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a b s t r a c t

We study the parametric resonance excitation of the electromagnetic field by a gravitational wave. We
show that there is narrow band resonance. For an electromagnetic field in the vacuum the resonance
occurs only in the second band, and its strength is thus suppressed by two powers of amplitude of
the gravitational wave. On the other hand, in the case of an electromagnetic field in a medium with
the speed of light smaller than 1 (in natural units), there is a band of Fourier modes which undergo
resonance in the first band.

© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Parametric resonance is a well-known effect in classical me-
hanics: an oscillator with a periodically varying contribution
o the mass will be exponentially excited if the frequency of
he oscillator lies in certain resonance bands determined by the
requency of the variation of the mass (see e.g. [1,2] for textbook
reatments). If the amplitude of the varying part of the mass is
mall compared to the magnitude of the time-independent part,
e speak of ‘‘narrow band resonance’’, if it is large then we are

n the realm of ‘‘broad resonance’’. Parametric resonance is a
pecial case of the Floquet theory of instability of a dynamical
ystem in the presence of a periodic time-dependence of one of
he coefficients [3]. The equation of motion for the special case is
alled the ‘‘Mathieu equation’’.
In early universe cosmology, parametric resonance plays a

rucial role in the transfer of energy to regular matter at the end
f a hypothetical period of inflation [4,5]. At the end of infla-
ion, the scalar field φ which drives inflation will be oscillating
bout the minimum of its potential. This oscillation can induce
parametric resonance instability for any field χ which couples

n an appropriate way to φ, e.g. via a φ2χ2 coupling in the case
f a matter scalar field χ . In the case of a self-interacting scalar
ield φ, excitation of fluctuations of φ will also occur (see [6,7]
or reviews). This instability is known as ‘‘preheating’’ [8–10].
ote that the preheating instability can occur for both bosons and
ermions, although because of Pauli blocking the resonance for
ermions is less efficient [11].
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In an expanding universe the equation of motion for a matter
field χ contains a Hubble damping term, and hence the para-
metric resonance analysis does not directly apply. However, if
we rescale the matter field by a power of the cosmological scale
factor and also work in conformal time τ instead of physical
time t , we obtain an equation of motion without damping term.
However, the bare mass term of the equation in terms of the orig-
inal field now acquires a scale factor dependence which greatly
reduces the efficiency of the Floquet resonance. On the other
hand, for massless fields we obtain a standard Mathieu equation
for the rescaled field.

Gravitational waves induce oscillating terms in the equations
of motion for all matter fields. In the case of massless matter
fields such as the photon, it is hence expected that these grav-
itational wave can induce instabilities. These instabilities, in turn,
will drain energy from the gravitational waves. In the Standard
Model, the only massless field is the photon.1 Here, we will study
the parametric resonance instability of the photon field in the
presence of a gravitational wave. We find that there is indeed
a resonance effect. In vacuum, the resonance occurs only in the
second resonance band and is hence highly inefficient. On the
other hand, in a medium in which the speed of fluctuations of the
electromagnetic field is smaller than unity,2 the instability occurs
in the first resonance band and is hence much more efficient.
In the current work, we estimate the decay rate of a packet of
gravitational waves passing through a medium. More details will
be given in a follow-up paper.

1 If there is a massless neutrino there can also be an instability to neutrino
roduction, but because of Pauli blocking it will be less efficient than for
hotons.
2 We use units in which the speed of light, Planck’s constant and Boltzmann’s

onstant are 1.
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In the following we will be studying the effects of gravitational
aves on matter fields in a Minkowski space–time background.
rovided that the time scale of the instability is shorter than
he duration which a mode spends in the instability band, the
ffects of the expansion of space are small, the main effect being
hat modes slowly enter and exit the resonance bands, as argued
lready in the original article [4]. Note that our analysis does not
ake use of any physics beyond Standard Model particle physics
nd Einstein gravity.

. Massless scalar field resonance

Here we consider a gravitational wave of frequency ω exciting
scalar field φ with mass mφ . We consider a gravitational wave
ith metric tensor hµν travelling in Minkowski space–time. The

ull metric is

µν = ηµν + hµν . (1)

Specifically, we consider a standing gravitational wave with fre-
quency ω:

hij = h0 cosωt cosωz · ϵij, h0µ = 0, (2)

where h0 is the amplitude, and ϵij is the polarisation tensor

ϵij =

( 1 1 0
1 −1 0
0 0 0

)
. (3)

The equation of motion of a scalar field of mass m in this
gravitational wave background is

φ̈ −
(
δij − hij

)
∂i∂jφ + m2

φφ = 0. (4)

