
American University in Cairo American University in Cairo

AUC Knowledge Fountain AUC Knowledge Fountain

Faculty Journal Articles

7-14-2022

Intelligent Decision-Making of Load Balancing Using Deep Intelligent Decision-Making of Load Balancing Using Deep

Reinforcement Learning and Parallel PSO in Cloud Environment Reinforcement Learning and Parallel PSO in Cloud Environment

Ali Wagdy Mohamed
The American University in Cairo (AUC), aliwagdy@aucegypt.edu

Arabinda Pradhan

Sukant Kishoro Bisoy

Sandeep Kautish

Follow this and additional works at: https://fount.aucegypt.edu/faculty_journal_articles

Recommended Citation Recommended Citation

APA Citation
Mohamed, A. Pradhan, A. Bisoy, S. & Kautish, S. (2022). Intelligent Decision-Making of Load Balancing
Using Deep Reinforcement Learning and Parallel PSO in Cloud Environment. 10, 76939–76952.
https://fount.aucegypt.edu/faculty_journal_articles/4726

MLA Citation
Mohamed, Ali Wagdy, et al. "Intelligent Decision-Making of Load Balancing Using Deep Reinforcement
Learning and Parallel PSO in Cloud Environment." vol. 10, 2022, pp. 76939–76952.
https://fount.aucegypt.edu/faculty_journal_articles/4726

This Research Article is brought to you for free and open access by AUC Knowledge Fountain. It has been accepted
for inclusion in Faculty Journal Articles by an authorized administrator of AUC Knowledge Fountain. For more
information, please contact fountadmin@aucegypt.edu.

https://fount.aucegypt.edu/
https://fount.aucegypt.edu/faculty_journal_articles
https://fount.aucegypt.edu/faculty_journal_articles?utm_source=fount.aucegypt.edu%2Ffaculty_journal_articles%2F4726&utm_medium=PDF&utm_campaign=PDFCoverPages
https://fount.aucegypt.edu/faculty_journal_articles/4726?utm_source=fount.aucegypt.edu%2Ffaculty_journal_articles%2F4726&utm_medium=PDF&utm_campaign=PDFCoverPages
https://fount.aucegypt.edu/faculty_journal_articles/4726?utm_source=fount.aucegypt.edu%2Ffaculty_journal_articles%2F4726&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:fountadmin@aucegypt.edu

Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier 10.1109/ACCESS.2017.Doi Number

Intelligent Decision-Making of Load Balancing
using Deep Reinforcement Learning and Parallel
PSO in Cloud Environment

Arabinda Pradhan1, Sukant Kumar Bisoyi2, Sandeep Kautish3, Muhammed Basheer Jasser*4

(Member, IEEE), Ali Wagdy Mohamed 5, 6

1,2 Department of Computer Science & Engineering, CV Raman Global University, Bhubaneswar, Odisha, India
3 LBEF Campus Kathmandu, Kathmandu, Nepal
4 Department of Computing and Information Systems, School of Engineering and Technology, Sunway University, Petaling Jaya
47500, Malaysia
5 Operations Research Department, Faculty of Graduate Studies for Statistical Research, Cairo University, Giza 12613, Egypt
6 Department of Mathematics and Actuarial Science School of Sciences Engineering, The American University in Cairo, Egypt

Corresponding author: Muhammed Basheer Jasser (basheerj@sunway.edu.my)

This work was supported by the Sunway University Publication Support Scheme.

ABSTRACT Machine learning and parallel processing are extremely commonly used to enhance computing

power to induce knowledge from an outsized volume of data. To deal with the problem of complexity and

high dimension, machine learning algorithms like Deep Reinforcement Learning (DRL) are used, while

parallel processing algorithms like Parallel Particle Swarm Optimization (PPSO) are parallelized to speed up

the operation and reduce the processing time to train the neural network. Due to the arrival of a large number

of incoming tasks in the cloud environment, load balancing is an important issue. To solve this problem, the

datacenter controller or an agent makes an intelligent decision to handle a large number of tasks within a

minimum time period or at high speed. In this work, we proposed an effective scheduling algorithm named

Deep Reinforcement Learning with Parallel Particle Swarm Optimization (DRLPPSO) to solve the load

balancing problem and its various parameters with greater accuracy and high speed. Our experimental results

show that our proposed scheduling algorithm increases the reward by 15.7%, 12%, and 13.1% when the task

set is 2000 and improves the reward by 17.5%, 12.6%, and 15.3% when the task set is 4000, as compared to

the Modified Particle Swarm Optimization (MPSO), Asynchronous Advantage Actor-Critic (A3C), and Deep

Q-Network (DQN) techniques.

INDEX TERMS Load balancing, Deep Reinforcement Learning, Neural Network, Parallel PSO.

I. INTRODUCTION

Recently, cloud network has become a very popular

technology that can offer different services as per user

requests over the Internet. The development of distributed

computing, parallel computing, and grid computing is widely

used in the commercial sector where it offers various

services in marketing, technology, and many other areas [1].

It is mainly based on the concept of on-demand delivery of

computations, storage, applications, and other resources.

However, the development of cloud computing is facing a

number of challenges, including security and scheduling.

Day-by-day, the number of user requests or loads increases,

but the server or physical machine (PM) in the datacenter is

limited, which leads to a task allocation problem in cloud

networking. This problem can be handled with the concept

of virtualization, where one physical machine is logically

divided into a number of virtual machines (VMs) and tries to

handle all incoming user requests [2, 3]. Due to the dynamic

nature of cloud networks, loads fluctuate with respect to time

for allocating a suitable VM. It shows a load balancing

problem within the VM and has a direct impact on the

physical machine. This problem will lead to high costs,

minimize the profit of an organization and degrade the

system performance. Each physical machine consumes

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3192628

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

mailto:basheerj@sunway.edu.my

electric power for the task it does. That means if a server has

a number of workloads, it consumes more energy [4, 5, 6].

To overcome this problem, a better scheduling algorithm is

required that can handle the load among the VMs and

execute all the incoming tasks with less execution time and

consume less energy in the datacenter.

A legitimate scheduling technique can be utilized to

enhance each parameter of load balancing for fulfilling

Quality of Service (QoS) and further develop the framework

execution. Various parameters such as makespan time,

energy consumption, resource usage, cost, and so forth are

considered to improve the performance of the cloud network.

Basically, there are two important types of scheduling, such

as task scheduling and resource scheduling, or VM

scheduling. Task scheduling is responsible for optimizing

the makespan time or execution time of all incoming tasks

within a physical machine [7]. Resource scheduling is

responsible for optimizing resource utilization, resource

selection for a given task, and energy consumption [8]. In

recent times, most researchers have focused on hybrid

scheduling algorithms as well as parallel computing

techniques to solve this optimization problem. A hybrid

scheduling algorithm, for example, combines various meta-

heuristic algorithms with machine learning techniques to

build an effective scheduling algorithm [9, 10, 11]. A hybrid

scheduling algorithm, which is a combination of Ant Colony

Optimization (ACO) and Deep Reinforcement Learning

(DRL) algorithms, has been proposed in [9] to increase the

system performance. In [10], a method is proposed for

avoiding the problem of the continuous nature of the cloud

environment and improving the convergence rate by

combining the policy gradient algorithm with particle swarm

optimization-based parameter exploration (PG-PSOPE). To

improve the exhibition, keep up load, and adjusting and

incrementing the throughput, a hybrid technique is

developed in [11], which combines both modified PSO and

a Q-learning algorithm known as QMPSO. The Deep Q-

network (DQN) method is broadly utilized in Deep

Reinforcement Learning (DRL) to achieve the maximum

reward [12, 13, 14]. In [12], a joint optimization is

formulated of the task offloading and bandwidth allocation

for multi-user mobile edge computing, with the objective of

minimizing the overall cost, including the total energy

consumption and the delay in finishing the task. To solve the

resource allocation issue in the Mobile Edge Computing

environment, a smart resource allocation algorithm, known

as the Deep Reinforcement Learning based Resource

Allocation (DRLRA) algorithm, is proposed in [13] to

minimize average service time and balance the resource

allocation. To achieve efficient real-time task scheduling in

the cloud environment, a double deep Q-network task

scheduling (DDQN-TS) scheduling method is proposed in

[14] to reduce the task response time while ensuring a high

task completion rate. Similarly, compared to various

population-based methods, Particle Swarm Optimization

(PSO) is more efficient, simple, and easy to learn with fewer

parameters that require adjustment. It also gives higher

performance than other population-based methods, but it

shows convergence as well as local optimum problems

[15,16]. Two different strategies are proposed in [15] to

solve the traditional PSO problem. A dimensional learning

strategy (DLS) is used for finding the personal best value of

each particle. By applying the two-swarm learning PSO

(TSLPSO) algorithm, it guides the local search of the

particles and finds the optimal value from the global search.

