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ABSTRACT Machine learning and parallel processing are extremely commonly used to enhance computing 

power to induce knowledge from an outsized volume of data. To deal with the problem of complexity and 

high dimension, machine learning algorithms like Deep Reinforcement Learning (DRL) are used, while 

parallel processing algorithms like Parallel Particle Swarm Optimization (PPSO) are parallelized to speed up 

the operation and reduce the processing time to train the neural network. Due to the arrival of a large number 

of incoming tasks in the cloud environment, load balancing is an important issue. To solve this problem, the 

datacenter controller or an agent makes an intelligent decision to handle a large number of tasks within a 

minimum time period or at high speed. In this work, we proposed an effective scheduling algorithm named 

Deep Reinforcement Learning with Parallel Particle Swarm Optimization (DRLPPSO) to solve the load 

balancing problem and its various parameters with greater accuracy and high speed. Our experimental results 

show that our proposed scheduling algorithm increases the reward by 15.7%, 12%, and 13.1% when the task 

set is 2000 and improves the reward by 17.5%, 12.6%, and 15.3% when the task set is 4000, as compared to 

the Modified Particle Swarm Optimization (MPSO), Asynchronous Advantage Actor-Critic (A3C), and Deep 

Q-Network (DQN) techniques. 

INDEX TERMS Load balancing, Deep Reinforcement Learning, Neural Network, Parallel PSO. 

I. INTRODUCTION 

Recently, cloud network has become a very popular 

technology that can offer different services as per user 

requests over the Internet. The development of distributed 

computing, parallel computing, and grid computing is widely 

used in the commercial sector where it offers various 

services in marketing, technology, and many other areas [1]. 

It is mainly based on the concept of on-demand delivery of 

computations, storage, applications, and other resources. 

However, the development of cloud computing is facing a 

number of challenges, including security and scheduling. 

Day-by-day, the number of user requests or loads increases, 

but the server or physical machine (PM) in the datacenter is 

limited, which leads to a task allocation problem in cloud 

networking. This problem can be handled with the concept 

of virtualization, where one physical machine is logically 

divided into a number of virtual machines (VMs) and tries to 

handle all incoming user requests [2, 3]. Due to the dynamic 

nature of cloud networks, loads fluctuate with respect to time 

for allocating a suitable VM. It shows a load balancing 

problem within the VM and has a direct impact on the 

physical machine. This problem will lead to high costs, 

minimize the profit of an organization and degrade the 

system performance. Each physical machine consumes 
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electric power for the task it does. That means if a server has 

a number of workloads, it consumes more energy [4, 5, 6]. 

To overcome this problem, a better scheduling algorithm is 

required that can handle the load among the VMs and 

execute all the incoming tasks with less execution time and 

consume less energy in the datacenter. 

 

A legitimate scheduling technique can be utilized to 

enhance each parameter of load balancing for fulfilling 

Quality of Service (QoS) and further develop the framework 

execution. Various parameters such as makespan time, 

energy consumption, resource usage, cost, and so forth are 

considered to improve the performance of the cloud network. 

Basically, there are two important types of scheduling, such 

as task scheduling and resource scheduling, or VM 

scheduling. Task scheduling is responsible for optimizing 

the makespan time or execution time of all incoming tasks 

within a physical machine [7]. Resource scheduling is 

responsible for optimizing resource utilization, resource 

selection for a given task, and energy consumption [8]. In 

recent times, most researchers have focused on hybrid 

scheduling algorithms as well as parallel computing 

techniques to solve this optimization problem. A hybrid 

scheduling algorithm, for example, combines various meta-

heuristic algorithms with machine learning techniques to 

build an effective scheduling algorithm [9, 10, 11]. A hybrid 

scheduling algorithm, which is a combination of Ant Colony 

Optimization (ACO) and Deep Reinforcement Learning 

(DRL) algorithms, has been proposed in [9] to increase the 

system performance. In [10], a method is proposed for 

avoiding the problem of the continuous nature of the cloud 

environment and improving the convergence rate by 

combining the policy gradient algorithm with particle swarm 

optimization-based parameter exploration (PG-PSOPE). To 

improve the exhibition, keep up load, and adjusting and 

incrementing the throughput, a hybrid technique is 

developed in [11], which combines both modified PSO and 

a Q-learning algorithm known as QMPSO.  The Deep Q-

network (DQN) method is broadly utilized in Deep 

Reinforcement Learning (DRL) to achieve the maximum 

reward [12, 13, 14]. In [12], a joint optimization is 

formulated of the task offloading and bandwidth allocation 

for multi-user mobile edge computing, with the objective of 

minimizing the overall cost, including the total energy 

consumption and the delay in finishing the task. To solve the 

resource allocation issue in the Mobile Edge Computing 

environment, a smart resource allocation algorithm, known 

as the Deep Reinforcement Learning based Resource 

Allocation (DRLRA) algorithm, is proposed in [13] to 

minimize average service time and balance the resource 

allocation. To achieve efficient real-time task scheduling in 

the cloud environment, a double deep Q-network task 

scheduling (DDQN-TS) scheduling method is proposed in 

[14] to reduce the task response time while ensuring a high 

task completion rate. Similarly, compared to various 

population-based methods, Particle Swarm Optimization 

(PSO) is more efficient, simple, and easy to learn with fewer 

parameters that require adjustment. It also gives higher 

performance than other population-based methods, but it 

shows convergence as well as local optimum problems 

[15,16]. Two different strategies are proposed in [15] to 

solve the traditional PSO problem. A dimensional learning 

strategy (DLS) is used for finding the personal best value of 

each particle. By applying the two-swarm learning PSO 

(TSLPSO) algorithm, it guides the local search of the 

particles and finds the optimal value from the global search. 

In [16], a load balancing method is proposed based on the 

Modified Particle Swarm Optimization (LBMPSO) method 

that uses the global best inertia weight parameter to avoid the 

local optimum problem. Commonly, PSO is to observe the 

ideal outcome of the population with the assistance of 

particles' individual value, fitness value, and global best 

value. Parallel computing is used to achieve the desired 

accuracy and is used to accelerate neural network training for 

large training data sets [17, 18, 19, 20]. In [17], a 

parallelization strategy for convolutional neural network 

(CNN) training is proposed based on two major techniques 

to maximize the overlap. In the first technique, all the 

gradients of parameters are divided into two large chunks 

that reduce the communication time. To reduce 

communication costs, the second technique involves 

replicating the gradient calculation in a few fully-connected 

layers. In [18], a concept of parallel processing is proposed 

that helps in saving time in artificial neural networks (ANNs) 

training. In [19], a parallel algorithm called Split and 

Conquer for solving Verification of Neural Network (VNN) 

formulas, is proposed using the Reluplex procedure and an 

iterative-deepening strategy. In [20], a parallel deep neural 

network architecture with an embedded organization 

mechanism is proposed, which  enforces diversity among the 

deep neural networks used as base models. The Parallel 

Particle Swarm Optimization (PPSO) algorithm is an 

example of a parallel computing process to minimize the 

processing time of high computation [21, 22, 23]. In [21], a 

novel way to implement PSO on a Graphic Processing Unit 

(GPU) is proposed, where the PSO algorithm can be 

executed in parallel on the GPU to optimize the system 

performance and speed. In [22], a technique is proposed to 

solve the highway alignment optimization problem by using 

an integrated model of parallel processing and a particle 

swarm optimization algorithm. This method is used to 

optimize the speed of processing. In [23], two parallel PSO 

algorithms on the hierarchical GPU are developed. These 

algorithms are applied to Max-CSPs to improve the GPU's 

resolution effectiveness and reduce execution time. The first 

method is a parallel GPU-PSO for Max-CSPs (GPU-PSO), 

and the second one is a GPU distributed PSO for Max-CSPs 

(GPU-DPSO). With the help of parallel techniques, the large 

training dataset can be divided into a number of subparts that 

speed up the processing [24]. By applying the back 

propagation learning algorithm, it adjusts the weight and 

achieves better results. Authors in [25] introduced a unique 

technique that uses variable lengths of particles to search for 

optimal topologies in deep convolutional neural networks.  
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As we know, in a cloud environment, incoming tasks are 

placed into an appropriate virtual machine to allocate the 

resources for execution. However, when the appropriate 

resources are not available on the server or it is heavily 

loaded, these incoming tasks take too much time to complete. 

