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We propose and study the new (generalized) E-type α-attractor models of

inflation, in order to include formation of primordial black holes (PBHs). The

inflaton potential has a near-inflection point where slow-roll conditions are

violated, thus leading to large scalar perturbations collapsing to PBHs later. An

ultra-slow roll (short) phase exists between two (longer) phases of slow-roll

inflation. We numerically investigate the phases of inflation, derive the power

spectrum of scalar perturbations and calculate the PBHs masses. For certain

values of the parameters, the asteroid-size PBHs can be formedwith themasses

of 1017 ÷ 1019 g, beyond the Hawking evaporation limit and in agreement with

current Cosmic Microwave Background observations. Those PBHs are a

candidate for (part of) dark matter in the present Universe, while the

gravitational waves induced by the PBHs formation may be detectable by

the future space-based gravitational interferometers.
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1 Introduction

Measurements of the Cosmic Microwave Background (CMB) radiation by the Planck

mission provide tight observational constraints on cosmological inflation in the early

Universe [1–3]. Nevertheless, the simple Starobinsky model of inflation [4], proposed the

long time ago, is still consistent with the current precision measurements of the CMB

spectral tilt ns of scalar perturbations [1–3],

ns � 0.9649 ± 0.0042 68% C.L.( ) (1)

The Starobinsky model also gives a prediction for the value of the CMB tensor-to-

scalar ratio r up to an uncertainty in the duration of inflation measured by the number of

e-folds Ne as

rS ≈
12
N2

e

, where Ne � ∫tend
tinitial

H t( )dt , (2)

and H(t) is the Hubble function. The current observational bound [1–3].

r< 0.036 95% C.L.( ) (3)
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is already fulfilled for Ne > 20, whereas the duration of

inflation is expected at Ne = 55 ± 10. This estimate for Ne

comes from the predicted value of ns in the Starobinsky

model via the Mukhanov-Chibisov formula [5].

ns ≈ 1 − 2
Ne

. (4)

Equations 2–4 for the tilts r and ns show only the leading

terms with respect to the inverse e-folds numberNe. Given higher

precision of the ns-measurements, the subleading terms may also

be important. For example, in the case of the Starobinsky model,

one finds [6].

ns � 1 − 2
Ne

+ 3 lnNe

2N2
e

− 4
N2

e

+O ln2Ne

N3
e

( ) . (5)

The scalar potential of the canonical inflaton field ϕ in the

Starobinsky model reads1

VS ϕ( ) � 3
4
M2

PlM
2 1 − yS( )2 , (6)

where we have introduced the dimensionless field

yS � exp −
�
2
3

√
ϕ

MPl
( ) (7)

and the inflaton mass M ~ 10−5MPl, whose value is

determined by the known CMB amplitude. The scale of

inflation can be estimated by the Hubble function H during

slow-roll, which is related to the (unknown) tensor-to-scalar

ratio r. As regards the Starobinsky inflation, the scale of inflation

HS ~M corresponds to super-high energy physics far beyond the

electro-weak scale and not far from the GUT scale.

The flatness of the inflaton potential during slow roll is

guaranteed by the smallness of yS during inflation. Therefore,

the inflationary observables for CMB will be essentially the same

(in the leading approximation with respect toN−1
e orN−2

e ) after a

generalization of the scalar potential (6) to

Vζ ϕ( ) � 3
4
M2

PlM
2 1 − yS + y2

Sζ yS( )[ ]2 , (8)

where ζ(yS) is a function regular at yS = 0. Some generalizations of

the Starobinsky model, like Eq. 8, were studied in Ref. [7]. In this

paper, we take the inflaton potential to be a real function squared

because it can always be minimally embedded into supergravity

as a single-field inflationary model [8].

Another simple way of generalizing the Starobinsky model of

inflation is given by the cosmological α − attractors [9, 10] that

come in two families called E-models and T-models. The

E-models have the same scalar potential V(y) as in Eq. 6 but

in terms of the new variable

y � exp −
���
2
3α

√
ϕ

MPl
( ) (9)

that depends upon the parameter α > 0. The Starobinsky model

corresponds to α = 1. The E-models lead to the same Eq. 4 for the

tilt ns but significantly change the tilt r as

rα ≈
12α
N2

e

, (10)

thus making this theoretical prediction more flexible against

future measurements.

An opportunity of changing the inflaton potential by

arbitrary function ζ(y) can be exploited in order to generate

primordial black holes (PBHs) [11, 12] at smaller values of ϕ or,

equivalently, at lower energy scales. Those energy scales (below

the scale of inflation) are not tightly constrained by observations

yet. Technically, the PBHs production can be engineered by

demanding a near-inflection point in the potential within the

double inflation scenario with an ultra-slow-roll phase between

two slow-roll regimes of inflation, leading to an enhancement of

the power spectrum of scalar perturbations [13–15].2 The PBHs

born in the very early Universe are considered as a candidate for

cold dark matter in the present Universe [16–19].