This equation is reminiscent of the sound speed resonance mech-
anism [12,13], where the sound speed of scalar modes or tensor
modes receives an oscillatory correction which eventually trig-
gers the resonance instability. In Fourier space, the equation
becomes

φ̈k +
(
k2 + m2

φ

)
φk −

h0

2
k2ϵ cosωt ·

[
φk−p + φk+p

]
= 0, (5)

where k2ϵ ≡ ϵijkikj and p is a 3-dimensional vector defined by
p = (0, 0, ω). Let us define the variable

Φ
(
t, kx, ky, kz

)
≡ φ

(
t, kx, ky, kz

)
+ φ

(
t, kx, ky, −kz

)
, (6)

nd let us choose kz = ω/2. Then, quite remarkably, its equation
f motion is

¨ kz +
(
k2 + m2

φ

)
Φkz −

h0

2
k2ϵ cosωt

(
Φkz + Φ3kz

)
= 0, (7)

hich is a Mathieu equation with a source term proportional
o Φ3kz . To avoid notational clutter we have defined Φkz ≡(

t, kx, ky, kz
)
. In a first approximation, the source term can

e neglected as the mode Φ
(
t, kx, ky, 3kz

)
does not receive a

arametric resonance amplification and thus remains small.3
Inserting the value of kz , the equation of motion (7) then

ecomes the standard Mathieu equation
′′

kz +
[
Ak − 2qcos(2τ )

]
Φkz = 0, (8)

3 We can include the Φ
(
t, kx, ky, 3kz

)
term and add in the equation of motion

or this mode, thus obtaining a set of coupled differential equations. In the
ontext of a study of the effects of inhomogeneous noise on the strength of
arametric resonance, it has been shown that considering the inhomogeneous
ystem actually boosts the growth rate of the instability [14]. This is an
onsequence of Furstenberg’s Theorem [15] (see [16]). As an application, this
eads to a new proof of Anderson Localisation in condensed matter systems [17].
2

with the rescaled time variable being τ ≡
ωt
2 , the prime denotes

the derivative with respect to τ , and

A = 1 +
4
(
k2x + k2y + m2

φ

)
ω2 , q =

h0k2ϵ
ω2 . (9)

The Mathieu equation (8) undergoes broad resonance for q > 1,
where the exponential instability occurs for all sufficiently long
wavelength modes, and narrow resonance for q < 1, where the
exponential instability occurs only for narrow bands of k modes.
We are interested in the weak field limit where the amplitudes
of both polarisations are small, i.e. h0 ≪ 1. Hence, q ≪ 1 and
we are dealing with narrow band resonance. It is clear that we
are outside of the first resonance band where A ⊂ (1 − q, 1 + q).
owever, parametric resonance may still occur at the second
esonance band where A ⊂

(
4 − q2, 4 + q2

)
. For resonance in

he second band, the amplitude of Φ grows as exp[µ
(2)
k τ ], where

µ
(2)
k is the Floquet exponent of the second resonance band µ

(2)
k ≃

q2
4 , which is parametrically suppressed compared to the Floquet
exponent in the first resonance band which is µ

(1)
k ≃

q
2 .

There is, however, a way to obtain resonance in the first band:
if we consider the propagation of the scalar field φ in a medium
which leads to a reduced speed of propagation cs < 1, then A
becomes

A = c2s + c2s
4(k2x + k2y)

ω2 +
4m2

φ

ω2 . (10)

n this case, for a massive scalar field it will remain impossible
o obtain resonance in the first band, unless m2

φ < (1 − c2s )ω
2/4,

which in our case is not reasonable for masses of Standard Model
particles, given that the wavelengths of gravitational waves emit-
ted by the most of astrophysical events are of macroscopic scale.
However, for photons (which are massless) there will be a band
of (kx, ky) values which lie in the first resonance band. Thus, in
the following we will focus on gravitational waves exciting the
electromagnetic field.

One may be confused at this point, as quantum field theory
tells us a massless particle does not decay to a massive particle in
the vacuum; The process is simply forbidden by energy momen-
tum conservation. Nevertheless, two colliding massless particles
do decay to massive particles, as now this process is allowed (for
instance a pair of colliding high-energy photons can decay into an
electron–positron pair). This is precisely the case in our analysis,
where a standing gravitational wave, which can be understood
as the collective behaviour of two groups of massless gravitons
travelling in the opposite direction, decays into massive scalar
particles (provided that mass is smaller than the frequency of
gravitational wave) due to the collision of massless gravitons.