If a server is loaded, then it consumes more energy. To 

overcome this problem, a parallel scheduling method is 

proposed in this paper which depends on both task and 

resource scheduling and is named Deep Reinforcement 

Learning with Parallel Particle Swarm Optimization 

(DRLPPSO). In this work, we use both DRL and Parallel 

PSO techniques to optimise the solutions.  

 

In a cloud environment, an appropriate decision can be 

made for allocating a huge number of incoming tasks to 

suitable resources. This decision can be made with the help 

of the DRL algorithm. We consider systems that learn to 

manage resources directly from experience and train our 

model by using artificial neural networks. Using deep neural 

networks, it offers extraordinary capacity to deal with 

complex control issues in a highly layered and continuous 

environment [26]. In a cloud environment, task allocation 

and energy consumption problems are figured out as Markov 

Decision Processes (MDP). Multiple replay memory is 

utilized in the DQN method to reduce execution time, 

allocation time, task transfer time, and energy consumption 

[27, 28]. According to [29], energy consumption in 

datacenters has two distinct characteristics: (i) servers use 

more energy when they are heavily loaded; and (ii) servers 

use a lot of power when they are idle. Subsequently, server 

solidification and load balancing can be used to increase the 

overall system reward rate and accuracy that allows users to 

receive more benefits. In our proposed algorithm, an agent, 

such as a datacenter controller, checks the status of a VM to 

determine whether it is overloaded or underloaded. If the VM 

is overloaded, then it takes the necessary action to migrate 

some tasks from the overloaded VMs to the underloaded 

ones. Also, it helps to reduce the variance between the 

targeted load and the present load of VMs within a single 

server. 

 

Due to its promising results, Parallel PSO (PPSO) was 

chosen as the metaheuristic optimization technique in this 

paper. It enhances the system performance due to 

parallelization and improved speed of large-scale analytical 

test problems [30, 31, 32]. In [30], a coarse decomposition 

scheme is chosen where the algorithm performs only the 

fitness evaluations concurrently on a parallel machine. To 

find the global best result by applying Parallel PSO, a model 

is proposed in [31] which is based on a master-slave model. 

With the help of the PPSO algorithm [32], the VMs are 

selected to minimize the total execution time. To reduce the 

search time and improve fitness function, PPSO divides the 

swarm into sub-swarms [33, 34, 35], and each sub-swarm 

contains a DRL algorithm to find the reward. These sub-

swarms are run in parallel to minimize processing time. As a 

result, it is appropriate to handle several requests from 

various users in parallel. In [33], a parallel swarm-oriented 

particle swarm optimization (PSO-PSO) with multi-stage 

and a single stage of development is suggested. Individual 

subswarms evolve independently in parallel in multi-stage 

evolution, but in single-stage evolution, subswarms 

exchange information to find the global-best. The two 

intertwined stages of evolution show superior performance 

on test functions, particularly those with higher dimensions. 

The PSO-PSO version of the technique is appealing because 

it does not incorporate any new parameters to boost 

convergence performance. In [34], a parallel particle swarm 

optimization algorithm is proposed, which comprises two 

phases for solving the convergence and local optimum 

problems. The first is the multi-evolutionary phase, in which 

the swarm is divided into k sub-swarms. Each sub-swarm 

evolves independently. Each particle adjusts its position 

depending on its own experience as well as the swarm's best. 

For a specific number of iterations, this process is repeated. 

The swarms are then combined to form a single evolutionary 

phase. In which the swarm best of each subswarm is 

compared to determine the global best. In [35], PPSO is 

employed to find the ideal virtual machine selection in a 

cloud environment to lower the cost of service based on 

turnaround time, waiting time, and CPU utilization. The 

primary contribution of this paper is as per the following: 

 

• We proposed a hybrid method that combines PPSO 

and DRL techniques, which aims to maximize the 

reward by reducing makespan time and energy 

consumption while maintaining high accuracy, as 

well as speedup the execution of continuous 

approaching position in a cloud environment. 

• We coordinate the numerical model of our method 

and also depict the point-by-point execution of our 

DRLPPSO algorithm. 

• We evaluate the proposed method by taking 

different task sets. The experimental outcomes 

show the sufficiency of the proposed method in 

relation to current pattern strategies. 

 

The remainder of the paper is spread out as follows: Related 

work is discussed in Section II; the cloud framework model 

and optimization objectives are discussed in Section III; 

Section IV presents the DRLPPSO scheduling algorithm; 

experimental results are discussed in Section V. The paper is 

concluded in section VI. 

 
II. RELATED WORK 

There have previously been a large variety of scheduling 

policies that are utilized on static, dynamic, and hybrid 

policies that are centered on either a single objective, bi-

objective, or multi-objective. These policies have focused 

their research on maintaining machine load balance as well 

as various load balancing factors such as makespan time, 

energy consumption, resource utilization, and so on. To 

address the aforementioned problem, researchers developed 
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several machine learning and population-based optimization 

scheduling algorithms for the cloud environment. To 

improve the service quality and decrease the cost, [36] 

suggested a technique that relies on the Deep Q-network 

(DQN) algorithm to reduce energy consumption and 

makespan time by modifying the reward weight. [37] 

suggested a two-stage methodology for job scheduling and 

resource allocation. A heterogeneous distributed deep 

learning (HDDL) method is employed to manage job 

scheduling, and a deep Q-network (DQN) is used to address 

resource allocation. Each algorithm is utilized to reduce the 

amount of energy required and the time it takes to complete 

a task. In [38], a task scheduling technique based on a deep 

reinforcement learning algorithm was suggested to 

maximize makespan and resource consumption. In [39], a 

task scheduling method based on deep reinforcement 

learning architecture (RLTS) was presented to manage the 

complexity and high dimensionality of the environment by 

minimizing task execution time. [40] presented foresighted 

job scheduling based on Q-learning to reduce reaction time 

and makespan while increasing resource effectiveness. To 

address the job scheduling problem, [41] proposed a deep 

reinforcement learning based algorithm to help application 

providers dispatch jobs to limited resources under QoS 

requirement constraints. In [42], the DQN method is 

proposed, which follows the DRL approach to reduce energy 

consumption and average response time while increasing the 

success rate. In [43], a modified PSO task scheduling 

algorithm (MPSO) is proposed, which is utilized to minimize 

transmission, execution, and energy consumption in a cloud 

environment by using a modified inertia weight method. To 

solve the resource allocation problem in cloud datacenters, 

[44] proposed a method which is based on Actor-Critic Deep 

Reinforcement Learning. In this method, the author tries to 

reduce the energy consumption and improve the QoS.  

