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1. Introduction

A polygon is a Jordan curve made of finitely many line segments. A polygon visibility 
graph is the graph on the set of vertices of a polygon P that has an edge between each 
pair of mutually visible vertices, which means that the line segment connecting them is 
disjoint from the exterior of P . A class of graphs is χ-bounded if there is a function that 
bounds the chromatic number in terms of the clique number for every graph in the class. 
A clique in a polygon visibility graph has a natural interpretation—it is the maximum 
size of a subset of the vertices whose convex hull is disjoint from the exterior of the 
polygon (see Fig. 1, top-left). The starting point of and main motivation for this work 
is the question of Kára, Pór, and Wood [25] of whether the class of polygon visibility 
graphs is χ-bounded. We answer it in the affirmative.

Theorem 1.1. Every polygon visibility graph with clique number ω has chromatic number 
at most 3 · 4ω−1.

The bound in Theorem 1.1 also holds for all induced subgraphs of polygon visibility 
graphs. Such graphs can be defined alternatively as curve visibility graphs, that is, visi-
bility graphs of points on a Jordan curve, where two points are considered to be mutually 
visible if the line segment connecting them is disjoint from the exterior of the curve (see 
Fig. 1, bottom-left).

O’Rourke and Streinu [28] studied visibility graphs of pseudo-polygons (polygons on 
pseudoline arrangements; see Fig. 1, top-right), where two vertices of the polygon are 
considered to be mutually visible if the pseudoline segment connecting them in the 
arrangement is disjoint from the exterior of the polygon. As a common generalization 
of these graphs and curve visibility graphs, we define curve pseudo-visibility graphs as 
follows. For a pseudoline arrangement L, a Jordan curve K, and a finite set V of points 
on K any two of which lie on a common pseudoline in L, the curve pseudo-visibility 
graph GL(K, V ) has vertex set V and has an edge between each pair of vertices such 
that the pseudoline segment in L connecting them is disjoint from the exterior of K (see 
Fig. 1, bottom-right). We elaborate on this notion in Section 2; in particular, we show 
that curve pseudo-visibility graphs are exactly the induced subgraphs of the visibility 
graphs of pseudo-polygons. With this notion in hand, we provide the following topological 
generalization of Theorem 1.1.

Theorem 1.2. Every curve pseudo-visibility graph with clique number ω has chromatic 
number at most 3 · 4ω−1.

To prove Theorem 1.2 (and thus Theorem 1.1), we turn our attention to ordered 
graphs, where an ordered graph is a pair (G, ≺) such that G is a graph and ≺ is a linear 
order on the vertices of G. A curve pseudo-visibility graph comes with a natural linear 
order on the vertices (determined up to rotation), which makes it an ordered graph; it 
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Fig. 1. From left to right: a polygon visibility graph (where the convex hull of a maximum clique is shaded), a 
pseudo-polygon visibility graph, a curve visibility graph, and a curve pseudo-visibility graph. A “visibility” 
between each pair of adjacent vertices is drawn with a red (pseudo-)segment. (For interpretation of the 
colors in the figures, the reader is referred to the web version of this article.)

is the order in which the vertices are encountered when following the Jordan curve in 
the counterclockwise direction starting from an arbitrarily chosen vertex. An ordered 
graph (H, ≺H) is an (induced) ordered subgraph of an ordered graph (G, ≺) if H is a 
subgraph (an induced subgraph, respectively) of G and ≺H is the restriction of ≺ to 
the vertices of H. In Section 3, we provide two natural families of ordered obstructions 
to (that is, ordered graphs that cannot occur as induced ordered subgraphs of) curve 
pseudo-visibility graphs: the family H that we define in Section 3 and the family of 
ordered holes (see Fig. 2). Excluding these obstructions is equivalent to some conditions 
previously studied in the context of polygon visibility graphs [2,21] (see Section 3) and 
is easily verifiable in polynomial time. We prove the following further generalization of 
Theorem 1.2.
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Fig. 2. A graph in H (left), an ordered hole (middle), and the forbidden configuration for a capped graph 
(right). Dashed lines indicate non-edges. The pairs of vertices where no lines are drawn can be edges or 
non-edges.

Theorem 1.3. Every H-free ordered graph with clique number ω � 2 has chromatic num-
ber at most 3 · 4ω(ω − 1) in general and at most 3 · 4ω−1 when also ordered-hole-free. 
Moreover, there is a polynomial-time algorithm that takes in an H-free ordered graph 
and computes its clique number ω and a coloring with the claimed number of colors.

Our proofs of Theorems 1.1–1.3 ultimately lead to the class of capped graphs, which 
may be of independent interest. A capped graph is an ordered graph (G, ≺) such that for 
any four vertices a ≺ b ≺ c ≺ d, if ac, bd ∈ E(G), then ad ∈ E(G); see Fig. 2 (right). This 
condition has been previously studied for terrain visibility graphs [1,3], where it is called 
the “X-property”. In Section 4, we show that the vertices of any H-free ordered graph 
can be partitioned into three sets each inducing a capped graph. This way, Theorem 1.3
becomes a corollary to the following.

Theorem 1.4. Every capped graph with clique number ω � 2 has chromatic number at 
most 4ω(ω − 1) in general and at most 4ω−1 when also ordered-hole-free. Moreover, 
there is a polynomial-time algorithm that takes in a capped graph and computes its clique 
number ω and a coloring with the claimed number of colors.

We prove Theorem 1.4 in Section 5. Any improvement on the bounds in Theorem 1.4
would immediately imply corresponding improvements in Theorems 1.1–1.3. A major 
open problem for most known χ-bounded classes of graphs is whether they are poly-
nomially χ-bounded, that is, whether the chromatic number of the graphs in the class 
is bounded by a polynomial function of their clique number. Esperet [19] conjectured 
that every χ-bounded class of graphs that is hereditary, that is, closed under taking 
induced subgraphs, is polynomially χ-bounded. This conjecture in general has been dis-
proved [11], but we expect that it holds for capped graphs (and, consequently, for the 
graphs considered in Theorems 1.1–1.3).

Conjecture 1.5. There is a polynomial function p such that every capped graph with clique 
number ω has chromatic number at most p(ω).
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Fig. 3. The banana B4 (left) and the ordered graph X (right).

While our proof of Theorem 1.4 is direct, we remark that a recent result of Scott and 
Seymour [34] implies χ-boundedness (with a much weaker bound) of the significantly 
broader class of X-free ordered graphs, that is, ordered graphs excluding the four-vertex 
ordered graph X illustrated in Fig. 3 (right) as an induced ordered subgraph. In par-
ticular, every capped graph is X-free. Tomon [37] conjectured that the class of X-free 
ordered graphs is χ-bounded. This statement implies not only Theorem 1.4 but also 
the theorem of Rok and Walczak [33] that so-called outerstring graphs are χ-bounded. 
This is because outerstring graphs (with the natural linear order on the vertices) are 
easily seen to be X-free. Scott and Seymour [34] proved that for every graph H that 
is a “banana” (or more generally—a “banana tree”), the class of graphs excluding all 
subdivisions of H as induced subgraphs is χ-bounded. Fig. 3 (left) shows an example of a 
“banana” B4 with the property that no subdivision of B4 can be made X-free under any 
order of the vertices. This shows that the aforementioned result of Scott and Seymour 
implies Tomon’s conjecture. We present more details in Section 6.

Theorem 1.6. The class of X-free ordered graphs is χ-bounded.

We conclude the introduction with a brief literature review in order to place Theo-
rems 1.1–1.4 and 1.6 in context.

χ-Boundedness Various classic examples of χ-bounded graph classes are defined in 
terms of geometric representations. For instance, intersection graphs of axis-parallel rect-
angles [6] and circle graphs [24] are χ-bounded. Most of the literature in this direction 
focuses on intersection or disjointness graphs of objects in the plane. While the class of 
intersection graphs of curves in the plane is not itself χ-bounded [30], some very general 
subclasses are [16,32]. There are also very precise results for disjointness graphs of certain 
kinds of curves in the plane [29].

Less is known about χ-boundedness of visibility graphs, even though various kinds of 
such graphs have been considered in the literature—see [22] for a survey. Kára, Pór, and 
Wood [25] conjectured that the class of point visibility graphs is χ-bounded, but this 
was disproved by Pfender [31]. Some types of bar visibility graphs are related to interval 
graphs [17] and planar graphs [27] and are therefore known to be χ-bounded.
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Axenovich, Rollin, and Ueckerdt [8] considered the problem of whether ordered graphs 
excluding a fixed ordered graph (H, ≺) as an ordered subgraph (not necessarily induced) 
have bounded chromatic number; they showed various cases of (H, ≺) for which the an-
swers are positive and negative. In particular, the answer is negative if H contains a cycle 
(as it is for unordered graphs), but they showed it is also negative for some acyclic ordered 
graphs (H, ≺). Pach and Tomon [29] used some specific classes of forbidden induced or-
dered graphs as a tool for studying χ-boundedness of disjointness graphs of curves. Max 
point-tolerance graphs [15] and classes of graphs of bounded twin-width [10] are also 
known to be χ-bounded and have well-understood characterizations as ordered graphs.

Characterizations and algorithms The class of curve pseudo-visibility graphs is heredi-
tary, whereas most well-known classes of visibility graphs are not, including the classes of 
point visibility graphs, polygon visibility graphs, and pseudo-polygon visibility graphs. 
The condition of the class being hereditary is very natural to impose when studying 
χ-boundedness and implies that curve pseudo-visibility graphs can be characterized by 
excluded induced (ordered) subgraphs. There has been a good deal of work on the charac-
terization and recognition problems, but for point visibility graphs and polygon visibility 
graphs the problems appear to be hard [14,21].

