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Weakly fully and characteristically inert socle-regular Abelian
p-groups
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State University, Tomsk, Russia; bInstitute of Mathematics and Informatics, Bulgarian Academy of Sciences,
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ABSTRACT
In regard to two recent publications in the Mediterranean J. Math. (2021)
and Forum Math. (2021) related to fully and characteristically inert socle-
regularity, respectively, we define and study the so-called weakly character-
istically inert socle-regular groups. In that aspect, as a culmination of the
investigations of this sort, some more global results are obtained and,
moreover, some new concrete results concerning the weakly fully inert
socle-regular groups, defined as in the firstly mentioned above paper, are
also established. In particular, we prove that all torsion-complete groups
are characteristically inert socle-regular, which encompasses an achieve-
ment from the secondly mentioned paper and completely settles the prob-
lem posed there about this class of groups.
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1. Introduction and fundamentals

Throughout the article, all groups under consideration, unless specified something else, are assumed
to be reduced additively written Abelian p-groups, where p is a fixed but arbitrary prime. Almost all
our terminology and notations are standard and follow those from [16–18] and [25]. For instance,
for any prime p, the symbol G½pn� ¼ fg 2 G : png ¼ 0g denotes the pn-socle of the group G, and
the symbol pnG ¼ fpng : g 2 Gg denotes the n-th power subgroup of G, where n 2 N: Inductively,
for any ordinal a, paG ¼ pðpa�1GÞ when a� 1 exists or paG ¼ \b<apbG otherwise; recall that a p-
group G is said to be separable if pxG ¼ f0g: We shall use for short hðxÞ to mean the height of the
element x in a given group as sometimes we shall just write hGðxÞ if it needs to specify that the cal-
culation is in some concrete group G. Also, for shortness of the exposition, we will use everywhere in
the text the more compact record paG½p� which amounts to ðpaGÞ½p�: Since all groups G considered
are reduced by the assumption alluded to above, there exists a least ordinal s such that psG ¼ 0:
Likewise, as usual, the symbols EðGÞ and AutðGÞ are reserved for the endomorphism ring and for
the automorphism group of G, respectively.
Some years ago the second named author along with Goldsmith defined in [9] and [10], respect-
ively, the two notions of socle-regularity and strong socle-regularity, which turned out to be
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interesting and useful concepts. The underlying idea was to circumvent the difficulties in classify-
ing fully invariant subgroups of Abelian p-groups by looking at their socles rather than the full
subgroup. Hence a group G was said to be socle-regular (resp., strongly socle-regular) if, given any
fully invariant (resp., characteristic) subgroup H of G, there is an ordinal a, entirely depending
on H, having the property H½p� ¼ paG½p�: Recently, there has been a great deal of interest, arising
primarily from considerations of various types of algebraic entropy, in another class of subgroups
of torsion groups (and, indeed, more generally in arbitrary commutative and non-commutative
groups), namely the fully inert subgroups and their related concepts (for a complete bibliography
we refer the interested readers to [13, 19] and [28] as well as to [2, 3, 11, 12, 14, 20–22] and [26],
respectively). Recall that the two subgroups H, K of a group G are said to be commensurable if
the intersection H \ K has finite index simultaneously in H and in K; this is hereafter denoted
for convenience by H � K and it is well-known to be an equivalence relation. Accordingly, a sub-
group H of a group G is said to be fully inert in G if the factor-group ðH þ uðHÞÞ=H is finite,
that is, H is commensurable with H þ uðHÞ, for any u 2 EðGÞ; in particular, if uðHÞ � H for
every u 2 EðGÞ, the subgroup H is known as fully invariant. Same applies if we replace EðGÞ by
AutðGÞ as then the subgroup H is said to be characteristically inert and, in the particular case,
characteristic.
It is also known, and easy to prove, that the sum and the intersection of a finite number of fully
inert (resp., characteristically inert) subgroups are again fully inert (resp., characteristically inert)
subgroups, and hence the socle H½p� of a fully inert (resp., characteristically inert) subgroup H of
the group G is also fully inert (resp., characteristically inert) in G. Fully inert (resp., characteristic-
ally inert) subgroups of an arbitrary Abelian p-group are, in some sense, not too far from being
fully invariant (resp., characteristic) subgroups of the same group. Thus the issue of finding a nat-
ural generalization of the notion of socle-regularity arises for these special subgroups. Three nat-
ural possibilities present themselves thus:

� require for all fully inert (resp., characteristically inert) subgroups H of G the existence of an
ordinal a, depending on H, such that H½p� ¼ paG½p�:

� require for all fully inert (resp., characteristically inert) subgroups H of G the existence of an
ordinal a, depending on H, such that H½p� � paG½p�:

A weaker alternative would be:

� require for all fully inert (resp., characteristically inert) subgroups H of G the existence of an
ordinal a, depending on H, such that H½p� \ paG½p� is of finite index in paG½p�:

We are thus able to state the following four key instruments, the first three of which already
appeared in [5, 6].