 
All the above methods have two common objectives, i.e., 

makespan time and energy consumption. To achieve the goal, 

there is no suitable action defined to handle the extra task that 

can increase the reward in a dynamic environment. Therefore, 

in this paper, we define a suitable action that can handle the 

extra task and give the maximum reward as compared to the 

above methods. Also, in this paper, we show that our proposed 

method has better accuracy and faster processing speed as 

compared to others. Comparison between various scheduling 

algorithms with their advantages and disadvantages is 

represented in Table I. 

 
 

TABLE I 

ADVANTAGES AND DISADVANTAGES OF EACH SCHEDULING ALGORITHM 

Ref. 

No. 
Techniques Advantages Disadvantages 

[36] Combined a deep 

convolutional neural 
network with 

Reduce 

makespan time 
and energy 

consumption 

Performance 

degrades 

the traditional Q-

learning algorithm 
[37] Used two different 

scheduling techniques 

Reduce 

energy 

consumption 
and job delay 

Less efficient 

[38] Advantage Actor-

Critic (A2C) 

Optimize 

makespan and 
resource 

utilization 

Not consider 

more task 
attributes 

[39] DQN is used for 
training the neural 

network 

Reduce 
makespan time 

Single 
objective 

[40] Threshold-based 
approach based on 

self-adaptive and self-

learning capabilities 

Decrease 
makespan but 

increase 

resource 

utilization  

Space 
complexity 

[41] QoS-aware job 

scheduling framework 

Reduce 

response time 
and increase 

VM utilization 

Resources are 

not fully 
utilized 

[42] Job scheduling generic 
algorithm 

 

Decrease 
response time 

and energy 

consumption  
 

Jobs are 
dependent to 

each other 

[43] Modified inertia 

weight 

Reduce 

execution and 
transmission 

cost 

Mismatch 

between local 
and global 

search. 
[44] Asynchronous 

Advantage Actor-

Critic (A3C) 

Reduce energy 

consumption 

and increase 

resource 

utilization. 

Task 

migration is 

time taking 

 

III. CLOUD FRAMEWORK MODEL AND OPTIMIZATION 
OBJECTIVES 

A basic framework of a cloud network is shown in Fig. 1, 

which contains two layers: a task layer and a datacenter layer. 

These two layers store the required information to achieve the 

objective. In the task layer, all needed information about 

incoming tasks, such as expected completion time (ECT), task 

length (), and task file size () is stored in the task queue to find 

the best VMs from the server. Similarly, the datacenter layer 

holds all of the necessary information such as storage units, 

processing units, data transfer capacity, and processing speed 

for both servers and virtual machines. This information is 

helpful to the datacenter controller, where it applies the best 

scheduling algorithm to accomplish the objective and get the 

optimum result. Our objectives include reducing task 

completion time and energy consumption. Based on each 

objective, we found the reward function that helps us achieve 

the best optimization of the system. Table II. shows the terms 

and meanings used in the proposed algorithm.  

 

 

TABLE II 

TERMS AND MEANING 

Terms Meaning Terms Meaning 

VM Virtual machine 𝑉𝑀𝑡𝑙𝑑 Total load of VM  
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𝑇𝑤 Number of 

incoming tasks  

𝑉𝑀𝑎𝑣𝑔𝑙𝑑 Average load of VM  

𝑉𝑀𝑣 Number of VMs 𝑇𝐻𝑣𝑎𝑙𝑢𝑒 Threshold value 

𝑆𝑠 Number of servers 𝑏𝑎𝑣𝑔 Average bound 

𝑉𝑀𝑝𝑟𝑟 Processing rate of 

VM 
𝐸𝑐𝑜𝑛𝑠 Energy consumption 

𝑉𝑀𝑚𝑖𝑝𝑠 Millions of 

instructions per 

second of VM 

𝐸𝑎𝑐𝑡𝑖𝑣𝑒
 Energy consumption 

of an active VM 

𝑉𝑀𝑐𝑝𝑢 Number of central 

processing unit 
𝐸𝑡𝑒𝑥𝑒 Energy consumption 

of task execution 

𝑉𝑀𝑚𝑒𝑚 Memory of VM 𝐸𝑡𝑡 Energy consumption 
of task transfer 

between two VMs 

𝐸𝐶𝑇𝑤,𝑣 Expected 
completion time of 

task 𝑤 on VM 𝑣 

𝐶𝑃𝑈𝑢𝑡𝑖𝑙 CPU utilization 

𝑇𝑙𝑒𝑛𝑔 Task length 𝑆𝑤𝑡 Weight of the server 

𝑇𝐴𝑤,𝑣 Task allocation time 

of task 𝑤 on VM 𝑣 
𝑥 𝑎𝑛𝑑 𝑦 Two VM 

𝑇𝑓𝑠 Task file size 𝑇𝑇𝑥,𝑦 Task transfer 

between two VM, x 
and y 

𝑉𝑀𝑏𝑤 Bandwidth of VM 𝐵𝑊𝑥,𝑦 Bandwidth of two 

VM 

𝐶𝑇𝑤,𝑣 Total completion 

time 
𝐸𝑖𝑑𝑙𝑒  Energy consumption 

of idle VM 

𝐷𝑉𝑤,𝑣 Decision variable 𝑇𝑡𝑠 Task transfer speed 

𝑉𝑀𝑐𝑎𝑝𝑎 VM capacity 𝐸𝑇𝑇𝑅𝑥,𝑦 Extra task transfer 

between VM 𝑥 to 

VM 𝑦 

𝑉𝑀𝑙𝑑 VM load    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 1.  Cloud framework. 

A. TASK COMPLETING TIME 

Suppose a datacenter in the cloud network consists of a set 

of 𝑠 servers with various resource configurations, such as 

𝑆𝑠, 𝑤ℎ𝑒𝑟𝑒 𝑠 = {1,2, … , 𝑚}. Number of incoming tasks 𝑤, 

which are entering into datacenter, such as 𝑇𝑤 , 𝑤ℎ𝑒𝑟𝑒 𝑤 =
{1,2, … , 𝑛} and each server contains 𝑣 number of VMs, such 

as 𝑉𝑀𝑣 , 𝑤ℎ𝑒𝑟𝑒 𝑣 = {1,2, … , 𝑜}, which are the basic units of 

server resources, but the condition for execution of such 

tasks is, 𝑤 > 𝑣. Each task has a length 𝑇𝑙𝑒𝑛𝑔 which is 

expressed as millions of instructions (MI) and the speed of 

VM processing is measured in millions of instructions per 

second (MIPS). To accomplish our objective, we figure the 

processing rate of VM as in (1). It depends on the properties 

of VM, such as MIPS, CPU and Memory.   

 
∑ 𝑉𝑀𝑝𝑟𝑟

𝑜
𝑣=1 = ∑ (𝑉𝑀𝑚𝑖𝑝𝑠 + 𝑉𝑀𝑐𝑝𝑢 + 𝑉𝑀𝑚𝑒𝑚)𝑜

𝑣=1       (1) 

 

The expected completion time (ECT) of task 𝑤 on virtual 

machine 𝑣 can be addressed as in (2). 

