linux platform

The current e-Services that are deployed at Dwesa are based on Linux as Operating system.

Linux offers less maintenance than other operating system. Linux has grown as an operating

system and a tool for personal and business use it has become more user friendly and more

powerful as a back-end system (Christopher, 2010). Linux has proved to be viable, stable,

and readily accessible to even those who don't consider themselves computer gurus. Linux

was chosen for reliability, flexibility and cost-effectiveness. This platform was deemed as

adequate for the deployment of the SLL due to its flexibility, robustness, effectiveness and

the easy configuration and maintenance. Linux is a flexible, fast, secure operating system

that is mostly used by developers. Linux has moved from being a specialty operation system

into mainstream (Christopher, 2010). Linux has become a formidable operating system

across the variety of business applications.

5.15.2 PHP Platform

PHP is used for deployment of the web applications (Cholakov, 2008). It is a popular web

programming platform due to its simplicity, easy usage and use to learn (Cholakov, 2008). It

is widely used tool for the development of dynamic web applications, it is easy to use, fast to

learn and reliable programming language that offers easy configuration of applications. The

e-Commerce, e-Learning and e-Health applications that are deployed in Dwesa they all uses

PHP. PHP provides programmers with all the necessary tools to build dynamic Web

100

applications from open-source software (Dave, 2008). Since most of Dwesa e-services have

been developed using PHP. PHP is deemed to be an adequate language to use.

5.15.3 Apache web server

Apache is the web server that is recognized as a most popular web server, which supports

plug-in modules for extensibility (Michele and Jon, 2007). Apache is a web server that

directs the web browser into a resulting web page and knows how to process PHP code.

Apache is a reliable server that is easy to configure. It supports several features such as PHP,

Perl, python (Michele and Jon, 2007). It is recognized as the fastest web server and has a

high performance (Dave, 2008). As most of the legacy applications being considered in this

project are written in PHP, apache is web server is essential to have. This is where the test

will take place if the service components are working or not.

5.15.4 MySQL

MySQL is a relational database server with support for several database engines

(Christopher, 2010). It determines the how data should be stored in a database and it is design

to be reliable and portable. Database is more important when developing and implementing a

project, since undetected faults in these applications may result in incorrect modification or

accidental removal of crucial data. Once the data is mistakenly modified, the error may

propagate and lead to more data corruption if left undetected. Due to the benefits that

MySQL offers, those are the reasons it was chosen as database for these applications.

5.15.5 Maven 2

Maven is a building tool that contains POM file and archetype (Maven, 2012). It helps

developers to build projects, clean and debug, it notifies a developer when there is a problem

and give the line where the problem reside. It creates an optimized JavaScript with XML file

that contains the information of the application. Maven has eliminated the necessity for a

developer to create command line procedures when writing code. It has maximized the

productivity of developers by eliminating the time to check for an error by telling the where

the problem is and what is needed to solve that problem.

The following section will give details on the adaptors that we use to integrate these legacy

applications into TeleWeaver SOA Middleware.

101

5.16 Slim API

Slim is the API that has been used for this project due to its advantages. The main reasons for

using Slim API in this project is because slim embraces the key characteristics HTTP

protocol. Slim API supports GET, POST, DELETE, PUT methods, which are the key

requirements for this integration project. Since Slim focuses on REST and it is a lightweight

framework, it has been used in this integration project.

Slim is a lightweight framework that is used to build Restful API in PHP (Christophe, 2011).

Slim API has a minimal code footprint, is easy to configure, and simple to use, hence it’s

called slim (Christophe, 2011). With Slim it’s easy to connect the existing PHP functions to

return data in response to URL request. “A route is a URL path defined relative to the slim

base directory” (Andrew, 2010). There are several APIs that available for building a RESTful

API.

5.17 Conclusion

This chapter has demonstrated how the integration of legacy applications into TeleWeaver

works. The detailed discussion of the connection has been given. This involves the

demonstration using the snap shots. The detailed discussion of rest API and REST Client add

on and detail discussion of slim API. This has illustrated how TeleWeaver connects with

third-party applications using restful web services. The next chapter addresses the essential

matters of system testing, validation and evaluation of system’s ability to meet the stated

objectives.

102

 6. Chapter 6: System Testing and Validation

The previous chapter has explained how the system was implemented and how it was

developed. This chapter gives explicit details on how the system is tested, and the objectives

of this chapter are to validate the system functionality and to achieve the last objective that is

stated in Chapter One of this thesis.

6.1 Introduction

After the system was implemented, the next step was to test if the system works as expected.

The testing was done to ensure that TeleWeaver communicates with legacy services. And

also to ensure that all the system components function properly. The main users of the system

were school teachers and art and craft member. This system was intended to assist the art and

craft members to speed up the business process and to help teachers to improve the education

system in rural communities. These rural ICT users were involved in the testing process to

get feedback on the usability of the system and to validate the limitation presented when one

uses stand-alone application and the benefits of integrating these applications into a

middleware platform. Firstly, testing was to validate the limitations presented by using

TeleWeaver interface to upload the products and information and the one presented by using

a stand-alone services. The second part of testing was to check the flexibility and usability of

the application integration services. The final test was to verify the adequacy of the

integration system.

6.2 System Component Testing

As stated in Chapter Three, the developed system consists of various system components that

perform different functionalities. Each of these components constitutes units in this system.

However, this system is tested against the main objectives of the study. The testing is

performed on each component of the system to check it against the stated measures. This is

done to test the best way of integrating legacy services in to SOA middleware.

6.3 Testing Process

The testing process involves the validation and the verification of all components such as

API connection with core service components of legacy application, GWT interface, and

TeleWeaver connection with restful service API. As this system comprised of unit

103

components, every component was tested against the stated measure on Chapter One. The

next section discusses the testing of each unit of the system, starting from API testing up to

TeleWeaver connection with

third-party services.

The primary testing was performed to validate the communication between core service

components and the slim API. The second testing was to test if the API can connect with the

legacy application and if it can perform all the methods required by the administrator.

An explicit detail of testing protocols is discussed in the following section.

6.4 Testing the API

The Slim API in this system is utilized based on the requirements of this system, this system

uses PHP scripting language and it requires a restful web services. Since TeleWeaver is

JAVA based middleware, an interface that allows developers to integrate a PHP applications,

was built during the course of this study. The Slim API in this system is provided by restful

web services. The installation and configuration of the component was done for this

component to function. The testing procedure of this component was done in two

dimensions.

Firstly, testing was done to check the bugs and errors on API, this was done on Linux Edu-

Buntu, using PHP language. Second testing was done to validate connection between slim

API and the basic core components of the legacy applications. This was done using rest client

add-on. In this dimension the important phenomenon is URI and route of each component.

Using RESTful service, these above mentioned arenas are critical services in the

development of REST API. However, an incorrect route or URI of a service brings error to

the whole system. The API has several roles to play in this system, firstly it has to connect

with every component of Moodle and e-commerce, and also it has to connect with

TeleWeaver middleware.

