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Abstract 

Picture fuzzy set is a direct generalization of intuitionistic fuzzy set and is therefore more capable of dealing with 

uncertainty while working on real life problems. The concept of inclusion is a subject that is frequently studied in family 

of fuzzy sets and has many applications in real life problems. Therefore, in this work, the measuring degree of inclusion 

between picture fuzzy sets is introduced. For this purpose, firstly axioms for subsethood measure are given and then a 

subsethood measure based on a distance measure for picture fuzzy sets is proposed. Then, a numerical example is provided 

to illustrate the applicability and usefulness of the presented measure. Finally, results are compared with the existing 

methods and aggregation operator to show validity of subsethood measure for PFS. 
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Öz 

Görüntü bulanık küme, sezgisel bulanık kümenin doğrudan bir genellemesidir ve bu nedenle gerçek hayat problemleri 

üzerinde çalışırken belirsizlikle başa çıkma konusunda daha yeteneklidir. Kapsama kavramı, bulanık kümeler ailesinde 

sıklıkla çalışılan ve gerçek hayat problemlerinde birçok uygulaması olan bir konudur. Bu nedenle, bu çalışmada, görüntü 

bulanık kümeleri arasındaki kapsama derecesinin ölçülmesi tanıtılmıştır. Bu amaçla, önce altkümelik ölçüsü için 

aksiyomlar verilmiş, ardından görüntü bulanık kümeleri için uzaklık ölçüsüne dayalı bir altküme ölçüsü önerilmiştir. 

Sonra, verilen ölçünün uygulanabilirliğini ve kullanışlılığını göstermek için sayısal bir örnek verilmiştir. Son olarak, 

sonuçlar PFS için altkümelik ölçüsünün geçerliliğini göstermek için mevcut yöntemler ve ortalama operatörleri ile 

karşılaştırılmıştır. 

 

Anahtar kelimeler: ÇKKV, Görüntü bulanık kümeler, Altkümelik ölçüsü 
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1. Introduction 

1. Giriş 

 

Classic set theory is a solid branch of mathematic 

which forms a basis for other areas such as 

analysis, algebra, topology, etc. As expected, set 

theory starts with inclusions, intersections, unions 

and complements. These operations have their own 

duties in mathematical problems that can be 

applied to real life examples. One of the most 

important applications of these operators among 

many is subsethood measures. Generally, these 

measures are formulated with entropies or 

cardinalities. In classical approach, A set 𝐴 is a 

subset of a set 𝐵 if all elements in 𝐴 are also in 𝐵, 

which is a well-known inclusion definition for 

many years. With the definition of fuzzy sets 

(Zadeh, 1965), point of view to the sets has 

changed. The membership function of fuzzy sets 

allows the degree to which an element belong to a 

set. In fuzzy sets, a fuzzy set 𝐴 is a subset of a fuzzy 

set 𝐵 if and only if membership degree of 𝐴 is less 

than or equal to the membership degree of 𝐵 for all 

elements. Thus, subsethood concept appeared for 

fuzzy sets (Sinha & Dougherty, 1993; Young, 

1996). Fuzzy sets were generalized to intuitionistic 

fuzzy sets by adding a non-membership degree to 

the membership degree (Atanassov, 1986). 

Subsethood measure for IFSs was firstly 

introduced by Cornelis et al. (2003) based on the 

Sinha-Dougherty axioms in the unit square [0,1]2. 

Then, Grzegorzewski and Mrowka  (2004) 

suggested another approach for subsethood axioms 

with characterizing the degree of subsethood in 

unit interval  [0,1].  
 

Cuong and Kreinovich (2014) introduced the 

picture fuzzy set (PFS) which is a direct extension 

of IFS. PFS has three components: degree of 

positive membership, degree of neutral 

membership and degree of negative membership 

where the sum of all degrees is in the interval of 
[0,1]. Obviously, it can deal with uncertain data 

more precisely in real life problems when 

compared to IFSs. Moreover, Cuong (2015) 

proposed interval-valued PFS (IvPFS) by 

enhancing every membership degree to a unit 

interval. PFSs have many applications in real life 

problems. Singh (2015) presented correlation 

coefficients for PFS. Wei (2018) proposed some 

similarity measures for PFS. Wang et al. (2017) 

investigated some aggregation operators and 

applied them into decision making problems. Son 

(2016) generalized distance measures for PFS and 

applied it to picture fuzzy clustering. Lately, Thao 

(2020) defined similarity measures based on 

entropy, and Ganie et al. (2020) introduced new 

correlation coefficients.  