In [16], a load balancing method is proposed based on the

Modified Particle Swarm Optimization (LBMPSO) method

that uses the global best inertia weight parameter to avoid the

local optimum problem. Commonly, PSO is to observe the

ideal outcome of the population with the assistance of

particles' individual value, fitness value, and global best

value. Parallel computing is used to achieve the desired

accuracy and is used to accelerate neural network training for

large training data sets [17, 18, 19, 20]. In [17], a

parallelization strategy for convolutional neural network

(CNN) training is proposed based on two major techniques

to maximize the overlap. In the first technique, all the

gradients of parameters are divided into two large chunks

that reduce the communication time. To reduce

communication costs, the second technique involves

replicating the gradient calculation in a few fully-connected

layers. In [18], a concept of parallel processing is proposed

that helps in saving time in artificial neural networks (ANNs)

training. In [19], a parallel algorithm called Split and

Conquer for solving Verification of Neural Network (VNN)

formulas, is proposed using the Reluplex procedure and an

iterative-deepening strategy. In [20], a parallel deep neural

network architecture with an embedded organization

mechanism is proposed, which enforces diversity among the

deep neural networks used as base models. The Parallel

Particle Swarm Optimization (PPSO) algorithm is an

example of a parallel computing process to minimize the

processing time of high computation [21, 22, 23]. In [21], a

novel way to implement PSO on a Graphic Processing Unit

(GPU) is proposed, where the PSO algorithm can be

executed in parallel on the GPU to optimize the system

performance and speed. In [22], a technique is proposed to

solve the highway alignment optimization problem by using

an integrated model of parallel processing and a particle

swarm optimization algorithm. This method is used to

optimize the speed of processing. In [23], two parallel PSO

algorithms on the hierarchical GPU are developed. These

algorithms are applied to Max-CSPs to improve the GPU's

resolution effectiveness and reduce execution time. The first

method is a parallel GPU-PSO for Max-CSPs (GPU-PSO),

and the second one is a GPU distributed PSO for Max-CSPs

(GPU-DPSO). With the help of parallel techniques, the large

training dataset can be divided into a number of subparts that

speed up the processing [24]. By applying the back

propagation learning algorithm, it adjusts the weight and

achieves better results. Authors in [25] introduced a unique

technique that uses variable lengths of particles to search for

optimal topologies in deep convolutional neural networks.

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3192628

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

As we know, in a cloud environment, incoming tasks are

placed into an appropriate virtual machine to allocate the

resources for execution. However, when the appropriate

resources are not available on the server or it is heavily

loaded, these incoming tasks take too much time to complete.

If a server is loaded, then it consumes more energy. To

overcome this problem, a parallel scheduling method is

proposed in this paper which depends on both task and

resource scheduling and is named Deep Reinforcement

Learning with Parallel Particle Swarm Optimization

(DRLPPSO). In this work, we use both DRL and Parallel

PSO techniques to optimise the solutions.

In a cloud environment, an appropriate decision can be

made for allocating a huge number of incoming tasks to

suitable resources. This decision can be made with the help

of the DRL algorithm. We consider systems that learn to

manage resources directly from experience and train our

model by using artificial neural networks. Using deep neural

networks, it offers extraordinary capacity to deal with

complex control issues in a highly layered and continuous

environment [26]. In a cloud environment, task allocation

and energy consumption problems are figured out as Markov

Decision Processes (MDP). Multiple replay memory is

utilized in the DQN method to reduce execution time,

allocation time, task transfer time, and energy consumption

[27, 28]. According to [29], energy consumption in

datacenters has two distinct characteristics: (i) servers use

more energy when they are heavily loaded; and (ii) servers

use a lot of power when they are idle. Subsequently, server

solidification and load balancing can be used to increase the

overall system reward rate and accuracy that allows users to

receive more benefits. In our proposed algorithm, an agent,

such as a datacenter controller, checks the status of a VM to

determine whether it is overloaded or underloaded. If the VM

is overloaded, then it takes the necessary action to migrate

some tasks from the overloaded VMs to the underloaded

ones. Also, it helps to reduce the variance between the

targeted load and the present load of VMs within a single

server.

Due to its promising results, Parallel PSO (PPSO) was

chosen as the metaheuristic optimization technique in this

paper. It enhances the system performance due to

parallelization and improved speed of large-scale analytical

test problems [30, 31, 32]. In [30], a coarse decomposition

scheme is chosen where the algorithm performs only the

fitness evaluations concurrently on a parallel machine. To

find the global best result by applying Parallel PSO, a model

is proposed in [31] which is based on a master-slave model.

With the help of the PPSO algorithm [32], the VMs are

selected to minimize the total execution time. To reduce the

search time and improve fitness function, PPSO divides the

swarm into sub-swarms [33, 34, 35], and each sub-swarm

contains a DRL algorithm to find the reward. These sub-

swarms are run in parallel to minimize processing time. As a

result, it is appropriate to handle several requests from

various users in parallel. In [33], a parallel swarm-oriented

particle swarm optimization (PSO-PSO) with multi-stage

and a single stage of development is suggested. Individual

subswarms evolve independently in parallel in multi-stage

evolution, but in single-stage evolution, subswarms

exchange information to find the global-best. The two

intertwined stages of evolution show superior performance

on test functions, particularly those with higher dimensions.

The PSO-PSO version of the technique is appealing because

it does not incorporate any new parameters to boost

convergence performance. In [34], a parallel particle swarm

optimization algorithm is proposed, which comprises two

phases for solving the convergence and local optimum

problems. The first is the multi-evolutionary phase, in which

the swarm is divided into k sub-swarms. Each sub-swarm

evolves independently. Each particle adjusts its position

depending on its own experience as well as the swarm's best.

For a specific number of iterations, this process is repeated.

The swarms are then combined to form a single evolutionary

phase. In which the swarm best of each subswarm is

compared to determine the global best. In [35], PPSO is

employed to find the ideal virtual machine selection in a

cloud environment to lower the cost of service based on

turnaround time, waiting time, and CPU utilization. The

primary contribution of this paper is as per the following:

• We proposed a hybrid method that combines PPSO

and DRL techniques, which aims to maximize the

reward by reducing makespan time and energy

consumption while maintaining high accuracy, as

well as speedup the execution of continuous

approaching position in a cloud environment.

• We coordinate the numerical model of our method

and also depict the point-by-point execution of our

DRLPPSO algorithm.

• We evaluate the proposed method by taking

different task sets. The experimental outcomes

show the sufficiency of the proposed method in

relation to current pattern strategies.

The remainder of the paper is spread out as follows: Related

work is discussed in Section II; the cloud framework model

and optimization objectives are discussed in Section III;

Section IV presents the DRLPPSO scheduling algorithm;

experimental results are discussed in Section V. The paper is

concluded in section VI.

II. RELATED WORK

There have previously been a large variety of scheduling

policies that are utilized on static, dynamic, and hybrid

policies that are centered on either a single objective, bi-

objective, or multi-objective. These policies have focused

their research on maintaining machine load balance as well

as various load balancing factors such as makespan time,

energy consumption, resource utilization, and so on. To

address the aforementioned problem, researchers developed

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3192628

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

several machine learning and population-based optimization

scheduling algorithms for the cloud environment. To

improve the service quality and decrease the cost, [36]

suggested a technique that relies on the Deep Q-network

(DQN) algorithm to reduce energy consumption and

makespan time by modifying the reward weight. [37]

suggested a two-stage methodology for job scheduling and

resource allocation. A heterogeneous distributed deep

learning (HDDL) method is employed to manage job

scheduling, and a deep Q-network (DQN) is used to address

resource allocation. Each algorithm is utilized to reduce the

amount of energy required and the time it takes to complete

a task. In [38], a task scheduling technique based on a deep

reinforcement learning algorithm was suggested to

maximize makespan and resource consumption. In [39], a

task scheduling method based on deep reinforcement

learning architecture (RLTS) was presented to manage the

complexity and high dimensionality of the environment by

minimizing task execution time. [40] presented foresighted

job scheduling based on Q-learning to reduce reaction time

and makespan while increasing resource effectiveness. To

address the job scheduling problem, [41] proposed a deep

reinforcement learning based algorithm to help application

providers dispatch jobs to limited resources under QoS

requirement constraints. In [42], the DQN method is

proposed, which follows the DRL approach to reduce energy

consumption and average response time while increasing the

success rate. In [43], a modified PSO task scheduling

algorithm (MPSO) is proposed, which is utilized to minimize

transmission, execution, and energy consumption in a cloud

environment by using a modified inertia weight method. To

solve the resource allocation problem in cloud datacenters,

[44] proposed a method which is based on Actor-Critic Deep

Reinforcement Learning. In this method, the author tries to

reduce the energy consumption and improve the QoS.

All the above methods have two common objectives, i.e.,

makespan time and energy consumption. To achieve the goal,

there is no suitable action defined to handle the extra task that

can increase the reward in a dynamic environment. Therefore,

in this paper, we define a suitable action that can handle the

extra task and give the maximum reward as compared to the

above methods. Also, in this paper, we show that our proposed

method has better accuracy and faster processing speed as

compared to others. Comparison between various scheduling

algorithms with their advantages and disadvantages is

represented in Table I.