These difficult characterization problems tend to become tractable, and have more nat-
ural solutions, in the “pseudo-visibility setting” [1,2,20,28]. This is due to the connection 
between stretchability of pseudoline arrangements and representability of rank 3 oriented 
matroids. The pseudo-visibility setting is more combinatorial, because it suffices to find 
the associated rank 3 oriented matroid without worrying about its representability. For 
visibility graphs of pseudo-polygons, this approach recently resulted in a polynomial-
time recognition algorithm under the assumption that the order of vertices along the 
pseudo-polygon is given in the input [4]. However, pseudo-polygon visibility graphs are 
strictly more general than polygon visibility graphs [35].

It is an interesting problem to characterize ordered curve pseudo-visibility graphs by 
excluded induced ordered subgraphs. The two aforementioned classes of obstructions (H
and the ordered holes) are insufficient—see Remark 3.10. The above-mentioned charac-
terizations of pseudo-polygon visibility seem rather unhelpful, as they rely on existence of 
“blocking vertices” witnessing mutual invisibilities, and such vertices do not necessarily 
exist in the setting of curve pseudo-visibility. Nevertheless, we conjecture the following.

Conjecture 1.7. Ordered curve pseudo-visibility graphs can be recognized in polynomial 
time.

The part of Theorem 1.3 concerning polynomial-time computation of clique number 
extends well-known results regarding polygon visibility graphs [7,18,23], although our 
algorithm is certainly slower. We cannot expect to get an exact algorithm for the chro-
matic number, as Çağırıcı, Hliněný, and Roy [13] proved that it is NP-complete to decide 
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if a polygon visibility graph is 5-colorable, even when the polygon is provided as part of 
the input.

2. Curve pseudo-visibility graphs

A pseudoline is a simple curve which separates the plane into two unbounded regions. 
A pseudoline arrangement is a set of pseudolines such that each pair intersects in exactly 
one point, where they cross. A pseudo-configuration is a pair (L, V ) such that L is 
a pseudoline arrangement and V is a (finite) set of points on 

⋃
L with the property 

that any two points in V lie on a common pseudoline in L (which is therefore unique). 
A pseudo-configuration (L, V ) is in general position if no three points in V lie on a 
common pseudoline in L.

Let (L, V ) be a pseudo-configuration and K be a Jordan curve passing through all 
points in V . The exterior of K is the unbounded component of R2

� K. We say that 
two points u, v ∈ V are mutually visible in K if the pseudoline segment in L connecting 
u and v is disjoint from the exterior of K. The curve pseudo-visibility graph GL(K, V )
has vertex set V and has an edge uv for each pair of vertices u, v ∈ V that are mutually 
visible in K. The curve K is a pseudo-polygon on L with vertex set V if every segment of 
K between two consecutive points in V is contained in a single pseudoline in L. Graphs 
of the form GL(K, V ) where K is a pseudo-polygon on L with vertex set V and (L, V )
is in general position were considered by O’Rourke and Streinu [28] as pseudo-polygon 
visibility graphs. As we will see, the general position assumption is not actually restrictive 
in this setting.

The following two propositions imply that curve pseudo-visibility graphs are exactly 
the induced subgraphs of pseudo-polygon visibility graphs. First we find a pseudo-
polygon, and then we take care of the general position assumption.

Proposition 2.1. For every curve pseudo-visibility graph G = GL(K, V ), there exist a 
pseudo-configuration (L′, V ′) and a pseudo-polygon K ′ on L′ with vertex set V ′ such 
that L ⊆ L′, V ⊆ V ′, the points in V occur in the same cyclic order on K ′ as on K, 
and G is the subgraph of GL′(K ′, V ′) induced on V .

Proof. We can assume that K intersects 
⋃
L only finitely many times. To see this, con-

sider the finite plane graph H with a vertex for each intersection point of two pseudolines 
in L (including the points in V ) and with an edge for each pseudoline segment in L con-
necting two vertices and passing through no other vertex. Let H ′ be the vertex-spanning 
subgraph of H obtained by including only the edges whose pseudoline segment is disjoint 
from the exterior of K. Thus K is contained in the closure of the outer (unbounded) 
face of H ′. By following the boundary of this outer face very closely and making thin 
connections between connected components of the boundary (each very closely on one 
side of some pseudoline connecting the two components) if H ′ is disconnected, we can 
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choose K to intersect 
⋃
L only finitely many times while preserving the graph GL(K, V )

and the order of points on K.
Let (L∗, V ∗) be a pseudo-configuration such that L ⊂ L∗, V ⊂ V ∗ ⊂ K, every open 

segment of K connecting two points in 
⋃
L contains a point in V ∗

�

⋃
L, each point 

in V ∗ lies on at least two pseudolines in L∗, and |V ∗| � 3; we first select V ∗ and then 
extend L to L∗ using Levi’s extension lemma [26]. As before, we can assume that K
intersects 

⋃
L∗ only finitely many times. We further assume that K has the minimum 

number of intersection points with 
⋃
L∗ among all Jordan curves K∗ that pass through 

the points in V ∗ in the same order as K and are such that G = GL(K∗, V ).
Let V ′ = K ∩

⋃
L∗. In particular, V ∗ ⊆ V ′. We extend L∗ to a family of pseudolines 

L′ such that (L′, V ′) is a pseudo-configuration, using Levi’s extension lemma [26]. For 
any two points u, v ∈ V ′ consecutive on K, let Kuv be the segment of K between u
and v (which is internally disjoint from 

⋃
L∗), let L′

uv be the pseudoline in L′ passing 
through u and v, let K ′

uv be the segment uv of L′
uv, and let Euv be the unbounded 

component of R2
� (Kuv ∪ K ′

uv). To construct K ′, we replace Kuv by K ′
uv for every 

pair of points u, v ∈ V ′ consecutive on K. Since any pseudoline in L∗ intersecting K ′
uv

needs to intersect Kuv, every pseudoline in L∗
�{L′

uv} is fully contained in Euv ∪{u, v}. 
Consequently, since each point in V ∗ lies on at least two pseudolines in L∗, we have 
V ∗ ⊂ Euv ∪ {u, v}.

We claim that V ′ ⊂ Euv ∪ {u, v} as well. If L′
uv /∈ L∗, then indeed V ′ ⊂

⋃
L∗ ⊂

Euv ∪ {u, v}. Now, suppose L′
uv ∈ L∗. We have u /∈

⋃
L or v /∈

⋃
L by the choice of V ∗, 

and thus L′
uv /∈ L. Suppose K�Kuv �⊂ Euv. Since 

⋃
L ⊆

⋃
(L∗

�{L′
uv}) ⊂ Euv ∪{u, v}, 

V ∗ ⊂ Euv ∪ {u, v}, and K �Kuv is disjoint from Kuv, the parts of K �Kuv not lying 
in Euv can be moved into Euv decreasing the number of intersection points with 

⋃
L∗

(as |V ∗| � 3) while preserving the graph GL(K, V ), which contradicts the choice of K. 
Thus V ′ ⊂ (K �Kuv) ∪ {u, v} ⊂ Euv ∪ {u, v} when L′

uv ∈ L∗.
For any two pairs u, v ∈ V ′ and u′, v′ ∈ V ′ of consecutive points on K, if the internal 

parts of K ′
uv and K ′

u′v′ intersect, then the four points u, u′, v, v′ occur in this or the 
reverse order on the boundary of (Euv ∪ {u, v}) ∩ (Eu′v′ ∪ {u′, v′}), so the internal parts 
of Kuv and Ku′v′ intersect, which is impossible. Thus K ′ is a Jordan curve—a pseudo-
polygon on L′ with vertex set V ′. Furthermore, 

⋃
L ⊂

⋂
uv(Euv ∪ {u, v}), which implies 

GL(K ′, V ) = GL(K, V ). �
Proposition 2.2. For every curve pseudo-visibility graph G = GL(K, V ), there exist a 
pseudo-configuration (L′, V ′) in general position and a pseudo-polygon K ′ on L′ with 
vertex set V ′ such that V ⊆ V ′, the points in V occur in the same cyclic order on K ′

as on K, and G is the subgraph of GL′(K ′, V ′) induced on V .

Proof. By Proposition 2.1, we can assume without loss of generality that K is a pseudo-
polygon on L. Suppose there is a pseudoline L in L passing through more than two 
points in V . We show that L can be replaced in L by a bunch BL of pseudolines in a 
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Fig. 4. Replacing L with a bundle of pseudo-lines BL in the proof of Proposition 2.2.

small neighborhood of L so that the set (L � {L}) ∪BL is a pseudoline arrangement and 
the following conditions hold for any two distinct points u, v ∈ V ∩ L.

(1) There is a pseudoline Luv ∈ BL passing through u, v, and no other points in V .
(2) If u and v are consecutive points of V ∩L on L, then the segment uv of Luv coincides 

with the segment uv of L.
(3) If the segment uv of L is disjoint from the exterior of K, then so is the segment uv

of Luv.
(4) If the segment uv of L intersects the exterior of K, then so does the segment uv of 

Luv.

Condition (4) is automatically satisfied whenever we make BL lie in a sufficiently small 
neighborhood of L. Applying this replacement repeatedly for every such pseudoline L
yields a claimed pseudoline arrangement L′.

For the replacement step, assume without loss of generality that L is a vertical line 
(by applying an appropriate homeomorphism of the plane before and the inverse home-
omorphism after the step). Enumerate the points in V ∩ L as v0, . . . , vk from bottom 
to top. Let C be the circle with vertical diameter v0vk. Let v′0 = v0 and v′k = vk. For 
0 < i < k, let Hi be the horizontal line through vi, and let v′i be the left/the right/any 
intersection point of C and Hi if the exterior of K touches vi from the left side/the 
right side/both sides of the vertical line L (respectively). For 0 � i < j � k, let L′

i,j be 
the straight line passing through v′i and v′j . The bundle BL is obtained by “flattening” 
the family of lines {Li,j}0�i<j�k horizontally to fit it in a small neighborhood of L and 
performing local horizontal shifts to guarantee conditions (1) and (2); condition (3) then 
follows. See Fig. 4 for an illustration. �
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Recall that an ordered graph is a tuple (G, ≺) such that G is a graph and ≺ is a 
linear order on its vertex set. While it is more convenient to work with linear orders, 
the points on a Jordan curve are really ordered cyclically. A rotation of a linear order 
≺ is any linear order obtained from ≺ by repeatedly making the largest element the 
smallest. We think of any finite set of points V on a Jordan curve K as being ordered 
counterclockwise around K, as in Fig. 1 (bottom-left). We call any linear order which 
begins at an arbitrary point in V and then follows K in the counterclockwise direction a 
natural order of V on K. A curve pseudo-visibility graph GL(K, V ) along with a natural 
order of V on K forms an ordered curve pseudo-visibility graph.