 

Subsethood measures have many applications on 

family of fuzzy sets and decision-making 

problems. Besides the former studies about them, 

these measures have been applied on many real-life 

problems lately for many different sets in the 

family of fuzzy sets (Köseoğlu & Şahin, 2019; 

Pękala et al., 2020; Peng et al., 2017; Şahin & 

Küçük, 2015; Şahin et al., 2015; Zadrożny et al., 

2021; Köseoğlu, 2021).  

 

In the light of the foregoing information, the need 

of such studies and the efficiency of their 

applications are clear. As far as we know, there is 

no research conducted on subsethood measure of 

PFS. Therefore, in this work, a subsethood measure 

for PFSs is introduced by giving a system of 

axioms adapted from Young (1996) and 

Grzegorzewski and Mrówka (2004). In addition, 

normalized Hamming distance measure based on 

Hausdorff metric is adapted to proposed 

subsethood measure. Some examples are given for 

the subsethood measure to be well understood. 

Furthermore, a real-life decision-making problem 

is presented to show the efficiency and 

applicability of the proposed measure. The rest of 

the paper is organized as follows: In Sect. 2, some 

basic definitions and operations are given. In Sect. 

3, a new subsethood measure for PFS is proposed. 

Sect. 4 covers the numerical application of 

subsethood measure. Finally, conclusions about 

proposed subsethood measure are shared in Sect. 5. 

 

2. Picture fuzzy sets 

2. Görüntü bulanık kümeler 

 

In this section, PFSs which will be used on other sections are presented. 

 

Definition 1. (Atanassov, 1986) Let 𝑋 be a non-empty set, then an IFS 𝐴 in 𝑋 is defined as 

 

𝐴 = {〈𝑥, 𝜇𝐴(𝑥), 𝜈𝐴(𝑥)〉|𝑥 ∈ 𝑋}                                                                                                                                    (1) 

  

where  𝜇𝐴, 𝜈𝐴 ∶ 𝑋 → [0,1] represents the degree of membership and the degree of non-membership of the 

element 𝑥 such that for any 𝑥 ∈ 𝑋,  
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0 ≤ 𝜇𝐴(𝑥) + 𝜈𝐴(𝑥) ≤ 1.                                                                                                                                   (2) 

  

Here, 𝜋𝐴 = 1 − (𝜇𝐴(𝑥) + 𝜈𝐴(𝑥)) is called hesitancy degree of the element 𝑥 in the set 𝐴. Moreover, the pair 

of (𝜇𝐴(𝑥), 𝜈𝐴(𝑥)) is called intuitionistic fuzzy number (IFS) and denoted as 𝑎 = (𝜇𝐴, 𝜈𝐴). 

 

Definition 2. (Cuong & Kreinovich, 2014) Let 𝑋 be a universe of discourse. A PFS 𝑃 in 𝑋 is given by 

 

𝑃 = {〈𝑥, 𝜇𝑃(𝑥), 𝜂𝑝(𝑥), 𝜈𝑃(𝑥)〉|𝑥 ∈ 𝑋}                                                                                                                                    (3) 

  

where  𝜇𝑃(𝑥)(∈ [0,1]) is called the "degree of positive membership of 𝑥 in 𝑃”, 𝜂𝑃(𝑥)(∈ [0,1]) is called the 

"degree of neutral membership of 𝑥 in 𝑃”, and 𝜈𝑃(𝑥)(∈ [0,1]) is called the "degree of negative membership 

of 𝑥 in 𝑃” where 

 

0 ≤ 𝜇𝑃(𝑥) + 𝜂𝑝(𝑥) + 𝜈𝑃(𝑥) ≤ 1.                                                                                                                                   (4) 

 

The degree of refusal is 𝜋𝑃 = 1 − (𝜇𝑃(𝑥) + 𝜂𝑝(𝑥) + 𝜈𝑃(𝑥)). For convenience in decision making problems, 

the triple (𝜇𝑃(𝑥), 𝜂𝑝(𝑥), 𝜈𝑃(𝑥)) is called a Picture fuzzy number (PFN) denoted as 𝑝 = (𝜇𝑃 , 𝜂𝑝, 𝜈𝑃). 

 

Picture fuzzy sets can express the answers to real life questions: yes, abstain, no and refusal. Voting on any 

condition in real life is a good example of such answers that Cuong (2015) suggested. Voters may be divided 

into four groups of those who vote for, abstain, vote against and refuse to vote. Moreover, PFS is reduced to 

IFS for 𝜂𝑝(𝑥) = ∅ and thus it is a direct generalization of IFS. 