To test if Slim API connects with legacy application components, REST Client has been

used. The following listing shows how is this components tested.

104

 Listing 6.1 Testing API

The above listing demonstrates the response of rest client. In the Response headers, the status

code: 200 OK, validate the success of API, this means the Slim API is working. This means

the URI and the route of the service that is invoked is OK or valid. The following listing

illustrates the connection of API with the database of legacy application component.

Listing 6.2 Testing API connection with e-Commerce database

105

The above listing shows that Slim API can connect with the service that is called on URL of

rest client add-on and the method that is used on request method. The methods are that

declared on the slim API such as GET, POST, DELETE and UPDATE must correspond with

the method on the rest client. When calling a get service on the rest client add-on, it must be

checked if the service is declared a get method on the API. If a service is called as a post

method on the REST Client, and on the API development is a get method, that connection

will not be successful.

The data that is printed bold on the above Listing 6.2 is the information of the service that is

on the database of that service that was invoked on the REST Client. This means the API

connects with database of the service components of e-Commerce application and e-Learning

application.

This displayed listing shows the successfulness of the API connection. However, this shows

that the API was successfully configured, and it is well connected to each service that is

declared. The in-depth of the configuration of this API is well documented on Appendix A.

It must be noted that when using a REST API, there are three fundamental aspects that are of

value to the developers, which are Methods, Route and URI of the service invoked. If one

misunderstands or incorrectly calls a service that uses GET method on the API, and the

developer uses PUT method when invoking the service on REST Client, that gives error,

because of the conflict of the methods. In this system these above listing shows that slim API

is successful installed and configured and it can connect with the Os-commerce services.

This API also has to connect with TeleWeaver Middleware. The following section explains

on TeleWeaver testing.

6.5 Testing the TeleWeaver Middleware

In this system TeleWeaver middleware have to be installed and configured. TeleWeaver

middleware has to function effectively since it is one of the key components of this thesis.

TeleWeaver was installed as a deployment environment of this study. The testing procedure

was done using Linux Edu-Buntu. It was done in one phase. The following figure

demonstrates how TeleWeaver works.

106

Figure 6.1 A response of TeleWeaver SOA Middleware

The initialization of OSGI container in the terminal means TeleWeaver is successfully

installed and is working. The above listing shows all the bundles that are installed on

TeleWeaver. The line 4 of the listing elucidate protocol of starting TeleWeaver, the Java -jar

Equinox.jar -console is the procedure of staring TeleWeaver. After installation of

TeleWeaver to a directory, it needs to be restart to ensure if it is working. Once TeleWeaver

show the OSGI line, it essentially means that TeleWeaver is successfully configured. The list

of the installed bundles on TeleWeaver will appear. The first bundle initializes the

registration of services in TeleWeaver, the second one keep the logs of the services. The third

bundle instantiate the configuration of the services on OSGI registry. The forth bundle keeps

the timer of these services that are registered and run on OSGI.

The DOSGI bundle is well discussed in Chapter Two. This service is installed on

TeleWeaver to as a bundle that handle all the calls from different invoker, this services

eliminates the procedure of knowing all the methods that have to be followed by a part

107

service when it needs to make a call to a service that is stored in TeleWeaver. This eliminates

the time spent on looking on each service requirement for communication.

The last bundle that appears when TeleWeaver is starting is Single Sing On service. This

bundle is given here to grant credentials to the developers and administrator, so the person

can be able to access other services without inserting credentials again, it authenticate the

developer how who have a right to a program. If the person is granted an access to all the

services, he/she will insert credential once; the other service will open automatically. This

service is explained in Chapter Two of this research. However, if all these bundles appeared

when starting TeleWeaver this ensure that TeleWeaver is successful configured.

The next section explains the main objective of this study, the core dimensions of this thesis

and the connection of TeleWeaver with API.

6.6 TeleWeaver Connecting with Slim API

The main objective of this study was to integrate legacy applications with TeleWeaver

Middleware. This means that the middleware has to connect with the third-party services to

achieve the main objective. This section will ensure us if the main objective is achieved in

this study. The above section explains the configuration and installation of TeleWeaver

middleware, and the previous section discussed about slim API. This section is illustrating

the major role of the mentioned platforms.

TeleWeaver is successfully configured, and the slim API is well installed and configured,

both services have been discussed and tested and the result ensured us that these services are

functioning as expected; therefore the connection between these two dynamic services is

required to achieve the purpose of this study.

The connection of TeleWeaver and slim API was done, and it the results were positive,

TeleWeaver does connect with third party applications. This was proved by requesting a

service for TeleWeaver to Os-commerce component, and the component granted the

response back to the developer and the administrator sitting on TeleWeaver. Also it was

proven by requesting a service from TeleWeaver to connect with Moodle application, the

Moodle component granted back the response. TeleWeaver connects with legacy application

108

using restful services, which requires the present of slim API on top of each legacy

application.

We have connected TeleWeaver middleware with Os-Commerce and e-Learning applications

through slim API. TeleWeaver can connect with these two legacy application both locally

and remotely. A developer can smoothly link Os-commerce with TeleWeaver, even if the

developer is sitting on a different machine, which is remote connection. This was tested when

a developer was sitting in different institution connecting with Os-commerce service on the

other machine on other institution. This show that TeleWeaver can remotely communicate

with legacy application, the phenomenon that is required for these two dimensions to connect

is the IP address of the machine where Os-commerce and Moodle is installed and configured.

Thereafter the system was working without any errors. This ensured the achievement of the

main objective; however the developer can request information about a certain service that is

e-Commerce or in Moodle application, using GWT. The service will bring back the result to

a developer, when a developer seeks to upload and post data to a core service of the legacy

application. The developer can just upload information using GWT and the information goes

to the service of the legacy application and appears to the client side of e-Commerce

application or Moodle.

This makes these legacy applications effective, extensible and sustainable, as a developer can

update, delete and retrieve information about each service of the legacy application, remotely

and locally. However, the integration of these services improves both education system and

the commercial trend of the dedicated community.

As discussed in Chapter Two, GWT is developed in this system to allow developer to upload

information and the item to the legacy applications. This service is developed using

archetypes. This helps developers to speed up the process of coding, as archetypes use

template that grant developer a clear and simple task. This is used in this system to avoid the

spaghetti coding.

The GWT was tested to ensure if it connect with the API of legacy services, and if it allows

the information to be uploaded. Information was specified on the GWT to the API of e-

109

Commerce application. The GWT has taken the information straight to the destination

specified. The response from the legacy application service came back to GWT residing on

TeleWeaver to show that the message was received. The testing of this interface elaborated

the easy to use of this integration system. This was tested by several developers, colleagues

and the administrators to test if this system is user- friendly. The following section discusses

the usability of this system.