If (G, ≺) is an ordered graph with vertices a ≺ b ≺ c ≺ d and edges ac and bd, we say 
that ac crosses bd (but not the other way round) and that ac and bd are crossing edges. 
The property that a pair of edges is crossing is preserved under rotation. In particular, 
it is well defined for an ordered curve pseudo-visibility graph regardless of the choice of 
a natural ordering.

Lemma 2.3. For an ordered curve pseudo-visibility graph GL(K, V ) with (L, V ) in general 
position, two distinct edges uv and xy are crossing if and only if the open segments uv

and xy of pseudolines in L intersect.

Proof. If uv and xy are crossing edges, then the open segments uv and xy must intersect; 
otherwise K along with uv and xy give an outerplanar drawing of K4, which is impossible. 
If uv and xy are not crossing while the open segments uv and xy intersect, then we can 
again obtain an outerplanar drawing of K4 by re-connecting uv and xy in a sufficiently 
small neighborhood of their unique intersection point—a contradiction. �
3. Obstructions for curve pseudo-visibility graphs

In this section, we discuss the obstructions mentioned in the introduction: the class 
H and the class of ordered holes. Ghosh [21] observed that these are obstructions for 
polygon visibility graphs; specifically, ordered-hole-freeness and H-freeness are equivalent 
to Ghosh’s necessary conditions 1 and 2. Ordered graphs with an ordered Hamilton cycle 
that are ordered-hole-free and H-free (satisfy Ghosh’s conditions 1 and 2) have been 
studied as “quasi-persistent graphs” [2].

If two vertices u and v are non-adjacent in a curve pseudo-visibility graph GL(K, V ), 
then it is because at least one of two parts of K between u and v “blocks” visibility 
between them. The intuition behind the next definition is that if there is a “crossing 
sequence” from u to v, then the part of K from u to v (counterclockwise) cannot “block” 
visibility between u and v.

Let u and v be two distinct vertices in an ordered graph (G, ≺). If u ≺ v, then a 
crossing sequence from u to v is a sequence of distinct edges e1, . . . , ek such that u is 
the smaller end of e1, v is the larger end of ek, and ei crosses ei+1 for 1 � i < k. 
Observe that the notion of a crossing sequence is invariant under rotation of ≺ as long 
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u v u v

Fig. 5. A crossing sequence from u to v (left) and from v to u (right).

as u ≺ v. If v ≺ u, then a crossing sequence from u to v is a crossing sequence from u
to v in any rotation ≺′ of ≺ such that u ≺′ v. These definitions should be thought of 
cyclically; whichever vertex is smaller, a crossing sequence from u to v begins at u and 
goes counterclockwise until it hits v (see Fig. 5). If u and v are adjacent, then the edge 
uv is a crossing sequence from u to v and from v to u.

Lemma 3.1. If (G, ≺) is an ordered graph with vertices a ≺ b ≺ c ≺ d and there are cross-
ing sequences from a to c and from b to d, then there is a crossing sequence from a to d.

Proof. Let e1, . . . , ek and f1, . . . , ft be crossing sequences from a to c and from b to d, 
respectively. Let ei be the edge with the smallest index such that its larger end, say v, 
is greater than b in ≺. Let fj be the edge with the largest index such that its smaller 
end is less than v in ≺. Then ei crosses fj and e1, . . . , ei, fj , . . . , ft is a crossing sequence 
from a to d. �

The first family of obstructions, which we denote by H, is defined as follows: H is 
the family of all ordered graphs containing two non-adjacent vertices u and v such that 
there exist a crossing sequence from u to v and a crossing sequence from v to u. See 
Fig. 2 (left) for an illustration. The second family of obstructions is the family of ordered 
holes. An ordered hole is an ordered graph (H, ≺) on vertex set V (H) = {c1, . . . , ck}, 
where k � 4 and c1 ≺ · · · ≺ ck, with edge set E(H) = {c1c2, . . . , ck−1ck, ckc1}; see Fig. 2
(middle).

Proposition 3.2. Every ordered curve pseudo-visibility graph is H-free.

Proposition 3.3. Every ordered curve pseudo-visibility graph is ordered-hole-free.

We prove Propositions 3.2 and 3.3 later in this section. Before that, we show that 
we can test in polynomial time whether a given ordered graph is free of the considered 
obstructions.

Proposition 3.4. There is a polynomial-time algorithm which takes in an ordered graph
(G, ≺) and determines whether (G, ≺) is H-free.
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Proof. It suffices to test, for any two non-adjacent vertices u and v, whether (G, ≺) has 
a crossing sequence from u to v. We assume that u ≺ v after possibly performing a 
rotation. We create a directed graph �H with a vertex for each edge of G and with an arc 
from e to f for each pair of edges of G such that e crosses f . Then there is a crossing 
sequence from u to v in (G, ≺) if and only if there is an edge e with smaller end u and 
an edge f with larger end v such that �H has a directed path from e to f . �
Proposition 3.5. There is a polynomial-time algorithm which takes in an ordered graph
(G, ≺) and determines whether (G, ≺) has an ordered hole.

Proof. It suffices to test, for any two adjacent vertices u ≺ v of G, whether u and v are 
the first and last vertices of an ordered hole. This can be done by removing all vertices 
in a triangle with u and v and then testing for a directed path from u to v in the natural 
digraph. �

The proofs of Propositions 3.2 and 3.3 require some preparation. Let K be a pseudo-
polygon on L. A segment of K is a part of K that is contained in some pseudoline 
L ∈ L and connects two distinct intersection points of L with other pseudolines in L. 
An articulation point of K is a point in K that joins two segments of K contained 
in distinct pseudolines in L. Such an articulation point of K is convex if those two 
pseudolines extend to the exterior of K at p, and it is concave if they extend to the 
interior of K; see Fig. 6. The following lemma was proved by Arroyo, Bensmail, and 
Richter [5]; we provide a proof for the reader’s convenience.

Lemma 3.6. Every pseudo-polygon on L has at least three convex articulation points.

Proof. Suppose otherwise, and choose a counterexample K with as few articulation 
points as possible. Since L is a pseudoline arrangement, K has at least three articulation 
points. Thus, we can choose consecutive articulation points p1, p2, and p3 which occur 
on K in that order counterclockwise so that p2 is concave and if any articulation point 
is convex, then p3 is convex. Now, walk from p1 towards p2 along the pseudoline L ∈ L
passing through p1 and p2, and continue walking on L beyond p2 (through the interior 
of K, as p2 is concave) until hitting K at a point a ∈ K ∩L. Let K ′ denote the pseudo-
polygon formed by the segment p2a of L and the part of K from a to p2 counterclockwise. 
It follows that K ′ has at most two convex articulation points and has fewer articulation 
points than K, because at most one articulation point, a, is gained, and the articulation 
points p2 and p3 of K are lost. This is a contradiction, completing the proof. �
Lemma 3.7. Let K be a pseudo-polygon on L. Let u and v be distinct points on K such 
that L contains a pseudoline L passing through u and v. If all articulation points of K

other than possibly u and v are convex, then the segment uv of L is disjoint from the 
exterior of K.
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Fig. 6. A pseudo-polygon with five articulation points: 1, 3, 4, 5 are convex, 2 is concave.

Proof. First, suppose that neither u nor v is a concave articulation point of K. Suppose 
for the sake of contradiction that the segment uv of L is not disjoint from the exterior of 
K, and let xy be a maximal subsegment of it with internal part contained in the exterior 
of K. Thus x, y ∈ K. The segment xy of L together with one of the parts of K between 
x and y forms a pseudo-polygon on L with interior contained in the exterior of K and 
with at most two convex articulation points: x and y. This contradicts Lemma 3.6.

Now, suppose that u is a concave articulation point of K while v is not. Let L′ be a 
pseudoline containing one of the two segments of K incident to u. Follow L′ from u in 
the other direction (towards the interior of K) until it hits K at some point x. Let K ′

be a pseudo-polygon formed by the segment ux of L′ and the part of K between x and 
u that contains the point v. Thus x is a convex articulation point of K ′, u is no longer 
a concave articulation point of K ′, and every other articulation point of K that lies on 
K ′ remains convex on K ′. Therefore, as we showed in the first case, the segment uv of 
L is disjoint from the exterior of K ′, so it is disjoint from the exterior of K.

The argument is analogous if v is a concave articulation point of K, except that when 
u is also a concave articulation point of K, then we apply the same argument as above 
to reduce to the case that only one of u, v is a concave articulation point of K. �
Proof of Proposition 3.2. Let G = GL(K, V ) be a curve pseudo-visibility graph and ≺
be a natural order of V on K. By Proposition 2.2, we can assume that (L, V ) is in 
general position. For an edge e = uv ∈ E(G), let �e denote the open segment uv of the 
pseudoline in L passing through u and v. Suppose that there are u, v ∈ V with u ≺ v

such that there are crossing sequences e1, . . . , ek from u to v and f1, . . . , ft from v to u. 
Choose the two crossing sequences so that k + t is minimum. We need to show that uv
is an edge of G.