A generalization of the Starobinsky model for PBHs formation

was proposed and studied in Ref. [20] by using a model very

different from the α-attractors. As regards the generalized

T-models of α-attractors, the PBHs production was studied in

Refs. [21, 22] for single-field inflation with the scalar potentials

VT ϕ( ) � f2 tanh
ϕ/MPl���

6α
√( ) , (11)

where f is a regular function. In this paper, we propose and

investigate the generalized E-models of inflation with a near-

inflection point along similar lines.

Our paper is organized as follows. In Section 2 we introduce

our model and investigate its scalar potential. Section 3 is devoted

to the slow-roll approximation during the first stage of inflation

relevant to CMB. In Section 4 we give our results for the power

spectrum of scalar perturbations and its enhancement leading to

PBHs formation. Our conclusion is Section 5.

2 The model

Let us consider the following potential of the canonical

inflaton ϕ:

1 See e.g., Refs. [7, 26, 37] for details about the Starobinskymodel, various
extensions and applications. We do not reproduce here the standard
equations describing background dynamics, perturbations and their
power spectrum in single-field inflation, because they are well known
and easily can be found in the literature.

2 See Ref. [27] for a current review of PBHs formation in single-field
inflationary models.
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V ϕ( ) � 3
4

MPlM( )2 1 − y + y2 β − γy( )[ ]2 , (12)

with the dimensionless parameters (α, β, γ), where the

function y(ϕ) is given by

y � exp −
���
2
3α

√
ϕ + ϕ0( )
MPl

[ ] . (13)

Compared to Eqs 8, 9, we have Taylor-expanded the function

ζ(y) up to a linear term, ζ(y) = β − γy, and have shifted the field ϕ

by a constant ϕ0 in order to have a Minkowski minimum at ϕ = 0

with V (0) = 0. Hence, the ϕ0 is fixed by other parameters. We do

not give here an explicit formula for ϕ0 because it is not very

illuminating.

Demanding the existence of a near-inflection point in the

potential with a coordinate ϕi allows us to replace the

parameters (β, γ) by the new dimensionless parameters (ϕi,

ξ) as follows:

β � 1

1 − ξ2
exp

���
2
3α

√
ϕi + ϕ0( )
MPl

[ ] ,

γ � 1

3 1 − ξ2( ) exp 2

���
2
3α

√
ϕi + ϕ0( )
MPl

[ ] .
(14)

The parameters (ϕi, ξ) have the clear meaning: when ξ = 0, the

potential has the inflection point at ϕ = ϕi only; when 0 < ξ ≪ 1,

the potential has a local minimum y−
ext on the right hand side of

the inflection point ϕi and a local maximum y+
ext on the left hand

side of the inflection point ϕi, while both extrema are equally

separated from the inflection point,

y±
ext � yi 1 ± ξ( ) . (15)

Equations 14, 15 are easily derivable from considering

extrema of the cubic polynomial inside the square brackets in

(12), which leads to a quadratic equation (cf. Ref. [22]). The

inverse relations are given by���
2
3α

√
ϕi + ϕ0( )
MPl

� ln
3γ
β

, ξ2 � 1 − 3γ

β2
. (16)

In terms of the new parameters our scalar potential takes the

form

V ϕ( ) � 3
4

MMPl( )2 1 − exp −
���
2
3α

√
ϕ + ϕ0( )
MPl

[ ]{
+ 1

1 − ξ2
exp

���
2
3α

√
ϕi − 2ϕ0 − 2ϕ( )

MPl
[ ]−

− 1

3 1 − ξ2( ) exp
���
2
3α

√
2ϕi − 3ϕ0 − 3ϕ( )

MPl
[ ]⎫⎬⎭2

.

(17)

An example of the scalar potential leading to viable

inflation and PBHs formation is given in Figure 1. The

potentials in the original E-models of α-attractors, arising

in the case of β = γ = ϕ0 = 0, do not have a near-inflection

point and thus do not lead to PBHs formation. Our potential

(17) has the small bump, associated with the local maximum,

and the small dip, associated with the local minimum, with

both being close to the inflection point, similarly to the

models of Ref. [23].

3 Slow-roll inflation

Since the flatness of the scalar potential during inflation,

the standard slow-roll approximation well describes both the

inflaton dynamics and the power spectrum of perturbations

away from the inflection point and the end of inflation. We

use the slow-roll approximation in order to calculate the

observables relevant to CMB and estimate the power

spectrum of scalar perturbations. It is known that the

slow-roll approximation generically fails in the ultra-slow-

roll (non-attractor) regime near an inflection point [21, 22].