 

Definition 3. (Cuong & Kreinovich, 2014) Let X be a fixed set and  

 

𝐴 = {〈𝑥𝑖, 𝜇𝐴(𝑥𝑖), 𝜂𝐴(𝑥𝑖), 𝜈𝐴(𝑥𝑖)〉|𝑥𝑖 ∈ 𝑋} 
𝐵 = {〈𝑥𝑖, 𝜇𝐴(𝑥𝑖), 𝜂𝐴(𝑥𝑖), 𝜈𝐴(𝑥𝑖)〉|𝑥𝑖 ∈ 𝑋} 

 

be two PFSs. Then, some operations on PFSs are defined as: 

 

1) 𝐴 ⊆ 𝐵 ⇔ 𝜇𝐴(𝑥𝑖) ≤ 𝜇𝐵(𝑥𝑖), 𝜂𝐴(𝑥𝑖) ≤ 𝜂𝐵(𝑥𝑖) and 𝜈𝐴(𝑥𝑖) ≥ 𝜈𝐵(𝑥𝑖) 

2) 𝐴 = 𝐵 ⇔ 𝐴 ⊆ 𝐵 and 𝐵 ⊆ 𝐴 

3) 𝐴 ∩ 𝐵 = {〈𝑥𝑖, min{𝜇𝐴(𝑥𝑖), 𝜇𝐵(𝑥𝑖)} , min{𝜂𝐴(𝑥𝑖), 𝜂𝐵(𝑥𝑖)} , max{𝜈𝐴(𝑥𝑖), 𝜈𝐵(𝑥𝑖)}〉}                  

4) 𝐴 ∪ 𝐵 = {〈𝑥𝑖, max{𝜇𝐴(𝑥𝑖), 𝜇𝐵(𝑥𝑖)} , min{𝜂𝐴(𝑥𝑖), 𝜂𝐵(𝑥𝑖)} , min{𝜈𝐴(𝑥𝑖), 𝜈𝐵(𝑥𝑖)}〉} 

5) 𝐴𝑐 = {〈𝑥𝑖, 𝜈𝐴(𝑥𝑖), 𝜂𝐴(𝑥𝑖), 𝜇𝐴(𝑥𝑖)〉|𝑥𝑖 ∈ 𝑋} 

(5) 

 

Proposition 1: The followings are valid for each PFS A: 

 

1) (𝐴𝑐)𝑐 = 𝐴 

2) 𝐴 ∩ 𝐴 = 𝐴                                                                                                                                        

3) 𝐴 ∪ 𝐴 = 𝐴 

(6) 

 

Proposition 2: The following equalities hold for every PFSs A, B, and C: 

 

1) 𝐴 ∪ 𝐵 = 𝐵 ∪ 𝐴 

2) 𝐴 ∩ 𝐵 = 𝐵 ∩ 𝐴 

3) (𝐴 ∪ 𝐵) ∪ 𝐶 = 𝐴 ∪ (𝐵 ∪ 𝐶) 

4) (𝐴 ∩ 𝐵) ∩ 𝐶 = 𝐴 ∩ (𝐵 ∩ 𝐶)  

5) (𝐴 ∪ 𝐵) ∩ 𝐶 = (𝐴 ∩ 𝐶) ∪ (𝐵 ∩ 𝐶)   

6) (𝐴 ∩ 𝐵) ∪ 𝐶 = (𝐴 ∪ 𝐶) ∩ (𝐵 ∪ 𝐶). 

(7) 

 

Definition 4. (Wei, 2017) Let 𝑝1 = (𝜇𝑃1
, 𝜂𝑃1

, 𝜈𝑃1
), 𝑝2 = (𝜇𝑃2

, 𝜂𝑃2
, 𝜈𝑃2

) and 𝑝 = (𝜇𝑃 , 𝜂𝑃 , 𝜈𝑃) be three PFNs. 

Then, for 𝜆 > 0 the corresponding operations are defined as follows: 
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1) 𝑝1 ⊕ 𝑝2 = (𝜇𝑃1
+ 𝜇𝑃2

− 𝜇𝑃1
𝜇𝑃2

, 𝜂𝑃1
𝜂𝑃2

, 𝜈𝑃1
𝜈𝑃2

) 

2) 𝑝1 ⊗ 𝑝2 = (𝜇𝑃1
𝜇𝑃2

, 𝜂𝑃1
+ 𝜂𝑃2

− 𝜂𝑃1
𝜂𝑃2

, 𝜈𝑃1
+ 𝜈𝑃2

− 𝜈𝑃1
𝜈𝑃2

) 