6.7 Usability testing

This system is developed for rural community members, who will use if frequently. As it is

stated on Chapter Two that the Dwesa community members, they do not have a computer

background, this system has to be easy to uses, effective and flexibility. The usability of the

system was tested by different people who have different ICT background. The result of the

system illustrated the easy-to-use of this system, all the people who were testing the system

have not struggled, as every button on GWT is clear and simple. The positive result for the

selected people shows the usability of this system. This brought upfront the argument that

integrating stand-alone applications bring the effectiveness and sustainability to these

applications. This was tested and proves in this study. However, updating and modernizing

the components of these legacy applications was easy and simple comparing to the updating

and maintenance of stand-alone application. Integrating these applications does not just help

on improving the effectiveness of these applications; it also eliminates the amount of time

spent on modifying the legacy applications components.

For usability testing we have tested both performance of the system and subjective metrics.

For performance measures we included the success of the system, if the system was

successful integrated. We have also tested the time and errors, user-friendly of the system.

For the time we were testing the efficiency of the system, based on how much time did

people spend on uploading and retrieving information from the legacy applications. This

gives us the result that this system is efficient. Time is used to test how fast the system is.

This was done by uploading information through GWT to the legacy application, and when

we request the legacy application to retrieve the information back to the administrator. The

system is very fast and effective when uploading and retrieving information. This illustrates

that the system is effective and efficient.

110

We also tested the subjective metric. Subjective measures include self-satisfaction, comfort

rating and the report from the users. We asked 20 people from different perspective, from

developers to ordinary people who know nothing about the programming, to test if the

system is user-friendly. Below are the specific questions that we asked these different people

who were testing the system.

Question1: How easy is it to understand the user interface?

The pie chart above shows the results of the people that were involved on the survey. This is

done to investigate the usability of the interface. The result are positive, more than a half of the

people that were involved on the survey demonstrated that the user interface is moderate. As

we were developing this system for MRA community, the user interface has to be easy and

flexible. The other result shows that the user interface is very easy to use.

111

Question 2: How do you rate the entire system?

The above pie chat, gives an explicit details of the response of the people who were involved

on the survey of rating the whole system. However the results depicted by the pie chat, shows

that the system is good. The 56% of the people who were involved on the survey said that the

system is good and flexible. The 40% of the people said the system is very good. There was

no suggestion for improvement of the systems.

Question 3: Do you think this application integration system is easy to use.

This is the last question of the survey. This is to check if the whole application integration is

easy to use. The different people from deferent background were asked this question as they

were using this application integration system. The results of the survey show that the

112

application integration system is easy to use. These results explain that, this integration

system is effective, usable and flexible. The survey was done to test the usability of the

system. The result shows the response of the people, who were testing the system.

We also tested the accuracy of the system, by checking how many mistakes the people made

during testing of the system. This was done to determine the accuracy of the system. There

were recoverable mistakes that the user during the system testing, but all the mistakes were

recoverable mistakes.

For this usability testing we created a scenario whereby the ICT users sitting on TeleWeaver

retrieve the data from the legacy application, also for the user to upload information to legacy

applications. The ICT users we given and tested using this scenario to check the usability of

the system. This testing method was to determine if the system met the main objective of this

system, hence this study concluded by saying integrating legacy application makes these

applications easy to use and effective.

In Chapter Four we have mentioned the functional and non-functional requirement of the

system. However, the requirements were tested to validate if the system does what it is

expected to do.

The first functional requirement was see if the TeleWeaver communicates with Os-

Commerce and Moodle application. This was tested by using functional testing, to see if the

TeleWeaver connects with these stated legacy applications. The ability of TeleWeaver to

connect with these legacy application shows the system is functioning properly.

Based on the mentioned scenario this system has answered the functional requirements. All

the functional requirements were met during the functional testing of the system.

The non-functional requirements of this system were met through conducting different

testing methods. To see if the system is flexible and effective this was achieved through

testing the functionality of the system and the how long does the system takes to respond to

the user. The compatibility and the maintainability of the system was tested by checking how

long does the system takes to recover from the errors and how many errors occurred.

113

Scalability and extensibility of this integration system was tested by adding more methods

and route on the system to see if the system is scalable.

6.8 Validation and Evaluation of the system

The system interface is the major prime importance on directing the users of the system;

hence it has to be easy-to-use, simple, effective and usable. The main factors that were used

to increase the quality of interface is font side, simple words that are labels the system

components, button and the background colours of the buttons. These factors were used to

measure the quality of the interface. This was an important arena as it made the system

flexible to all the testers.

All the units of this system were tested and they brought upfront positive results, this means

that the objectives of this study were achieved. This answered the questions that were raised

during the incubation of this project. The measures that were stated on Chapter One of this

study were achieved by testing each system components against the stated measures.

The use cases scenarios in this project were used to exercise the vitality of system functional

requirements and different data was used to test multiple components of this system. The

main aim of the system was achieved. However, this procedure may be useful to other

developers of SLL who would seek to integrate other stand-alone services to TeleWeaver

middleware. The following section gives the overall discussion of this study.

The system was given to the testers to modify update the component of the legacy

application using TeleWeaver interface, and using the normal stand-alone application

interface, this was done to validate the flexibility of integrated application. The testers took

lot of time in updating the system using stand-alone application protocol, compare to the

amount of time they took when retrieving the information from the core service of existing

application, when using TeleWeaver Interface. It was easy and fast to update the system

when using TeleWeaver Interface. This concluded the study, by elaborating the effectiveness

of integrating application to an SOA middleware.

114

6.9 Conclusion

The main aim of this chapter was to test the system and every components of the system if

they meet the measures. This chapter has described the tests that were used in this research

and how they were done. Multiple tests were carried in this chapter which includes the

following.

The test of API functionality, Connection of slim API with core components of the legacy

services, the connection of API with TeleWeaver middleware, the communication between

TeleWeaver middleware and the Legacy applications, the integration of legacy applications

into TeleWeaver middleware. All these tests were carried and discussed in this chapter. The

following chapter provides the conclusion of the study and the research findings.

115

7 Chapter 7: Discussion and Conclusion

The previous chapter presented more details of how the system works and all the testing

methods that were used to check if the system meet the stated requirement on chapter one.

This chapter gives an overall discussion of the research and the findings of the research. This

is the last chapter of this research.

7.1 Introduction

This project has presented the integration of legacy application into TeleWeaver SOA

middleware. Several tests have been performed in previous chapter to test if TeleWeaver

connects with legacy applications without any errors. The implementation chapter has

elucidated how this integration is done in this study. The different tests have elaborated how

the integration of existing application into TeleWeaver middleware can be used to enhance

the performance and sustainability of ICT4D projects in Marginalized rural communities.

This chapter presents the achievements, summary of project findings, the dynamic

implication for future work and the overall discussion and conclusion of the whole study.