TABLE I

ADVANTAGES AND DISADVANTAGES OF EACH SCHEDULING ALGORITHM

Ref.

No.
Techniques Advantages Disadvantages

[36] Combined a deep

convolutional neural
network with

Reduce

makespan time
and energy

consumption

Performance

degrades

the traditional Q-

learning algorithm
[37] Used two different

scheduling techniques

Reduce

energy

consumption
and job delay

Less efficient

[38] Advantage Actor-

Critic (A2C)

Optimize

makespan and
resource

utilization

Not consider

more task
attributes

[39] DQN is used for
training the neural

network

Reduce
makespan time

Single
objective

[40] Threshold-based
approach based on

self-adaptive and self-

learning capabilities

Decrease
makespan but

increase

resource

utilization

Space
complexity

[41] QoS-aware job

scheduling framework

Reduce

response time
and increase

VM utilization

Resources are

not fully
utilized

[42] Job scheduling generic
algorithm

Decrease
response time

and energy

consumption

Jobs are
dependent to

each other

[43] Modified inertia

weight

Reduce

execution and
transmission

cost

Mismatch

between local
and global

search.
[44] Asynchronous

Advantage Actor-

Critic (A3C)

Reduce energy

consumption

and increase

resource

utilization.

Task

migration is

time taking

III. CLOUD FRAMEWORK MODEL AND OPTIMIZATION
OBJECTIVES

A basic framework of a cloud network is shown in Fig. 1,

which contains two layers: a task layer and a datacenter layer.

These two layers store the required information to achieve the

objective. In the task layer, all needed information about

incoming tasks, such as expected completion time (ECT), task

length (), and task file size () is stored in the task queue to find

the best VMs from the server. Similarly, the datacenter layer

holds all of the necessary information such as storage units,

processing units, data transfer capacity, and processing speed

for both servers and virtual machines. This information is

helpful to the datacenter controller, where it applies the best

scheduling algorithm to accomplish the objective and get the

optimum result. Our objectives include reducing task

completion time and energy consumption. Based on each

objective, we found the reward function that helps us achieve

the best optimization of the system. Table II. shows the terms

and meanings used in the proposed algorithm.

TABLE II

TERMS AND MEANING

Terms Meaning Terms Meaning

VM Virtual machine 𝑉𝑀𝑡𝑙𝑑 Total load of VM

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3192628

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

𝑇𝑤 Number of

incoming tasks

𝑉𝑀𝑎𝑣𝑔𝑙𝑑 Average load of VM

𝑉𝑀𝑣 Number of VMs 𝑇𝐻𝑣𝑎𝑙𝑢𝑒 Threshold value

𝑆𝑠 Number of servers 𝑏𝑎𝑣𝑔 Average bound

𝑉𝑀𝑝𝑟𝑟 Processing rate of

VM
𝐸𝑐𝑜𝑛𝑠 Energy consumption

𝑉𝑀𝑚𝑖𝑝𝑠 Millions of

instructions per

second of VM

𝐸𝑎𝑐𝑡𝑖𝑣𝑒
 Energy consumption

of an active VM

𝑉𝑀𝑐𝑝𝑢 Number of central

processing unit
𝐸𝑡𝑒𝑥𝑒 Energy consumption

of task execution

𝑉𝑀𝑚𝑒𝑚 Memory of VM 𝐸𝑡𝑡 Energy consumption
of task transfer

between two VMs

𝐸𝐶𝑇𝑤,𝑣 Expected
completion time of

task 𝑤 on VM 𝑣

𝐶𝑃𝑈𝑢𝑡𝑖𝑙 CPU utilization

𝑇𝑙𝑒𝑛𝑔 Task length 𝑆𝑤𝑡 Weight of the server

𝑇𝐴𝑤,𝑣 Task allocation time

of task 𝑤 on VM 𝑣
𝑥 𝑎𝑛𝑑 𝑦 Two VM

𝑇𝑓𝑠 Task file size 𝑇𝑇𝑥,𝑦 Task transfer

between two VM, x
and y

𝑉𝑀𝑏𝑤 Bandwidth of VM 𝐵𝑊𝑥,𝑦 Bandwidth of two

VM

𝐶𝑇𝑤,𝑣 Total completion

time
𝐸𝑖𝑑𝑙𝑒 Energy consumption

of idle VM

𝐷𝑉𝑤,𝑣 Decision variable 𝑇𝑡𝑠 Task transfer speed

𝑉𝑀𝑐𝑎𝑝𝑎 VM capacity 𝐸𝑇𝑇𝑅𝑥,𝑦 Extra task transfer

between VM 𝑥 to

VM 𝑦

𝑉𝑀𝑙𝑑 VM load

FIGURE 1. Cloud framework.

A. TASK COMPLETING TIME

Suppose a datacenter in the cloud network consists of a set

of 𝑠 servers with various resource configurations, such as

𝑆𝑠, 𝑤ℎ𝑒𝑟𝑒 𝑠 = {1,2, … , 𝑚}. Number of incoming tasks 𝑤,

which are entering into datacenter, such as 𝑇𝑤 , 𝑤ℎ𝑒𝑟𝑒 𝑤 =
{1,2, … , 𝑛} and each server contains 𝑣 number of VMs, such

as 𝑉𝑀𝑣 , 𝑤ℎ𝑒𝑟𝑒 𝑣 = {1,2, … , 𝑜}, which are the basic units of

server resources, but the condition for execution of such

tasks is, 𝑤 > 𝑣. Each task has a length 𝑇𝑙𝑒𝑛𝑔 which is

expressed as millions of instructions (MI) and the speed of

VM processing is measured in millions of instructions per

second (MIPS). To accomplish our objective, we figure the

processing rate of VM as in (1). It depends on the properties

of VM, such as MIPS, CPU and Memory.

∑ 𝑉𝑀𝑝𝑟𝑟

𝑜
𝑣=1 = ∑ (𝑉𝑀𝑚𝑖𝑝𝑠 + 𝑉𝑀𝑐𝑝𝑢 + 𝑉𝑀𝑚𝑒𝑚)𝑜

𝑣=1 (1)

The expected completion time (ECT) of task 𝑤 on virtual

machine 𝑣 can be addressed as in (2).

𝐸𝐶𝑇𝑤,𝑣 =
∑ 𝑇𝑙𝑒𝑛𝑔

𝑛
𝑤=1

∑ 𝑉𝑀𝑝𝑟𝑟
𝑜
𝑣=1

 (2)

When task 𝑤 is assigned to 𝑣 then it takes some time, which

is referred to as task allocation time (𝑇𝐴𝑤,𝑣) and it is

determined by the task file size with respect to bandwidth of

VM (𝑉𝑀𝑏𝑤) as represented in (3).

𝑇𝐴𝑤,𝑣 = 𝑇𝑓𝑠/𝑉𝑀𝑏𝑤 (3)

The total completion time (𝐶𝑇𝑤,𝑣) of all entering tasks to be

executed on VMs is calculated as the addition of expected

completion time (𝐸𝐶𝑇𝑤,𝑣) and task allocation time (𝑇𝐴𝑤,𝑣), as

represented in (4) where, 𝐷𝑉𝑤,𝑣 is the decision variable

represented in (5).

𝐶𝑇𝑤,𝑣 = 𝐸𝐶𝑇𝑤,𝑣 + 𝑇𝐴𝑤,𝑣 + 𝐷𝑉𝑤,𝑣 (4)

 𝐷𝑉𝑤,𝑣 = {
1, 𝑖𝑓 𝑇𝑤 𝑖𝑠 𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑒𝑑 𝑡𝑜 𝑉𝑀𝑣

0, 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (5)

B. LOAD AND CAPACITY OF VM

In cloud computing, all the incoming tasks are allocated to

suitable VMs for execution within a short time period. The

controller chooses the best VM to execute the incoming task,

which depends upon the task length, VM capacity, and

previous load of the VM. The processing speed, memory,

CPU, and bandwidth of a VM define its capacity in (6). The

load of VM is determined by the total number of tasks and

task length that VM already holds with respect to its

capacity. The VM load is calculated in (7). The total load and

average load of all VMs on a server are represented in (8)

and (9), respectively.

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3192628

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

𝑉𝑀𝑐𝑎𝑝𝑎 = 𝑉𝑀𝑝𝑟𝑟 + 𝑉𝑀𝑏𝑤 (6)

𝑉𝑀𝑙𝑑 =
𝑇𝑤×𝑇𝑙𝑒𝑛𝑔×𝑇𝑓𝑠

𝑉𝑀𝑐𝑎𝑝𝑎
 (7)

𝑉𝑀𝑡𝑙𝑑 = ∑ 𝑉𝑀𝑙𝑑
𝑜
𝑣=1 (8)

𝑉𝑀𝑎𝑣𝑔𝑙𝑑 =
𝑉𝑀𝑡𝑙𝑑

𝑉𝑀𝑣
 (9)

C. VM STATUS

After allocating the entire task to the VM, the controller

checks the status of each VM. Each VM can have three

states: overload, underload, and balance. If the load of a VM

exceeds the threshold value, then the VM status is overload;

if the load is below the threshold value, then its status is

underload; otherwise, the VM status is balance. The VM

status is represented in (10) and threshold value is

represented as in (11), where 𝑏𝑎𝑣𝑔 is the average bound,

1<𝑏𝑎𝑣𝑔<2.