Definition 1.1. A group G is said to be fully inert socle-regular (resp., characteristically inert
socle-regular) if, for all infinite fully inert (resp., characteristically inert) subgroups H of G, there
exists an ordinal a, depending on H, such that H½p� � paG½p�; alternatively G is said to be weakly
fully inert socle-regular if, for all infinite fully inert subgroups H of G, there exists an ordinal a,
depending on H, such that paG 6¼ f0g and H½p� \ paG½p� is of finite index in paG½p�:
So, mimicking the above requirements, we shall say that the group G is called weakly characteris-
tically inert socle-regular if, for each infinite characteristically inert subgroup H, there exists an
ordinal depending on H, say a, with paG 6¼ f0g and H½p� \ paG is of finite index in paG½p�:
We shall study in what follows only the” weakly” case as the other one was explored in detail in
[5] and [6], respectively.
In this terminology our definition of weakly fully inert (resp., weakly characteristically inert)
socle-regularity requires that the ordinal a is strictly less than the length of the group, a < s:
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Note also that the restriction to infinite fully inert (resp., characteristically inert) subgroups in the
definition of fully inert (resp., characteristically inert) socle-regularity is not restrictive: if H is
finite, then H � p‘ðGÞG ¼ f0g, where ‘ðGÞ denotes the length of G. However, the situation in
weak fully inert (resp., weak characteristically inert) socle-regularity is rather more complicated
than can be anticipated and if one allows the choice a ¼ ‘ðGÞ, then every group would be weakly
fully inert (resp., weakly characteristically inert) socle-regular. Therefore, our restriction to infinite
fully inert (resp., characteristically inert) subgroups in both cases is quite adequate.
Likewise, note that if the length ‘ðGÞ of G is limit and the relation H½p� \ paG½p� � paG½p� holds
for some a < ‘ðGÞ, then there will exist an ordinal b0 with a � b0 < ‘ðGÞ such that H½p� \
pbG½p� ¼ pbG½p� for any b � b0: Indeed, one has that paG½p� ¼ ðH½p� \ paG½p�Þ 	 F for some
finite F � paG½p�, and since \r<‘ðGÞ prG ¼ f0g such an ordinal b0 really exists.
Clearly, a fully inert (resp., characteristically inert) socle-regular group is always weakly fully inert
(resp., weakly characteristically inert) socle-regular, but we shall show via concrete examples that
the converse does not hold in both cases. Moreover, it is obvious that a weakly characteristically
inert socle-regular group is weakly fully inert socle-regular. About the truthfulness of the reverse,
we shall present an explicit construction showing that it is impossible.

Concretely, our paper is structured thus: In the next, second section, we give some useful pre-
liminary assertions and some concrete examples closely related to them. In the third section, we
are concentrated on obtaining the main statements and on discussion of the utilized methods.
We close it with a few still unsettled relevant questions.

2. Preliminaries and examples

The organization of our preliminary claims is as follows. First, we need the following technicality,
the first part of which is a slight amendment of [6, Proposition 2.7 (iii)]:

Lemma 2.1.
(1) If G is a group such that G ¼ A	 B with a corresponding projection p : G ! A, and C is

characteristically inert in G, then f ðpðCÞÞ þ C \ B � C \ B for any f 2 Hom ðA,BÞ:
(2) If K is a direct sum of cyclic groups and L is an unbounded group, then for any infinite H �

K½p� there is f 2 Hom ðK, LÞ with infinite f(H).

Proof.
(1) It is readily checked that the matrix D ¼ 1 0

f 1

� �
represents an automorphism of G, so that

C þ DðCÞ ¼ C þ f ðpðCÞÞ � C whence f ðpðCÞÞ þ C \ B � C \ B, as stated.
(2) Let K½p� ¼ S0 	 S1 	 
 
 
 	 Sn 	 
 
 
 , where hðxÞ ¼ n for every 0 6¼ x 2 Sn and pn : K½p� !

Sn are the corresponding projections. Assuming now that pnðHÞ is infinite for some n, we
may choose in pnðHÞ a countable subgroup F ¼ 	i�1hxii: And let B be a basic subgroup of
L such that B½p� ¼ S00 	 S01 	 
 
 
 	 S0n 	 
 
 
 , where hðyÞ ¼ n for every 0 6¼ y 2 S0n: Since B
is also unbounded, for every xi there exists 0 6¼ yi 2 S0ni with n < n1 < n2 < :::: However,
each xi could be embedded in a cyclic direct summand, say huii in K of order pn, as well as
each yi also could be embedded in a cyclic direct summand, say hvii in B of order pni :
Since 	i�1huii is obviously a direct summand of K, there will exist f 2 Hom ðK, LÞ with
f ðuiÞ ¼ pni�nvi and this will be the wanted homomorphism.
But if, however, each pnðHÞ is finite, then we keep 0 6¼ xi 2 Sni and 0 6¼ yi 2 S0n0i such that
n1 < n01 < n2 < n02 < 
 
 
 and our further arguments are similar to these presented above,
thus completing the proof after all. w

We next begin with a new point of view: Letting F be a subgroup in G½p�, we shall write
hGðFÞ if hGðxÞ ¼ hGðyÞ for all 0 6¼ x, y 2 F:
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Suppose that H is an arbitrary infinite subgroup of the reduced group G. Set

a ¼ minfhGðFÞ j F � H p½ �, j F j � @0g
and write a ¼ minðHÞ: It is clear that minðHÞ is not exactly determined for each subgroup
H even provided H½p� is infinite. Notice that a slightly analogous notion was used inten-
sively in [4].

Some useful properties, which expand those from [9, 10], hold:

� Let H � G and assume that a ¼ minðHÞ is determined. If hGðFÞ < a for some F � H½p�, then
F is necessarily finite.
Indeed, since hGðFÞ is determined, it follows by the definition that hGðxÞ ¼ hGðyÞ for all 0 6¼
x, y 2 F: So, if F is infinite, then minðHÞ � hGðFÞ - contradiction.
Recall that the rank faðGÞ of the factor-group paG½p�=paþ1G½p�, where a is an arbitrary ordinal
number, is called the a-th Ulm-Kaplansky invariant of G.