By minimality and Lemmas 2.3 and 3.1, for 1 � i < j � k, the segments �ei and 
�ej intersect if and only if j = i + 1, and likewise for the crossing sequence f1, . . . , ft. 
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Also by Lemma 2.3, each �ei is disjoint from each �fj . Therefore, by beginning at u and 
walking along �e1 until its unique intersection with �e2 is reached, then turning left and 
walking along �e2 until either v or its unique intersection with �e3 is reached, and so on, 
we can find an open curve K1 ⊆

⋃k
i=1 �ei with ends u and v. Likewise, we can find an 

open curve K2 ⊆
⋃t

j=1 �fj with ends v and u. Let K ′ = K1 ∪K2 ∪{u, v}. It follows that 
K ′ is a pseudo-polygon on L disjoint from the exterior of K and all articulation points 
of K ′ except possibly u and v are convex. Therefore, by Lemma 3.7, the segment �uv is 
disjoint from the exterior of K ′ and thus of K, so uv ∈ E(G). �
Proof of Proposition 3.3. When K is a Jordan curve and p, q ∈ K, we write K[p, q]
and K(p, q) for the closed and the open segment (respectively) of K from p to q in the 
counterclockwise direction. When L is a pseudoline and p, q ∈ L, we write L[p, q] for the 
closed segment of L connecting p and q.

Let G = GL(K, V ) be a curve pseudo-visibility graph. By Proposition 2.2, we can 
assume without loss of generality that (L, V ) is in general position. Suppose for the sake 
of contradiction that G has an induced cycle of length at least four on vertices p1, . . . , pk
with p1 ≺ · · · ≺ pk. We write indices cyclically, so that pk+1 = p1, pk+2 = p2, and 
so on. Let K ′ be the pseudo-polygon on L formed by the pseudoline segments pipi+1

with 1 � i � k. It is disjoint from the exterior of K. It follows from Lemma 2.3 that 
K ′ is a pseudo-polygon with articulation points p1, . . . , pk in cyclic order (and no other 
articulation points). By Lemma 3.6, K ′ has a convex articulation point. Up to rotation, 
we can assume that p2 is convex.

By Lemma 3.7, since p1p3 is not an edge of G and p2 is convex, there is a concave 
articulation point of K ′ among p4, . . . , pk. We now choose a new pseudo-polygon K∗

with similar properties, but which is also “minimal”. We will then use the existence of a 
concave articulation point of K∗ to reach a contradiction to minimality. For 1 � i � k, 
let Li be the pseudoline in L passing through pi and pi+1. Choose a pseudo-polygon K∗

on {Li}1�i�k so that

(i) K ′[p1, p3] ⊆ K∗ and K∗ is disjoint from the exterior of K,
(ii) every concave articulation point of K∗ belongs to {p1, . . . , pk}, and
(iii) subject to conditions (i) and (ii), the region of the plane bounded by K∗ is minimal.

Such a pseudo-polygon K∗ exists, as K ′ is a candidate.
With this choice, we still have that K∗(p3, p1) contains a concave articulation point 

of K∗, as otherwise, by Lemma 3.7, the pseudoline segment p1p3 in L would be disjoint 
from the exterior of K∗ and thus from the exterior of K, contradicting the assumption 
that p1p3 is not an edge of G. By (ii), there is an index i with 4 � i � k such that pi is 
a concave articulation point of K∗. Moreover, we have the following.

Claim 3.8. Neither p1 nor p3 is a concave articulation point of K∗.
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Fig. 7. Illustrations for the proof of Proposition 3.3, with K∗[p1, p3] in bold.

Proof. Suppose that p1 is a concave articulation point of K∗. Walk along the pseudoline 
L1 from p1 in the direction opposite to p2 (towards the interior of K∗) until hitting K∗

at a point a1 ∈ L1 ∩K∗. Then the pseudo-polygon K∗[p1, a1] ∪L1[p1, a1] contradicts the 
choice of K∗; see Fig. 7 (left). An analogous contradiction is reached when p3 is concave 
in K∗. �

Recall that pi is a concave articulation point of K∗ with 4 � i � k. By (i) and (ii), 
there are open segments �1 of Li−1 and �2 of Li that are both contained in the interior 
of K∗, have pi as one endpoint and have the other endpoint on K∗; see Fig. 7 (middle). 
Let a1 and a2 be the other endpoints of �1 and �2, respectively. We now show that, up 
to symmetry, the case depicted in Fig. 7 (middle) actually occurs.

Claim 3.9. Either a1, a2 ∈ K∗(p1, p2) or a1, a2 ∈ K∗(p2, p3).

Proof. We have a1 /∈ K∗[pi, p1], otherwise the pseudo-polygon K∗[a1, pi] ∪ �1 would 
contradict the choice of K∗. Furthermore, a1 �= p2, because a1 ∈ Li−1 and Li−1 does not 
pass through p2 by the general position assumption. By a symmetric argument for a2, 
we obtain that a1, a2 ∈ K∗(p1, p3) � {p2}. Finally, it is not possible that a1 ∈ K∗(p1, p2)
and a2 ∈ K∗(p2, p3), because then K∗[a1, a2] ∪ �1 ∪ �2 would be a pseudo-polygon with 
no concave articulation points, so the pseudoline segment p2pi in L would be disjoint 
from the exterior of it (and thus from the exterior of K ′) by Lemma 3.7, contradicting 
the assumption that p2pi is not an edge of G. �

So, up to symmetry, we can assume that a1, a2 ∈ K∗(p1, p2). After possibly changing 
pi, we can assume that there is no concave articulation point of K∗ on K∗(p3, pi) with 
the same property. By Lemma 3.7, since p2pi is not an edge of G, the pseudo-polygon 
K∗[a2, pi] ∪ �2 has a concave articulation point pj with 3 � j < i. By Claim 3.8, p3 is not 
a concave articulation point of K∗ so 4 � j < i. We can assume that j is maximal with 
that property, so that all articulation points of K∗ on K∗(pj , pi) are convex. Repeating 
the argument from the last claim and by the choice of pi, there are two segments of Lj−1
and Lj which have pj as one endpoint and have the other endpoint on K ′(p2, p3); see 
Fig. 7 (right). But then, there is a pseudo-polygon on L with no concave articulation 
points that contains p2 and pi (and pj), and therefore, by Lemma 3.7, p2pi is an edge of 
G. This contradiction completes the proof. �
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Fig. 8. An ordered graph that is H-free and ordered-hole-free but not a curve pseudo-visibility graph.

Remark 3.10. The ordered graph (G, ≺) depicted in Fig. 8, discovered by Ghosh [21], is 
H-free and ordered-hole-free but not a curve pseudo-visibility graph. To see the latter, 
suppose that G = GL(K, V ), where (L, V ) is in general position. Lemma 3.6 applied to 
the pseudo-triangles p2p3p4 and p3p4p5 implies that p3 and p4 are convex articulation 
points and therefore, by Lemma 3.7, p1 is a concave articulation point of the pseudo-
pentagon p1p2p3p4p5. Analogously, p1 is concave in the pseudo-pentagon p5p6p7p8p1. 
However, p1 cannot be concave in both pseudo-pentagons simultaneously. It can be 
easily checked that (G, ≺) is H-free and ordered-hole-free.

4. Partitioning into capped graphs

Recall that an ordered graph (G, ≺) is capped if the following holds for any four 
vertices a, b, c, d with a ≺ b ≺ c ≺ d: if ac ∈ E(G) and bd ∈ E(G), then ad ∈ E(G). 
In contrast to previous notions defined in terms of ≺, this one is not invariant under 
rotation of ≺. However, capped graphs naturally appear within H-free ordered graphs 
in the following way.

Lemma 4.1. If u ≺ v are two adjacent vertices of an H-free ordered graph (G, ≺) and
X = {u, v} ∪ {x ∈ V (G) : u ≺ x ≺ v and ux, xv ∈ E(G)}, then (G[X], ≺|X) is a capped 
graph.

Proof. If a, b, c, d ∈ X, a ≺ b ≺ c ≺ d, and ac, bd ∈ E(G), then ac, bd is a crossing 
sequence from a to d and du, va (da if a = u or d = v) is a crossing sequence from d to 
a in (G, ≺), which implies ad ∈ E(G), as (G, ≺) is H-free. �

The clique number of an H-free ordered graph (G, ≺) is the maximum of the clique 
numbers of the capped graphs (G[X], ≺|X) defined in Lemma 4.1 taken over all choices of 
adjacent vertices u ≺ v. Thus, computing the clique number of H-free ordered graphs is 
reduced to computing the clique number of capped graphs, and the following proposition 
allows us to conclude Theorem 1.3 from Theorem 1.4.
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Proposition 4.2. There is a polynomial-time algorithm that takes in an H-free ordered 
graph (G, ≺) and partitions its set of vertices into three subsets V1, V2, and V3 so that 
for each i ∈ {1, 2, 3}, the ordered graph (G[Vi], ≺|Vi

) is capped.

Before delving into the full proof of Proposition 4.2, we sketch the proof for the 
case that (G, ≺) is an ordered polygon visibility graph. The sketch presents some key 
intuitions behind the full proof. It is based on the “window partition” by Suri [36], which 
was used in a similar way to approximate chromatic variants of the well-known art gallery 
problem [9,12].

Proof sketch for polygons. We write pq for the closed line segment connecting points p
and q. Let G = G(P, V ) be a polygon visibility graph, where P is a polygon with vertex 
set V . Let ≺ be a natural ordering of G. Let x and y be the smallest and the largest 
vertex in ≺, respectively, so that xy is an edge of P and of G. Let Pxy = (P ∪ intP ) �xy, 
where intP is the interior of P . We construct a partition of V (G) into three sets, which 
we express in terms of a coloring φ of V (G) that uses three colors: red, green, and blue. 
First we describe a procedure that constructs a partition of Pxy into “windows”; these 
windows, as we will see, will be naturally arranged with a tree structure, and the root 
window will be “based” at xy.

To define the root window, we need to introduce the notion of “visibility from xy”. 
We say that a point p ∈ Pxy is visible from xy if p lies in the closed half-plane to the left 
of the line from y to x and there is a point p′ ∈ xy such that pp′ ⊆ Pxy ∪xy. The window
Wxy based at xy consists of all points p ∈ Pxy that are visible from xy. It follows that 
Wxy is a connected subset of Pxy; see Fig. 9 for an illustration. This set Wxy is the root 
of the constructed window partition tree.