In Chapter One we set the context and direction of this project. This chapter concludes the

dissertation by summarizing the work done and presents the future work. We present the

primary contribution that we have made, and discuss problems encountered during this

research and conclude by exploring the future work.

7.2 Summary of the thesis

The main aim of this research is to integrate legacy applications into TeleWeaver SOA

Middleware. The research context in which this work took place is ICT4D. The motivation of

developing this system under SLL intervention is that, SLL has developed several

applications for marginalized rural community to improve the lifestyle of these communities

using ICT, while these applications have been developed under ICT4D, it has been

discovered that these legacy applications are unsustainable and not effective as expected.

Due to the complications of maintaining standalone applications, it has been discovered that

if these applications can be integrated into SOA middleware, the existing services can be

flexible and effective, hence this system have to be developed to assist these application to

deliver as expected, also to be flexible, effective and sustainable.

116

The proliferation of ICT4D interventions is the proof that ICT is an enabler for development.

The ICT for community development has played a major role in improving the life of

marginalized rural communities. The ability of these communities to use Internet without

hindering is a testimony to community that ICT is enabler for community development. The

role of ICT4D has to be viewed and understood in the light of different paradigms used to

reduce poverty in marginalized rural areas also to eliminate the digital divide. Not long ago

the marginalized rural areas such as Dwesa, were separated, not only physical separated but

they have been separated from information, which leads these areas to be disadvantage areas.

With the help of ICTs the community development managed to improve and enabled

development of several applications that allow these communities to access information and

know what is going on globally. This has liberated these communities. However, people from

Dwesa can perform various tasks using the Internet, this shows the development on the

community, hence ICT is no longer known as a computer study, but as an eye opener and

enabler for community development. Siyakhula Living Lab has been using ICT to assist and

improve these impoverish areas. Integration of legacy applications in SOA middleware is

helping SLL to improve the legacy application and to enhance the standard of living in rural

communities. This is encouraged by making ICTs applications effective and sustainable.

The role that Siyakhula Living Lab has performed on developing marginalized rural

communities is an enormous role. This is elaborated by the ability of these communities on

using computers and making use of the Internet platform. SLL intervention has performed

training for community member, now the community members who were attending the

training lesson, have computer literate certificates that presents their well-being of using

computers.

The SLL has used ICT4D to develop marginalized communities, however developing the

numerous stand-alone applications with a goal of enhancing the standard of living for these

MRA's, present the eagerness of this intervention on developing these communities and to

reduce the rate of poverty and enhance the knowledge system in these areas.

This project has been developed with aim of making these legacy services effective, flexible

and sustainable. SLL has developed several applications for rural ICT users and there was

117

need to integrate these existing services into SOA middleware for these to be effective and

reusable. This can be used to reduce the cost of maintaining these services and the time spend

on updating and modifying the applications. Due to low programming background and scarce

skill of using computers in these areas, the developed applications have to be easy to use,

cost-effective and sustainable: hence with application integration system, maintaining

existing e-services is easy and flexible.

This is system was designed to enhance legacy applications, to make these e-Services

effective, cost-effective and sustainable also to minimize the cost of maintaining these

applications and time spent on modifying these services. This was done after investigating,

through literature reviews, various funding methods, brainstorming with developers, meeting

with school teachers and art and craft members.

The results of the literature survey show that standalone legacy applications are hard to

maintain and they are not flexible to changes, they do not satisfy the end user' as they cannot

meet the everyday changes. The results show that SLL possesses lot of standalone

applications which presents some challenges in-terms of effectiveness and sustainability.

Therefore, this application presented in this thesis exhibits the core components and layers

through which these legacy applications are integrated on. The architecture of the system

which is presented on Chapter 4 has elaborated the integration pattern.

7.3 General Discussions

The system was tested to see if it meets the stated objectives. This was done through the

conduction of different testing methods that are stated in the previous chapter to answer the

different questions. All the mentioned research questions were answered in different

chapters of the thesis.

We have found all the answers for the stated research questions. In the course of the research

we have found out that the main advantages of integrating legacy applications into SOA

middleware is to make applications effective and maintainable and to meet today’s business

needs. These are the benefits of integrating legacy applications into SOA middleware.

118

The second question of this research was, how best to integrate legacy applications into SOA

middleware. This research has provided the answer to the second question of this research,

the best way of integration legacy applications into SOA middleware is through integration

using web services depending on which application that the developer seeks to integrate. If

the developers want to integrate the PHP application then restful web service and Slim API is

the recommended API to use. It is easy, flexible and user-friendly API that makes

applications to be smoothly integrated to the SOA middleware. This also depends on the

interfaces of the middleware. If the middleware that a developer seeks to integrate

applications on supports PHP interfaces using restful web service and Slim API or adapter it

is an easy way of performing fast integration process. In Chapter Two of this study we have

discussed the different ways of integrating legacy applications into SOA middleware. We

have tried and tested the different techniques of integrating these legacy applications into

SOA middleware. We have tried and developed a system using Nu-SOAP adapter, after

developing and tested we went back and changed the prototype due to the complications we

come across when we tried to integrate using Nu-SOAP service, hence we concluded this

study by recommendation of saying restful web service is the best techniques to integrate

legacy applications into SOA middleware.

The last question is on comparing the different techniques of integrating legacy applications

into SOA middleware, the following paragraph will answer that question.

In this research we have conducted different techniques of integrating existing systems into

SOA middleware. In Chapter Two we have discussed the different integration method, and

through the system development we have discovered that using XML-RPC and Nu-SOAP

services is easy but it needs an adapter model where these legacy applications will use in

order to be integrated into SOA middleware. These techniques can also be used depending on

the interfaces that are presented by the middleware. This research has discovered that the

RESTful service is easy to use, as creating its adapter models is easy and flexible. So it is

recommended that using RESTful web service is flexible and easy, as it allows smooth

integration of PHP legacy applications.

119

The objectives of the thesis were met through conducting different research techniques. Each

chapter in this research has addressed various objectives of the research. The following

section gives more details on how the objectives were addressed in this research.

7.4 Addressing the research objectives

The main objective of this study is to integrate legacy applications both e-Commerce and

Moodle applications into TeleWeaver SOA middleware. The first objective was to develop

the system that will integrate these legacy applications into SOA middleware. This objective

was achieved by developing a working system that allows smooth integration of these stated

legacy applications into TeleWeaver SOA middleware. This was discussed in Chapter Five

of this research where the researcher developed a working system and tested the functionality

of this system on Chapter Six. These two chapters achieved the main objective of this study.

The sub-objectives of this research were also meet in this research. The first sub-objective

was to identify the benefits of integrating legacy application into SOA middleware; this was

answered in Chapter Two of this research through discussion. In Chapter Two we discussed

the benefits of integrating legacy applications which are, allowing the re-usability, flexibility

and effectiveness of the applications.