 

 

𝐸𝐶𝑇𝑤,𝑣 =
∑ 𝑇𝑙𝑒𝑛𝑔

𝑛
𝑤=1

∑ 𝑉𝑀𝑝𝑟𝑟
𝑜
𝑣=1

              (2) 

 

When task 𝑤 is assigned to 𝑣 then it takes some time, which 

is referred to as task allocation time (𝑇𝐴𝑤,𝑣) and it is 

determined by the task file size with respect to bandwidth of 

VM (𝑉𝑀𝑏𝑤) as represented in (3). 

 

 

𝑇𝐴𝑤,𝑣 = 𝑇𝑓𝑠/𝑉𝑀𝑏𝑤         (3) 

 

The total completion time (𝐶𝑇𝑤,𝑣) of all entering tasks to be 

executed on VMs is calculated as the addition of expected 

completion time (𝐸𝐶𝑇𝑤,𝑣) and task allocation time (𝑇𝐴𝑤,𝑣), as 

represented in (4) where, 𝐷𝑉𝑤,𝑣 is the decision variable 

represented in (5). 

 

 

𝐶𝑇𝑤,𝑣 = 𝐸𝐶𝑇𝑤,𝑣 + 𝑇𝐴𝑤,𝑣 + 𝐷𝑉𝑤,𝑣        (4) 

 

 𝐷𝑉𝑤,𝑣 = {
1, 𝑖𝑓 𝑇𝑤  𝑖𝑠 𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑒𝑑 𝑡𝑜 𝑉𝑀𝑣

0, 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
       (5) 

B. LOAD AND CAPACITY OF VM 

In cloud computing, all the incoming tasks are allocated to 

suitable VMs for execution within a short time period. The 

controller chooses the best VM to execute the incoming task, 

which depends upon the task length, VM capacity, and 

previous load of the VM. The processing speed, memory, 

CPU, and bandwidth of a VM define its capacity in (6). The 

load of VM is determined by the total number of tasks and 

task length that VM already holds with respect to its 

capacity. The VM load is calculated in (7). The total load and 

average load of all VMs on a server are represented in (8) 

and (9), respectively. 
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𝑉𝑀𝑐𝑎𝑝𝑎 = 𝑉𝑀𝑝𝑟𝑟 + 𝑉𝑀𝑏𝑤             (6) 

𝑉𝑀𝑙𝑑 =
𝑇𝑤×𝑇𝑙𝑒𝑛𝑔×𝑇𝑓𝑠

𝑉𝑀𝑐𝑎𝑝𝑎
         (7) 

 

𝑉𝑀𝑡𝑙𝑑 = ∑ 𝑉𝑀𝑙𝑑
𝑜
𝑣=1          (8) 

 

𝑉𝑀𝑎𝑣𝑔𝑙𝑑 =
𝑉𝑀𝑡𝑙𝑑

𝑉𝑀𝑣
          (9) 

C. VM STATUS 

After allocating the entire task to the VM, the controller 

checks the status of each VM. Each VM can have three 

states: overload, underload, and balance. If the load of a VM 

exceeds the threshold value, then the VM status is overload; 

if the load is below the threshold value, then its status is 

underload; otherwise, the VM status is balance. The VM 

status is represented in (10) and threshold value is 

represented as in (11), where 𝑏𝑎𝑣𝑔 is the average bound, 

1<𝑏𝑎𝑣𝑔<2. 

 

𝑇𝐻𝑣𝑎𝑙𝑢𝑒 = (𝑉𝑀𝑎𝑣𝑔𝑙𝑑 × 𝑏𝑎𝑣𝑔) − 𝑉𝑀𝑙𝑑     (10) 

 

𝑉𝑀𝑙𝑑 = {

< |𝑇𝐻𝑣𝑎𝑙𝑢𝑒|  𝑈𝑛𝑑𝑒𝑟𝑙𝑜𝑎𝑑

> |𝑇𝐻𝑣𝑎𝑙𝑢𝑒|  𝑂𝑣𝑒𝑟𝑙𝑜𝑎𝑑

= |𝑇𝐻𝑣𝑎𝑙𝑢𝑒|  𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑑

      (11) 

D. ENERGY CONSUMPTION 

The energy consumption (𝐸𝑐𝑜𝑛𝑠) of the server 𝑆𝑠 at time 𝑡 

depends on the number of active and idle VMs. Both active 

and idle VMs depend on CPU utilization. The energy 

consumption of an active VM (𝐸𝑎𝑐𝑡𝑖𝑣𝑒) is calculated as the 

energy consumption of task execution at a particular VM 

(𝐸𝑡𝑒𝑥𝑒) and energy consumption of task transfer between 

two VMs (𝐸𝑡𝑡), which is represented in (14). 𝐸𝑡𝑒𝑥𝑒  depends 

on the load on VM, CPU utilization of VM and weight of the 

server (𝑆𝑤𝑡) which is represented in (12). Energy 

consumption of task transfer between two VM (𝐸𝑡𝑡) depends 

on task transfer between two VM, their bandwidth and CPU 

utilization. It is calculated as in (13), where 𝑥 𝑎𝑛𝑑 𝑦 are the 

two VM. According to [45], an idle machine can consume 

two third energy of CPU utilization, which is represented in 

(15). 

 

𝐸𝑡𝑒𝑥𝑒 = 𝑉𝑀𝑙𝑑 × 𝐶𝑃𝑈𝑢𝑡𝑖𝑙 × 𝑆𝑤𝑡       (12) 

 

𝐸𝑡𝑡 = (
𝑇𝑇𝑥,𝑦

𝐵𝑊𝑥,𝑦
) × 𝐶𝑃𝑈𝑢𝑡𝑖𝑙       (13) 

 

𝐸𝑎𝑐𝑡𝑖𝑣𝑒 = 𝐸𝑡𝑒𝑥𝑒 + 𝐸𝑡𝑡       (14) 

 

𝐸𝑖𝑑𝑙𝑒 =
2

3
× 𝐶𝑃𝑈𝑢𝑡𝑖𝑙       (15) 

 

Finally, energy consumption on a server is the sum of the 

energy consumption of all active and idle VMs, which is 

represented in (16). 

 

 

𝐸𝑐𝑜𝑛𝑠 = ∑ (𝐸𝑎𝑐𝑡𝑖𝑣𝑒 + 𝐸𝑖𝑑𝑙𝑒)𝑜
𝑣=1       (16) 

IV. DRLPPSO SCHEDULING ALGORITHM 

In this section, we describe the essential idea of the proposed 

DRLPPSO scheduling algorithm, where an agent can get an 

individual reward by taking an appropriate action on each state 

in an environment by using the DRL algorithm. By using the 

PPSO algorithm, after getting their individual best reward, 

they would try to get the global best reward with the minimum 

processing time by exchanging their information with the 

neighbors. We first select the suitable action by taking a state-

action value function and then get the personal best reward for 

each server that optimizes the load and its parameters. After 

getting the personal best reward, each server can find the 

global best value by sharing its information among other 

servers at high speed. This section contains various sub-

sections to describe the reward function, DRL, PSO, and 

PPSO. 

A. REWARD FUNCTION 

The load balancing problem is described as a Markov 

Decision Process (MDP) due to the continuous nature of 

tasks in cloud computing. In our proposed method, the 

datacenter controller is represented as an agent and the 

datacenter is represented as the environment where the agent 

takes action by allocating incoming tasks to a suitable VM in 

each cycle. MDP has four important variables that are 

described as below. 