3) 𝜆𝑝 = (1 − (1 − 𝜇𝑃)𝜆, 𝜂𝑃 , 𝜈𝑃) 

4) 𝑝𝜆 = (𝜇𝑝
𝜆, 1 − (1 − 𝜂𝑃)𝜆, 1 − (1 − 𝜈𝑃)𝜆) 

(8) 

 

Definition 5. (Wei, 2017) For any PFN 𝑝 = (𝜇𝑃 , 𝜈𝑃), the score and the accuracy functions of 𝑝 are defined as 

 

𝑠(𝑝) = 𝜇𝑃 − 𝜈𝑃 and 𝑎(𝑝) = 𝜇𝑃 + 𝜂𝑃 + 𝜈𝑃 (9) 

 

where 𝑠(𝑝) ∈ [−1,1] and 𝑎(𝑝) ∈ [0,1]. For any PFNs 𝑝1 and 𝑝2  

 

1. If 𝑠(𝑝1) > 𝑠(𝑝2), then 𝑝1 > 𝑝2. 

2. If 𝑠(𝑝1) = 𝑠(𝑝2), then  

i. If 𝑎(𝑝1) > 𝑎(𝑝2) ⇒  𝑝1 > 𝑝2 

ii. If 𝑎(𝑝1) = 𝑎(𝑝2), then 𝑝1 ≈ 𝑝2 

 

Definition 6. (Wei, 2017) Let 𝑝𝑖(𝑖 = 1,2, … , 𝑛) be a collection of PFNs, then the picture fuzzy weighted 

averaging (PFWA) operator is a mapping 𝑃𝑛 → 𝑃 such that 

 

PFWA(𝑝1, 𝑝2, … , 𝑝𝑛) =⊕𝑖=1
𝑛 (𝑤𝑖𝑝𝑖) 

 

which can be described as 

 

PFWA(𝑝1, 𝑝2, … , 𝑝𝑛) = (1 − ∏(1 − 𝜇𝑝𝑖
)

𝑤𝑖

𝑛

𝑖=1

, ∏(𝜂𝑖)𝑤𝑖

𝑛

𝑖=1

, ∏(𝜈𝑖)𝑤𝑖

𝑛

𝑖=1

) (10) 

 

where 𝑤 = (𝑤1, 𝑤2, … 𝑤𝑛)⊺ is the weight vector of 𝛼𝑖 with 𝑤𝑖 ∈ [0,1] and ∑ 𝑤𝑖
𝑛
𝑖=1 = 1. 

 

Definition 7. (Wei, 2017) Let 𝑝𝑖(𝑖 = 1,2, … , 𝑛) be a collection of PFNs, then the picture fuzzy weighted 

geometric (PFWG) operator is a mapping 𝑃𝑛 → 𝑃 such that 

 

PFWG(𝑝1, 𝑝2, … , 𝑝𝑛) =⊗𝑖=1
𝑛 (𝑝𝑖

𝑤𝑖) 

 

which can be written as 

 

PFWG(𝑝1, 𝑝2, … , 𝑝𝑛) = (∏(𝜇𝑖)𝑤𝑖

𝑛

𝑖=1

, 1 − ∏(1 − 𝜂𝑝𝑖
)

𝑤𝑖

𝑛

𝑖=1

, 1 − ∏(1 − 𝜈𝑝𝑖
)

𝑤𝑖

𝑛

𝑖=1

) (11) 

 

where 𝑤 = (𝑤1, 𝑤2, … 𝑤𝑛) is the weight vector of 𝛼𝑖 with 𝑤𝑖 ∈ [0,1] and ∑ 𝑤𝑖
𝑛
𝑖=1 = 1. 

 

Definition 8. (Cuong & Kreinovich, 2014) Let 𝐴 and 𝐵 be two PFSs, then the distance between these two sets 

is defined as: 

 

d(A, B) =
1

𝑛
∑(|𝜇𝐴(𝑥𝑖) − 𝜇𝐵(𝑥𝑖)| + |𝜂𝐴(𝑥𝑖) − 𝜂𝐵(𝑥𝑖)| + |𝜈𝐴(𝑥𝑖) − 𝜈𝐵(𝑥𝑖)| )

𝑛

𝑖=1

 (12) 

 

3. Subsethood measures for picture fuzzy sets  

3. Görüntü bulanık kümelerde altkümelik 

 

Firstly, Cornelis and Kerre (2003) introduced subsethood measures of IFSs as inclusion measures and then 