� If H � G and a ¼ minðHÞ for some ordinal a, then faðGÞ is necessarily infinite.
Indeed, since minðHÞ exists, one sees that a ¼ hGðFÞ for some infinite Fnf0g � paG½p�npaþ1G½p�
with F � H½p�, where F ffi ðF 	 paþ1G½p�Þ=paþ1G½p� � paG½p�=paþ1G½p�, so that faðGÞ �
rankðFÞ, as required.

� The equality a ¼ minðGÞ is true for some ordinal a if, and only if, faðGÞ is infinite and fbðGÞ
is finite for all b < a:
In fact, the infinity of faðGÞ is self-evident, so if fbðGÞ were also infinite for some b < a, then
minðGÞ � b - contradiction.

� If H is a characteristically inert subgroup of the group G and minðHÞ ¼ n is a finite integer,
then H½p� � pnG½p�:

In fact, since minðHÞ ¼ n, one has that pnG½p� ¼ F 	 K, where F is infinite and hðxÞ ¼ n for
each 0 6¼ x 2 F: So, hðyÞ � n for each y 2 K: We, furthermore, have G ¼ A	 B, where A½p� ¼ F:
Assuming that H½p� ¿ pnG½p�, we then obtain pnB½p� ¼ ðH½p� \ BÞ 	 L, where L is infinite.
Choosing countable subgroups 	i�1hxii � F and 	i�1hyii � L, we let 	i�1huii be such a direct
summand of A that pn�1ui ¼ xi and pn�1vi ¼ yi, where vi 2 B: Now there will exist u 2
Hom ðA,BÞ such that uðuiÞ ¼ vi: But then uðFÞ � L, uðFÞ is infinite and uðFÞ \ H ¼ 0 so that
uðFÞ þH \ B ¿ H \ B: This, however, contradicts Lemma 2.1, so we get our claim.

Two more examples, which show some additional properties of this function associated with
the results from the main section and that hold from our preceding considerations, are
as follows:

Example 2.2. Let G ¼ 	n2N Bn, where Bn ffi ZðpnÞðanÞ and an are some cardinal numbers. If H ¼
	n2N Hn is a direct summand in G, where Hn ffi ZðpnÞðbnÞ � Bn, then minðHÞ ¼ m� 1 provided
bm is infinite and, for every k 2 N with k<m, the number bk is finite.

Example 2.3. Let H � G: Then minðHÞ ¼ a if, and only if, H \ ðpaG½p�Þ is infinite and H \
ðpbG½p�Þ is finite for all b < a:

Thus we now come to our basic assertion. We, however, will recollect some facts needed for its
proof whose details appear below. To that aim, let us notice that the infinite Ulm subgroups of
weakly characteristically inert socle-regular groups retain the same property (compare with
Proposition 3.8 listed below) as well as that in the bounded groups their infinite characteristically
inert subgroups are always of a finite index (compare with Proposition 3.4 stated below).

Proposition 2.4. The group G is weakly characteristically inert socle-regular if, and only if, the sub-
group pnG is weakly characteristically inert socle-regular for some positive integer n. In particular,
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if A is a subgroup of a group G and either G/A is finite or G ¼ A	 B, where B is bounded, then G
is weakly characteristically inert socle-regular if, and only if, A is weakly characteristically inert
socle-regular.

Proof. In view of Proposition 3.4 stated below, it is necessary to consider only the case when G
is unbounded.
The” necessity” follows directly from Proposition 3.8 listed below.
As for the” sufficiency”, letting H be an infinite characteristically inert subgroup in G, then since
it is well known that each automorphism of pnG is induced by an automorphism of G, it must be
that H \ pnG is a characteristically inert subgroup in pnG. Note that, if G is unbounded and H is
infinite, then the intersection H \ pnG is also infinite, which fact follows from Lemma 2.1. In
fact, if we assume in a way of contradiction that H \ pnG is finite, then pnðH½p�Þ has to be infin-
ite, where as usual pn : G ! B1 	 :::	 Bn is the corresponding projection, B ¼ B1 	 :::	 Bn 	 :::
is a basic subgroup of G and G ¼ ðB1 	 :::	 BnÞ 	 ðB�

n þ pnGÞ: Consulting with the already
quoted Lemma 2.1, one detects that

f ðpnðH p½ �ÞÞ þ ðH p½ � \ ðB�
n þ pnGÞÞ � H p½ � \ ðB�

n þ pnGÞ,
where f ðpnðH½p�ÞÞ is infinite for each f 2 HomðB1 	 :::	 Bn,B�

n þ pnGÞ: This is impossible sub-
stantiating that H \ pnG is really an infinite characteristically inert subgroup in pnG. But since
pnG is a weakly characteristically socle-regular group, we consequently deduce that ðH \
pnGÞ½p� \ pnþaG ¼ H½p� \ pnþaG � pnþaG½p� for some ordinal a (note that nþ a ¼ a provided a
is infinite and paðpnGÞ ¼ pnþaG), i.e., G is weakly characteristically inert socle-regular, as asserted.

Concerning the next two parts of the statement, if foremost G/A is finite, then one easily
writes that G ¼ Aþ F for some finite F � G: So, in the two supposed cases, there will exists
some i 2 N such that piF ¼ piB ¼ f0g, and hence piG ¼ piA: Henceforth, the first part directly
applies to conclude both claims. w

The following consequence is then immediate as the property of being of a” finite index” implies
at once the requirements in the previous proposition, but, however, we shall provide the readers
with an alternative confirmation of its validity which is relevant to [5, Theorem 4.4].