The second sub-objective was to investigate the integration and application modernization

techniques; this was also answered in chapter two of this thesis. Through a literature review

we have discovered the integration and application modernization techniques that can be

used to integrate legacy application in a smooth and effective manner.

To achieve sub-objective three of this research of how to best integrate legacy application

specifically Os-Commerce and E-learning applications into TeleWeaver middleware, these

objectives were met through development of the working system which is clearly stated in

Chapter Five of this thesis.

The second last sub-objective was to investigate the web service techniques, API and

libraries that can allow smart integration of the existing applications. This objective was

achieved through using different method, first method was to do literature review and the

second was to develop the working system. Using these two stated methods it is easy to

120

identify the best web service technique and API that allows easy integration of legacy

applications into SOA middleware. Chapter Two and chapter five of this research give a

clear answer to this objective.

To implement and to field test the systems which incorporates both the validation of system

against the states measures, and limitations of stand-alone services and usability of this

system. These objectives were achieved in developing the well-functioning system which is

Chapter Five and testing the functionality of this integration project which is Chapter Six of

this thesis and evaluating the effectiveness of this system is achieved on Chapter Six of this

thesis.

This system is designed to enhance the legacy applications that are developed SLL

intervention for marginalized rural communities of the Eastern Cape in South Africa. Base on

the requirement analysis on Chapter Three, a system was designed, implemented and tested

to demonstrate the benefits of integrating these e-services into SOA middleware.

The second objective was to investigate and understand the integration and application

modernization techniques as to determine which integration procedure will be suitable for

SLL legacy applications. Through a literature survey, a series of integration procedures were

investigated in Chapter Two and found that TeleWeaver middleware which is discussed in

chapter two, have several interfaces that allow developers to integrate their applications on it.

The third objective was to identify the best way of integrating legacy applications

specifically e-Commerce and Moodle application's into TeleWeaver middleware. The

investigation was done through literature review and study of TeleWeaver middleware , it

was discovered that the best and suitable criteria of integrating these existing applications

into TeleWeaver was to develop RESTful web services which will use Slim API to allow

connection between TeleWeaver middleware and stated legacy application. In this study we

found that both of these legacy applications are developed using PHP scripting language,

hence we developed restful web service API to concede the connection. This is found as the

best and flexible way of integrating legacy applications into TeleWeaver middleware.

121

The fourth objective was to investigate the web service technology, API and libraries that can

be utilized to allow smooth integration of existing disparate applications into SOA

middleware. We have found that using restful web services is the beginning of flexible way

of integrating legacy application. Using Slim API grants developers a smooth integration

platform. Through the development of the integration system this research discovered that

slim API grants a flexible platform of connecting SOA middleware platform with legacy

applications. In this manner the integration system is easy, effective and flexible. This led to

sustainable and flexible integration system.

The fifth objective was to implement the integration of these legacy applications. This

objective was achieved by the use of dynamic scenarios presented in Chapter Five. Chapter

Five demonstrated the implementation of the integration system.

The last objective was to evaluate the usefulness of the integration of legacy application and

validate the adequacy of this system. This objective was achieved by testing the adequacy

and flexibility of this system. Chapter Six of this thesis has elucidated the usefulness of the

integration system. Several RHS developers have tested flexibility of this system. In this

manner the objectives which were the guideline of this study were achieved in this research.

All the questions and measures that were stated in Chapter One were met and answered. All

the objectives, questions and aims that are in the scope of this study were achieved.

7.5 Future Work

The integration of legacy applications into TeleWeaver SOA middleware is limited due to

interface presented by TeleWeaver. This is a loophole that needs to be addressed in the future

improvements of the integration system. Due to the proliferation of SLL at which deferent

projects are developed per year, there is a need for several protocol or Dynamic Service

Invoker or interfaces that allows legacy application to be integrated into TeleWeaver

middleware without difficulty. The recommendation is to have a super services invoker on

TeleWeaver which allows smooth communication between legacy services and TeleWeaver.

Another technical challenge that rose during the course of the study was to have TeleWeaver

installed at RHS side only, which give critical problem when developing integration system,

as it uses RHS credentials. Having super service invoker will provide support to every

122

interface of the application such as XML-RPC, Nu-SOAP, SOAP or REST. This will make

an easy integration to all the legacy applications regardless of which language does the

application use. Current TeleWeaver SOA middleware support REST and SOAP interfaces,

the extension of TeleWeaver interfaces will provide an easy integration.

7.6 Overall Conclusion

This thesis has described the integration of legacy applications into TeleWeaver SOA

middleware. This has described the integration platform and the best way of integrating the

stand-alone applications under the SLL context. Several scenarios have been demonstrated to

explain the integration of the legacy application into TeleWeaver. The various ways of

integrating legacy application has been discussed and the recommended way of integrating

existing application has been explained. The interfaces and the layer which integration took

place have been elaborated. The way which Slim API sit on top of these applications and the

way slim connects with core service components of legacy application is discussed. The

flexible standards which slim connect with TeleWeaver middleware has been elucidated by

several scenarios. This project was developed based on the open source platform to grant full

ownership to the administrators. This project has demonstrated how to integrate legacy

applications; this will give guidelines to developers who will integrate other legacy

applications into SOA middleware.

123

References

1. Aaron, R. (2008). Restful Web Services. Fort Lewis College, Durango.

2. Aberdeen Group. (2009). Analyst Insight, Legacy Modernization in a Tough

Economy: Cost and improving Agility. Swissotel. Chicago.

3. Aberdeen Group. (2006). The Legacy Application Modernization Benchmark Report:

Transforming MainFrame, AS/400 and Unix Applications in an SOA World.

Aberdeen Group inc. U. S. A.

4. Alcatel-Lucent. (2006). XML Web Services & APIs. Available from:

http://enterprise.alcatel-lucent.com/?product=XMLServices&page=overview

(Accessed 12-October 2010).

5. Alistair, C. (2000). Writing Effective Use Cases, Humans and Technology in

preparation for Addison-Wesley Longman. Cockburn. Canada.

6. Andrew J. A.(2010). Using The Slim PHP Framework for Developing REST APIs.

Available from:http://codingthis.com/programming/php/using-the-slim-php-

framework-for-developing-rest-apis/. (Accessed on 03-September-2012)

7. Apache. (2010). ApacheApache CXF CXF. Available from:

http://cxf.apache.org/distributed-osgi.html. (Accessed on 12-august-2012)

8. Autodesk (2012). Digital Prototyping: Design, Manufacture, and Market the World's

Best Product. Available from: http://usa.autodesk.com/digital-prototyping/ (Accessed

on: 20-September-2012)

9. Autodesk Manufacturing. (2012). Digital Prototyping. Available from:

http://usa.autodesk.com/adsk/servlet/pc/index?siteID=123112&id=16695831

(Accessed on 15-August.2012)

10. Borland Software Corporation. (2009). Effective Requirements Definition and

Management. Available

from:http://www.borland.com/resources/en/pdf/solutions/rdm_whitepaper.pdf

.(Accessed on 25 July 2012).