Grzegorzewski and Mrowka (2004) proposed a different approach by characterizing the degree of subsethood 

by a single number from the unit interval. By generalizing this approach, we propose a Subsethood measure 

for picture fuzzy sets based on a distance measure.  
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Definition 9. A mapping 𝑆: 𝑃𝐹𝑆(𝑋) × 𝑃𝐹𝑆(𝑋) → [0,1] is called a picture fuzzy subsethood measure, if 𝑆 

satisfies the following conditions for all 𝐴, 𝐵, 𝐶 ∈ 𝑃𝐹𝑆(𝑋): 

 

1) 0 ≤ 𝑆(𝐴, 𝐵) ≤ 1 

2) 𝑆(𝐴, 𝐵) = 1 iff 𝐴 ⊆ 𝐵 

3) 𝑆(𝐴, 𝐵) = 0 iff 𝐴 = 𝑆 and 𝐵 = ∅ 

4)  If 𝐴 ⊆ 𝐵 ⊆ 𝐶, then 𝑆(𝐶, 𝐴) ≤ 𝑆(𝐵, 𝐴) and 𝑆(𝐶, 𝐴) ≤ 𝑆(𝐶, 𝐵) 

(13) 

 

Let ℒ: 𝑃𝐹𝑆(𝑋) × 𝑃𝐹𝑆(𝑋) → ℝ+ ∪ {0} be a metric in the family of PFSs in 𝑋. To show the degree of belonging 

of set A to set B, a normalized distance measure can be applied to form an inclusion indicator by calculating 

distance between 𝐴 and 𝐴 ∩ 𝐵. Let 𝑑: 𝑃𝐹𝑆(𝑋) × 𝑃𝐹𝑆(𝑋) → [0,1] is a metric for normalized distances. Then, 

the following a mapping: 

 

𝑆𝑑(𝐴, 𝐵) = 1 − 𝑑(𝐴, 𝐴 ∩ 𝐵) (14) 

 

is a subsethood measure based on distance for PFSs where: 

 

dH(A, B) =
1

𝑛
∑ max{|𝜇𝐴(𝑥𝑖) − 𝜇𝐵(𝑥𝑖)|, |𝜂𝐴(𝑥𝑖) − 𝜂𝐵(𝑥𝑖)|, |𝜈𝐴(𝑥𝑖) − 𝜈𝐵(𝑥𝑖)|} 

𝑛

𝑖=1

 (15) 

 

is the normalized Hamming distance based on the Hausdorff metric between PFSs 𝐴 and 𝐵. Moreover, we 

extend this distance measure to weighted form. Then, normalized weighted Hamming distance based on 

Hausdorff metric for PFS is given as  

 

dwH(A, B) =
1

𝑛
∑ 𝑤𝑖(max{|𝜇𝐴(𝑥𝑖) − 𝜇𝐵(𝑥𝑖)|, |𝜂𝐴(𝑥𝑖) − 𝜂𝐵(𝑥𝑖)|, |𝜈𝐴(𝑥𝑖) − 𝜈𝐵(𝑥𝑖)|})

𝑛

𝑖=1

 (16) 

 

where  𝑤𝑖 is the weight vector with ∑ 𝑤𝑖 = 1.𝑛
𝑖=1  

 

Theorem 1. Let 𝑆: 𝑃𝐹𝑆(𝑋) × 𝑃𝐹𝑆(𝑋) → [0,1] be a mapping such that 

 

𝑆(𝐴, 𝐵) = 1 − 𝑑𝐻(𝐴, 𝐴 ∩ 𝐵) (17) 

 

where 𝑑𝐻 is a normalized Hamming distance based on the Hausdorff metric between PFSs. Then, 𝑆(𝐴, 𝐵) is a 

subsethood measure indicating the degree to which 𝐵 contains 𝐴. 

 

Proof. Let 𝐴 = {〈𝑥𝑖, 𝜇𝐴(𝑥𝑖), 𝜂𝐴(𝑥𝑖), 𝜈𝐴(𝑥𝑖)〉|𝑥𝑖 ∈ 𝑋}, 𝐵 = {〈𝑥𝑖, 𝜇𝐴(𝑥𝑖), 𝜂𝐴(𝑥𝑖), 𝜈𝐴(𝑥𝑖)〉|𝑥𝑖 ∈ 𝑋} and 𝐶 =
{〈𝑥𝑖 , 𝜇𝐶(𝑥𝑖), 𝜂𝐶(𝑥𝑖), 𝜈𝐶(𝑥𝑖)〉|𝑥𝑖 ∈ 𝑋} be three PFSs. 