Proposition 2.5. If G is a group with a finite index subgroup A, then G is weakly characteristically
inert socle-regular if, and only if, so is A.

Proof. First of all, we need the following well-known general observation which may be found in,
for example, [27, Lemma 16.5]: If A is of finite index in G, one can find a direct summand, say C
of G with C � A such that the quotient G/C is finite. We thus have the two decompositions G ¼
C 	 F and A ¼ C 	 ðA \ FÞ with F finite.
To prove the necessity, assume that G is characteristically inert socle-regular and suppose that H
is an arbitrary infinite characteristically inert subgroup of A. Therefore, H \ C is infinite and
characteristically inert in C and H=ðH \ CÞ ffi ðH þ CÞ=C � A=C � G=C is finite. So, H \ C � H
implying that ðH \ CÞ½p� � H½p�: Utilizing now Proposition 2.4, one sees that C is characteristic-
ally inert socle-regular. Consequently, ðH \ CÞ½p� � pbC½p� for some ordinal b. But using the sym-
metry of the operation �, it follows that H½p� � ðH \ CÞ½p� and hence, by the transitivity
property of the same operation, we obtain that H½p� � pbC½p�: However, pbA ¼ pbC 	 pbðA \ FÞ
whence pbA½p� � pbC½p� and so, again by symmetry, H½p� � pbC½p� � pbA½p� giving us again by
transitivity that H½p� � pbA½p�, as promised.
To establish the sufficiency, assume that A is characteristically inert socle-regular and suppose
that X is an arbitrary characteristically inert subgroup of G. Then Proposition 2.4 again tells us
that C is characteristically inert socle-regular. Now, an easy check shows that X \ C is fully inert
in C, and so ðX \ CÞ½p� � pcC½p� for some c � 0: But X=ðX \ CÞ ffi ðX þ CÞ=C � G=C is finite,
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yielding that X \ C � X and hence that ðX \ CÞ½p� � X½p�: Therefore, we deduce as above that
X½p� � ðX \ CÞ½p� � pcC½p� forcing X½p� � pcC½p�: Moreover, pcG � pcC ensures that pcG½p� �
pcC½p� and finally X½p� � pcG½p�, as expected. w

We now able to exhibit the following construction. Imitating [27], here the term” a standard
group” means that such a group has finite Ulm-Kaplansky invariants and is a basic subgroup of a
given group.

Example 2.6. There exists an uncountable group G of length s ¼ x 
 2, that is, psG ¼ f0g and
paG 6¼ f0g for any a < s, with G=pxG a direct sum of cyclic groups, but G has a countable sub-
group C which is characteristically (and even fully) inert in G such that C \ paG½p� is not com-
mensurable with paG½p� for all a < s:

Proof. Let G0 be the direct sum of continuously many copies of the standard group B, and let G1

be the usual Pierce group P as constructed in [27]. Then it is easy to check by using the standard
Kulikov/Fuchs criteria (see, e.g., [16–18]) that there is a group G with G=pxG ¼ G0 and pxG ¼
G1 ¼ P: Letting also C be a basic subgroup of P, we then deduce that C½p� is even fully inert in
G, which fact is of a rather technical natural and so we leave it to the interested reader for an
inspection, but C½p� \ paG is not commensurable with paG for any a < x 
 2, the length of G, as
required. w

3. Main results and open questions

In this section, we will arrange our chief statements. Before doing that, we first offer the following
addition in notation: Given B is an arbitrary basic subgroup of the group G, we write B ¼
B1 	 B2 	 :::, where Bn ffi ZðpnÞðanÞ for some cardinal numbers an. We also let B�

n ¼ Bnþ1 	
Bnþ2 	 :::: Then G ¼ B1 	 :::	 Bn 	 G�

n, where G�
n ¼ B�

n þ pnG (see, e.g., [17, Theorem 32.4]).
Notice that we will freely use these facts in the sequel without any referring.
For a convenience of the presentation, we shall distribute our chief results into five subsections
as follows:

3.1. The separable case

We are now in a position to attack the following pivotal assertion, which curiously shows that in
the separable case the notions of weak characteristically inert socle-regularity and characteristic-
ally inert socle-regularity will coincide, thus refining [5, Corollary 4.10] in a non-trivial way.

Theorem 3.1. If G is a separable weakly characteristically inert socle-regular group, then G is char-
acteristically inert socle-regular.

Proof. Let H be an infinite characteristically inert subgroup of a group G, and write ðH½p� \
pnGÞ þ F ¼ pnG½p� for some finite subgroup F � G and finite number n. Since pnG½p� ¼ G�

n½p�,
one sees that H½p� � ðH½p� \ ðB1 	 :::	 BnÞÞ 	 ðH½p� \ G�

nÞ, where H½p� \ G�
n � G�

n½p� ¼ pnG½p�:
If j H½p� \ ðB1 	 :::	 BnÞ j < @0, then H½p� � pnG½p� and the assertion is proved.
Assume now that j H½p� \ ðB1 	 :::	 BnÞ j � @0: Let pi : G ! Bi, i ¼ 1, :::, n, be the correspond-
ing projections and 1 � m � n is the minimal natural number with j pmðH½p�Þ j � @0: It is not
too difficult to observe that in the subgroup Bm it is possible to choose a countable direct sum-
mand C, say Bm ¼ C 	 B0

m, such that, for each c 2 C½p�, there exists an element x 2 H with
pmðxÞ ¼ c: As pðH½p�Þ ¼ C½p�, where p : G ! C is the corresponding projection, then by Lemma
2.1 (1) (see also [6, Proposition 2.7 (iii)]) we have that H � H þ f ðC½p�Þ for every f 2
Hom ðC,B0

m 	 :::	 BnÞ, and thus one derives that H½p� \ ðBm 	 :::	 BnÞ � Bm½p� 	 :::	 Bn½p�,
i.e., H½p� � pmG½p� ¼ Bm½p� 	 :::	 Bn½p� 	 G�

n½p�, as required. w
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Note that in [5, Example 1.7] it was proved that there exists a weakly fully inert socle-regular
group which is not fully inert socle-regular.