 

1) STATE SPACE 

Inside this space, the ideal move is made by an agent based 

on the current VM information such as the number of VMs, 

their available MIPS, CPU, memory, and bandwidth. Our 

state space can be characterized as: 

 

𝑆 = {𝑉𝑀𝑣 , 𝑉𝑀𝑚𝑖𝑝𝑠 , 𝑉𝑀𝑐𝑝𝑢 , 𝑉𝑀𝑚𝑒𝑚 , 𝑉𝑀𝑏𝑤} 

 

2) ACTION SPACE 

In this action space, each task is allocated a VM for 

execution. Each action has various pieces of information, 

such as: the number of tasks, task length, and file size. Our 

action space can be addressed as: 

 

𝐴 = {𝑇𝑤 , 𝑇𝑙𝑒𝑛𝑔 , 𝑇𝑓𝑠} 

 

3) TRANSITION FUNCTION AND ACTION SELECTION 

It shows that when an agent takes an action in a current state, 

it reaches a new state. Each time an agent tries to take an 

appropriate action to reach an optimal state that gives the 

highest reward. Transition function is represented as 

𝑃(𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡 , 𝑠𝑡+1). It is the probability of reaching the next 

state 𝑠𝑡+1 and getting reward 𝑟𝑡 after executing selected 

action 𝑎𝑡 at the current state 𝑠𝑡. Due to the dynamic nature of 

cloud networks, tasks vary with respect to time, length, and 
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file size. Therefore, the load of the VM also changes. Some 

of the VMs are overloaded and some of them are 

underloaded, which is determined by (11). To balance the 

load among VMs, the agent takes the action that transfers the 

extra task from an overloaded to an underloaded VM at a 

high speed. Task transfer speed can be calculated by using 

(17). If we increase the task transfer speed, then it minimizes 

the completion time of tasks. The selected action 𝑎 at 

iteration 𝑡, i.e., can be calculated by using (18).    
 

𝑇𝑡𝑠 = ∑ ∑ ∑ (1 −𝑜
𝑦=1

𝑜
𝑥=1

𝑛
𝑤=1 𝐷𝑉𝑤,𝑥𝐷𝑉𝑤,𝑦)

𝐸𝑇𝑇𝑅𝑥,𝑦

𝐵𝑊𝑥,𝑦
    (17) 

 

where, 𝐸𝑇𝑇𝑅𝑥,𝑦 is the extra task transfer between VM 𝑥 to 

VM 𝑦. 𝐵𝑊𝑥,𝑦 is the required bandwidth between two VM 𝑥 

and VM 𝑦. 𝐷𝑉𝑤,𝑥 = 1, indicates that the VM 𝑥 is overloaded. 

𝐷𝑉𝑤,𝑦 = 1, indicates, extra task has been transferred from VM 

𝑥 to VM 𝑦. 

 

𝑎𝑡 = max
𝑎

(𝑇𝑡𝑠)        (18) 

 

4) REWARD 

An agent will get a reward for making specific moves in 

various states. An agent is attempting to choose a state 

having a higher reward to maximize its accuracy. In our 

model, the reward function is characterized by the 

minimization of the completion time of the task on a specific 

VM and energy consumption. The reward is represented in 

(19). 

 

𝑟𝑡 = min {𝐶𝑇𝑤,𝑣 + 𝐸𝑐𝑜𝑛𝑠}       (19) 

B. DEEP REINFORCEMENT LEARNING 

Recently, a number of machine learning algorithms, such as 

RL and DRL algorithms, have been applied to computing 

platforms to optimize the respective parameters. These 

learning algorithms acquire knowledge from the 

environment by choosing actions. It is helpful for 

maximizing reward by optimizing the factors in the 

environment. RL algorithm is a model-free Q-learning 

algorithm that uses a state-action value function 𝑄𝛱(𝑠𝑡 , 𝑎𝑡) 

to represent a value for selecting an action 𝑎𝑡 in a current 

state 𝑠𝑡 that follows a policy 𝛱. This function is stored in Q-

table or gets the reward. The state-action value function 

follows the Bellman condition [46,47] and it is represented 

in (20).  

 

𝑄𝛱(𝑠𝑡 , 𝑎𝑡) = 𝑟𝑡 + 𝛾 max 𝑄𝛱 (𝑠𝑡+1, 𝑎𝑡+1)     (20) 

 

     To increase the algorithm's performance, the learning rate 

𝛽 is added, as represented in (21). 

 

𝑄𝛱(𝑠𝑡 , 𝑎𝑡) = 𝑄𝛱(𝑠𝑡 , 𝑎𝑡) + 𝛽((𝑟𝑡 +

𝛾 max 𝑄𝛱 (𝑠𝑡+1, 𝑎𝑡+1)) − 𝑄𝛱(𝑠𝑡 , 𝑎𝑡)) 

  

(21) 

This procedure will be carried out iteratively till the 

terminal condition is reached. Each time, these Q-value or 

state-action value functions are stored in the Q-table. This 

shows the drawback of the Q-learning algorithm. As the 

quantity of actions grows, the intricacy of computation also 

grows, hence it diminishes the exhibition of the system. 

Thus, Q-learning algorithm in RL will not show data 

efficiency, learning efficiency, and stability.  To overcome 

this challenge, we use DQN, an altered rendition of typical 

Q-learning that employs experience replay, target networks, 

exploration, and exploitation techniques. This strategy 

enables our proposed algorithm to be more suitable for 

training large neural networks with faster convergence 

speeds, as demonstrated in Fig. 2. Two neural networks are 

shown in Fig. 2, which are target Q-network and evaluated 

Q-network, and they have the same network structure. Both 

are used in the training process for choosing N experiences 

from the experience memory reply 𝐷. We set 𝛳 as the 

parameter of evaluated Q-network and 𝛳′ is the parameter of 

target Q-network.  At each iteration 𝑡, state 𝑠𝑡, action 𝑎𝑡 and 

parameter 𝛳 are used to generate state-action value function 

𝑄(𝑠𝑡 , 𝑎𝑡; 𝛳) with reward. This serves as an input to the target 

Q-network to acquire the highest state-action value function 

of all actions in the target Q-network. In this paper, we use 

the ∊-greedy strategy to select the random action otherwise 

we choose the action by using (18). After getting the reward, 

we compare the state-action value function of evaluated Q-

network with the state-action value function of target Q- 

network to get more accuracy. 

 

The goal of the proposed algorithm is to get the evaluated 

Q-network as near to the target Q-network as possible to 

achieve better outcomes. As a result, we train our neural 

network to calculate the loss function (which decreases the 

difference between the evaluated and target Q-networks), 

and the neural network's parameters are updated using 

backpropagation and gradient descent [48]. The loss function 

can be reduced to update the parameters of Q-networks. 

Equation (22) can be used to construct the loss function and 

(23) can be utilized to establish the target state-action value 

function. 

 

𝐿(𝛳) = 𝐸[(𝑡𝑎𝑟𝑔𝑒𝑡𝑡 − 𝑄(𝑠𝑡 , 𝑎𝑡; 𝛳))2]    (22) 

 

𝑡𝑎𝑟𝑔𝑒𝑡𝑡 = 𝑟𝑡 + 𝛾  𝑄′
𝑎𝑡+1
𝑚𝑎𝑥 (𝑠𝑡+1, 𝑎𝑡+1; 𝛳′)    (23) 

 

where 𝑡𝑎𝑟𝑔𝑒𝑡𝑡  is the target state-action value function and 

it is evaluated by the action performed on the target Q-

network with parameters 𝛳′. All the parameters of the 

evaluated Q-network 𝛳 are updated at each iteration, 𝑡. 
However, the parameter of target Q-network 𝛳′ is fixed and 

updated only at stationary stages. As a result, the target Q-

network update rate is slower than the evaluated Q- network. 