 

1. It is clear from the definition of distance measures. 

 

2. Using item 1 and 3 from Eq. (5), we have 𝑆(𝐴, 𝐵) = 1 

 

⇔ 1 − 𝑑(𝐴, 𝐴 ∩ 𝐵) = 1 ⇔ 𝑑(𝐴, 𝐴 ∩ 𝐵) 

⇔
1

𝑛
∑ max {

|𝜇𝐴(𝑥𝑖) − min{𝜇𝐴(𝑥𝑖), 𝜇𝐵(𝑥𝑖)}|, |𝜂𝐴(𝑥𝑖) − min{𝜂𝐴(𝑥𝑖), 𝜂𝐵(𝑥𝑖)}|,
|𝜈𝐴(𝑥𝑖) − max{𝜈𝐴(𝑥𝑖), 𝜈𝐵(𝑥𝑖)}|

}𝑛
𝑖=1 = 0  

⇔ 𝜇𝐴(𝑥𝑖) ≤ 𝜇𝐵(𝑥𝑖), 𝜂𝐴(𝑥𝑖) ≤ 𝜂𝐵(𝑥𝑖) and 𝜈𝐴(𝑥𝑖) ≥ 𝜈𝐵(𝑥𝑖) 

⇔ 𝐴 ⊆ 𝐵 

 

3. Same as above, it is straightforward.  

 

4. To prove 𝑆(𝐶, 𝐴) ≤ 𝑆(𝐵, 𝐴), we need to show 𝑑𝐻(𝐵, 𝐵 ∩ 𝐴) ≤ 𝑑𝐻(𝐶, 𝐶 ∩ 𝐴). From Eq. (15) we have 
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 𝑑𝐻(𝐵, 𝐵 ∩ 𝐴) 

=
1

𝑛
∑ max {

|𝜇𝐵(𝑥𝑖) − min{𝜇𝐵(𝑥𝑖), 𝜇𝐴(𝑥𝑖)}|, |𝜂𝐵(𝑥𝑖) − min{𝜂𝐵(𝑥𝑖), 𝜂𝐴(𝑥𝑖)}|,
|𝜈𝐵(𝑥𝑖) − max{𝜈𝐵(𝑥𝑖), 𝜈𝐴(𝑥𝑖)}|

}

𝑛

𝑖=1

 

 

Since 𝐴 ⊆ 𝐵, we have  

 

=
1

𝑛
∑ max{|𝜇𝐵(𝑥𝑖) − 𝜇𝐴(𝑥𝑖)|, |𝜂𝐵(𝑥𝑖) − 𝜂𝐴(𝑥𝑖)|, |𝜈𝐵(𝑥𝑖) − 𝜈𝐴(𝑥𝑖)|}

𝑛

𝑖=1

 

 

Since 𝐵 ⊆ 𝐶, we obtain 

 

≤
1

𝑛
∑ max{|𝜇𝐶(𝑥𝑖) − 𝜇𝐴(𝑥𝑖)|, |𝜂𝐶(𝑥𝑖) − 𝜂𝐴(𝑥𝑖)|, |𝜈𝐶(𝑥𝑖) − 𝜈𝐴(𝑥𝑖)|}

𝑛

𝑖=1

 

=
1

𝑛
∑ max {

|𝜇𝐶(𝑥𝑖) − min{𝜇𝐶(𝑥𝑖), 𝜇𝐴(𝑥𝑖)}|, |𝜂𝐶(𝑥𝑖) − min{𝜂𝐶(𝑥𝑖), 𝜂𝐴(𝑥𝑖)}|,
|𝜈𝐶(𝑥𝑖) − max{𝜈𝐶(𝑥𝑖), 𝜈𝐴(𝑥𝑖)}|

}

𝑛

𝑖=1

 

= 𝑑𝐻(𝐶, 𝐶 ∩ 𝐴) 

 

Then 𝑆(𝐶, 𝐴) ≤ 𝑆(𝐵, 𝐴) and it completes the proof. Similarly, 𝑆(𝐶, 𝐴) ≤ 𝑆(𝐶, 𝐵) can be shown easily. 

 

Example 1. Let 𝐴 = {〈𝑥1, 0.3, 0.4, 0.3〉, 〈𝑥2, 0.5, 0.1,0.3 〉} and 𝐵 = {〈𝑥1, 0.4, 0.5, 0.1〉, 〈𝑥2, 0.6, 0.2,0.1〉} be 

two PFSs. Then, 𝑆(𝐴, 𝐵) = 1 and 𝑆(𝐵, 𝐴) = 0, which is consistent with Cuong and Kreinovich’s subset 

definition. 