3.2. The general case

We continue here with an useful claim for our further applications.

Lemma 3.2. If H is an infinite characteristically inert subgroup of an unbounded group G and
H ¿ H \ pxG, then there exists a sequence of natural numbers n1 < n2 < ::: < nk < ::: such that
H½p� \ Bnk 6¼ f0g for some basic subgroup B of G.

Proof. As usual, let pn : G ! Bn be the corresponding projection. Assuming by supposition that
H ¿ H \ pxG, then either pnðH½p�Þ is infinite for some n or, for each natural n, there will exist a
positive integer m> n with ðp1 þ :::þ pmÞH½p� > ðp1 þ :::þ pnÞH½p�:
If we choose x 2 H½p� n pxG, then one writes that x ¼ h1 þ :::þ hs þ y, where 0 6¼ hi 2 Bni ½p� are
such that n1 < ::: < ns if s> 1 with n1 ¼ hðh1Þ < ::: < hðhsÞ and y 2 G�

ns ½p�: However, with the aid
of [17, Corollary 27.2], the element h1 can be embedded in a cyclic direct summand of order pn1 by
saying, without loss of generality, in Bn1 : Then, it follows that H½p� \ Bn1 6¼ 0, as expected.
Next, assume that j pn1ðH½p�Þ j � @0 (note that this is the first possible case of two possibilities)
for some n1. Since Bn1 is a direct sum of cyclic groups of the same order pn1 , the subgroup
pn1ðH½p�Þ is a socle of some direct summand of Bn1 : Since G ¼ ðB1 	 :::	 Bn1Þ 	 G�

n1 , there will
exist a homomorphism f : Bn1 ! G�

n1 with j f ðpn1ðH½p�ÞÞ j ¼ @0 and f ðBn1Þ � B�
n1 ¼ 	n>n1 Bn,

where H½p� \ G�
n1 � ðH½p� \ G�

n1Þ þ f ðpn1ðH½p�ÞÞ holds by referring to Lemma 2.1. Moreover, if Bn
is infinite for some n > n1, then we can choose f such that f ðpn1ðH½p�ÞÞ � Bn because, by what
we have shown above, in this case H \ Bn is infinite. If, however, Bn is finite for all n > n1, then
we may choose Bn2 with n2 > n1 and H \ Bn2 6¼ 0: In fact, if x 2 ðH½p� \ G�

n2ÞnpxG, then x ¼
h2 þ :::þ hs þ y, where 0 6¼ hi 2 Bni ½p� such that n2 < ::: < ns if s> 2 with n2 ¼ hðh2Þ < ::: <
hðhsÞ and y 2 G�

ns ½p�: We possibly choose Bn2 with x 2 Bn2 , as needed.
Assuming now that pnðH½p�Þ is finite for every n (this is the second possible case), then one sees
trivially that the intersection H½p� \ ðB1 	 :::	 BnÞ has to be finite for all natural numbers n, as
well. So, as above demonstrated, there exists an index n2 > n1 with H½p� \ Bn2 6¼ f0g, etc., repeat-
ing the same procedure, we are done. Thereby, H½p� \ Bnk 6¼ f0g for some sequence of natural
numbers n1 < n2 < ::: < nk < :::, as we asked for. w

We are now ready to proceed with our key instrument, which sheds some light on the property
of being characteristically inert socle-regular in certain cases. With it at hand, we will successfully
expand [6, Theorem 4.4, Corollary 4.5] and also completely resolve the problem posed there in
the critical case for 2-groups, i.e., when p¼ 2.

Proposition 3.3. The following two statements hold:

(1) If G is an unbounded direct sum of cyclic groups, and H is an infinite characteristically inert
subgroup of G, then there exists a natural number m > 0 such that H½p� \ pm�1G ¼
pm�1G½p� is true.

(2) If G is an unbounded torsion-complete group and H is an infinite characteristically inert sub-
group of G, then there exists a natural number m > 0 such that H½p� þ F ¼ pm�1G½p� is true
for some finite subgroup F of G.

Proof.
(1) We have G ¼ 	n�1 Bn, where Bn ffi ZðpnÞðanÞ for some cardinal numbers an. If H½p� \ Bn ¼

Bn½p� for all n � m and for some m, then it is not too hard to check that both the equalities
B�
m½p� ¼ pm�1G½p� and pm�1G½p� ¼ H½p� \ pm�1G hold.
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Assume for a contradiction now that H½p� \ Bn 6¼ Bn½p� for almost all n 2 N: Then, it is
not difficult to observe that there is a sequence of natural numbers, say, n1 < n2 < ::: <
nk < :::, such that Bnk ½p� ¼ ðH½p� \ BnkÞ 	 B0

nk
, where B0

nk
6¼ f0g and, for each nk, in view

of the choice of the subgroup B, there is nsk < nk with the property H½p� \ Bnsk
6¼ f0g –

see, for completeness, Lemma 3.2 alluded to above, too. Also, the sequences fnkg and fnskg
could easily be selected such that the inequalities nsk < nk < nskþ1 hold for all k � 1: So,
one writes that