The points in Pxy �Wxy form some number (possibly zero) of connected subsets of 
Pxy. It can be shown that each such set is of the form Iab for some polygon I and edge 
ab of I, where a and b are on P and every point in the segment ab is visible from xy in 
P . Furthermore, at least one of the points a and b is a vertex of P and the line Lab going 
through a and b intersects xy; we direct Lab from a and b towards this intersection point 
to obtain an oriented line 

−→
Lab. Given this description, we partition the invisible sets Iab

into two groups:

• Iab is left-invisible if it is “towards the left side” of −→Lab;
• Iab is right-invisible if it is “towards the right side” of −→Lab.

We do not give formal definitions, but refer to Fig. 9.
Given this partition, it can be shown that there are no mutually visible points in two 

different left-invisible sets or two different right-invisible sets. Now, for each invisible set 
Iab, we can recursively obtain a window partition of Iab which is rooted at a window 
Wab based at ab. The window partition of Pxy is then obtained by making each of these 
windows Wab a left-child or a right-child of Wxy according to whether Iab is left-invisible 
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xy
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xy

Fig. 9. To the left: a polygon P with window Wxy based at xy in red, oriented lines −−→Lab depicted with red 
arrows and dashed lines, and the left/right-invisible sets Iab in green/blue, respectively. To the right: the 
final window partition of Pab.

or right-invisible. The following observation summarizes this construction of the window 
partition: if two points in different windows W1 and W2 are mutually visible, then either 
W1 and W2 are in a parent-child relationship, or there is a window W such that one of 
W1, W2 is a left-child of W and the other is a right-child of W .

Now we show how to obtain the 3-coloring φ of the vertex set of (G, ≺) such that 
each color class induces a capped subgraph. The property above allows us to color the 
windows by three colors (say, red, green, and blue) so that no two points in two different 
windows of the same color are mutually visible. We color the root window, say, by red. 
Then we extend this coloring on the remaining windows so that the children of each 
window W obtain a color different from W and the left children of W are colored with 
a different color from the right children of W . This way every vertex of P other than x
and y is colored. We color x and y arbitrarily; see Fig. 9 (right).

To complete the proof, we need to show that the vertices of P in Wxy ∪ {x, y} induce 
a capped subgraph of (G, ≺); for the other windows we can apply induction. It is well 
known that the related class of ordered terrain visibility graphs is capped [20, Lemma 1], 
but we give a proof sketch anyway, because that lemma does not apply directly.

Suppose there are four vertices a, b, c, d ∈ Wxy ∪ {x, y} such that a ≺ b ≺ c ≺ d, 
ac ∈ E(G), and bd ∈ E(G) (it is possible that a = x and/or d = y). By the definition of 
visibility from xy, all four points a, b, c, d are in the closed half-plane to the left of the 
line from y to x. Let a′, d′ ∈ xy be such that the segments a′a and d′d are disjoint from 
the exterior of P ; see Fig. 10 for an illustration. The five segments a′a, d′d, ac, bd, yx
divide the plane into a set F of faces, and exactly one of the faces in F is unbounded 
(the outer face). To show that ad is disjoint from the exterior of P , it suffices to prove 
the following two claims.
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Fig. 10. Possible relations between the segments a′a, d′d, ac, bd, yx.

• The polygon P is contained in the closure of the outer face of F and P does not cross 
(but may touch) any of the four segments a′a, d′d, ac, bd.

• The segment ad is disjoint from the interior of the outer face of F .

The first claim is quite obvious; see the left side of Fig. 10 for an illustration. The second 
claim can be proved by considering all the cases for how the segments a′a, d′d, ac, and 
bd can be placed with respect to each other. We leave the details to the reader. �

Now we proceed to the proof of Proposition 4.2 in the general case. It is convenient to 
word it in terms of colorings; we will find a 3-coloring such that each color class induces 
a capped subgraph. The proof will work by extending certain partial colorings “inside a 
valid segment”. To explain this, we need to introduce some notation.

Let (G, ≺) be an ordered graph. For any two vertices x and y of G with x ≺ y, we 
define

V [x, y] = {v ∈ V (G) : x 
 v 
 y}, V [x, y) = {v ∈ V (G) : x 
 v ≺ y},
V (x, y] = {v ∈ V (G) : x ≺ v 
 y}, V (x, y) = {v ∈ V (G) : x ≺ v ≺ y}.

A segment of (G, ≺) is a set of the form V [x, y], that is, a set of at least two consecutive 
vertices. In the context of a fixed segment V [x, y], we call the vertices in V (x, y) internal, 
the vertices x and y the ends, and the vertices in V (G) � V [x, y] external. A segment 
V [x, y] is valid if there is a crossing sequence from y to x (see Fig. 11).

Recall the proof sketch for partitioning the vertex set of a polygon visibility graph 
into three capped graphs. We had a partial coloring φ and a segment V [x, y] such that 
x and y were colored and connected by an edge. The colored internal vertices were 
exactly those vertices which were “visible” to the segment xy, and these vertices were all 
given the same color. We then partitioned the internal vertices into segments which were 
“left-invisible” and segments which were “right-invisible”, and we continued the process.

Now, instead of requiring that x and y are connected by an edge, we just require that 
the segment V [x, y] is valid. It turns out that even for visibility graphs of points on a 
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x y

V [x, y]

Fig. 11. A valid segment V [x, y].

x y

V [x, y]
S R LS L

Fig. 12. Internal vertices which are strongly reachable (labelled S) or left- or right-reachable only (labelled 
L and R respectively).

Jordan curve, it is not always possible to tell from (G, ≺) alone if an “invisible” vertex 
is “left-invisible” or “right-invisible”; the vertex could, for instance, even be isolated. So 
instead we will define left-reachable vertices which definitely cannot be “left-invisible” 
and right-reachable vertices which definitely cannot be “right-invisible”. Vertices which 
are both left- and right-reachable will be called strongly reachable; these are the ver-
tices that are “visible”. The proof ends up being rather technical, but these are the key 
intuitions. For the following, refer to Fig. 12.

Let V [x, y] be a valid segment. A vertex v is left-reachable from V [x, y] if v ∈ V [x, y)
and there is a crossing sequence from y to v (so in particular x is left-reachable). A vertex 
v is right-reachable if v ∈ V (x, y] and there is a crossing sequence from v to x (so y is 
right-reachable). A vertex is strongly reachable if it is both left- and right-reachable (so all 
strongly reachable vertices are internal). We write L[x, y), R(x, y], and S(x, y) for the set 
of left-, right-, and strongly reachable vertices, respectively. So S(x, y) = L[x, y) ∩R(x, y]. 
First, we observe the following.

Lemma 4.3. For any ordered graph (G, ≺) and valid segment V [x, y], every internal vertex 
which is adjacent to an external vertex is strongly reachable.

Proof. Let v be an internal vertex which is adjacent to an external vertex u. There 
are crossing sequences from y to x and from u to v. Thus, by Lemma 3.1, there is 
a crossing sequence from y to v, and so v is left-reachable. Likewise, since there are 
crossing sequences from v to u and from y to x, the vertex v is also right-reachable, so 
it is strongly reachable. �

As further motivation for these definitions, we prove the following.
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Fig. 13. A V [x, y]-precoloring φ (top) and a V [x, y]-extension of φ (bottom).

Lemma 4.4. For any H-free ordered graph (G, ≺) and valid segment V [x, y], the set
S(x, y) ∪ {x, y} induces a capped subgraph.

Proof. Otherwise, there are vertices a, b, c, d ∈ S(x, y) ∪ {x, y} such that a ≺ b ≺ c ≺ d, 
and ac, bd ∈ E(G), yet ad /∈ E(G). Then d is right-reachable, and thus there is a crossing 
sequence from d to x. Likewise, a is left-reachable, and there is a crossing sequence from 
y to a. Thus there is a crossing sequence from d to a—this is trivial if d = y or a = x, 
and otherwise we apply Lemma 3.1. This contradicts the assumption that (G, ≺) is 
H-free. �

Now we need to define certain partial colorings and what it means to extend them. 
For the following definition, refer to Fig. 13.

For an ordered graph (G, ≺) and a valid segment V [x, y], a V [x, y]-precoloring is a 
partial 3-coloring φ such that

(i) every color class of φ induces a capped subgraph,
(ii) φ colors S(x, y) ∪ {x, y} and colors no other internal vertices of V [x, y], and
(iii) φ colors every vertex in S(x, y) the same color, and no external vertex of V [x, y]

which is a neighbor of an internal vertex of V [x, y] is given this color.

A V [x, y]-extension of φ is obtained by taking φ and coloring the remaining internal 
vertices of V [x, y] (which are not assigned any color in φ) while maintaining the condition 
that each color class induces a capped subgraph. By the next lemma, that condition is 
maintained as long as the set X∩V [x, y] induces a capped subgraph for each color class X.

Lemma 4.5. If (G, ≺) is an ordered graph with a segment V [x, y] such that no internal 
vertex is adjacent to an external vertex and each of the sets V [x, y] and V (G) � V (x, y)
induces a capped subgraph, then (G, ≺) is capped.
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Proof. Suppose for the sake of contradiction that there are vertices a, b, c, d such that 
a ≺ b ≺ c ≺ d and ac, bd ∈ E(G) while ad /∈ E(G). Then at least one of a, b, c, d must 
be external to V [x, y] and at least one must be internal. If b is external, then either a
or d is also external. So, up to symmetry, we can assume that a is external. Then a ≺ x

and c is not internal. It follows that exactly one of b and d is internal and the other is 
external—a contradiction. �

We will use the following lemma in order to find valid segments inside a valid seg-
ment V [x, y]. Conditions (ii) and (iii) are symmetric. As an example, observe that in 
Fig. 13, condition (i) implies that the second and third vertices in V [x, y] form a valid 
segment, and condition (ii) implies that the first and second vertices in V [x, y] form a 
valid segment.