 

Example 2. Let 𝐴 = {〈𝑥1, 1,0, 0〉, 〈𝑥2, 0.6, 0.2,0.2 〉} and 𝐵 = {〈𝑥1, 0, 0, 1〉, 〈𝑥2, 0.3, 0.3,0.1〉} be two PFSs. 

Then, 𝑆(𝐴, 𝐵) = 0,35 and 𝑆(𝐵, 𝐴) = 0.95. Clearly, either 𝐴 ⊂ 𝐵 or 𝐵 ⊂ 𝐴. But from subsethood measures, 

we can say that 𝐵 is much more a subset of 𝐴. 

 

Algorithm 1. Picture Fuzzy Subsethooding 

Input: A set of PFSs {𝐴1, 𝐴2, … , 𝐴𝑚} 

Steps: 

1) Construct a decision matrix from given sets. 

2) Determine an ideal point 𝐴∗. 

3) Find the intersections of 𝐴∗ ∩ 𝐴𝑖 for each alternative using Eq. (5).   

4) Do 

If weights are given, then 

5) 𝑆𝑖(𝐴∗, 𝐴𝑖  ) = 1 − 𝑑𝑤𝐻(𝐴∗, 𝐴∗ ∩ 𝐴𝑖) using Eq. (16) 

Else 

6) 𝑆𝑖(𝐴∗, 𝐴𝑖  ) = 1 − 𝑑𝐻(𝐴∗, 𝐴∗ ∩ 𝐴𝑖) using Eq. (15) 

End 

7) Until 𝑖 = 𝑚  

Output: Ranking of alternatives. 

 

4. Multicriteria decision making 

4. Çok kriterli karar verme 

 

In order to demonstrate the application of the 

proposed subsethood measure, a multicriteria 

decision making method is applied adapted from 

Ye (2010). All MCDM methods are based on 

choosing the best possible alternative by taking 

into consideration the criteria. For convenience in 

following section, let 𝐴 = {𝐴1, 𝐴2, … , 𝐴𝑚} be a set 

of alternatives, 𝐶 = {𝐶1, 𝐶2, … , 𝐶𝑛} be a set of 

criteria and 𝑤 = [𝑤1, 𝑤2, … , 𝑤𝑛] be a weight 

vector with respect to criteria where ∑ 𝑤𝑗
𝑛
𝑗=1 = 1 

and 𝑤𝑗 ≥ 0. In decision making, concept of ideal 

point is frequently used to obtain the best possible 

alternative. Ye (2010) gave the ideal alternative 𝐴∗ 

as IFN. For the ranking order of the alternatives 

according to the decision-making problem, the 

ideal alternative is given as “excellence”, and thus 

it is adapted to this example as 𝐴∗ = (1,0,0) since 

PFS is a generalization of IFS.  
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Suppose there is an investment company, which 

wants to invest a sum of money in the best option. 

There is a panel with four possible alternatives to 

invest the money:  

 

𝐴1: car company 

𝐴2: food company 

𝐴3: computer company 

𝐴4: arms company 

 

The investment company considers the following 

three criteria to decide: 

𝐶1: risk analysis 

𝐶2: growth analysis 

𝐶3: environmental impact analysis 

 

The weights of criteria are determined by the 

tourist group as 𝑤 = [0.3560, 0.3613, 0.2827].  
 

The decision matrix 𝐴 is constructed as Table 1 

according to their preferences with respect to 

criteria. The calculations are performed in 

MATLAB.  

 

Table 1. Decision matrix 𝐴 

Tablo 1. A Karar matrisi 

 

 𝑪𝟏 𝑪𝟐 𝑪𝟑 

𝑨𝟏 〈0.45,0.15 0.35〉 〈0.50,0.10 0.30〉 〈0.20,0.05 0.55〉 

𝑨𝟐 〈0.65,0.05 0.25〉 〈0.65,0.10 0.25〉 〈0.55,0.15 0.15〉 

𝑨𝟑 〈0.45,0.20, 0.35〉 〈0.55,0.05, 0.35〉 〈0.55,0.10, 0.20〉 

𝑨𝟒 〈0.75,0.10 0.15〉 〈0.65,0.05, 0.20〉 〈0.35,0,30 0.15〉 

 

Taking 𝐴∗ = (1,0,0) is the ideal alternative, 

subsethood measure of each alternative is 

calculated using Eq. (17) as: 

 

𝑆(𝐴∗, 𝐴1) = 0.3974 

𝑆(𝐴∗, 𝐴2) = 0.6217 

𝑆(𝐴∗, 𝐴3) = 0.5144 

𝑆(𝐴∗, 𝐴4) = 0.6008 

 

Then, the ranking forms as 𝐴2 > 𝐴4 > 𝐴3 > 𝐴1. It 

implies that 𝐴∗ is much more subset of 𝐴2. 