𝑇𝐻𝑣𝑎𝑙𝑢𝑒 = (𝑉𝑀𝑎𝑣𝑔𝑙𝑑 × 𝑏𝑎𝑣𝑔) − 𝑉𝑀𝑙𝑑 (10)

𝑉𝑀𝑙𝑑 = {

< |𝑇𝐻𝑣𝑎𝑙𝑢𝑒| 𝑈𝑛𝑑𝑒𝑟𝑙𝑜𝑎𝑑

> |𝑇𝐻𝑣𝑎𝑙𝑢𝑒| 𝑂𝑣𝑒𝑟𝑙𝑜𝑎𝑑

= |𝑇𝐻𝑣𝑎𝑙𝑢𝑒| 𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑑

 (11)

D. ENERGY CONSUMPTION

The energy consumption (𝐸𝑐𝑜𝑛𝑠) of the server 𝑆𝑠 at time 𝑡

depends on the number of active and idle VMs. Both active

and idle VMs depend on CPU utilization. The energy

consumption of an active VM (𝐸𝑎𝑐𝑡𝑖𝑣𝑒) is calculated as the

energy consumption of task execution at a particular VM

(𝐸𝑡𝑒𝑥𝑒) and energy consumption of task transfer between

two VMs (𝐸𝑡𝑡), which is represented in (14). 𝐸𝑡𝑒𝑥𝑒 depends

on the load on VM, CPU utilization of VM and weight of the

server (𝑆𝑤𝑡) which is represented in (12). Energy

consumption of task transfer between two VM (𝐸𝑡𝑡) depends

on task transfer between two VM, their bandwidth and CPU

utilization. It is calculated as in (13), where 𝑥 𝑎𝑛𝑑 𝑦 are the

two VM. According to [45], an idle machine can consume

two third energy of CPU utilization, which is represented in

(15).

𝐸𝑡𝑒𝑥𝑒 = 𝑉𝑀𝑙𝑑 × 𝐶𝑃𝑈𝑢𝑡𝑖𝑙 × 𝑆𝑤𝑡 (12)

𝐸𝑡𝑡 = (
𝑇𝑇𝑥,𝑦

𝐵𝑊𝑥,𝑦
) × 𝐶𝑃𝑈𝑢𝑡𝑖𝑙 (13)

𝐸𝑎𝑐𝑡𝑖𝑣𝑒 = 𝐸𝑡𝑒𝑥𝑒 + 𝐸𝑡𝑡 (14)

𝐸𝑖𝑑𝑙𝑒 =
2

3
× 𝐶𝑃𝑈𝑢𝑡𝑖𝑙 (15)

Finally, energy consumption on a server is the sum of the

energy consumption of all active and idle VMs, which is

represented in (16).

𝐸𝑐𝑜𝑛𝑠 = ∑ (𝐸𝑎𝑐𝑡𝑖𝑣𝑒 + 𝐸𝑖𝑑𝑙𝑒)𝑜
𝑣=1 (16)

IV. DRLPPSO SCHEDULING ALGORITHM

In this section, we describe the essential idea of the proposed

DRLPPSO scheduling algorithm, where an agent can get an

individual reward by taking an appropriate action on each state

in an environment by using the DRL algorithm. By using the

PPSO algorithm, after getting their individual best reward,

they would try to get the global best reward with the minimum

processing time by exchanging their information with the

neighbors. We first select the suitable action by taking a state-

action value function and then get the personal best reward for

each server that optimizes the load and its parameters. After

getting the personal best reward, each server can find the

global best value by sharing its information among other

servers at high speed. This section contains various sub-

sections to describe the reward function, DRL, PSO, and

PPSO.

A. REWARD FUNCTION

The load balancing problem is described as a Markov

Decision Process (MDP) due to the continuous nature of

tasks in cloud computing. In our proposed method, the

datacenter controller is represented as an agent and the

datacenter is represented as the environment where the agent

takes action by allocating incoming tasks to a suitable VM in

each cycle. MDP has four important variables that are

described as below.

1) STATE SPACE

Inside this space, the ideal move is made by an agent based

on the current VM information such as the number of VMs,

their available MIPS, CPU, memory, and bandwidth. Our

state space can be characterized as:

𝑆 = {𝑉𝑀𝑣 , 𝑉𝑀𝑚𝑖𝑝𝑠 , 𝑉𝑀𝑐𝑝𝑢 , 𝑉𝑀𝑚𝑒𝑚 , 𝑉𝑀𝑏𝑤}

2) ACTION SPACE

In this action space, each task is allocated a VM for

execution. Each action has various pieces of information,

such as: the number of tasks, task length, and file size. Our

action space can be addressed as:

𝐴 = {𝑇𝑤 , 𝑇𝑙𝑒𝑛𝑔 , 𝑇𝑓𝑠}

3) TRANSITION FUNCTION AND ACTION SELECTION

It shows that when an agent takes an action in a current state,

it reaches a new state. Each time an agent tries to take an

appropriate action to reach an optimal state that gives the

highest reward. Transition function is represented as

𝑃(𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡 , 𝑠𝑡+1). It is the probability of reaching the next

state 𝑠𝑡+1 and getting reward 𝑟𝑡 after executing selected

action 𝑎𝑡 at the current state 𝑠𝑡. Due to the dynamic nature of

cloud networks, tasks vary with respect to time, length, and

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3192628

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

file size. Therefore, the load of the VM also changes. Some

of the VMs are overloaded and some of them are

underloaded, which is determined by (11). To balance the

load among VMs, the agent takes the action that transfers the

extra task from an overloaded to an underloaded VM at a

high speed. Task transfer speed can be calculated by using

(17). If we increase the task transfer speed, then it minimizes

the completion time of tasks. The selected action 𝑎 at

iteration 𝑡, i.e., can be calculated by using (18).

𝑇𝑡𝑠 = ∑ ∑ ∑ (1 −𝑜
𝑦=1

𝑜
𝑥=1

𝑛
𝑤=1 𝐷𝑉𝑤,𝑥𝐷𝑉𝑤,𝑦)

𝐸𝑇𝑇𝑅𝑥,𝑦

𝐵𝑊𝑥,𝑦
 (17)

where, 𝐸𝑇𝑇𝑅𝑥,𝑦 is the extra task transfer between VM 𝑥 to

VM 𝑦. 𝐵𝑊𝑥,𝑦 is the required bandwidth between two VM 𝑥

and VM 𝑦. 𝐷𝑉𝑤,𝑥 = 1, indicates that the VM 𝑥 is overloaded.

𝐷𝑉𝑤,𝑦 = 1, indicates, extra task has been transferred from VM

𝑥 to VM 𝑦.

𝑎𝑡 = max
𝑎

(𝑇𝑡𝑠) (18)

4) REWARD

An agent will get a reward for making specific moves in

various states. An agent is attempting to choose a state

having a higher reward to maximize its accuracy. In our

model, the reward function is characterized by the

minimization of the completion time of the task on a specific

VM and energy consumption. The reward is represented in

(19).

𝑟𝑡 = min {𝐶𝑇𝑤,𝑣 + 𝐸𝑐𝑜𝑛𝑠} (19)

B. DEEP REINFORCEMENT LEARNING

Recently, a number of machine learning algorithms, such as

RL and DRL algorithms, have been applied to computing

platforms to optimize the respective parameters. These

learning algorithms acquire knowledge from the

environment by choosing actions. It is helpful for

maximizing reward by optimizing the factors in the

environment. RL algorithm is a model-free Q-learning

algorithm that uses a state-action value function 𝑄𝛱(𝑠𝑡 , 𝑎𝑡)

to represent a value for selecting an action 𝑎𝑡 in a current

state 𝑠𝑡 that follows a policy 𝛱. This function is stored in Q-

table or gets the reward. The state-action value function

follows the Bellman condition [46,47] and it is represented

in (20).

𝑄𝛱(𝑠𝑡 , 𝑎𝑡) = 𝑟𝑡 + 𝛾 max 𝑄𝛱 (𝑠𝑡+1, 𝑎𝑡+1) (20)

 To increase the algorithm's performance, the learning rate

𝛽 is added, as represented in (21).

𝑄𝛱(𝑠𝑡 , 𝑎𝑡) = 𝑄𝛱(𝑠𝑡 , 𝑎𝑡) + 𝛽((𝑟𝑡 +

𝛾 max 𝑄𝛱 (𝑠𝑡+1, 𝑎𝑡+1)) − 𝑄𝛱(𝑠𝑡 , 𝑎𝑡))

(21)

This procedure will be carried out iteratively till the

terminal condition is reached. Each time, these Q-value or

state-action value functions are stored in the Q-table. This

shows the drawback of the Q-learning algorithm. As the

quantity of actions grows, the intricacy of computation also

grows, hence it diminishes the exhibition of the system.