In passing, we shall mention that for a travelling gravitational
wave in vacuum, the parametric resonance does not occur, even
if the scalar field is massless. This is because the lightcones of the
gravitational wave and the scalar field overlap with each other.
Sitting on the wavefront of the scalar wave, one does not ‘‘feel’’
the oscillation induced by the gravitational wave. However, in a
medium where the scalar wave is sub-luminal, the two lightcones
do not overlap and that opens up the channel converting energy
from the gravitational wave sector to the scalar field sector, even
for a pure travelling wave. The similar effect has been observed
in the framework of the modified gravity too [18]. More details
will be covered in our followup paper [19].

3. Electromagnetic resonance

Here we consider the excitation of the electromagnetic field
by a gravitational wave in a medium with speed of light c < 1.
s
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he metric which enters the kinetic part of gauge field equation
f motion is

µν = η̃µν + hµν, (11)

where η̃µν = (−1, 1/c2s , 1/c
2
s , 1/c

2
s ). Generally c2s is dependent

on the frequency. In our idealised case where a mono-frequency
gravitational wave is considered, c2s is just a constant. It can be a
good approximation if the frequency spread in a wave packet is
small.

The Coulomb gauge is unavailable in the presence of the
gravitational wave, and thus we adopt the Weyl gauge instead,
where A0 = 0. The ith component of the equation of motion reads

0 = giα∂µ

(
Fρσ gαρgµσ

)
= ∂2

t Ai − c2s ∂thij · ∂tAj + c2s ∂jFij
− c4s hjk∂jFik − c4s Fkj∂jhik , (12)

and the 0th component gives the modified Gauss law,

∂iEi = c4s hij∂iEj. (13)

We consider an unpolarised standing gravitational wave

hij = h0 cosωt cosωz · ϵij . (14)

The generalisations to other waves and other types of polari-
sation are straightforward, and will be covered in our followup
paper [19].

Translating Eq. (12) to momentum space and defining

Ax
(
t, kx, ky, kz

)
≡ Ax

(
t, kx, ky, kz

)
+ Ax

(
t, kx, ky, −kz

)
,

Ay
(
t, kx, ky, kz

)
≡ Ay

(
t, kx, ky, kz

)
+ Ay

(
t, kx, ky, −kz

)
,

Az
(
t, kx, ky, kz

)
≡ Az

(
t, kx, ky, kz

)
− Az

(
t, kx, ky, −kz

)
, (15)

hen for kz = ω/2 these Eqs. (12) can be written in matrix form

¨ + c2s GY + c2s FẎ + c4s MY ≃ 0, (16)

where

Y =

(
Ax
Ay
Az

)
(17)

G is the gradient matrix

G =

⎛⎜⎝ k2y +
ω2

4 −kxky −kxkz
−kxky k2x +

ω2

4 −kykz
−kxkz −kykz k2x + k2y

⎞⎟⎠ (18)

is the friction matrix

=
1
2
h0ω sinωt

( 1 1 0
1 −1 0
0 0 0

)
, (19)

nd M is defined by

M =
1
4
h0 cosωt

×

⎛⎝−2kxky + 2k2y + ω2 2k2x − 2kxky + ω2
−2ω

(
kx + ky

)
2kxky + 2k2y + ω2

−2k2x − 2kxky − ω2
−2ω

(
kx − ky

)
−
(
kx + ky

)
ω

(
ky − kx

)
ω 2k2ϵ

⎞⎠ .

(20)

Note of that only two of the variables are independent since the
photon has only two dynamical degrees of freedom. Thus we need
to decouple one of variables from the other two. The gradient
matrix G has only two non-vanishing eigenvalues,

SGS−1
=

⎛⎝ 0 0 0
0 k2x + k2y + k2z 0

2 2 2

⎞⎠ , (21)

0 0 kx + ky + kz

3

where

S =

⎛⎜⎝
kx
kz

ky
kz

1
−

kz
kx

0 1
−

ky
kx

1 0

⎞⎟⎠ . (22)

ntroducing the new variables,

Y ≡

⎛⎝ ax
ay
az

⎞⎠ , (23)

nd linearly transforming Eq. (16),(
Ÿ + c2s GY + c2s FẎ + c4s MY

)
= 0, (24)

nd noting that kz ȧx = kiEi = O(hij), then up to first order in the
ravitational wave amplitude we have the following two coupled
ifferential equations which decouple from the third variable,
′′
+ c2s F̃y′

+ c2s k̃
2y + c4s M̃y = 0, (25)

here y = (ay, az)T , a prime denotes the derivative with respect
o τ ≡

ωt
2 , k̃2 ≡ 4k2/ω2, and

F̃ =h0 sin 2τ

⎛⎝ ω2(kx+ky)
4kxk2

−
ω(k2x−kxky+k2z )