11. Bradley, M. (2012). Wireless and networking. Available from:

http://compnetworking.about.com/cs/webservers/g/bldef_apache.htm. (Accessed by

12-September-2012)

124

12. Bradley, A. (2008). SOA Scenario: Pattern and Guidelines for SOA Starting with

SOA and Moving to Advanced SOA. Gartner Researcher.

13. Carroll, J.M, (2000). Mental Models in Human Computer Interaction. Available

from: http://www.ntrs.nasa.gov/.../19890068859_1989068859.pdf .(Accessed on: 20-

06-2012)

14. Cerami, E. (2002). Web Service Essentials: Distributed Applications with XML-RPC,

SOAP, UDDI &WSDL. 1St edition. O'Reilly Media, Inc. United State of America.

15. Charles, D.(2003). How to plan a road map for application modernization. Available

from:www.computerworld.com/s/article/86137/How_to_plan_a_road_map_for_appli

cation_modernization. (Accessed on 01-September-2012).

16. Charles Dickerson.(2003). How to plan a road map for application modernization.

Available

from:Http://www.computerworld.com/s/article/86137/How_to_plan_a_road_map_fo

r_application_modernization. (Accessed on 01-September-2012)

17. Christophe, A. (2011). RESTful services with jQuery, PHP and the Slim Framework.

Available from: http://codingthis.com/programming/php/using-the-slim-php-

framework-for-developing-rest-apis/.(Accessed on 01-September-2012)

18. Christophe, C. (2011). Restful services with Jquery, PHP and the Slim Framework.

Available from: http://coenraets.org/blog/2011/12/restful-services-with-jquery-php-

and-the-slim-framework/ .(Accessed on 01-September-2012)

19. Christopher, N. (2010), Linux Bible 2010 Edition: Boot Up to Ubuntu, Fedora,

KNOPPIX, Debian, openSuSe and 13 Other Distribution. 2010 edition. Wiley

Publishing. Canada and India.

20. Clifton, M. (2003). What Is A Framework ? Available from:

http://www.codeproject.com/Articles/5381/What-Is-A-Framework. (Accessed on 12-

September-2012).

21. Crugnalo, A. (2006). Using Web service With Flash and Nusoap. Available from:

http://www.sephiroth.it/tutorials/flashPHP/webService/ (Accessed 15 April 2010).

125

22. Dalvit, L.; Terzoli, A.; Muyingi, H. & Thinyane, M. (2007). The deployment of an

eCommerce platform and related projects in a rural area in South Africa. In

International Journal of Computing and ICT Research, Vol 1, No 1, p 9-17.

23. Daryl, K., and Eamonn, G. (2004). Uses Case Requirement context, 2edition,

Published by Pearson Education. United Stated of America.

24. Dave, M. (2008). Php3: Programming Browser-Based Applications with Php,1st

McGraw-Hill Professional ©1999 available http://dl.acm.org/citation.cfm?id=540803

25. Davey, B. & Cope, C. (2008). Requirements Elicitation – What‟ s missing? In the

Issues in Informing Science and Information Technology, Journal Vol 5, p1547-

5840, Informing Science Institute, 131 Brook hill Court, Santa Rosa, CA, 95409,

USA

26. David, B., and W3C Fellow. (2004). Web Services Architecture; W3C working

group note 11 February 2004. Available from: http://www.w3.org/TR/ws-arch/.

(Accessed on. 23-August-2011).

27. David, B., and W3C Fellow. (2004).Web Services Architecture; W3C working group

note 11 February 2004. Available from: http://www.w3.org/TR/ws-arch/. (Accessed

on. 23-August-2011).

28. Dickerson, C. (2003). How to plan a road map for Application Modernization. IDG

inc. Available from: http://www.cumputerworld.com/s/article/ 86137/#

29. Donald, C. (2010), Brainstorming, Big Dog and small dog's performance

juxtaposition. Available from:

http://www.nwlink.com/~donclark/perform/brainstorm.html. (Accessed on: 01-

august-2012)

30. Dymond, A., and Oestmann, S. (2003). A rural ICT Toolkit for Africa.

Worldbank/InfoDev. Available from:

http//www.infodev.org/projects/telecommunications/351africa/ruralICT/toolkit.pdf

31. Ellen,S., Stephen, F., Aaron, W., Robert, L and Arnold, R. (2005). Linux in a

Nutshell (In a Nutshell (O'Reilly)), O'Reilly Media. Published by ACM. New York.

http://dl.acm.org/citation.cfm?id=540803

126

32. E-European, (2006). E-European Justice. Available from: https://www.e-

justice.europa.eu/content_judicial_systems-14-en.do. (Accessed on 10-September-

2012).

33. François, C. (2010). What Is System Architecture? [Online]:

http://www.wisegeek.com/what-is-systemarchitecture.htm. (Accessed on 18 July

2012)

34. Freivald, J. (2006). iWay SOA Middleware: An Agile framework for Fast, Flexible,

Low-Risk services Deployment. iWay inc. Unite Sate of America.

35. Gilkey, H. T. (1960). "New Air Heating Methods", New methods of heating

buildings: a research correlation conference conducted by the Building Research

Institute, Division of Engineering and Industrial Research, as one of the programs of

the BRI fall conferences, November 1959., Washington: National Research Council

(U.S.). Building Research Institute, pp. 60.

36. Glenn, J. Browne, Michael B and Rogich. (2004).

http://mesharpe.metapress.com/app/home/contribution.aspreferrer=parent&backto=is

sue,10,10;journal,45,48;linkingpublicationresults,1:106046,1 (Accessed 20-July

2012)

37. Gudgin, M.; Marc, H.; Lafton, Y.; Mendelsohn, N.; Moreau, J. & Nielsen, H. (2007).

SOAP version 1.2 part 1: Messaging Framework. 2Nd edition. World Wide Web

Consortium. Available from: Http://www.w3.org/TR/Soap12-part1/

38. Harris, R.W. (2004). Information and communication technologies for poverty

alleviation. Kuala Lumpur: UNDP’s, Asia-Pacific Development information

Programme.

39. Helsinki Living Lab. (2007). What is a Living Lab? Available from:

http://www.helsinkilivinglab.fi/node/162. (Accessed 20 July 2010).

40. Howard, C. (2009). Oracle IT Modernization Series: Why Modernization? An Oracle

White Paper. Published in U.S.A. Available from:

www.oracle.com/us/technologies/modernization/027006.pdf. (Accessed on 01-

September-2012).

http://www.w3.org/TR/Soap12-part1/

127

41. Jack, V. (2007).Best practices for OSGi development in enterprise Java integration.

Available from: http://www.soa.com/Best-practices-for-OSGi-development-in-

enterprise-Java-integration.html. (Accessed on: 12-September-2012)

42. James, D. (2012). E-Commerce Infrastructure:Middleware in Web 2.0. Avilable

from: http://www.slideshare.net/jamesdellinger/mecb-middleware-and-web-20-

project-2012. Accessed on: 10-October-2012.