G ¼ 	
k�1

Bnsk

� �
	 A,

where 	k�1 Bnk � A:
Let 0 6¼ yn1 2 B0

n1 : Assume now that already exist elements yn1 , :::, ynt , 0 6¼ yni 2 B0
ni , i ¼

1, :::, t, t � 2 with hyn1 , :::, ynti \ H ¼ f0g: If B0
nl
� hH, yn1 , :::, ynt i ¼ H0 for all l � t þ 1,

then H0½p� \ Bn ¼ Bn½p� for all n � t þ 1 as pt�1G½p� ¼ H0½p� \ pt�1G: Consequently, H½p� �
H½p� \ pt�1G since H½p� � H0½p� and pm�1G½p� ¼ H½p� \ pm�1G for some m � 1:
So, there exists 0 6¼ yntþ1 2 B0

ntþ1
with hyn1 , :::, yntþ1i \ H ¼ f0g: It is thus possible to build

the sequence yn1 , yn2 , ::: with 0 6¼ ynk 2 B0
nk

and hynk j k � 1i \ H ¼ f0g: If 0 6¼ xnsk 2
H½p� \ Bnsk

, then there exists f 2 Homð	k�1 Bnsk
,AÞ with f ðxnsk Þ ¼ ynk : Furthermore, since

hynk j k � 1i � f ðH \ ð	k�1 Bnsk
ÞÞ, one infers that H \ A ¿ H \ Aþ f ðH \ ð	k�1 Bnsk

ÞÞ
that contradicts Lemma 2.1 (1).

(2) Since G is separable, each of its countable subgroups can be embedded in some basic sub-
group of G by using of [17, §33, Excersize 3] as, moreover, the infinity of H implies the
infinity of H½p�: So, one may choose a basic subgroup B � G such that j B½p� \ H j � @0:
We deduce that the automorphism f of B, defined in the preceding point (1), is extendible
to an automorphism of G by consulting with [17, Theorem 69.3]. So, [6, Lemma 2.6] then
applies to get that H \ B is a characteristically inert subgroup in B. Hence, the previous
point (1) leads to H½p� \ pm�1B ¼ pm�1B½p� for some m � 1:

Assume now that ðH½p� \ pn�1GÞ 	 Fn ¼ pn�1G½p�, where j Fn j � @0 for each n � m: Likewise,
as we tricked in (1), we can choose ynk such that hynk j k � 1i \ H ¼ f0g and put fynkgk�1 in
some basic subgroup B0 of G. Thus, it is routinely seeing that these two manipulations are pos-
sible and also that we can define the isomorphism f : B ! B0 (because it is well known from [17]
that any two basic subgroups of a given group are isomorphic) is extendible to an automorphism
of G (because G is by assumption torsion-complete) for which j ðH þ f ðHÞÞ=H j � @0 – a
contradiction, which completes our argumentation.
And finally, since separable weakly characteristically inert socle-regular groups are, in fact, charac-
teristically inert socle-regular by application of Lemma 3.1 stated above, one concludes that the
equality H½p� þ F ¼ pm�1G½p� is true for some finite subgroup F of G and some natural number
m, as required. w

We now will be concerned with the bounded case, which can be somewhat argued as exhibited
above. Concretely, the following holds.

Proposition 3.4. Let G be a bounded group such that pnG ¼ f0g and pn�1G 6¼ f0g for some nat-
ural number n � 1, and let H be an infinite characteristically inert subgroup of G, then ðH½p� \
pm�1GÞ þ F ¼ ðpm�1GÞ½p� is valid for some finite subgroup F of G with m � n:

Proof. In this case, one writes that G ¼ B1 	 :::	 Bn: If piðHÞ is infinite for some i< n, then
arguing as in Proposition 3.3 one finds that H½p� \ piþ1G � ðpiþ1GÞ½p�: However, if piðHÞ is finite
for all i< n, then H½p� � Bn½p�, where Bn½p� ¼ pn�1G ¼ pn�1G½p�, as required. w
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As a direct consequence, we obtain the following crucial statement, which was proved in [6] in
the case where p 6¼ 2 and remained left-open when p¼ 2 – we thus also improve somewhat [5,
Corollary 1.5].

Theorem 3.5. Every torsion-complete group is characteristically inert socle-regular.

Proof. It follows immediately by combining Theorem 3.1 and Propositions 3.3, 3.4. In fact, utiliz-
ing Propositions 3.3 and 3.4, we deduce that any torsion-complete group is weakly characteristic-
ally inert socle-regular. But each torsion-complete group is known to be separable, and so
Theorem 3.1 gives that it is characteristically inert socle-regular, as claimed. w

Before continuing, we invoke one more observation: Let G be a characteristically inert socle-regu-
lar group such that j paG j > @0 for any ordinal a with paG 6¼ f0g: Then it follows that jH½p�j >
@0 for every infinite characteristically inert subgroup H of G. Indeed, one checks that H½p� �
paG½p� for some a and that j paG½p� j ¼ j paG j in view of the reduced property of G. So, this
helps us to consider in the sequel only groups and their characteristically inert subgroups with
infinite (and even uncountable) socles.

3.3. ULM-like theorems

We also arrive at the following statement.