2kxk2

ω(−k2x+2kxky+k2y )
2kxk2

−4kxk2ϵ−ω2(kx+ky)
4kxk2

⎞⎠ ,

˜ =h0 cos 2τ

⎛⎝ 2k2ϵ
ω2 + 1 +

ky
kx

−2kx+2ky
ω

−
ω
2kx

2k2y
ωkx

−
2kx−4ky

ω

−2ϵijkikj
ω2 − 1 −

ky
kx

⎞⎠ , (26)

Note that ay ∝ Fxz and az ∝ Fxy are proportional to the gauge
field strength and thus gauge invariant.

The equation of motion (25) has the form of a Mathieu type
matrix equation with a friction term. The friction term can be
removed via a field rescaling in a similar way to how the Hub-
ble friction term in a scalar field equation can be removed by
rescaling the field. The solution of the rescaled variable will then
display exponential growth with a Floquet exponent µk in narrow
resonance bands of k. In terms of the original variables, the
xponential growth is modulated by the rescaling function. As
hown explicitly in [14] in the case of inflationary reheating, the
xponential growth of the solutions trivially extends from the
calar case to the matrix case.
We have numerically solved Eq. (25), and the solutions for ay

nd az are shown in Fig. 1, in the first case for propagation in
the vacuum (cs = 1) and in the second case for propagation in
a medium (the value cs = 1/1.333 for water was chosen). For
cs = 1 the resonance occurs only in the second band, while for
cs = 1/1.333 we have resonance in the first band. The growth
rate in the case of first band resonance is much larger and it takes
a much shorter time for the instability to develop.

As is apparent by comparing the two figures, for c2s < 1 (the
value for water was chosen), the amplication is much stronger
(the Floquet exponent is much larger). The time scale in the
second figure is two orders of magnitude smaller than in the first,
and the amplitude at the end of the evolution period is of the
same order. The horizontal axis in the graphs is the re-scaled
dimensionless time τ = ωt/2.

Our analysis in this section is based on an un-polarised grav-
itational standing wave in the flat space–time. The main con-
clusion also applies to the travelling waves which are of more
relevance in various astrophysical phenomena. Namely a travel-
ling gravitational wave can trigger parametric resonance in the
photon sector, at the first band in a medium where the refractive
index of light differs from unity. In this sense our mechanism
is somewhat similar to Cherenkov radiation. However, an es-
sential difference is that the resonant decay rate in our case is
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Fig. 1. The left figure: the exponential instability of ay and az in the vacuum
here cs = 1. The resonance occurs at the 2nd band where A = 4. We set

˜2
x = k̃2y = 3/2 in the numerical plots, and we have adopted a unrealistically
arge value for h0 = 0.01 to reduce the CPU computing time. The initial condition
s set to ay(0) = a′

y(0) = az (0) = a′
z (0) = 1. The right figure: the exponential

nstability of ay and az , where speed of light in the water cs = 1/1.333,
˜2
x = k̃2y = 0.388, and thus we have A ≃ 1 in the Mathieu equation. We have
dopted an unrealistically large value for h0 = 0.01 to reduce the CPU computing
ime. The initial condition is set to ay(0) = az (0) = 1 and a′

y(0) = a′
z (0) = 0.

roportional to the amount of photon produced at earlier times:
amely, it grows exponentially. Moreover, the exponential insta-
ility only occurs in a very narrow band in the Mathieu equation,
hile Cherenkov radiation occurs within a wide frequency range
llowed by energy momentum conservation.4
In a followup paper [19] the analyses of the various solutions

re further developed.

. Estimate of the damping rate

In this section we will estimate the decay rate of a wave packet
f gravitational waves peaked at frequency ω with a frequency
pread of ∆ω ∼ ω due to excitation of electromagnetic fluctu-
tions in a medium with effective speed of light cs. The energy
ensity in gravitational waves is

GW ∼ G−1ω2h2
0 . (27)

n the semiclassical approximation, we consider vector fields
i initially in their vacuum state, i.e. with an initial amplitude
k(ti) ∼ k−1/2. In this case, the energy density in the produced
auge fields is

A ∼ ∆ω

∫
P
d2kk−1k2e2µkτ , (28)

here the integral runs over the two-dimensional phase space P
f (kx, ky) modes which undergo resonance.
For each specific plane wave of frequency ω, resonance occurs

or a fixed value of kz , namely kz = ω/2, and for a band of (kx, ky)
ith width r2max − r2min ≃

qω2

4c2s
and radius r determined by

r2 = k2x + k2y ≃
1 − c2s
4c2s

ω2 . (29)