The pseudo code of the DRL algorithm is described in 

Algorithm 1. The datacenter controller uses this algorithm to 

gather the vital network parameters, for example, individual 

load, overall load, and completion time, which are refreshed 
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as the states of the environment change. Following the initial 

transition function (𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡 , 𝑠𝑡+1), network parameters are 

utilized to develop the loss function and then fine-tuned. 

Each time the load is assigned, an action 𝑎𝑡 is chosen using 

(18), followed by the reward depending on choosing the state 

𝑠𝑡+1. This decision is forwarded to the controller, who is in 

charge of allocating resources for subsequent tasks.  

 

 

FIGURE 2.  Structure of neural network. 

 

Algorithm 1 of DRL 

 

Input: Learning rate; discount factor; exploration factor; 

replay memory capacity; information of each task, VM 

and server; 

Output: Reward of each server. 

1. Initialize memory D to capacity N 

2. Initialize evaluated Q-network parameters ϴ  

3. Initialize target Q-network with parameters 𝛳′ 

where 𝛳′ = ϴ 

4. Begin 

5. For each episode e do 

6. initialize the state 𝑠𝑡 with load 

7. For each task in task-queue do 

8. if probability ∊ then 

                       choose a random action 𝑎𝑡 

else 

                       Select 𝑎𝑡 = max
𝑎

(𝑇𝑡𝑠)  

         End if 

9. Applying action 𝑎𝑡, calculate total reward 𝑟𝑡 by 

using (19) 

10. Move to the new state 𝑠𝑡+1 

11. Store transition (𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡 , 𝑠𝑡+1) in memory D   

12. Execute Algorithm 1.1 for evaluated Q-network 

training      

13. Every 𝒯 step, update target Q-network 𝛳′ = ϴ 

14. End For  

15. End For 

16. Return reward  

17. End 

 

 

Algorithm 1.1 Evaluated Q-network Training  

 

1. Sample random mini-batch of transition 

(𝑠𝑢 , 𝑎𝑢 , 𝑟𝑢 , 𝑠𝑢+1)  from memory D 

2. if episode terminates at step j+1 then 

Set 𝑡𝑎𝑟𝑔𝑒𝑡𝑣 = 𝑟𝑣 

else 

Set 𝑡𝑎𝑟𝑔𝑒𝑡𝑢 = 𝑟𝑢 +
𝛾  𝑄′

𝑎𝑢+1
𝑚𝑎𝑥 (𝑠𝑢+1, 𝑎𝑢+1; 𝛳′) 

3. End if 

4. Perform a gradient descent using loss function: 

(𝑡𝑎𝑟𝑔𝑒𝑡𝑢 − 𝑄(𝑠𝑢 , 𝑎𝑢; 𝛳))2 

5. Repeat till least loss value is achieved with 

update parameter 

 

C. PARTICLE SWARM OPTIMIZATION 

In particle swarm optimization (PSO), each VM in a server 

is represented as a particle. The total load of a VM on a server 

is referred to as its position, and task transfer from one VM 

to another is referred to as velocity. We take the reward 

function as the fitness function of each server. To discover 

the best fitness as a personal best, we compare the fitness 

function to each particle's personal best (such as current load, 

status, and CPU utilization). Finally, from all the personal 

bests, we find the global best and allocate the next incoming 

task to the best particle. After finding, each particle can 

update its position and velocity according to (24) and (25). 

Each term used in PSO with its meaning is explained in 
Table III. 

 
TABLE III 

TERMS AND MEANING 

Terms Meaning Terms Meaning 

𝑖 Particle 𝑡 Iteration 

𝑋 Position 𝑉 Velocity 

𝑋𝑖(𝑡) Current position 𝑋𝑖(𝑡 + 1) Modified position 

𝑉𝑖(𝑡) Current velocity 𝑉𝑖(𝑡 + 1) Modified velocity 

𝑃𝑖 Personal best 𝐺𝑏𝑒𝑠𝑡 Global best 

𝑐1𝑎𝑛𝑑 𝑐2 Co-efficient 𝑟1 𝑎𝑛𝑑 𝑟2 Random number 

𝜔 Weight factor   

 

 

𝑋𝑖(𝑡 + 1) = 𝑋𝑖(𝑡) + 𝑉𝑖(𝑡 + 1)      (24) 

 

Vi(t + 1) = ωVi(t) + c1r1(Pi(t)-Xi(t)) +

c2r2(Gbest(t)-Xi(t))   

(25) 

D. PARALLEL PARTICLE SWARM OPTIMIZATION 

The PPSO algorithm is a suitable method for solving an 

optimization problem with less processing time. The PPSO 

algorithm leads to an enhanced throughput due to 

parallelization and improved speed, even if the environment 

contains a large population size. The working principle of 

PPSO is same as PSO, but the difference is that in PPSO, the 
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main swarm is divided into a number of sub-swarms where 

each sub-swarm works as a single PSO and each sub-swarm 

runs in parallel to reduce the processing time for getting the 

best result. 

 

       The PPSO algorithm has two phases. One is a multi-

evolutionary phase and the other is a single evolutionary 

phase. The swarm or datacenter is randomly divided into k 

sub-swarms or servers during the multi-evolutionary phase. 

Each sub-swarm consists of a number of particles or virtual 

machines (VMs), each of which can be evaluated 

independently of the swarm. After determining the optimal 

value, each particle uses (24) and (25) to update its position 

and velocity based on its own and the swarm's best 

experiences. For a specific number of iterations, this process 

is repeated. The sub-swarms are then combined to form a 

single evolutionary phase.  The global best (𝐺𝑏𝑒𝑠𝑡) is 

determined by comparing the swarm best (𝑆𝑏𝑒𝑠𝑡) of each sub 

swarm. For minimization problems, (26) represents the 𝐺𝑏𝑒𝑠𝑡  

in a given iteration. 

 

𝐺𝑏𝑒𝑠𝑡 = min {𝑆𝑏𝑒𝑠𝑡 1, 𝑆𝑏𝑒𝑠𝑡 2, … , 𝑆𝑏𝑒𝑠𝑡 𝑘}      (26) 

 

      Following the discovery of the global best, each particle 

is updated depending on its personal best, swarm best, and 

global best. Individual swarms begin communicating by 

referencing the global best. Equations (27) and (28) are used 

to update the velocity and position of all particles. 

 

𝑉𝑖𝑗(𝑡 + 1) = 𝜔𝑉𝑖𝑗(𝑡) + 𝑐1𝑟1 (𝑃𝑖𝑗(𝑡) − 𝑋𝑖𝑗(𝑡)) +

𝑐2𝑟2 (𝑃𝑠𝑗(𝑡) − 𝑋𝑖𝑗(𝑡)) + 𝑐3𝑟3 (𝐺𝑏𝑒𝑠𝑡(𝑡) − 𝑋𝑖𝑗(𝑡))

  

(27) 

𝑋𝑖𝑗(𝑡 + 1) = 𝑋𝑖𝑗(𝑡) + 𝑉𝑖𝑗(𝑡 + 1)      (28) 

 

      For a specific number of iterations, this process is 

repeated. In comparison to the original PSO, the parallel 

version of the method is simple to implement and delivers 

better assignments. Table IV. represents the terms and 

meanings used in PPSO. 