Lemma 4.6. For any ordered graph (G, ≺) and valid segment V [x, y], each segment V [a, b]
which satisfies at least one of the following conditions is valid:

(i) a ∈ L[x, y) and b ∈ R(x, y];
(ii) a, b ∈ L[x, y), no vertex in V (a, b) is left-reachable from V [x, y], and there is a 

vertex in V (b, y) which is right-reachable from V [x, y];
(iii) a, b ∈ R(x, y], no vertex in V (a, b) is right-reachable from V [x, y], and there is a 

vertex in V (x, a) which is left-reachable from V [x, y].

Proof. First suppose that condition (i) holds. Then there are crossing sequences from b
to x and from y to a and thus, using Lemma 3.1 if b �= y and a �= x, also from b to a. So 
V [a, b] is valid.

Conditions (ii) and (iii) are symmetric via reversing ≺. So it suffices to consider the 
case that condition (ii) holds. Then there are crossing sequences from y to a and from y
to b. If the crossing sequence from y to b is a single edge, then, since there is a vertex in 
V (b, y) which is right-reachable and by Lemma 3.1, there is a crossing sequence from b
to x. Then b is right-reachable and V [a, b] is valid by condition (i).

So there is a crossing sequence, say e1, . . . , ek, from y to b with at least two edges. Let 
v be the end of ek−1 such that e1, . . . , ek−1 is a crossing sequence from y to v (so if k = 2, 
then v is the end of ek−1 = e1 which is not y). Then v /∈ V (a, b) since then v would 
be left-reachable. This implies that the end u of ek which is not b satisfies u /∈ V [a, y]. 
Thus, since ek is a crossing sequence from b to u and there is a crossing sequence from 
y to a, by Lemma 3.1 there is a crossing sequence from b to a. So V [a, b] is valid. �

We are ready to begin the proof of the main proposition. Afterwards, we will quickly 
show how to apply it when there is no fixed precoloring.

Proposition 4.7. There is a polynomial-time algorithm which takes in an H-free ordered 
graph (G, ≺), vertices x and y such that V [x, y] is a valid segment, and a V [x, y]-
precoloring φ, and returns a V [x, y]-extension of φ.
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x y

V [x, y]

v1 v2 v3

Fig. 14. The vertices x = v0 ≺ v1 ≺ v2 ≺ v3 ≺ v4 = y.

Proof. Throughout the proof we will implicitly use the fact that there is a polynomial-
time algorithm to determine whether there is a crossing sequence from a vertex u to a 
vertex v; see the proof of Proposition 3.4. So in particular we can find the sets L[x, y), 
R(x, y], and S(x, y) in polynomial time. The algorithm will be called recursively on valid 
segments V [a, b] ⊂ V [x, y]. To ensure that the overall running time of the algorithm is 
polynomial, we create a memoization table with an entry for each valid segment V [a, b]
of (G, ≺) and each triple of colors c1, c2, c3 such that the coloring that assigns color 
c1 to a, color c2 to b, and color c3 to all vertices in S(a, b) is a V [a, b]-precoloring. 
Once a V [a, b]-extension of any V [a, b]-precoloring which assigns these colors to a, b, and 
S(a, b) (respectively) is computed, its restriction to V [a, b] is stored in the table. Then, 
whenever a V [a, b]-extension of another such V [a, b]-precoloring is requested, the colors 
of all vertices in V [a, b] are copied from the table entry. By Lemma 4.5, this gives a 
correct V [a, b]-extension of the other V [a, b]-precoloring.

Now, we describe a single recursion step of the coloring algorithm. If all internal 
vertices of V [x, y] are colored, then we just return φ. So suppose that some internal 
vertex of V [x, y] is not colored yet. We distinguish two cases depending on whether 
S(x, y) is empty.

Case 1. The set S(x, y) is empty.
We begin with an informal description of the approach. We will partition V [x, y] into 

smaller valid segments by greedily constructing something like a crossing sequence from 
x to y. However, since xy could be an edge, we will have to artificially enforce that these 
new segments are actually smaller than V [x, y]. Moreover, this greedy process could get 
stuck before reaching y, in which case we will just move over to the next vertex.

Now we describe this procedure in detail. The successor of a vertex a ∈ V [x, y) is the 
next vertex after a in the order ≺. We construct a sequence of vertices x = v0 ≺ v1 ≺
· · · ≺ vk ≺ vk+1 = y with k � 1, as follows; see Fig. 14 for an illustration. Set v0 := x. 
Let v1 be the largest neighbor of x in V (x, y) or the successor of x if there is no such 
neighbor. Then, after having defined vertices x = v0 ≺ v1 ≺ · · · ≺ vi ≺ y, let vi+1 be the 
largest vertex in V (vi, y] that has a neighbor in V (x, vi] or the successor of vi if no such 
vertex exists. If vi+1 = y, then set k := i and stop the process, otherwise continue with 
the next value of i.

First, we show that V [vi, vi+1] is a valid segment for each i ∈ {0, . . . , k} with 
V (vi, vi+1) non-empty. Going for a contradiction, suppose otherwise. Since V [vi, vi+1]
is not valid, the vertices vi and vi+1 are non-adjacent. Then, the assumption that 
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V (vi, vi+1) is non-empty and the choice of vi imply that i � 1 and vi+1 has a neigh-
bor u ∈ V (vi−1, vi). Now, since V (vi−1, vi) is non-empty, the vertex vi has a neighbor 
u′ ∈ V [x, vi−1]. It follows that vi+1u, u′vi is a crossing sequence from vi+1 to vi, which 
is a contradiction.

We define a coloring φ′ obtained from φ by coloring some additional vertices, as follows. 
Color the vertices v1, . . . , vk with the color φ(y). For each i ∈ {0, . . . , k}, color the vertices 
in S(vi, vi+1) using one of the other two colors, alternating the color according to the 
parity of i in such a way that the color φ(x) is used for S(v0, v1) if φ(x) �= φ(y).

We claim that each color class X of φ′ induces a capped subgraph. By Lemma 4.5, 
it suffices to show that X ∩ V [x, y] induces a capped subgraph. For the color class of 
φ(y), this follows from the fact that the only possible adjacencies among v0, . . . , vk+1

are v0v1, v1v2, . . . , vkvk+1, and v0vk+1. So suppose that X is one of the other two color 
classes. Observe that no vertex in V (vj , vj+1) is adjacent to any vertex in V (vi, vi+1) if 
j > i + 1. Likewise, no vertex in V (vj , vj+1) is adjacent to x if j � 1. Therefore, any 
two adjacent vertices in X ∩ V [x, y] belong to the same set V [vi, vi+1]. Moreover, by 
Lemma 4.4, the vertices in {vi, vi+1} ∪ S(vi, vi+1) induce a capped subgraph for each 
i ∈ {0, . . . , k}. It follows that X ∩ V [x, y] indeed induces a capped subgraph.

To construct the requested V [x, y]-extension of φ, we apply the following procedure. 
Set φ0 := φ′. Then, for each i ∈ {0, . . . , k}, recursively find a V [vi, vi+1]-extension φi+1

of φi if V (vi, vi+1) is non-empty, or set φi+1 := φi otherwise. The partial coloring φk+1

is a V [x, y]-extension of φ. This completes the case that S(x, y) is empty.
Case 2. The set S(x, y) is non-empty.
It is convenient to call two segments internally disjoint if they have at most one vertex 

in common, and that vertex is an end of both segments. Ideally, we would be able to 
handle this case by finding a collection of internally disjoint valid segments whose union 
is V [x, y]. Each segment would then correspond, informally, to a “left window” or a “right 
window” as in the polygon case. However, for technical reasons, we will need to allow 
our “left” and “right” segments to not be internally disjoint.

Formally, we will define sets L and R which satisfy the following conditions:

(i) each set in L ∪R is a valid segment whose ends are in L[x, y) ∪R(x, y],
(ii) each pair of segments in L is internally disjoint, so is each pair of segments in R, and 

if V [a1, b1] ∈ L and V [a2, b2] ∈ R are not internally disjoint, then a1 ≺ a2 ≺ b1 ≺ b2;
(iii) each vertex in V [x, y) belongs to V [a, b) for some segment V [a, b] ∈ L ∪R, and each 

vertex in V (x, y] belongs to V (a, b] for some segment V [a, b] ∈ L ∪R;
(iv) if V [a, b] ∈ L, then b ∈ R(x, y], and if V [a, b] ∈ R, then a ∈ L[x, y);
(v) if V [a, b] ∈ L, then V (a, b] ∩L[x, y) �= ∅, and if V [a, b] ∈ R, then V [a, b) ∩R(x, y] �= ∅;
(vi) if V [a, b] ∈ L, then V (a, b) ∩R(x, y] = ∅, and if V [a, b] ∈ R, then V (a, b) ∩L[x, y) = ∅.

Let s1 ≺ · · · ≺ sk denote the strongly reachable vertices, with k � 1, and set s0 := x

and sk+1 := y. For the following definitions, refer to Fig. 15. Throughout the rest of the 
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x = s0
L

s2 = y
Rs1L R R L L R L R

R

L

Fig. 15. A depiction of the sets L[x, y), R(x, y], L, and R.

proof, if we call a vertex right-, left-, or strongly reachable without specifying a segment, 
then we mean with respect to the segment V [x, y].

Fix i ∈ {0, . . . , k − 1}. We take all minimal segments V [�1, �2] ⊆ V [si, si+1] with left-
reachable ends �1 and �2 such that at least one vertex in V (�1, �2) is right-reachable, 
and we add them to R. Every such segment V [�1, �2] is valid; either �2 is right-reachable 
and V [�1, �2] satisfies condition (i) of Lemma 4.6, or �2 ≺ si+1 and V [�1, �2] satisfies 
condition (ii) of Lemma 4.6. Since si and si+1 are left-reachable, every right-reachable 
vertex in V (si, si+1) is covered by some segment in R.