These two equations determine the range of values of (kx, ky)
for which Ak = 1 modulo q. Thus, in (28) we make the approx-
imations of replacing the modulus k by ω/2 and taking µk to
be independent of k. Inserting Eq. (29), δω ∼ ω and the value
q ∼ c2s (1 − c2s )h0 we obtain

ρA ∼ ω4c4s (1 − c2s )h0e2µτ . (30)

4 Note that the inverse process, namely the production of gravitational waves
ia parametric resonance from an oscillating scalar field, does not occur in a
inkowski background in a vacuum since the scalar field only enters the source

erm in the gravitational wave equation and not in the mass term (see e.e.
q. 44 of [20]). However, in an expanding background, there is the possibility
f parametric resonance of gravitational waves if the oscillating scalar fields
ead to small amplitude periodic fluctuations of the Hubble expansion rate H(t)
superimposed on the regular decrease of H (see e.g. [21]).
 r

4

The decay rate of the gravitational wave amplitude h0 can then
be determined by equating the energy gain in ρA with the energy
loss in ρGW . Neglecting the time dependence of h0 in ρA (the time
dependence is dominated by the Floquet term and including the
time dependence of h0 would yield only a higher order correction)
ields

og(h0)′ ∼ −Gω2c6s (1 − c2s )
2e2µτ . (31)

hus, we see that the decay rate of h0 on the gravitational wave
scillation time scale is suppressed by Gω2 and also by the factor
1 − c2s )

2.

. Conclusions and discussion

We have shown that gravitational waves can be damped by
xciting a parametric resonance instability of the electromagnetic
auge field. In vacuum, the resonance is very weak since the
esonant modes lie in the second resonance band. In a medium
n which electromagnetic waves travel with a speed smaller than
, on the other hand, the resonance is in the first band and hence
tronger. We have estimated the decay rate which a wavepacket
f gravitational waves undergoes.
The analysis is based on a single gravitational wave with fixed

requency. The extension to several gravitational wave modes is
traightforward. As to be expected from the general theory of
loquet instability and also studied explicitly for inflationary re-
eating in [14], the instability remains, and the Floquet exponent
or a fixed value of kz = ω/2 is boosted if gravitational waves of
ifferent frequencies are added. This will also be discussed in [19].
The conversion of gravitational waves into plasma waves has

een studied in the literature focusing on linear resonant con-
ersion [22] or the non-linear interaction of two plasma and one
ravitational wave [23–26], in the presence of strong background
agnetic fields. Our analysis fits nicely into this area providing a
ew conversion process with the same order of magnitude for
he growth parameter as for the three wave interaction [24],
ithout requiring a strong background magnetic field to exist,
rovided that the plasma mass is sufficiently small compared to
he frequency of the gravitational wave, m2

plasma < (1− c2s )ω
2/4.

Our result is a first step in the direction of investigating possi-
le implications of gravitational wave conversion via parametric
esonance in cosmology and astrophysics. The biggest challenge
n finding straightforward applications is to achieve the necessary
onditions that lead to a non-negligible conversion rate: namely
refractive index sufficiently larger than 1 in a context where

here is enough time for the instability to develop. In a black
ole binary, for instance, the orbital decay is faster than the
ime required for a non-negligible conversion, while the refractive
ndex in the accretion disk is generally not large enough. In the
arly universe, during radiation domination, the refractive index
s indeed significant, and a field redefined in order to incor-
orate the background expansion satisfies a Mathieu equation
ith q ∼ h0/ω

2. It would be interesting to carefully investi-
ate the possibility of suppression of B-modes in the Cosmic
icrowave Background if the instability is well developed until
atter-radiation equality. Another potential application consists

n a novel type of gravitational wave detector, in which gravita-
ional waves turn into possibly detectable electromagnetic waves
hose amplitude grows as exp (ϵh0ωt) due to the exponential in-
tability induced by parametric resonance, where h0 and ω are the
mplitude and frequency of gravitational waves respectively, and
is an order one constant depending on the relation between the
omentum of electromagnetic waves and gravitational waves.
iven the amplitude of gravitational waves, the electromagnetic
ignals grow faster for high frequency gravitational waves. It

emains a challenge to detect the high frequency gravitational
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aves with natural origin [27]. Nevertheless, there are already
ome ideas about lab generation of high frequency gravitational
aves [28–30]. Finally, we shall mention that the methodology
eveloped in this work can be applied to investigate the in-
erse process, namely the amplification of gravitational waves
ue to parametric resonance. We leave the above-mentioned
ossibilities for future work.
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