Thus, Q-learning algorithm in RL will not show data

efficiency, learning efficiency, and stability. To overcome

this challenge, we use DQN, an altered rendition of typical

Q-learning that employs experience replay, target networks,

exploration, and exploitation techniques. This strategy

enables our proposed algorithm to be more suitable for

training large neural networks with faster convergence

speeds, as demonstrated in Fig. 2. Two neural networks are

shown in Fig. 2, which are target Q-network and evaluated

Q-network, and they have the same network structure. Both

are used in the training process for choosing N experiences

from the experience memory reply 𝐷. We set 𝛳 as the

parameter of evaluated Q-network and 𝛳′ is the parameter of

target Q-network. At each iteration 𝑡, state 𝑠𝑡, action 𝑎𝑡 and

parameter 𝛳 are used to generate state-action value function

𝑄(𝑠𝑡 , 𝑎𝑡; 𝛳) with reward. This serves as an input to the target

Q-network to acquire the highest state-action value function

of all actions in the target Q-network. In this paper, we use

the ∊-greedy strategy to select the random action otherwise

we choose the action by using (18). After getting the reward,

we compare the state-action value function of evaluated Q-

network with the state-action value function of target Q-

network to get more accuracy.

The goal of the proposed algorithm is to get the evaluated

Q-network as near to the target Q-network as possible to

achieve better outcomes. As a result, we train our neural

network to calculate the loss function (which decreases the

difference between the evaluated and target Q-networks),

and the neural network's parameters are updated using

backpropagation and gradient descent [48]. The loss function

can be reduced to update the parameters of Q-networks.

Equation (22) can be used to construct the loss function and

(23) can be utilized to establish the target state-action value

function.

𝐿(𝛳) = 𝐸[(𝑡𝑎𝑟𝑔𝑒𝑡𝑡 − 𝑄(𝑠𝑡 , 𝑎𝑡; 𝛳))2] (22)

𝑡𝑎𝑟𝑔𝑒𝑡𝑡 = 𝑟𝑡 + 𝛾 𝑄′
𝑎𝑡+1
𝑚𝑎𝑥 (𝑠𝑡+1, 𝑎𝑡+1; 𝛳′) (23)

where 𝑡𝑎𝑟𝑔𝑒𝑡𝑡 is the target state-action value function and

it is evaluated by the action performed on the target Q-

network with parameters 𝛳′. All the parameters of the

evaluated Q-network 𝛳 are updated at each iteration, 𝑡.
However, the parameter of target Q-network 𝛳′ is fixed and

updated only at stationary stages. As a result, the target Q-

network update rate is slower than the evaluated Q- network.

The pseudo code of the DRL algorithm is described in

Algorithm 1. The datacenter controller uses this algorithm to

gather the vital network parameters, for example, individual

load, overall load, and completion time, which are refreshed

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3192628

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

as the states of the environment change. Following the initial

transition function (𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡 , 𝑠𝑡+1), network parameters are

utilized to develop the loss function and then fine-tuned.

Each time the load is assigned, an action 𝑎𝑡 is chosen using

(18), followed by the reward depending on choosing the state

𝑠𝑡+1. This decision is forwarded to the controller, who is in

charge of allocating resources for subsequent tasks.

FIGURE 2. Structure of neural network.

Algorithm 1 of DRL

Input: Learning rate; discount factor; exploration factor;

replay memory capacity; information of each task, VM

and server;

Output: Reward of each server.

1. Initialize memory D to capacity N

2. Initialize evaluated Q-network parameters ϴ

3. Initialize target Q-network with parameters 𝛳′

where 𝛳′ = ϴ

4. Begin

5. For each episode e do

6. initialize the state 𝑠𝑡 with load

7. For each task in task-queue do

8. if probability ∊ then

 choose a random action 𝑎𝑡

else

 Select 𝑎𝑡 = max
𝑎

(𝑇𝑡𝑠)

 End if

9. Applying action 𝑎𝑡, calculate total reward 𝑟𝑡 by

using (19)

10. Move to the new state 𝑠𝑡+1

11. Store transition (𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡 , 𝑠𝑡+1) in memory D

12. Execute Algorithm 1.1 for evaluated Q-network

training

13. Every 𝒯 step, update target Q-network 𝛳′ = ϴ

14. End For

15. End For

16. Return reward

17. End

Algorithm 1.1 Evaluated Q-network Training

1. Sample random mini-batch of transition

(𝑠𝑢 , 𝑎𝑢 , 𝑟𝑢 , 𝑠𝑢+1) from memory D

2. if episode terminates at step j+1 then

Set 𝑡𝑎𝑟𝑔𝑒𝑡𝑣 = 𝑟𝑣

else

Set 𝑡𝑎𝑟𝑔𝑒𝑡𝑢 = 𝑟𝑢 +
𝛾 𝑄′

𝑎𝑢+1
𝑚𝑎𝑥 (𝑠𝑢+1, 𝑎𝑢+1; 𝛳′)

3. End if

4. Perform a gradient descent using loss function:

(𝑡𝑎𝑟𝑔𝑒𝑡𝑢 − 𝑄(𝑠𝑢 , 𝑎𝑢; 𝛳))2

5. Repeat till least loss value is achieved with

update parameter

C. PARTICLE SWARM OPTIMIZATION

In particle swarm optimization (PSO), each VM in a server

is represented as a particle. The total load of a VM on a server

is referred to as its position, and task transfer from one VM

to another is referred to as velocity. We take the reward

function as the fitness function of each server. To discover

the best fitness as a personal best, we compare the fitness

function to each particle's personal best (such as current load,

status, and CPU utilization). Finally, from all the personal

bests, we find the global best and allocate the next incoming

task to the best particle. After finding, each particle can

update its position and velocity according to (24) and (25).

Each term used in PSO with its meaning is explained in
Table III.

TABLE III

TERMS AND MEANING

Terms Meaning Terms Meaning

𝑖 Particle 𝑡 Iteration

𝑋 Position 𝑉 Velocity

𝑋𝑖(𝑡) Current position 𝑋𝑖(𝑡 + 1) Modified position

𝑉𝑖(𝑡) Current velocity 𝑉𝑖(𝑡 + 1) Modified velocity

𝑃𝑖 Personal best 𝐺𝑏𝑒𝑠𝑡 Global best

𝑐1𝑎𝑛𝑑 𝑐2 Co-efficient 𝑟1 𝑎𝑛𝑑 𝑟2 Random number

𝜔 Weight factor

𝑋𝑖(𝑡 + 1) = 𝑋𝑖(𝑡) + 𝑉𝑖(𝑡 + 1) (24)

Vi(t + 1) = ωVi(t) + c1r1(Pi(t)-Xi(t)) +

c2r2(Gbest(t)-Xi(t))

(25)

D. PARALLEL PARTICLE SWARM OPTIMIZATION

The PPSO algorithm is a suitable method for solving an

optimization problem with less processing time. The PPSO

algorithm leads to an enhanced throughput due to

parallelization and improved speed, even if the environment

contains a large population size. The working principle of

PPSO is same as PSO, but the difference is that in PPSO, the

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3192628

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

main swarm is divided into a number of sub-swarms where

each sub-swarm works as a single PSO and each sub-swarm

runs in parallel to reduce the processing time for getting the

best result.

 The PPSO algorithm has two phases. One is a multi-

evolutionary phase and the other is a single evolutionary

phase. The swarm or datacenter is randomly divided into k

sub-swarms or servers during the multi-evolutionary phase.

Each sub-swarm consists of a number of particles or virtual

machines (VMs), each of which can be evaluated

independently of the swarm. After determining the optimal

value, each particle uses (24) and (25) to update its position

and velocity based on its own and the swarm's best

experiences. For a specific number of iterations, this process

is repeated. The sub-swarms are then combined to form a

single evolutionary phase. The global best (𝐺𝑏𝑒𝑠𝑡) is

determined by comparing the swarm best (𝑆𝑏𝑒𝑠𝑡) of each sub

swarm. For minimization problems, (26) represents the 𝐺𝑏𝑒𝑠𝑡

in a given iteration.

𝐺𝑏𝑒𝑠𝑡 = min {𝑆𝑏𝑒𝑠𝑡 1, 𝑆𝑏𝑒𝑠𝑡 2, … , 𝑆𝑏𝑒𝑠𝑡 𝑘} (26)

 Following the discovery of the global best, each particle

is updated depending on its personal best, swarm best, and

global best. Individual swarms begin communicating by

referencing the global best. Equations (27) and (28) are used

to update the velocity and position of all particles.