Therefore, 𝐴2 (the food company) is the best option 

to invest. Furthermore, it is consistent with the Ye 

(2010)’s outputs. These results show that 

subsethood measure is much simpler and 

computationally easier than the other similarity 

measures. 

 

4.1. Comparison of results 

4.1. Sonuçların karşılaştırması 

 

In order to compare this result with the existing 

aggregation operators given in Eq. (10) and Eq. 

(11), an analysis is conducted to calculate results 

with score function given in Eq. (9). Using Table 

1, first PFWA operator is used to aggregate the 

decision matrix and then score function is used to 

rank the alternatives. Same operations are 

conducted for PFWG operator. The results are 

given as follow: 

 

i. If PFWA operator is applied to decision matrix 

𝐴, aggregated values are evaluated as: 

 

𝑃𝐹𝑊𝐴(A) = [

〈0.4092, 0.0950, 0.3762〉
〈0.6242, 0.0876, 0.2164〉
〈0.5167, 0.0996, 0.2988〉
〈0.6301, 0.1062, 0.1664〉

] 

 

Then, the score values are obtained as: 

 
𝑠(𝑃𝐹𝑊𝐴(𝐴)) = [0.0331    0.4078    0.2179    0.4637] 

 

According to score values, ranking of the 

alternatives is ordered as 

 

𝐴4 > 𝐴2 > 𝐴3 > 𝐴1 

 

Then, 𝐴4 (the arms company) is the best option 

to invest. 

 

ii. If PFWG operator is applied to decision matrix 

𝐴, aggregated values are evaluated as: 

 

𝑃𝐹𝑊𝐴(A) = [

〈0.3717, 0.1045, 0.3983〉
〈0.6200, 0.0972, 0.2230〉
〈0.5121, 0.1199, 0.3107〉
〈0.5742, 0.1452, 0.1684〉

] 

 

Then, the score values are obtained as: 

 
𝑠(𝑃𝐹𝑊𝐺(𝐴)) = [−0.0266    0.3970    0.2014    0.4057] 

 

According to score values, ranking of the 

alternatives is ordered as 

 

𝐴4 > 𝐴2 > 𝐴3 > 𝐴1 
 

Then, A4 (the arms company) is the best option 

to invest. 

 

As can be seen in the Figure 1 and Table 2, ranking 

changes when subsethood measure is performed. 

Moreover, the ranking order for subsethood 

measure is in the agreement with the one Ye (2010) 

obtained. Both the change in the order for 

aggregation operators and the same as Ye’s results 

show the effect and the stability of the proposed 

measure. 
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Table 2. Ranking comparison 

Tablo 2. Sıralama karşılaştırması 

 
Methods Rankings 

Subsethood Measure 𝐴2 > 𝐴4 > 𝐴3 > 𝐴1 

PFWA Operator 𝐴4 > 𝐴2 > 𝐴3 > 𝐴1 

PFWG Operator 𝐴4 > 𝐴2 > 𝐴3 > 𝐴1 

Ye (2010)’s Measure 𝐴2 > 𝐴4 > 𝐴3 > 𝐴1 

 

 
 

Figure 1. Ranking comparison of the alternatives with Subsethood measure, PFWA and PFWG. 

Şekil 1. Alternatiflerin Altkümelik ölçüsü, PFWA ve PFWG’ye göre sıralamalarının karşılaştırılması. 

 

5. Conclusion 

5. Sonuç 

 

In this study, a subsethood measure of PFS is 

proposed to show the degree of belonging of set A 

to set B. To make it practical, normalized 

Hamming distance based on the Hausdorff metric 

between PFSs 𝐴 and 𝐵 is implemented to 

subsethood measure. Then, this measure is applied 

to a real life problem adapted from Ye (2010). 

Moreover, the same example is performed with 

PFWA and PWWG aggregation operators with 

score functions. Later, all the results are compared 

with the Ye (2010)’s findings. It is shown that the 

proposed subsethood measure is consistent with 

Ye’s results and has a small difference in the 

ranking when compared to aggregation operators. 

The fact that the results of the proposed method are 

the same with the results Ye obtained shows the 

consistency of the method, and the fact that it is 

different from that obtained by aggregation 

operators shows the effect of the method. 

Furthermore, when compared to other similarity 

measures in the literature, the proposed method 

comes into prominence with its simplicity and 

practicability. In future studies, entropy measures 

for PFSs can be applied to develop new subsethood 

measures. 
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