Now we add segments to L to “cover the gaps in V [si, si+1] between segments in R”. 
That is, for each maximal segment V [�′2, �′1] ⊆ V [si, si+1] which is internally disjoint 
from all segments in R (so that either �′2 = si or �′2 is the greater end of a segment in 
R, and similarly for �′1), we add the segment V [�′2, r′] to L, where r′ is the least right-
reachable vertex in V [si, si+1] with �′1 
 r′. The segment V [�′2, r′] is valid because it 
satisfies condition (i) of Lemma 4.6.

This defines the segments in L and R that are contained in V [si, si+1] for each i ∈
{1, . . . , k−1}. For V [sk, sk+1], however, this approach may not work, as condition (ii) of 
Lemma 4.6 need not hold. So within this segment, we switch the roles of L and R, that is, 
we first add segments to L by considering minimal segments that end at right-reachable 
vertices and have at least one left-reachable internal vertex, and so on. The segments 
defined this way are valid by conditions (i) and (iii) of Lemma 4.6. This completes the 
definitions of L and R; it can be verified that they satisfy conditions (i)–(vi) above.

Now let the two colors other than the common color of s1, . . . , sk be called “L” and 
“R”. (How x and y are colored will not matter.) Our goal is to use the colors “L” and 
“R” to color the vertices which are strongly reachable from each valid segment in L and 
R, respectively. So it is convenient to have a name for the vertices that might potentially 
receive color “L” (or color “R”) in this step. An R-vertex is a vertex that belongs to 
{x} ∪ R(x, y] � S(x, y) or is internal to some segment in R. An L-vertex is a vertex 
that belongs to {y} ∪L[x, y) � S(x, y) or is internal to some segment in L. We have the 
following claim about where “interesting” edges lie.
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Claim 4.8. For any two adjacent R-vertices (or L-vertices) u and v such that {u, v} �=
{x, y}, there is a segment in R (L, respectively) that contains both u and v.

Proof. Up to the symmetry obtained by reversing ≺, it suffices to prove the claim for R-
vertices u and v. Without loss of generality, u ≺ v. Since v is an R-vertex, condition (vi) 
yields v /∈ L[x, y). If v = y, then the edge yu forms a crossing sequence from y to u
witnessing u ∈ L[x, y), which contradicts condition (vi), as u is an R-vertex and u �= x. 
Thus v /∈ L[x, y) ∪ {y}.

If there is a vertex w ∈ L[x, y) with u ≺ w ≺ v, then there are crossing sequences from 
y to w and from u to v (namely, the edge uv), so Lemma 3.1 yields a crossing sequence 
from y to v witnessing v ∈ L[x, y), a contradiction. Thus, there is no such vertex w.

Now suppose there is a segment V [a, b] ∈ R which contains v. Then a ∈ L[x, y) by 
condition (iv). So a 
 u by the above, and V [a, b] is a segment in R which contains both 
u and v, as desired. Thus, we may assume that there is no such segment.

It follows that v ∈ R(x, y], as v is an R-vertex. By condition (iii), there is a segment 
V [a, b] ∈ L ∪ R such that v ∈ V (a, b], and the above yields V [a, b] ∈ L. Thus b = v by 
condition (vi). By condition (v), there is a vertex w ∈ V (a, b] ∩ L[x, y), which implies 
w 
 u by the above, so a ≺ u. By condition (vi), u /∈ R(x, y], so u is an internal vertex 
of a segment in R (as u is an R-vertex). Then, by condition (ii), that segment contains 
both u and v. �

Now we complete the construction of a V [x, y]-extension of φ. Let m = |L ∪ R|. 
Enumerate the intervals in L ∪R as V [ai, bi] for i ∈ {1, . . . , m}, in any order. Set φ0 := φ. 
Then, for each i ∈ {1, . . . , m}, define φi from φi−1 maintaining the condition that every 
color class of φi induces a capped subgraph, as follows. Consider the segment V [a, b] :=
V [ai, bi] ∈ L ∪R. If a or b is not colored, then color it “L” if it is in L[x, y) and “R” if it 
is in R(x, y]. Furthermore, color all vertices in S(a, b) color “L” if V [a, b] ∈ L and color 
“R” if V [a, b] ∈ R. Call the new coloring φ′. We will show that φ′ is a V [a, b]-precoloring. 
Thus, we can recursively compute a V [a, b]-extension of φ′. Take the extension, uncolor 
all vertices that are internal to any segment V [aj , bj ] with j ∈ {i + 1, . . . , m}, and call 
the resulting partial coloring φi. At the end, by condition (iii) above, the partial coloring 
φm is a requested V [x, y]-extension of φ.

Consider a step in the algorithm for the segment V [a, b] = V [ai, bi] ∈ L ∪R; we took a 
partial coloring φi−1 with the property that every color class induced a capped subgraph, 
and we turned it into a partial coloring φ′. We just need to show the following.

Claim 4.9. The partial 3-coloring φ′ is a V [a, b]-precoloring.

Proof. Up to the symmetry obtained by reversing ≺, we can assume that V [a, b] ∈ R. 
By definition, φ′ colors S(a, b) ∪{x, y} and colors no other internal vertices of V [a, b], and 
φ′ gives every vertex in S(a, b) color “R”. Therefore, by Lemmas 4.4 and 4.5, it suffices 
to show that
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(i) no external vertex u of V [a, b] which is adjacent to an internal vertex v of V [a, b]
receives color “R”, and

(ii) for each color class X of φ′, the set X � V (a, b) induces a capped subgraph.

For the proof of (i), suppose that such vertices u and v exist. We claim that u is an 
R-vertex. Suppose not. Then u has received its color “R” as an internal vertex of some 
segment V [a′, b′] ∈ L. If v /∈ V [a′, b′], then u ∈ S(a′, b′), so u should have received color 
“L” instead of “R”. Thus v ∈ V [a′, b′] and therefore, by condition (ii) on L and R, we 
have a′ ≺ u ≺ a ≺ v 
 b′ ≺ b. Since a ∈ L[x, y) by condition (iv) on R, there are crossing 
sequences from y to a and from u to v (namely, the edge uv), so Lemma 3.1 yields a 
crossing sequence from y to v witnessing v ∈ L[x, y) and contradicting condition (vi) on 
R. Now, since u and v are R-vertices, Claim 4.8 yields a segment in R containing both 
u and v, which contradicts the fact that segments in R are pairwise internally disjoint 
(from condition (ii) on R).

Now, we prove (ii). Since we assume that every color class of φi−1 induces a capped 
subgraph, it suffices to prove that the subgraph induced by X � V (a, b) contains no 
crossing pair of edges involving an edge uv with a vertex v ∈ {a, b} newly colored by φ′. 
So suppose such a crossing pair exists. Then u /∈ {a, b}, so u /∈ V [a, b] and u is already 
colored by φi−1.

Suppose for the sake of contradiction that some segment V [a′, b′] ∈ L ∪ R contains 
both u and v. If V [a′, b′] has been considered before V [a, b], then, by condition (ii) on 
L and R, no segment in L ∪ R other than V [a, b] and V [a′, b′] contains v, so v must 
have been colored when V [a′, b′] has been considered (and not uncolored afterwards). 
If V [a′, b′] has not been considered yet, then no vertex in V (u, v) can be colored by 
φi−1 (as it is internal to a segment that has not been considered), so the edge uv cannot 
participate in a crossing pair of edges induced by X�V (a, b). This shows that no segment 
in L ∪R contains both u and v.

If u /∈ {x, y}, then u has received its color “L” or “R” as φj(u) for some j ∈ {1, . . . , i −
1} such that u ∈ V [aj , bj ]. By the above, v /∈ V [aj , bj ], so u ∈ {aj , bj} ∪ S(aj , bj). 
Therefore, u and v are L-vertices if φj(u) = φ′(v) = “L” or R-vertices if φj(u) = φ′(v) =
“R”. Now Claim 4.8 yields a segment in R which contains both u and v. This is a 
contradiction, which completes the proof of Claim 4.9. �

Claim 4.9 above completes the proof of Proposition 4.7. �
Proof of Proposition 4.2. Let (G′, ≺′) be the ordered graph obtained from (G, ≺) by 
adding a new smallest vertex x, a new largest vertex y, and the edge xy. Let φ′ be any 
partial coloring which colors only x and y. Then (G′, ≺′) is H-free, V [x, y] is a valid 
segment, and φ′ is a V [x, y]-precoloring. Therefore, by Proposition 4.7, we can find (in 
polynomial time) a 3-coloring of (G, ≺) such that each color class induces a capped 
subgraph. �



J. Davies et al. / Journal of Combinatorial Theory, Series B 161 (2023) 268–300 295
654321

Fig. 16. The decomposition from Proposition 5.1, where darker edges are removed first.

5. Coloring capped graphs

This section is devoted to the proof of Theorem 1.4 on coloring capped graphs. The 
proof relies on decompositions; a decomposition of an ordered graph (G, ≺) is a collection 
of subgraphs such that every edge of G belongs to exactly one subgraph in the collection. 
For a graph G and a set F ⊆ E(G), we write G[F ] and G − F for the graph obtained 
from G by keeping/deleting (respectively) the edges in F .

Proposition 5.1. There is a polynomial-time algorithm which takes in a capped graph
(G, ≺) and returns its clique number ω and a decomposition of (G, ≺) into ω−1 triangle-
free capped graphs. If (G, ≺) is additionally ordered-hole-free, then so is each graph in 
the decomposition.

Proof. If G is triangle-free, then we return its clique number (1 or 2) and the decom-
position consisting of (G, ≺) itself. Thus assume henceforth that G is not triangle-free. 
We say that an edge uv ∈ E(G) with u ≺ v is triangle-covered if v belongs to a triangle 
with vertices x and y such that x, y 
 u. Let F be the set of all edges that are not 
triangle-covered (see Fig. 16).