43. James, T.; Lahde, K.; Naidoo-Swetternham, T and McKay, K. (2011). A Practical

Approach to ICT for Development: Perspective from SAFIPA programme. Pretoria.

CSIR Meraka Institute, South Africa.

44. Jonathan, B., Sean, K,. and Bobby, S,. (2005). A NEW SERVICE-ORIENTED

ARCHITECTURE (SOA) MATURITY MODEL. Available from:

www.omg.org/soa/Uploaded%20Docs/SOA/SOA_Maturity.pdf . (Accessed on 20-

march-2011).

45. Josuttis, M. N. (2007). In SOA in practice: The art of distributed system design.

California: O‟ Reilly.

46. Kuntal, G. (2011).Developing a web service and consuming it withJ2ME Client.

Available from : http://www.ibm.com/Developing a web service and consuming it

with J2ME Client.pdf. (Accessed on 20-September 2012).

47. Karen, J.B. (2011). Stepping Up to The Application Integration Challenges. 1St

edition Oracle Inc. New York.

48. Kumar, P., Perreira, M., Vaidya, P., Vosseler, F. & Peltz, C. (2006). Moving from

point-to-point integrations to SOA-based integrations. Hewlett-Packard Technical

Information.

49. Laurent, S.; Johnson, J.; Winer, D & Dumblil, E.(2001). Programming Web Service

XML-RPC . 2Nd Edition. O'Reilly &Associates. United State of America.

50. Laurent, R.(2010). SOA Middleware: SAP NetWeaver PI as a Central Integration

Hub. 1St edition. SAP AG. India.

51. Living Labs in Southern Africa (2009). Overview. Available from:

http://llisa.meraka.org.za/index.php/Overview (Accessed 20 July 2010).

128

52. Makamba, M. and Thinyane, M.P. (2011). Implementation of an Adaptor Component

to Integrate Legacy Applications into an SOA Middleware. Satnac proceedings held

in East London. South Africa.

53. Margaret, R. (2007).Requirements analysis (requirements engineering). Available

from: http://searchsoftwarequality.techtarget.com/definition/requirements-analysis.

(Accessed on 15-August-2012)

54. Margaret, R. (2009),systems development life cycle (SDLC). Available from:

http://searchsoftwarequality.techtarget.com/definition/systems-development-life-

cycle. (Accessed on 15-August.2012).

55. Mark, K. (2009). Lessons from the Past that Assist the Projects of Today to Shape the

World of Tomorrow; Functional versus Non-Functional Requirements and Testing.

Available from: http://lessons-from-history.com/node/83. (Accessed on

01.September 2012).

56. Mark, G. (2009). A practical Guide to Linux Commands, Editors and Shell

Programming. 2Nd edition. Safari. United Kingdom.

57. Maven. (2012). Guide to Creating Archetypes. Available from:

http://maven.apache.org/guides/mini/guide-creating-archetypes.html. (Accessed on

12-September-2012).

58. Michael, M. (2007). Software Engineering of Stand-alone Programs. University of

Colorado, Boulder.

59. Michele E. Davis and Jon A, Phillips. (2007). Learning PhP and MySQL. A step-by

step guiding to create dynamic database-driven on web site.2second edition.

Published by O’Reilly Media, United States of America.

60. Muller, G. (2010). The System Architecture Process. Buskerud University College,

The Netherlands. [Online]:

http://www.gaudisite.nl/SystemArchitectureProcessPaper.pdf/. (Accessed on 11

June 2012).

61. Negus, C. (2007). Linux 2007 Edition. Indianapolis: Wiley Publishing, Inc.

129

62. Ngwenya, S. (2010).Developing a Context-Sensitive Revenue Management System

for ICT4D projects in Rural Marginalized Communities. University of Fort Hare.

South Africa.

63. Nichol, S. (2004). Programming with NuSOAP Using WSDL. Available from:

http://www.scottnichol.com/nusoapprogwsdl.htm (Accessed 29 April 2010).

64. Nikolaj, C. (2008).On some drawbacks of the PHP platform, Proceeding

CompSysTech '08 Proceedings of the 9th International Conference on Computer

Systems and Technologies and Workshop for PhD Students in Computing Article

No. 12 ACM. New York, NY, United State of America.

65. Njeje, S.G., Muyingi, H. N. and Terzoli, A. (2008). Implementing a robust, cost

effective, eCommerce platform for a disadvantaged community of the Eastern Cape,

South Africa: Masters Dissertation. University of Fort Hare.

66. Oracle. (2008). Ensuring Web Service Quality for Service-Oriented Architectures.

Available from http://www.oracle.com/technetwork/oem/grid-control/overview/wp-

ensuring-1.pdf (Accessed 22 July 2010).

67. Oracle and IDG global solutions.(2009) .PREPARING FOR MISSION-CRITICAL

SOA WITH NEXT-GENERATION GOVERNANCE TECHNOLOGIES. Available

from: http://www.oracle.com/us/technologies/soa/soa-governance. (Accessed on 12-

March-2011).

68. Oracle and IDG global solutions. (2009). Preparing for Mission-critical SOA with

Next Governance Technologies. Available from:

http://www.oracle.com/us/technologies/soa/soa-governance. (Accessed on 12-March-

2011).

69. Oracle Modernization. (2010) .An Executive Guide to Oracle Modernization

,Enabling Strategic Business Transformation. Available from:

www.oracle.com/us/036341.pdf. (Accessed on 01-September-2012).

70. Pade, C.; Palmer, R.; Kavhai, M. & Gumbo, S.(2009). Siyakhula Living Lab: Mpume

Baseline Study report. Available from:

http://www.dwesa.org/sites/dwesa.org/files/baseline_report.pdf. (Accessed on 20

Jun 2010).

http://www.oracle.com/technetwork/oem/grid-control/overview/wp-ensuring-1.pdf
http://www.oracle.com/technetwork/oem/grid-control/overview/wp-ensuring-1.pdf

130

71. Rafael, T. (2007). Oracle Application Integration architecture. 1St edition. Oracle inc.

North America.

72. Reitman, L., Ward, J. & Wilber, J. (2007). Service Oriented Architecture (SOA) and

Specialized Messaging Patterns. Available from:

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.84.5751&rep=rep1&type=

pdf.(Accessed 10 April 2010).

73. Richards, R. (2006). Pro PHP, XML and Web Services. California: Apress.

74. Sayo, P. (2004). Globalization and WTO: ICT, Trade and Competitiveness. In ICT

Policies and e-Strategies in the Asia-Pacific. New Delhi: Elsevier. Available from:

http://www.apdip.net/publications/ict4d/e-strategies.pdf (Accessed 23 July 2010).