𝑉𝑖𝑗(𝑡 + 1) = 𝜔𝑉𝑖𝑗(𝑡) + 𝑐1𝑟1 (𝑃𝑖𝑗(𝑡) − 𝑋𝑖𝑗(𝑡)) +

𝑐2𝑟2 (𝑃𝑠𝑗(𝑡) − 𝑋𝑖𝑗(𝑡)) + 𝑐3𝑟3 (𝐺𝑏𝑒𝑠𝑡(𝑡) − 𝑋𝑖𝑗(𝑡))

(27)

𝑋𝑖𝑗(𝑡 + 1) = 𝑋𝑖𝑗(𝑡) + 𝑉𝑖𝑗(𝑡 + 1) (28)

 For a specific number of iterations, this process is

repeated. In comparison to the original PSO, the parallel

version of the method is simple to implement and delivers

better assignments. Table IV. represents the terms and

meanings used in PPSO.

TABLE IV

TERMS AND MEANINGS

Terms Meaning Terms Meaning

𝑋𝑖𝑗 Position 𝑉𝑖𝑗 Velocity

𝑃𝑖𝑗 Personal best 𝑃𝑠𝑗
 Swarm best

𝑖 Particle 𝑗 Swarm

𝜔 Weight factor 𝐺𝑏𝑒𝑠𝑡 Global best

𝑐1, 𝑐2 𝑎𝑛𝑑 𝑐3 Co-efficient 𝑟1, 𝑟2 𝑎𝑛𝑑 𝑟3 Random number

𝑡 Iteration

E. FLOWCHART AND ALGORITHM OF DRLPPSO

The flowchart of our proposed model is represented in Fig.

3, and the pseudo code of the DRLPPSO algorithm is

described in Algorithm 2.

FIGURE 3. Flowchart of DRLPPSO.

V. EXPERIMENTAL SET UP

This section evaluates our proposed DRLPPSO scheduling

algorithm and compares it with three existing algorithms,

such as MPSO, A3C, and DQN algorithm. From the

simulation results, it is clearly shown that our model gives

better rewards as compared to existing algorithms. It also

handles the machine load and minimizes load balancing

parameters. The results also show the high accuracy and the

speed increase of our system performance. Overall tests were

conducted in Google Colab with the Python environment and

TensorFlow. In this environment, we use the PPSO

technique for training the neural network to optimize its load.

All the simulation results are shown in Fig. 4 to 9.

A. PARAMETERS USED FOR SIMULATION

In this section, we provide all the necessary information for

the simulation. For the test, we want to get maximum

rewards from the environment where we perform continuous

and independent tasks. These tasks are distributed between a

number of VMs, and these VMs are assigned to a number of

servers in a datacenter. Table V displays task properties,

Table VI displays server and VM properties, and Table VII

displays various PPSO and DRL approach properties.

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3192628

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

Algorithm 2 DRLPPSO

Input: Server set as 𝑆𝑠 = {𝑆1, 𝑆2, … , 𝑆𝑚}, VM set as

𝑉𝑀𝑣 = {𝑉𝑀1, 𝑉𝑀2, … , 𝑉𝑀𝑜} and Task set as 𝑇𝑤 =
{𝑇1, 𝑇2, … , 𝑇𝑛}

Output: Minimize Task Completing Time and Energy

consumption

1. Begin

2. Initialize 𝜔, 𝑐1, 𝑐2, k sub-swarm size, iterations, 𝑟1, 𝑟2

 and particle personal best 𝑃𝑖𝑗

3. For 1 to M
4. For 1 to N

5. Apply DRL algorithm to compute

 𝑟𝑒𝑤𝑎𝑟𝑑

6. Compute 𝑠𝑢𝑏 − 𝑠𝑤𝑎𝑟𝑚 𝑓𝑖𝑡𝑛𝑒𝑠𝑠

7. 𝑠𝑢𝑏 − 𝑠𝑤𝑎𝑟𝑚 𝑓𝑖𝑡𝑛𝑒𝑠𝑠 = 𝑟𝑒𝑤𝑎𝑟𝑑

8. Compare current

 𝑠𝑢𝑏 − 𝑠𝑤𝑎𝑟𝑚 𝑓𝑖𝑡𝑛𝑒𝑠𝑠

 with 𝑃𝑖𝑗 and find 𝑆𝑏𝑒𝑠𝑡

9. If (𝑃𝑖𝑗 ≤ 𝑠𝑢𝑏 − 𝑠𝑤𝑎𝑟𝑚 𝑓𝑖𝑡𝑛𝑒𝑠𝑠)

10. set 𝑆𝑏𝑒𝑠𝑡 is

 𝑠𝑢𝑏 − 𝑠𝑤𝑎𝑟𝑚 𝑓𝑖𝑡𝑛𝑒𝑠𝑠

11. End If

12. Update position and velocity of the

 particle according to (24) and (25)

13. End For

14. Compare all 𝑆𝑏𝑒𝑠𝑡 and find 𝐺𝑏𝑒𝑠𝑡

15. 𝐺𝑏𝑒𝑠𝑡 = min {𝑆𝑏𝑒𝑠𝑡 1, 𝑆𝑏𝑒𝑠𝑡 2, … , 𝑆𝑏𝑒𝑠𝑡 𝑘}

16. Return 𝐺𝑏𝑒𝑠𝑡

17. Update iteration

18. Change velocity and position of the particle

 according to (27) and (28)

19. Repeat step until we get the optimum result

20. End For

21. End

TABLE V

TASK PROPERTIES

Parameters Value

Task range 2000-4000

Length 1000-20000

File Size 250-300

TABLE VI

SERVER AND VM PROPERTIES

Server Properties VM Properties

Parameters Value Parameters Value

Server range 5 VM range 50

MIPS 3000 MIPS 1000-2000

Memory 512 Memory 256-512

CPU 7 CPU 5

Bandwidth 3000 Bandwidth 1000

 VMM XEN

TABLE VII

PPSO AND DRL PROPERTIES

PPSO Properties DRL Properties

Parameters Value Parameters Value

Number of particles 50 Maximum iteration 100

𝑐1, 𝑐2&𝑐3 2 Learning rate 0.1

𝑟1, 𝑟2&𝑟2 [0,1] Discount factor 0.9

Maximum iteration 100 Value of ∊ 0.5 to 0.9

B. RESULT AND ANALYSIS

Our simulation is based on three different types of

experiments, where we find the best result to optimize our

objective. In the first experiment, we take two different sets

of tasks and calculate the reward percentage. Also, we show

the comparison of computation time and energy

consumption between our proposed method and its

competitors. In the second experiment, we show the

accuracy of our proposed algorithm, and in the third

experiment, we show the speedup process.

Fig. 4 and Fig. 5 show the reward that we get from the

environment to minimize the completion time and energy

consumption. From both figures, we compare the reward

value of our proposed algorithm with three other existing

algorithms. From Fig. 4 and Fig. 5, we take two different sets

of tasks, 2000 and 4000. They are independent and have

varying lengths as well as speeds. But for all situations, our

server and VM numbers are fixed as per Table VI. In both

Fig. 4 and Fig. 5, the y-axis represents the reward percentage

and the x-axis represents the iteration number.

Fig. 4 shows the total reward per iteration under 2000

tasks set. From iteration 10 to iteration 40, the reward

percentage increases from 25.5% to 41.5%. After reaching

iteration 40, the reward percentage marginally fluctuates in

between 40% and 42.5%. Finally, an approximate 40%

reward is obtained. Table VIII provides detailed information

about various scheduling algorithms in terms of energy

consumption, completion time, and reward percentage.

From the experiment, we find that our proposed algorithm

shows 15.7%, 12% and 13.1% better rewards as compared to

MPSO, A3C, and DQN scheduling algorithms.

TABLE VIII

VARIOUS SCHEDULING ALGORITHM WITH REWARD

PERCENTAGE OF 2000 TASK SET

Scheduling

Algorithm

Energy

Consumption (watt)

Completion

Time (s)

Reward

(%)

MPSO 186036.03 35.99 24.3

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3192628

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

A3C 167111.79 20.92 28

DQN 168088.92 29.75 26.9
DRLPPSO 163564.75 20.85 40

FIGURE 4. Reward comparision of 2000 task sets.

TABLE IX

VARIOUS SCHEDULING ALGORITHM WITH REWARD

PERCENTAGE OF 4000 TASK SET

Scheduling

Algorithm

Energy

Consumption (watt)

Completion

Time (s)

Reward

(%)

MPSO 450172.95 77.3 24.2

A3C 404304.06 63.33 29.1
DQN 415256.39 65.97 26.4

DRLPPSO 384126.82 61.03 41.7

FIGURE 5. Reward comparision of 4000 task sets.

Fig. 5 shows the total reward per iteration under 4000

tasks set. As similar to Fig. 4, Fig. 5 shows that our algorithm

also gives better rewards as compared to other algorithms.

Table IX. provides detailed information about various

scheduling algorithms in terms of energy consumption,

completion time, and reward percentage. It is observed that

DRLPPSO shows 17.5%, 12.6%, and 15.3% better rewards

as compared to MPSO, A3C, and DQN scheduling

algorithms.