Therefore, after having fixed our parameters in the slow-roll

approximation, we numerically recalculate the power

spectrum near the inflection point by using the

Mukhanov-Sasaki (MS) equation [24, 25] leading to a

correct answer.

The (running) number of e-folds in the slow-roll

approximation is given by

Ne � ∫tend
t

H t( )dt ≈ 1
M2

Pl

∫ϕ
ϕend

V ϕ( )
V′ ϕ( )dϕ , (18)

where the prime denotes differentiation with respect to the given

argument. The integral can be taken analytically in the case of our

potential (17). We find

Ne ϕ( ) +N0 ≈
3α
4
exp

���
2
3α

√
ϕ + ϕ0( )
MPl

( )
− 3

��
α

√
4

1 − 2 exp

���
2
3α

√
ϕi

MPl
( )[ ] �

2
3

√
ϕ + ϕ0( )
MPl

, (19)

where N0 is an integration constant close to one. We ignore this

constant for simplicity in what follows because it merely shifts

counting of Ne. The standard slow-roll parameters are given by

ϵ � M2
Pl

2
V′ ϕ( )
V ϕ( )( )2

� 3α
4N2

e

+O ln2Ne

N3
e

( ) (20)

and

η � M2
Pl

V″ ϕ( )
V ϕ( )

� − 1
Ne

+ 3α 1 − 2e
��
2
3α

√
ϕi
MPl( ) lnNe

4N2
e

+
3α 1 − 2e

��
2
3α

√
ϕi
MPl( )ln 4

3α

4N2
e

+O ln2Ne

N3
e

( ) .

(21)
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It yields

ns � 1 + 2η − 6ϵ � 1 − 2
Ne

+ a
3 lnNe

2N2
e

+ b

N2
e

+O ln2Ne

N3
e

( ) ,

(22)

whose coefficients are given by

a � α 1 − 2e
��
2
3α

√
ϕi
MPl( ) and

b � 3α
2

1 − 2e
��
2
3α

√
ϕi
MPl( )ln 4

3α
− 3[ ] .

(23)

Equation 20 reproduces Eq. 10 because r = 16ϵ. When

choosing α = 1 and ϕi → −∞, Eq. 5 is also recovered up to a

small correction (= 0.05) in the value of the coefficient b due to

our approximation.

4 Power spectrum and PBH masses

We numerically solve the inflaton equation of motion by

using initial conditions with the vanishing initial velocities and

then substitute the background solutions into the equations for

perturbations. All our inflationary solutions are attractors

(during slow roll) by construction. The initial inflaton field

value is fixed by a desired number of e-folds, see e.g., Refs.

[26, 27] for details.

A typical numerical solution to the Hubble function

during double inflation is given on the left-hand-side of

Figure 2. Demanding a peak in the power spectrum of

scalar perturbations, required for PBHs production, we

find the parameter α has to be restricted to the interval

between 0.5 and 0.9, whereas the parameter ϕi also has to

be fixed, as is shown on the right-hand-side of Figure 2. There

is a short phase of ultra-slow-roll between the two stages of

slow-roll inflation (corresponding to two plateaus), which

leads to large perturbations in the power spectrum and PBHs

production.

The standard formula for the power spectrum of scalar

perturbations in the slow-roll approximation [13].

PR � H2

8M2
Plπ

2 ϵ (24)

is useful for analytic studies of the power spectrum and its

dependence upon the parameters. However, it cannot be used in

the ultra-slow-roll phase where the slow-roll conditions are

violated. Instead, one should use the MS equation [24, 25].

We used both in our calculations in order to see a difference

between the two methods.

The scalar tilt ns is related to the power spectrum by a relation

ns � d lnPR
d ln k , where k = aH = da/dt and a(t) is the cosmic factor in

the Friedman-Lemaitre-Robertson-Walker metric. Our results

for the power spectrum are given in Figure 3 for a particular

choice of the parameters. Our results are qualitatively similar for

other values of the parameters, see the right-hand-side of

Figure 2.

As is clear from Figure 3, the exact results based on the MS

equation vs. the slow-roll approximation increase the hight of the

peak by one or two orders of magnitude, whereas the

amplification of the peak vs. the CMB spectrum (on the very

left-hand-side of the power spectrum) is given by the seven

orders of magnitude.

The PBHs masses can be estimated from the peaks as

follows [28]:

FIGURE 1
A profile of the scalar potential (A) and the inflaton dynamics (B) for the parameters α=0.739, ϕi+ ϕ0 = 0.664MPl and ξ=0.012with the vanishing
initial velocity. The location of the inflection point is specified by the value of (ϕi + ϕ0)/MPl.
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MPBH ≃
M2

Pl

H tpeak( ) exp 2 Ntotal −Npeak( ) + ∫ttotal
tpeak

ϵ t( )H t( )dt⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ .

(25)
The right-hand-side of this equation is mainly sensitive to the

value of ΔN = Ntotal − Npeak, whereas the integral gives a sub-

leading correction.

Our findings are summarized in the Table below where we

give the values of the CMB tilts ns and r associated with the

values of the parameters α, ϕi and ξ, together with the

corresponding values of ΔN and PBHs masses MPBH in our

model.

The ns values below 0.9545 are certainly excluded by CMB

observations, so we do not include our results for the lower values

of ns, see Eq. 1. The values of ns above 0.9565 are in good

agreement with CMB observations at the 95% C.L. The values of

the tensor-to scalar ratio r in the Table are well inside the current

observational bound (3).We also found that lowering the value of

the parameter α leads to narrowing the peaks in the scalar

perturbations spectrum. The PBHs masses are very sensitive

to the value of ΔN.
PBHs may be part of the present dark matter when the

PBH masses are beyond the Hawking evaporation limit of

1015 g, which is required for survival of those PBHs in the

present Universe. However, consistency with the measured

CMB value of ns restricts ΔN from above, as is clear from the

Table.

5 Conclusion

Our approach is this paper is phenomenological and classical.

However, it is not excluded that our deformations of the

E-models of inflation proposed in this paper could appear as

FIGURE 2
The Hubble function H (A) and the relation between the parameters ϕi and α for the power spectrum enhancement and PBHs production (B).

FIGURE 3
The power spectrum PR(k) of scalar perturbations from a
numerical solution to the MS equation (in red) vs. an analytic
derivation from Eq. 24 in the slow-roll approximation (in black),
with the same parameters as in Figure 1.

ns r α ξ ϕi ϕi

+ ϕ0
ΔN MPBH

0.95452 0.00307 0.5 0.0102 −0.334 0.606 15.08 1.06 · 1019 g
0.95491 0.00360 0.6 0.0106 −0.455 0.633 15.35 1.04 · 1019 g
0.95658 0.00409 0.739 0.0122 −0.611 0.664 13.28 1.89 · 1017 g
0.95672 0.00439 0.8 0.0115 −0.671 0.677 13.96 7.75 · 1017 g
0.95650 0.00496 0.9 0.0111 −0.765 0.696 13.74 8.84 · 1017 g
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quantum corrections from a more fundamental theory of

quantum gravity.

We modified the scalar potential of the single-field E-models

of α-attractors in order to allow PBHs formation in those models

at lower scales, while keeping success in the theoretical

description of large-single-field inflation in agreement with

CMB measurements. We found that efficient PBHs

production consistent with CMB measurements restricts the α

parameter to approximately 0.7 ± 0.2 and leads to the asteroid-

size PBHs with masses of the order 1017 ÷ 1019 g. The masses of

the PBHs formed in the very early Universe may grow further

with time via accretion and mergers.

A similar approach was realized in the T-models of α-

attractors [21, 22]. In terms of pole inflation [10] with a non-

canonical inflaton field having just a mass term, the kinetic terms

in the E-models have a pole of order two and exhibit the SL (2,R)

symmetry, whereas the kinetic terms in the T-models also have a

pole of order two but with the SU(1, 1) symmetry. Since those

symmetries are equivalent, the main predictions of the standard

E- and T-models for inflation are essentially the same. The

generalized E-models of inflation proposed in this paper

simultaneously describe viable inflation and PBHs formation.

The next generation of CMB measurements will probe

deeper regions of parameter space, leading to a discrimination

among currently viable models of inflation, which may falsify the

Starobinsky model in particular. The α-attractors add more

flexibility on the theoretical side, as regards the tensor-to-

scalar ratio. We demonstrated that certain deformations of the

scalars potentials in the E-models can also lead to efficient PBHs

production capable to describe a whole (or part of) darkmatter in

the present Universe.

We tuned the parameters of our model in order to

overcome the Hawking radiation bound 1015 g for the

PBHs masses, so that those PBHs may contribute to the

current dark matter. Remarkably, the PBHs with the

masses between 1017 g and 1019 g belong to the current

observational mass window where those PBHs may

constitute the whole dark matter [18, 19]. With lower

PBHs masses we found no strong constraints on the

parameters, but those PBHs should all evaporate until now.

Still, those PBHs may have dominated the early Universe,

while their remnants could form dark matter at present.

The PBHs formation in the very early Universe should lead to

a stochastic background of gravitational waves (GW) at present

[29].3 The frequency of those GW can be estimated as

fGW ≈
MPBH

1016 g
( )−1/2

Hz . (26)

It was argued in the literature [30–32] that those GW may be

detectable by the future space-based gravitational

interferometers such as LISA [33], TAIJI [34], TianQin [35]

and DECIGO [36].
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