75. Schneider, G.P. (2003). Electronic Commerce: 3rd Edition, Ph.D., CPA University of

San Diego, Science Research Council & Institute of Social and Economic Research.

76. Scott, M.S. (2010). Investigation and Development of an e-Judiciary Service for a

Citizen-Oriented Judiciary System for Rural Communities. Masters Dissertation.

University of Fort Hare: South Africa.

77. Seagull Rocket. (2010). The Last Mile Integration: A Simpler Way to Connect

Existing System to SOA.

78. Seagull, R. (2011) The Last mile of integration; A Simpler Way to Connect existing

Systems to SOA, RocketSegull inc. United State of America.

79. Sklarand, D. & Adam, T. (2003). What is php? Tech Republic, A ZDNET tech

community. Available from: http://articles.techrepublic.com.com/5100-22_11-

5074693.html (Accessed on 10 Aug 2010.

80. Steve, E. (2007). Non-functional requirement. Department of computer science.

University of Toronto.

81. Software, AG. (2008). Web Methods Application Modernization – Retail. Available

from: www.softwareag.com/.../FS_App_Mod_Retail.pdf. (Accessed on 07-

September-2012.)

82. Sparx Systems. (2007). UML Business process Model-Tutorials. Available from:

www.sparxsystems.com.au/. (Accessed on 4 Jul 2010)

131

83. Spool, M. J. (2007). 7 Critical Considerations for Designing Effective Applications,

Part II. Available from:

http://www.uie.com/articles/designing_effective_apps_part2/ (Accessed 20-August-

2012).

84. Summa. (2006). Strategy for Application Modernization, A Summa White Paper.

Available from: www.summa-tech.com/.../SummaStrategyforApplication.pdf.

(Accessed on 17-September 2012).

85. Tarwireyi, P.; Muyingi, H. N. & Terzoli, A. (2007). Design and Implementation of a

Network Revenue Management Architecture for Marginalized Communities. Masters

Dissertation. South Africa: University of Fort-Hare.

86. Tim, W. (2012). Best Practices for (Enterprise) OSGi applications. Available from.

http://www.developerworks.com. (Accessed on . 20-september-2012)

87. Tutorial Point. (2010).What are Web Services?. Available from:

http://www.tutorialspoint.com/webservices/what_are_web_services.htm. (Accessed

on, 14-September-2012)

88. Toni, E. and Von Staden, R. (2008). Dwesa Village Connection Business Modeling

Feasibility Analysis. COFISA. Ungana-Africa.

89. UNDP. (2009). Conservation and Sustainable Use in the Wild Coast. Available from:

www.thegef.org/.../04-21-05%20UNDP%20PRO%20DOC.pdf. (Accessed on: 06-

September-2012)

90. United Nations Conference on Trade and Development – UNCTAD. (2009). National

policies to promote technological learning and innovation. In The Least developed

countries report 2007, Geneva: UNCTAD: 51-90.

91. Van Buskirk, R. & Moroney, BW. (2010). Extending prototyping. IBM Systems

Journa, Vol 42, No. 4, p 613-623. IBM.

92. Wertlen, R. (2010). A Design of a Middleware Solution for Connected Rural Digital

Access Nodes Enabling a Multitude of Applications. Masters Dissertation.

University of Fort Hare: South Africa

132

93. World Developments Report. (2009). Information and communication technology for

development, States and Markets: Telecommunication/ICT markets and trends in

Africa. ITU Switzerland

133

Appendix A: System installation

This section explains the installation of the system components that are not included in the

main body of the thesis. This installation includes the building of the client server

architecture and installation of the system components

The following technologies are the technologies that are used to install the system.

 EduBuntu 10.04

 Apache web server 2

 My SQL 5.2

 PHP 5.2.9

 Eclipse Helios

 TeleWeaver 1.2.2

All the above stated technologies are the main technologies that are used for development

environment and deployment environment.

Development environment using Linux box.

The system is running on an edu Ubuntu 10.04 Linux operating system. This operating

system is free and easy to obtain for usage from (http://www.ubuntu.com/). The actual

installation of the operating system can be done from a Disk. During the installation, options

are given to select components such as apache2, PHP5 and MySQL.

 PHP installation

PHP scripting language can be installed from the Linux shell by typing the following

command.

Sudo apt-get install php5.

134

MySQL installation

This component can also be installed using the command line below.

Sudo apt-get install mysql-server-5.

When this command line runs the component allows a developer to insert the credentials for

security reasons.

 PhpMyAdmin installation

To install this component, one can use the command line or can use synaptic package. This

system component helps a developer to administer the database. Below is the command line

that can be used to install this component.

Sudo apt-get install PhpMyAdmin

During the installation of the component, the system will request for credentials, to secure

my SQL database where it is necessary.

Apache installation

In this thesis we used Apache web server. The installation of this web server involves the

following command.

Sudo apt-get install apache 2

135

Listing 9.1 Connection between TeleWeaver Middleware and Moodle Application.

The above listing elaborates how Moodle is integrated into TeleWeaver when using slim

API. The above listing shows the importance of URI when using RESTful web service. This

shows major connection between the legacy applications and a TeleWeaver middleware. This

is an example of the external integration of legacy services. However the method of the

service has to be specified in the code. The route of the components is a crucial factor when

integrating legacy application using REST service. The response type of the component

needs to be specified. However if the response method and a request method are not specified

on the code, the integration will not be successful. An exception has to be thrown to catch

any error in the system integration.

Listing 9.2 Slim API

136

The listing 9.2 illustrate how methods are registered when using Slim API. This shows the

method and the route of the components. When using the Slim API the route has to be

specified, the API need to be alert of which service uses which method such as GET, POST,

PUT or DELETE method.

Listing 9.3. The e-Commerce connection with TeleWeaver Middleware

This listing shows the connection between e-Commerce application and TeleWeaver

middleware. This code illustrates how e-Commerce is integrated in TeleWeaver Middleware

when using slim API; however the route and methods has to be specified. This is the similar

code with Moodle applications, since these applications both uses PHP language, the

mechanism of integrating them is similar.

Listing 9.4 Nu-SOAP services

137

The Nu-SOAP is an adapter model that is used been used to integrate the two stated legacy

application into SOA middleware, however this Moodle was not successful due to the

complications that were encountered during the integration process. The available interfaces

on TeleWeaver middleware they did not support the Nu-SOAP model for integration process.

The e-Commerce and Moodle components were already registered in Nu-SOAP server and

they were functioning properly, however the problem was to integrate the Moodle into

TeleWeaver middleware. That resulted to development of new mechanism which is slim

API, which supported the integration process, as TeleWeaver supported the API.

TeleWeaver installation

TeleWeaver is an SOA middleware that has been developed to integrate legacy applications

under SLL context. As stated in Chapter Two, TeleWeaver supports several technologies and

has interfaces that support external integration of legacy application. TeleWeaver is installed

in Linux system.

138