From Fig. 4 and Fig. 5, we observe that our proposed

algorithm is better compared to other algorithms even if there

is a greater number of handled tasks. If the number of tasks

set increases from 2000 to 4000, then the percentage of

rewards also increases as compared to MPSO, A3C, and

DQN scheduling algorithms.

The outcome displayed in Fig. 6 is obtained by various

algorithms having 2000 to 4000 task number allocated to

available VMs. From this figure, our proposed algorithm

takes less computation time than the other three algorithms.

Table VIII and IX represent the datasets for computation

time where the minimum computation time of MPSO, A3C,

DQN, and DRLPPSO is 35.99, 20.92, 29.75, and 20.85

seconds and the maximum computation time is 77.3, 63.33,

65.97, and 61.03 seconds.

FIGURE 6. Completion time under different task sets.

FIGURE 7. Energy consumption under different virtual machines.

Fig. 7 shows the total energy consumption of different

VMs in a datacenter. From this figure, we found that our

proposed algorithm saves more energy than the other three

algorithms. Table VIII and IX represent the datasets for

energy consumption where the minimum energy

consumption of MPSO, A3C, DQN, and DRLPPSO is

186036.03, 167111.79, 168088.92, and 163564.75 watts and

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3192628

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

the maximum consumption is 450172.95, 404304.06,

415256.39, and 384126.82 watts.

The trials are carried out based on performance measures

such as accuracy and speedup. The accuracy behavior of our

suggested algorithm is depicted in Fig. 8, where the y-axis

addresses the accuracy value and the x-axis addresses the

number of iterations. From this figure, it is clearly observed

that our system accuracy has continuously increased from

the start to iteration number 20. DRLPPSO accuracy is

marginally fluctuating after iteration 20, and it is nearly at

0.838889 at the end of 100 iterations. Thus, the final result

of training a neural network to get the best accuracy value at

the end of each iteration is approximately 0.838889. This

result clearly shows the improved accuracy in dynamic

environments. Table X. represents the iteration number and

its corresponding accuracy value of our proposed scheduling

algorithm.
TABLE X

ITERATION NUMBER WITH ACCURACY VALUE

Iteration

Number

Accuracy Iteration

Number

Accuracy

10 0.481111 60 0.833333

20 0.816667 70 0.824556

30 0.832889 80 0.838889
40 0.803111 90 0.838889

50 0.805556 100 0.838889

FIGURE 8. Accuracy value.

According to Amdahl’s Law, speedup is calculated by the

ratio of execution time on one CPU in sequential and the

execution time for all CPUs in parallel. The speedup of our

proposed algorithm is shown in (29).

𝑆𝑢 = 𝐸𝑠 𝐸𝑝⁄ (29)

 where, 𝑆𝑢 is the speedup, 𝐸𝑠 is the execution time on one

CPU in sequential mode, and 𝐸𝑝 is the execution for all CPU

in parallel mode. But in this paper, we deal with parallel

processing computing. Therefore, we follow Gustafson law.

This law simplifies Amdahl’s Law. According to Gustafson's

law, speedup is represented in (30).

𝑆𝑢 = 1 + (𝐶 − 1) × 𝑝 (30)

where, 𝐶 is the number of CPU and 𝑝 is the fraction which

lies between 0.2 to 0.99.

In our experiment, we took a total number of seven CPUs

and took 𝑝 = 0.5. Fig. 9 represents the speedup process of

our proposed algorithm where we compare our speedup

process with the existing PSO algorithm. From the figure,

the speedup increases when the number of CPUs increases.

DRLPPSO shows a great improvement in speedup compared

to the PSO method. This proves that DRLPPSO is very

suitable to be implemented in parallel computing and to

solve large problems. Table XI. represents the details of the

speedup value between DRLPPSO and existing PSO

algorithm.

TABLE XI

SPEEDUP VALUES IN SECONDS

Number of CPU DRLPPSO PSO

1 1 0.56

2 1.5 0.71

3 2 0.92

4 2.5 1.18

5 3 1.37

6 3.5 1.65

7 4 1.92

FIGURE 9. Speedup value.

VI. CONCLUSION

This paper presents a parallel computing scheduling

algorithm which is known as the Deep Reinforcement

Learning with Parallel PSO (DRLPPSO) scheduling

algorithm. This algorithm is based on both the DRL learning

algorithm and the Parallel PSO algorithm. Through the DRL

learning algorithm, we train our neural network to get the

best reward. By using PPSO, the overall processing time of

all the incoming load is reduced. This scheduling algorithm

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3192628

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

is proposed to achieve improvement in various parameters of

load balancing with a minimum time period as compared to

other popular existing scheduling algorithms in a cloud

environment. Our simulation experiment is done with the

help of Google Colab with the Python environment and

TensorFlow. In the simulation, we carried out three different

experiments that showed reward percentage, accuracy, and

speedup process. When compared to the MPSO, A3C, and

DQN scheduling algorithms, the DRLPPSO scheduling

algorithm improves rewards by 15.7%, 12%, and 13.1%

when the task set is 2000, and by 17.5%, 12.6%, and 15.3%

when the task set is 4000. This information concludes that

our proposed algorithm gives better rewards even if a large

number of tasks come to the datacenter. The second

experiment result shows the accuracy value, which is

approximately 0.838889. The final experiment result

presents the speedup process which is compared between

DRLPPSO and the existing PSO algorithm.

In the future, we will compare our proposed algorithm

with other meta-heuristic algorithms such as Parallel PSO

(PPSO), Genetic Algorithm (GA), and Ant Colony

Optimization (ACO). Also, to improve resource allocation

and resource management concepts, a hybrid algorithm has

been proposed, which is a combination of both swarm

optimization and machine learning algorithms. This

algorithm will provide real-time analytics on the complex

and dynamic cloud network.

REFERENCES
[1] Z. Peng, Q. Gong, Y. Duan and Y. Wang, “The Research of the

Parallel Computing Development from the Angle of Cloud

Computing,” Journal of Physics: Conf. Series 910 012002, 2017.
[2] R. M. Alguliyev, Y. N. Imamverdiyev and F. J. Abdullayeva, “PSO-

based Load Balancing Method in Cloud Computing,” Automatic

Control and Computer Sciences. Vol. 53, No. 1, pp. 45–55, 2019.
[3] A. Pradhan, S. K. Bisoy and A. Das, “A survey on PSO based meta-

heuristic scheduling mechanism in cloud computing environment,”

Journal of King Saud University –Computer and Information
Sciences, Elsevier, 2021.

[4] M. E. Hatem and A. R. Rabie, “Resource Scheduling for Offline Cloud

Computing Using Deep Reinforcement Learning,” International
Journal of Computer Science and Network Security (IJCSNS),

VOL.19 No.4, pp 54-60, 2019.

[5] X. Hu and Y. Sun, “A Deep Reinforcement Learning-Based Power
Resource Management for Fuel Cell Powered Data Centers,”

Electronics 9, 2054, pp-1-14, 2020.

[6] C. Chi, K. Ji, P. Song, A. Marahatta, S. Zhang, F. Zhang, D. Qiu and
Z. Liu, “Cooperatively Improving Data Center Energy Efficiency

Based on Multi-Agent Deep Reinforcement Learning,” Energies 14,

2071, 2021.
[7] A. Pradhan, S. K. Bisoy, and A. Das, “A survey on PSO based meta-

heuristic scheduling mechanism in cloud computing

environment,” Journal of King Saud University - Computer and
Information Sciences, 2021.

[8] F. Jiang, L. Dong, K. Wang, K. Yang and C. Pan, "Distributed

Resource Scheduling for Large-Scale MEC Systems: A Multiagent
Ensemble Deep Reinforcement Learning with Imitation

Acceleration," in IEEE Internet of Things Journal, vol. 9, no. 9, pp.

6597-6610, 2022.
[9] U. Rugwiro, C. Gu and W. Ding, “Task Scheduling and Resource

Allocation Based on Ant-Colony Optimization and Deep
Reinforcement Learning,” Journal of Internet Technology, Vol 20,

No.5, pp 1463-75, 2019.

[10] T. Liu, L. Li, G. Shao, X. Wu, and M. Huang, “A novel policy gradient

algorithm with PSO-based parameter exploration for continuous
control,” Engineering Applications of Artificial Intelligence, Elsevier

90 (2020) 103525, pp 1-11, 2020.

[11] U. K. Jena, P. K. Das and M. R. Kabat, “Hybridization of meta-
heuristic algorithm for load balancing in cloud computing

environment,” Journal of King Saud University- Computer and

Information Sciences. Elsevier, pp 1-11, 2020.
[12] L. Huang, X. Feng, C. Zhang, L. Qian and Y. Wu, “Deep

reinforcement learning-based joint task offloading and bandwidth

allocation for multi-user mobile edge computing,” Digital
Communications and Networks, 2018.

[13] J. Wang, L. Zhao, J. Liu and N. Kato, “Smart Resource Allocation for

Mobile Edge Computing: A Deep Reinforcement Learning
Approach,” IEEE Transactions on Emerging Topics in Computing,

2019.