 
TABLE IV 

TERMS AND MEANINGS 

Terms Meaning Terms Meaning 

𝑋𝑖𝑗 Position  𝑉𝑖𝑗 Velocity 

𝑃𝑖𝑗 Personal best 𝑃𝑠𝑗
 Swarm best 

𝑖 Particle 𝑗 Swarm 

𝜔 Weight factor 𝐺𝑏𝑒𝑠𝑡 Global best 

𝑐1, 𝑐2 𝑎𝑛𝑑 𝑐3 Co-efficient 𝑟1, 𝑟2 𝑎𝑛𝑑 𝑟3 Random number 

𝑡 Iteration   

 

E. FLOWCHART AND ALGORITHM OF DRLPPSO 

The flowchart of our proposed model is represented in Fig. 

3, and the pseudo code of the DRLPPSO algorithm is 

described in Algorithm 2.  
 

 
 

 

FIGURE 3.  Flowchart of DRLPPSO. 

 

V. EXPERIMENTAL SET UP 

This section evaluates our proposed DRLPPSO scheduling 

algorithm and compares it with three existing algorithms, 

such as MPSO, A3C, and DQN algorithm. From the 

simulation results, it is clearly shown that our model gives 

better rewards as compared to existing algorithms. It also 

handles the machine load and minimizes load balancing 

parameters. The results also show the high accuracy and the 

speed increase of our system performance. Overall tests were 

conducted in Google Colab with the Python environment and 

TensorFlow. In this environment, we use the PPSO 

technique for training the neural network to optimize its load. 

All the simulation results are shown in Fig. 4 to 9.  

 

A. PARAMETERS USED FOR SIMULATION 

In this section, we provide all the necessary information for 

the simulation. For the test, we want to get maximum 

rewards from the environment where we perform continuous 

and independent tasks. These tasks are distributed between a 

number of VMs, and these VMs are assigned to a number of 

servers in a datacenter. Table V displays task properties, 

Table VI displays server and VM properties, and Table VII 

displays various PPSO and DRL approach properties.  
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Algorithm 2 DRLPPSO 

 

Input: Server set as 𝑆𝑠 = {𝑆1, 𝑆2, … , 𝑆𝑚}, VM set as 

𝑉𝑀𝑣 = {𝑉𝑀1, 𝑉𝑀2, … , 𝑉𝑀𝑜} and Task set as 𝑇𝑤 =
{𝑇1, 𝑇2, … , 𝑇𝑛} 

Output: Minimize Task Completing Time and Energy 

consumption 

 

1. Begin 

2. Initialize 𝜔, 𝑐1, 𝑐2, k sub-swarm size, iterations, 𝑟1, 𝑟2  

     and particle personal best 𝑃𝑖𝑗  

3. For 1 to M 
4. For 1 to N 

5.  Apply DRL algorithm to compute    

                                𝑟𝑒𝑤𝑎𝑟𝑑 

6.  Compute 𝑠𝑢𝑏 − 𝑠𝑤𝑎𝑟𝑚 𝑓𝑖𝑡𝑛𝑒𝑠𝑠 

7.  𝑠𝑢𝑏 − 𝑠𝑤𝑎𝑟𝑚 𝑓𝑖𝑡𝑛𝑒𝑠𝑠 = 𝑟𝑒𝑤𝑎𝑟𝑑 

8.  Compare current  

                             𝑠𝑢𝑏 − 𝑠𝑤𝑎𝑟𝑚 𝑓𝑖𝑡𝑛𝑒𝑠𝑠  

                             with 𝑃𝑖𝑗  and find 𝑆𝑏𝑒𝑠𝑡  

9.  If (𝑃𝑖𝑗 ≤  𝑠𝑢𝑏 − 𝑠𝑤𝑎𝑟𝑚 𝑓𝑖𝑡𝑛𝑒𝑠𝑠 ) 

10.   set 𝑆𝑏𝑒𝑠𝑡 is  

                                                𝑠𝑢𝑏 − 𝑠𝑤𝑎𝑟𝑚 𝑓𝑖𝑡𝑛𝑒𝑠𝑠  

11.  End If 

12.  Update position and velocity of the  

                             particle according to (24) and (25) 

13. End For 

14. Compare all 𝑆𝑏𝑒𝑠𝑡 and find 𝐺𝑏𝑒𝑠𝑡  

15. 𝐺𝑏𝑒𝑠𝑡 = min {𝑆𝑏𝑒𝑠𝑡 1, 𝑆𝑏𝑒𝑠𝑡 2, … , 𝑆𝑏𝑒𝑠𝑡 𝑘} 

16. Return 𝐺𝑏𝑒𝑠𝑡  

17.  Update iteration 

18. Change velocity and position of the particle  

               according to (27) and (28) 

19. Repeat step until we get the optimum result 

20. End For 

21. End 

 

 
TABLE V 

TASK PROPERTIES 

Parameters Value 

Task range 2000-4000 

Length 1000-20000 

File Size 250-300 

 

 
TABLE VI 

SERVER AND VM PROPERTIES 

Server Properties VM Properties 

Parameters Value Parameters Value 

Server range 5 VM range 50 

MIPS 3000 MIPS 1000-2000 

Memory 512 Memory 256-512 

CPU 7 CPU 5 

Bandwidth 3000 Bandwidth 1000 

  VMM XEN 

 
TABLE VII 

PPSO AND DRL PROPERTIES 

PPSO Properties DRL Properties 

Parameters Value Parameters Value 

Number of particles 50 Maximum iteration 100 

𝑐1, 𝑐2&𝑐3 2 Learning rate 0.1 

𝑟1, 𝑟2&𝑟2 [0,1] Discount factor 0.9 

Maximum iteration 100 Value of ∊ 0.5 to 0.9 

B. RESULT AND ANALYSIS 

Our simulation is based on three different types of 

experiments, where we find the best result to optimize our 

objective. In the first experiment, we take two different sets 

of tasks and calculate the reward percentage. Also, we show 

the comparison of computation time and energy 

consumption between our proposed method and its 

competitors. In the second experiment, we show the 

accuracy of our proposed algorithm, and in the third 

experiment, we show the speedup process.  
 

Fig. 4 and Fig. 5 show the reward that we get from the 

environment to minimize the completion time and energy 

consumption. From both figures, we compare the reward 

value of our proposed algorithm with three other existing 

algorithms. From Fig. 4 and Fig. 5, we take two different sets 

of tasks, 2000 and 4000. They are independent and have 

varying lengths as well as speeds. But for all situations, our 

server and VM numbers are fixed as per Table VI. In both 

Fig. 4 and Fig. 5, the y-axis represents the reward percentage 

and the x-axis represents the iteration number.  

 

Fig. 4 shows the total reward per iteration under 2000 

tasks set. From iteration 10 to iteration 40, the reward 

percentage increases from 25.5% to 41.5%. After reaching 

iteration 40, the reward percentage marginally fluctuates in 

between 40% and 42.5%. Finally, an approximate 40% 

reward is obtained. Table VIII provides detailed information 

about various scheduling algorithms in terms of energy 

consumption, completion time, and reward percentage.  

 

From the experiment, we find that our proposed algorithm 

shows 15.7%, 12% and 13.1% better rewards as compared to 

MPSO, A3C, and DQN scheduling algorithms.  