Proposition 3.6. Let G be a reduced group such that G=pxG is a direct sum of cyclic groups and
let G ¼ G1 	 G2, where both G1, G2 are unbounded. Then G is weakly characteristically inert socle-
regular if pxG is weakly characteristically inert socle-regular.

Proof. If pxG½p� is finite, then one verifies that H \ pxG½p� � pxG½p�, where H is an infinite char-
acteristically inert subgroup of G. So, let now pxG½p� be infinite. We shall prove in this case that
H \ pxG½p� is also infinite. To do that, assume the opposite that H \ pxG½p� is finite. Since
pxG½p� ¼ pxG1½p� 	 pxG2½p�, G is reduced and G1, G2 are both unbounded, one derives that
Gi=pxGi½p�, where i¼ 1, 2, are also both unbounded.
Let pi : G ! Gi, i¼ 1, 2, be the corresponding projections. For concreteness, assume that
p1ðH½p�Þ is infinite. If f : G1 ! G1=pxG1 is the canonical epimorphism, then f ðp1ðH½p�ÞÞ is infin-
ite being a direct sum of cyclic groups. So, with the aid of Lemma 2.1 (2), one inspects that there
will exist u 2 Hom ðG1,G2Þ with the property that uðf ðp1ðH½p�ÞÞÞ is an infinite subgroup of
pxG2½p� and that its subgroup is embedding in H \ pxG2½p�, as required. w

The next construction is somewhat helpful to understand the behavior of fully inert subgroups by
showing manifestly that the case where the infinite characteristically inert subgroup is at most
countable is rather difficult, thus contrasting with the assertion in the previous Proposition 3.6.

Example 3.7. There exists a group G with a basic subgroup B such that H1 � B and H2 � pxG
for some two infinite fully inert subgroups H1 and H2 of G.

Proof. Let P be a separable group such that the equality EðPÞ ¼ Jp 
 1EðPÞ 	 EsðPÞ holds, and let G
be a group such that pxG is countable and elementary with G=pxG ffi P (see, e.g., [27] and [23]).
Then, by virtue of [23, Lemma 4.4], one writes that EðGÞ ¼ Jp 
 1EðGÞ 	 EsðGÞ: We remember that
here Jp and EsðPÞ stand for the ring of p-adic integers and for the ideal of EðPÞ consisting only of
small endomorphisms of (the standard group) P, respectively; similarly for EsðGÞ associated with
the group G.
Let us now H1 ¼ F½p�, where F is a pure subgroup in B such that fnðFÞ is finite for all n, and let H2

be an infinite subgroup in pxG: An easy inspection shows that each f 2 EðGÞ is the form f ¼ pþ u,
where p 2 Jp, u 2 EsðGÞ: Consequently, f ðH1Þ þH1 ¼ pðH1Þ þ uðH1Þ þH1, where pðH1Þ � H1
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and uðH1Þ are finite, because of the finiteness of fnðH1Þ and f ðH2Þ ¼ pðH2Þ � H2: Furthermore, by a
routine check, the subgroup H1 is fully inert and the subgroup H2 is fully invariant, as asserted. w

The following statement is somewhat an Ulm-like type affirmation for the newly defined classes
of groups from the introductory section.

Proposition 3.8.
(1) Given G is a weakly characteristically inert socle-regular group, then for any ordinal a, if paG

is infinite, the subgroup paG is also weakly characteristically inert socle-regular.
(2) Given G is a weakly fully inert socle-regular group, then for any ordinal a, if paG is infinite,

the subgroup paG is also weakly fully inert socle-regular.

Proof.
(1) Let H be an infinite characteristically inert subgroup of paG: Since paG is characteristic in

G, the subgroup H is also characteristically inert in G. Thus there is an ordinal r with
prG 6¼ f0g such that

ðH \ prGÞ p½ � � prG p½ �:
But then

ðH \ prGÞ p½ � \ paG � prG p½ � \ paG,

so that ðH \ pbGÞ½p� � pbG½p�, where b ¼ maxfa,rg: Note also that pbG 6¼ f0g, because
both the inequalities prG 6¼ f0g and paG 6¼ f0g hold. Writing b ¼ aþ k for some k, we
have that

ðH \ pkðpaGÞÞ p½ � � pkðpaGÞ p½ �
and hence paG is weakly characteristically inert socle-regular, as claimed.

(2) It can be proved as (1) by a way of similarity, so omit the details by leaving them to the
interested readers. w

3.4. Groups of special type

It is well know that (see [1]) the group G is called of type A if AutðGÞ „ pxG ¼ AutðpxGÞ: By a
reason of symmetry, we will say now that the group G is of type E provided EðGÞ „ pxG ¼
EðpxGÞ: Here the abbreviation „ pxG stands for those automorphisms (resp., endomorphisms) of
G which act on pxG:
We will obtain some new results of this branch by adapting the structure of the first Ulm sub-
group pxG to this aim (for some other analogous approaches of using pxG, we refer to [7, 8]
and [24] as well). So, we pose the next incidental requirement: We shall say that this concrete
subgroup pxG is continually infinite if it is infinite itself and, moreover, the intersection with the
socle of any infinite characteristically inert subgroup of G continues to be infinite too. A visible
example of such subgroups is the following one:

Example 3.9. Suppose B ¼ pxG is a bounded group and G=pxG is a direct sum of cyclic groups.
If H � G is infinite fully inert and H \ pxG is finite, then H ¼ H0 	 F for some finite subgroup
F with H \ pxG � F: Then the socle H½p� � H0½p� is also infinite.
Now, letting p : G ! G=pxG be the canonical epimorphism, one detects that p „ H0½p� is an injec-
tion. Since G=pxG is a direct sum of cyclic groups, we find that for the infinite subsocle K �
pðH0½p�Þ there exists a homomorphism f : G=pxG ! pxG such that f „ K is an injection, too.
And since fpH½p� � H \ pxG, we deduce that H½p� \ pxG is infinite which contradicts the
assumption that H \ pxG is finite. This finishes the arguments after all.
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Besides, it is not too difficult to construct a group G with infinite pxG, containing an infinite
fully inert subgroup H, such that H \ pxG ¼ f0g: In fact, choose pxG to be a countably infinite
elementary group with EðGÞ ¼ Jp 
 1EðGÞ 	 EsðGÞ: Set B ¼ 	n�1 Bn, where all Bn are direct sums
of the groups ZðpnÞ: Given H � G½p� with H ¼ 	n�1 Hn, where each Hn is finite in Bn½p�: Thus,
for every u 2 EðGÞ, the image uðHÞ is finite too, i.e., we have at once that H is fully inert and
H \ pxG ¼ f0g, as expected.
We have now all the ingredients necessary to proceed by proving the next two statements which
somewhat show that the reversibility in Proposition 3.8 is possible in some special con-
crete situations.

Proposition 3.10. Let G be a group of the type A. If pxG is continually infinite, then G is weakly
characteristically inert socle-regular if, and only if, pxG is weakly characteristically inert
socle-regular.

Proof. It follows from Proposition 3.8 (1) that if G is an arbitrary weakly characteristically inert
socle-regular group, then for every ordinal a either paG is finite or is weakly characteristically
inert socle-regular for each ordinal a, as required.
Conversely, suppose that H is infinite and characteristically inert in G. Since G is of type A, the
intersection H½p� \ pxG is also characteristically inert in pxG and so, applying the assumption, it
is infinite as well. Consequently, H½p� \ pxG is of finite index in pxG½p�, as expected, which fin-
ishes of proof. w

Note that the following assertion does not appear in [5], so it could be of some usefulness to dis-
cover the structure of the class of weakly fully inert socle-regular groups.

Proposition 3.11. Let G be a group of the type E. If pxG is continually infinite, then G is weakly
fully inert socle-regular if, and only if, pxG is weakly fully inert socle-regular group.

Proof. It follows from Proposition 3.8 (2) that if G is an arbitrary weakly fully inert socle-regular
group, then either paG is finite or is weakly fully inert socle-regular for every ordinal a,
as required.
Conversely, suppose that H is infinite and fully inert in G. Since G is of type E, the intersection
H½p� \ pxG is also fully inert in pxG and thus, employing the assumption, it is infinite too.
Consequently, H½p� \ pxG is of finite index in pxG½p�, which completes the proof. w

3.5. Square of groups

It was proved in [6, Theorem 4.6] that a group G is fully inert socle-regular if, and only if, the
square G	 G is characteristically inert socle-regular. We shall now slightly extend this necessary
and sufficient condition to the following one, which also improve [5, Proposition 3.1] as follows:

Proposition 3.12. The group G is weakly fully inert socle-regular if, and only if, the square G	 G
is weakly characteristically inert socle-regular.

Proof. Suppose that G is weakly fully inert socle-regular and C is characteristically inert in K ¼
G1 	 G2, where G1 ffi G ffi G2: A well-known result of Kaplansky (see, e.g., [25]) then tells us
that every endomorphism of K is the sum of 3 automorphisms of K, and so it follows with this at
hand that C is fully inert in K. Writing now C1 ¼ C \ G1,C2 ¼ C \ G2, it then follows that C �
C1 	 C2 and thus that C1, C2 are fully inert in G1, G2 respectively. Furthermore, if u : G1 ! G2,
w : G2 ! G1 are two arbitrary homomorphisms, then the relations uðC1Þ þ C2 � C2 and wðC2Þ þ
C1 � C1 are immediately valid.
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Since all of the Gi’s are weakly fully inert socle-regular, there are ordinals a, b such that
ðC1Þ½p� \ paG1 � paG1½p� and ðC2Þ½p� \ pbG2 � pbG2½p�: Now choosing u,w to be the isomor-
phisms identifying G1 and G2, we see that C1 � C1 þ C2 � C2; in other words paG1½p� �
pbG½p� � paG2½p� and thus C½p� � pcG1½p� 	 pcG2½p�, where c ¼ maxfa,bg: Therefore, C½p� �
pcK½p� and K is then weakly characteristically inert socle-regular, as needed.
Conversely, suppose that G	 G is weakly characteristically socle-regular and let F be an arbitrary
fully inert subgroup of G. Then F 	 F is fully inert in G	 G, and hence F 	 F is certainly char-
acteristically inert in G	 G: Thus there is an ordinal b such that ðF½p� 	 F½p�Þ \ pbðG	 GÞ �
pbG½p� 	 pbG½p�: It now follows easily from standard properties of commensurability that F½p� \
pbG � pbG½p�: Since F was arbitrarily chosen, the group G is weakly characteristically inert socle-
regular, as asserted. w

We finish our work with the following two questions of some interest and importance. The first
one immediately arises in connection with Theorem 3.1 and the comment given after it (see also
[5, Example 1.7]):

Problem 3.13. Does there exist an inseparable weakly characteristically inert socle-regular group
which is not characteristically inert socle-regular?

Problem 3.14. Decide whether or not every generally pa torsion-complete Abelian group, as
defined in [15], is still characteristically inert socle-regular for each ordinal a strictly less than the
length of the group.
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