[14] Z. Tong, F. Ye, B. Liu, J. Cai and J. Mei, “DDQN-TS: A novel bi-

objective intelligent scheduling algorithm in the cloud environment,”

Neurocomputing, 455, 419–430, 2021.

[15] G. Xu, Q. Cui, X. Shi, H. Ge, Z. -H. Zhan, H. P. Lee, Y. Liang, R. Tai
and C. Wu, “Particle swarm optimization based on dimensional

learning strategy,” Swarm and Evolutionary Computation, 45, 33–51,

2019.
[16] A. Pradhan and S. K. Bisoy, “A novel load balancing technique for

cloud computing platform based on PSO,” Journal of King Saud

University –Computer and Information Sciences, Elsevier, 2020.
[17] S. Lee, D. Jha, A. Agrawal, A. Choudhary and W. K. Liao, “Parallel

Deep Convolutional Neural Network Training by Exploiting the

Overlapping of Computation and Communication,” IEEE 24th
International Conference on High Performance Computing (HiPC), pp

183-192, 2017.
[18] M. H. Sharif and O. Gursoy, “Parallel Computing for Artificial Neural

Network Training using Java Native Socket Programming,”

Periodicals of Engineering and Natural Sciences, Vol. 6, No. 1, pp. 1

– 10, 2018.

[19] H. Wu, A. Ozdemir, A. Zeljic, K. Julian, A. Irfan, D. Gopinath, S.

Fouladi, G. Katz, C. Pasareanu and C. Barrett, “Parallelization
Techniques for Verifying Neural Networks,” arXiv:2004.08440v3 [cs.

LO], 2020.

[20] P. S. Mashhadi, S. Nowaczyk and S. Pashami, “Parallel orthogonal
deep neural network,” Neural Networks, Elsevier, 140 167–183, 2021.

[21] Y. Tan and Y. Zhou, “Parallel Particle Swarm Optimization Algorithm

Based on Graphic Processing Units,” Handbook of Swarm
Intelligence, 133–154, 2011.

[22] S. F. Kazemi and Y. Shafahi, “An Integrated Model of Parallel

Processing and PSO Algorithm for Solving Optimum Highway
Alignment Problem,” 27th Conference on Modelling and Simulation,

2013.

[23] N. Dali and S. Bouamama, “GPU-PSO: Parallel Particle Swarm
Optimization Approaches on Graphical Processing Unit for Constraint

Reasoning: Case of Max-CSPs,” Procedia Computer Science, 60,

1070–1080, 2015.
[24] P. Chanthini and K. Shyamala, “A Survey on Parallelization of Neural

Network using MPI and Open MP,” Indian Journal of Science and

Technology, Vol 9, 2016.
[25] F. E. F. Junior and G. G. Yen, “Particle swarm optimization of deep

neural networks architectures for image classification,” Swarm and

Evolutionary Computation 49, pp 62–74, 2019.
[26] M. Cheng, J. Li and S. Nazarian, “DRL-cloud: Deep reinforcement

learning-based resource provisioning and task scheduling for cloud

service providers,” Proceedings of the Asia and South Pacific Design
Automation Conference, ASP-DAC, 129–134, 2018.

[27] X. Xiong, K. Zheng, L. Lei and L. Hou, “Resource Allocation Based

on Deep Reinforcement Learning in IoT Edge Computing,” IEEE
Journal on Selected Areas in Communications, 38, 1133–1146, 2020.

[28] S. Sheng, P. Chen, Z. Chen, L. Wu and Y. Yao, “Deep Reinforcement

Learning-Based Task Scheduling in IoT Edge Computing,” Sensors,
21, 1666, 2021.

[29] L. A. Barroso, J. Clidaras and U. Holzle, “The datacenter as a

computer: An introduction to the design of warehouse-scale
machines,” Synthesis lectures on computer architecture, vol. 8, no. 3,

pp. 1–154, 2013.

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3192628

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

[30] J. F. Schutte, J. A. Reinbolt, B. J. Fregly, R. T. Haftka and A. D.

George, “Parallel global optimization with the particle swarm
algorithm,” International Journal for Numerical Methods in

Engineering, 61:2296–2315, 2004.

[31] E. S. Alkayal, N. R. Jennings and M. F. Abulkhair, “Automated
Negotiation using Parallel Particle Swarm Optimization for Cloud

Computing Applications,” International Conference on Computer and

Applications (ICCA), pp 26-35, 2017.
[32] A. Abdelaziz, M. Anastasiadou and M. Castelli, “A Parallel Particle

Swarm Optimisation for Selecting Optimal Virtual Machine on Cloud

Environment,” Applied Sciences, 10, 6538, 2020.
[33] T. Gonsalves and A. Egashira, “Parallel Swarms Oriented Particle

Swarm Optimization,” Applied Computational Intelligence and Soft

Computing, Volume 2013, Article ID 756719, pp 1-7, 2013.
[34] M. Vidhya and N. Sadhasivam, “Parallel Particle Swarm Optimization

for Task Scheduling in Cloud Computing,” International Journal of

Innovative Research in Science, Engineering and Technology, Vol. 4,

Special Issue 6, pp 136-140, 2015.

[35] A. Abdelaziz, M. Elhoseny, A. S. Salama and A. Riad, “A machine

learning model for improving healthcare services on cloud computing
environment,” Measurement, 119, 117–128, 2018.

[36] Z. Peng, J. Lin, D. Cui, Q. Li and J. He, “A multi-objective trade-off

framework for cloud resource scheduling based on the Deep Q-
network algorithm,” Cluster Computing, Springer, 2020.

[37] J. Lin, D. Cui, Z. Peng, Q. Li and J. He, “A Two-Stage Framework for

the Multi-User Multi-Data Center Job Scheduling and Resource
Allocation,” IEEE Access, Vol 8, pp 197863-74, 2020.

[38] H. Che, Z. Bai, R. Zuo and H. Li, “A Deep Reinforcement Learning

Approach to the Optimization of Data Center Task Scheduling,”
Hindawi Complexity, Wiley, Vol 2020, Article ID 3046769, pp 1-12,

2020.
[39] T. Dong, F. Xue, C. Xiao and J. Li, “Task scheduling based on deep

reinforcement learning in a cloud manufacturing environment,”

Concurrency and Computation: Practice and Experience. Wiley, pp 1-

12, 2020.

[40] S. Mostafavi and V. Hakami, “A Stochastic Approximation Approach

for Foresighted Task Scheduling in Cloud Computing,” Wireless
Personal Communications, Springer, 2020.

[41] Y. Wei, L. Pan, S. Liu, L. Wu, and X. Meng, “DRL-Scheduling: an

intelligent QoS-aware job scheduling framework for applications in
clouds,” IEEE Access, vol. 6, pp. 55 112–55 125, 2018.

[42] J. Yan, Y. Huang, A. Gupta, A. Gupta, C. Liu, J. Li and L. Cheng,

“Energy-aware systems for real-time job scheduling in cloud data
centers: A deep reinforcement learning approach,” Computers and

Electrical Engineering 99 (2022) 107688, 2022.

[43] Z. Zhou, J. Chang, Z. Hu, J. Yu and F. Li, “A modified PSO algorithm
for task scheduling optimization in cloud computing,” Concurrency

Computation Practice Experiment: e4970, Wiley, pp 1-11, 2018.

[44] Z. Chen, J. Hu, G. Min, C. Luo and T. El-Ghazawi, "Adaptive and
Efficient Resource Allocation in Cloud Datacenters Using Actor-

Critic Deep Reinforcement Learning," in IEEE Transactions on

Parallel and Distributed Systems, vol. 33, no. 8, pp. 1911-1923, 2022.
[45] T. Renugadevi, K. Geetha, N. Prabaharan and P. Siano, “Carbon-

Efficient Virtual Machine Placement Based on Dynamic Voltage

Frequency Scaling in Geo-Distributed Cloud Data Centers,” Applied
Sciences, 10, 2701, 2020.

[46] V. Divya and S. R. Leena, “Intelligent Deep Reinforcement Learning

based Resource Allocation in Fog network,” 26th International
Conference on High Performance Computing, Data, and Analytics

Workshop (HiPCW), pp 18-22, 2019.

[47] F. Fu, Z. Zhang, F. R. Yu and Q. Yan, “An actor-critic reinforcement
learning-based resource management in mobile edge computing

systems,” International Journal of Machine Learning and Cybernetics,

Springer, 2020.
[48] Y. LeCun, Y. Bengio and G. Hinton, “Deep learning,” Nature, vol.

521, no. 7553, p. 436-444, 2015.

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3192628

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

	Intelligent Decision-Making of Load Balancing Using Deep Reinforcement Learning and Parallel PSO in Cloud Environment
	Recommended Citation
	APA Citation
	MLA Citation

	Intelligent Decision-Making of Load Balancing using Deep Reinforcement Learning and Parallel PSO in Cloud Environment