 

 
TABLE VIII 

VARIOUS SCHEDULING ALGORITHM WITH REWARD 

PERCENTAGE OF 2000 TASK SET 

Scheduling 

Algorithm 

Energy 

Consumption (watt) 

Completion 

Time (s) 

Reward 

(%) 

MPSO 186036.03 35.99 24.3 
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A3C 167111.79 20.92 28 

DQN 168088.92 29.75 26.9 
DRLPPSO 163564.75 20.85 40 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 4.  Reward comparision of 2000 task sets. 

 

 
TABLE IX 

VARIOUS SCHEDULING ALGORITHM WITH REWARD 

PERCENTAGE OF 4000 TASK SET 

Scheduling 

Algorithm 

Energy 

Consumption (watt) 

Completion 

Time (s) 

Reward 

(%) 

MPSO 450172.95 77.3 24.2 

A3C 404304.06 63.33 29.1 
DQN 415256.39 65.97 26.4 

DRLPPSO 384126.82 61.03 41.7 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 5.  Reward comparision of 4000 task sets. 

 

Fig. 5 shows the total reward per iteration under 4000 

tasks set. As similar to Fig. 4, Fig. 5 shows that our algorithm 

also gives better rewards as compared to other algorithms. 

Table IX. provides detailed information about various 

scheduling algorithms in terms of energy consumption, 

completion time, and reward percentage. It is observed that 

DRLPPSO shows 17.5%, 12.6%, and 15.3% better rewards 

as compared to MPSO, A3C, and DQN scheduling 

algorithms.  

 

From Fig. 4 and Fig. 5, we observe that our proposed 

algorithm is better compared to other algorithms even if there 

is a greater number of handled tasks. If the number of tasks 

set increases from 2000 to 4000, then the percentage of 

rewards also increases as compared to MPSO, A3C, and 

DQN scheduling algorithms. 

 

The outcome displayed in Fig. 6 is obtained by various 

algorithms having 2000 to 4000 task number allocated to 

available VMs. From this figure, our proposed algorithm 

takes less computation time than the other three algorithms. 

Table VIII and IX represent the datasets for computation 

time where the minimum computation time of MPSO, A3C, 

DQN, and DRLPPSO is 35.99, 20.92, 29.75, and 20.85 

seconds and the maximum computation time is 77.3, 63.33, 

65.97, and 61.03 seconds. 

 

 

FIGURE 6.  Completion time under different task sets. 

 

 

 

FIGURE 7.  Energy consumption under different virtual machines. 

 

 

Fig. 7 shows the total energy consumption of different 

VMs in a datacenter. From this figure, we found that our 

proposed algorithm saves more energy than the other three 

algorithms. Table VIII and IX represent the datasets for 

energy consumption where the minimum energy 

consumption of MPSO, A3C, DQN, and DRLPPSO is 

186036.03, 167111.79, 168088.92, and 163564.75 watts and 
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the maximum consumption is 450172.95, 404304.06, 

415256.39, and 384126.82 watts. 

 

The trials are carried out based on performance measures 

such as accuracy and speedup. The accuracy behavior of our 

suggested algorithm is depicted in Fig. 8, where the y-axis 

addresses the accuracy value and the x-axis addresses the 

number of iterations. From this figure, it is clearly observed 

that our system accuracy has continuously increased from 

the start to iteration number 20. DRLPPSO accuracy is 

marginally fluctuating after iteration 20, and it is nearly at 

0.838889 at the end of 100 iterations. Thus, the final result 

of training a neural network to get the best accuracy value at 

the end of each iteration is approximately 0.838889. This 

result clearly shows the improved accuracy in dynamic 

environments. Table X. represents the iteration number and 

its corresponding accuracy value of our proposed scheduling 

algorithm.  
TABLE X 

ITERATION NUMBER WITH ACCURACY VALUE 

Iteration 

Number 

Accuracy Iteration 

Number 

Accuracy 

10 0.481111 60 0.833333 

20 0.816667 70 0.824556 

30 0.832889 80 0.838889 
40 0.803111 90 0.838889 

50 0.805556 100 0.838889 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 8.  Accuracy value. 

 

 

According to Amdahl’s Law, speedup is calculated by the 

ratio of execution time on one CPU in sequential and the 

execution time for all CPUs in parallel. The speedup of our 

proposed algorithm is shown in (29). 

 

𝑆𝑢 =  𝐸𝑠 𝐸𝑝⁄         (29) 

 

   where, 𝑆𝑢 is the speedup, 𝐸𝑠 is the execution time on one 

CPU in sequential mode, and 𝐸𝑝 is the execution for all CPU 

in parallel mode. But in this paper, we deal with parallel 

processing computing. Therefore, we follow Gustafson law. 

This law simplifies Amdahl’s Law. According to Gustafson's 

law, speedup is represented in (30). 

 

𝑆𝑢 = 1 + (𝐶 − 1) × 𝑝       (30) 

 

where, 𝐶 is the number of CPU and 𝑝 is the fraction which 

lies between 0.2 to 0.99. 

 

In our experiment, we took a total number of seven CPUs 

and took 𝑝 = 0.5. Fig. 9 represents the speedup process of 

our proposed algorithm where we compare our speedup 

process with the existing PSO algorithm. From the figure, 

the speedup increases when the number of CPUs increases. 

DRLPPSO shows a great improvement in speedup compared 

to the PSO method. This proves that DRLPPSO is very 

suitable to be implemented in parallel computing and to 

solve large problems. Table XI. represents the details of the 

speedup value between DRLPPSO and existing PSO 

algorithm. 

 

 
TABLE XI 

SPEEDUP VALUES IN SECONDS 

Number of CPU DRLPPSO PSO 

1 1 0.56 

2 1.5 0.71 

3 2 0.92 

4 2.5 1.18 

5 3 1.37 

6 3.5 1.65 

7 4 1.92 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 9.  Speedup value. 

VI. CONCLUSION 

This paper presents a parallel computing scheduling 

algorithm which is known as the Deep Reinforcement 

Learning with Parallel PSO (DRLPPSO) scheduling 

algorithm. This algorithm is based on both the DRL learning 

algorithm and the Parallel PSO algorithm. Through the DRL 

learning algorithm, we train our neural network to get the 

best reward. By using PPSO, the overall processing time of 

all the incoming load is reduced. This scheduling algorithm 
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is proposed to achieve improvement in various parameters of 

load balancing with a minimum time period as compared to 

other popular existing scheduling algorithms in a cloud 

environment. Our simulation experiment is done with the 

help of Google Colab with the Python environment and 

TensorFlow. In the simulation, we carried out three different 

experiments that showed reward percentage, accuracy, and 

speedup process. When compared to the MPSO, A3C, and 

DQN scheduling algorithms, the DRLPPSO scheduling 

algorithm improves rewards by 15.7%, 12%, and 13.1% 

when the task set is 2000, and by 17.5%, 12.6%, and 15.3% 

when the task set is 4000. This information concludes that 

our proposed algorithm gives better rewards even if a large 

number of tasks come to the datacenter. The second 

experiment result shows the accuracy value, which is 

approximately 0.838889. The final experiment result 

presents the speedup process which is compared between 

DRLPPSO and the existing PSO algorithm. 

 

In the future, we will compare our proposed algorithm 

with other meta-heuristic algorithms such as Parallel PSO 

(PPSO), Genetic Algorithm (GA), and Ant Colony 

Optimization (ACO). Also, to improve resource allocation 

and resource management concepts, a hybrid algorithm has 

been proposed, which is a combination of both swarm 

optimization and machine learning algorithms. This 

algorithm will provide real-time analytics on the complex 

and dynamic cloud network.  
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