If a, b, c are vertices of G such that a ≺ b ≺ c, ac, bc ∈ E(G), and ac is triangle-covered, 
then bc is triangle-covered. This implies that (G[F ], ≺) is capped and is ordered-hole-
free if (G, ≺) is ordered-hole-free. Furthermore, if vertices a, b, c with a ≺ b ≺ c form a 
triangle in G, then bc is triangle-covered. So G[F ] is triangle-free. Moreover, we have the 
following.

Claim 5.2. The graph (G − F, ≺) is capped and has clique number exactly one less than 
the clique number of (G, ≺). Furthermore, if (G, ≺) is ordered-hole-free, then so is
(G − F, ≺).

Proof. Let ω denote the clique number of (G, ≺). If a, b, c are vertices of G such that 
a ≺ b ≺ c, ab, ac ∈ E(G), and ab is triangle-covered, then ac is triangle-covered, as (G, ≺)
is capped. So (G −F, ≺) is capped and is ordered-hole-free if (G, ≺) is. Furthermore, the 
clique number of (G − F, ≺) is at least ω − 1, because every edge of a clique in (G, ≺)
that is not incident to the smallest vertex of the clique is triangle-covered. Now, suppose 
that Q ⊆ V (G) is a clique in G − F , and let u and v be the two smallest vertices of Q, 
with u ≺ v. Then v is in a triangle of G with vertices x and y such that x ≺ y 
 u. It 
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follows that (Q � {u}) ∪{x, y} is a clique in G, as (G, ≺) is capped. This shows that the 
clique number of (G − F, ≺) is at most ω − 1, as desired. �

To conclude, the algorithm proceeds by continuing with (G −F, ≺). The clique number 
is the number of subgraphs in the decomposition plus one. �
Proof of Theorem 1.4. Let ω � 2 be the clique number of G, and let {(Gi, ≺)}ω−1

i=1 be a 
decomposition of (G, ≺) into ω− 1 triangle-free capped subgraphs as in Proposition 5.1. 
Fix an index i with 1 � i � ω − 1. Say that an edge bd with b ≺ d is crossed in (Gi, ≺)
if there is an edge ac ∈ E(Gi) with a ≺ b ≺ c ≺ d. If (G, ≺) is ordered-hole-free, then let 
Fi = ∅, and otherwise let Fi be the set of edges of Gi which are not crossed in (Gi, ≺). 
An ordered graph is outerplanar if it has no crossing pair of edges.

Claim 5.3. The ordered graph (G[Fi], ≺) is outerplanar, and (Gi − Fi, ≺) is both capped 
and ordered-hole-free.

Proof. We can assume that (G, ≺) is not ordered-hole-free. That (G[Fi], ≺) is outerplanar 
is clear from the definition of Fi. If a, b, c are vertices such that a ≺ b ≺ c, ab, ac ∈ E(Gi), 
and ab is crossed, then ac is crossed. This implies that the ordered graph (Gi −Fi, ≺) is 
capped and every ordered hole in it is an ordered hole in (Gi, ≺). Suppose for the sake 
of contradiction that vertices c1 ≺ · · · ≺ ck induce an ordered hole in (Gi − Fi, ≺) and 
thus in (Gi, ≺). Since the edge ck−2ck−1 is crossed, there is an edge xy ∈ E(Gi) with 
x ≺ ck−2 ≺ y ≺ ck−1. It follows that x ≺ c1, as (Gi, ≺) is capped and c1, . . . , ck induce 
an ordered hole in (Gi, ≺). Then, since (Gi, ≺) is capped, the vertices x, ck−1, and ck
form a triangle in Gi. This contradiction shows that (Gi−Fi, ≺) is ordered-hole-free. �
Claim 5.4. There is a 4-coloring of Gi − Fi, which can be computed in polynomial time.

Proof. We just use the fact that (Gi − Fi, ≺) is triangle-free, capped, and ordered-hole-
free. For each component of Gi − Fi, we claim that any level of any breadth-first search 
tree which is rooted at the smallest vertex according to ≺ induces a bipartite subgraph. 
This suffices to complete the proof, as we can reuse colors at every second level.

Suppose for the sake of contradiction that p is the smallest vertex of a component and 
C is an induced odd cycle which is contained in a level. Since (Gi−Fi, ≺) is triangle-free 
and ordered-hole-free, there are ac, bd ∈ E(C) such that a ≺ b ≺ c ≺ d. So ad ∈ E(C), 
and none of the edges ac, bd, ad are crossing with any other edge of C. It follows that 
V (C) � {a, d} induces a path bv1 · · · vtc with b ≺ v1 ≺ · · · ≺ vt ≺ c, for some positive 
integer t.

Let P be a shortest path from v1 to p in Gi −Fi, and let v′1 be the vertex adjacent to 
v1 in P . If a 
 v′1 
 d then we obtain a contradiction by finding a path which is shorter 
than P from either a or d to p, using the fact that (Gi − Fi, ≺) is capped. Otherwise, if 
v′1 ≺ a, then, since (Gi−Fi, ≺) is capped, the set {v′1, v1, . . . , vt, c} contains a triangle or 
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an ordered hole, which is a contradiction. In the final case that d ≺ v′1, since (Gi−Fi, ≺)
is capped, the vertices b, v1, v′1 form a triangle, which is again a contradiction. �

Let φi be a 4-coloring of Gi−Fi from the last claim, for 1 � i < ω. Let F =
⋃ω−1

i=1 Fi. 
If (G, ≺) is ordered-hole-free, then F = ∅ and the mapping v �→ (φ1(v), . . . , φω−1(v)) is a 
4ω−1-coloring of G. Otherwise, since every n-vertex outerplanar graph has at most 2n −3
edges, every n-vertex subgraph of G[F ] has at most (2n −3)(ω−1) edges, for any n � 2. So 
every non-empty subgraph of G[F ] has a vertex of degree less than 4(ω−1), and thus there 
exists a 4(ω − 1)-coloring ψ of G[F ]. Now, the mapping v �→ (φ1(v), . . . , φω−1(v), ψ(v))
is a 4ω(ω − 1)-coloring of G. �

We note that the bound in Theorem 1.4 would be substantially improved if one could 
show that every triangle-free, capped, and ordered-hole-free graph has chromatic number 
at most 3 (that is, if one could improve the bound in Claim 5.4 from 4 to 3). While these 
graphs are not necessarily bipartite, we do not know of an example that actually has 
chromatic number 4.

6. Coloring X-free ordered graphs

In this section, we prove Theorem 1.6 that X-free ordered graphs are χ-bounded, 
using a surprising connection to a recent theorem of Scott and Seymour [34]. Recall that 
X is the ordered graph with four vertices and two crossing edges, illustrated in Fig. 3
(right). It is immediate from the definition that capped graphs are X-free. Moreover, 
various natural classes of ordered intersection graphs are also X-free. Specifically, an 
outerstring graph is the intersection graph of a collection of curves in a half-plane which 
each have one endpoint on the boundary of that half-plane. It is easy to see that outer-
string graphs are X-free when equipped with the ordering of their endpoints along the 
boundary. Outerstring graphs contain circle graphs and interval filament graphs. Rok 
and Walczak [33] proved that the class of outerstring graphs is χ-bounded. Theorem 1.6
yields this results as a direct corollary.

We now prove that the underlying (unordered) graph of any X-free ordered graph 
forbids every induced subdivision of a certain banana. A banana is a graph which can be 
obtained from the disjoint union of paths by identifying one end of each path to a new 
vertex s, and the other end of each path to a different new vertex t. A subdivision of a 
graph H is a graph obtained from H by replacing edges of H with internally disjoint 
paths between their ends. Scott and Seymour [34] proved the following.

Theorem 6.1 (Scott and Seymour [34]). For any banana B, the class of graphs excluding 
all subdivisions of B as induced subgraphs is χ-bounded.

Let B4 denote the banana depicted in Fig. 3 (left); it is obtained from three 4-edge 
paths. Theorem 6.1 together with the following proposition yields Theorem 1.6 and, 
consequently, another proof that outerstring graphs and capped graphs are χ-bounded.



298 J. Davies et al. / Journal of Combinatorial Theory, Series B 161 (2023) 268–300
s

x1

y1
z1

x2

y2

z2

x3
y3

z3

t

Fig. 17. B4 as an induced subgraph of a polygon visibility graph.

Proposition 6.2. For any X-free ordered graph (H, ≺), the graph H contains no subdivi-
sion of B4 as an induced subgraph.

Proof. First we prove that B4 itself is not the underlying graph of an X-free ordered 
graph. Suppose for a contradiction that there is a vertex ordering ≺ such that (B4, ≺) is 
X-free. Any cyclic reordering of ≺ also yields an X-free ordering. So, as none of the edges 
sx1, sy1, sz1 cross any of the edges tx3, ty3, tz3, after cyclically reordering the vertices, 
we can assume that each of s, x1, y1, z1 is less than each of t, x3, y3, z3.

Consider the three paths x1, x2, x3, y1, y2, y3, and z1, z2, z3. No edge of one of these 
paths may cross an edge of another. So, for instance, we cannot have that x1 ≺ y1 ≺
x3 ≺ y3. Then, up to relabeling these three paths, we can assume that x1 ≺ y1 ≺ z1 ≺
z3 ≺ y3 ≺ x3. Now we examine where the vertex y2 lies in the ordering. For the same 
reason, either x1 ≺ y2 ≺ z1 or z3 ≺ y2 ≺ x3; without loss of generality, we can assume 
the first case. But now one of the two edges sx1 or sz1 is crossing with the edge y2y3, a 
contradiction.

Now suppose that (G, ≺) is an X-free ordered graph and v is a degree-2 vertex which 
is adjacent to non-adjacent vertices u and w. We will show that, where H is the graph 
obtained from G by deleting v and adding the edge uw, and ≺H is the restriction of 
≺ to V (H), the ordered graph (H, ≺H) is X-free. This will complete the proof. Up to 
cyclically reordering the vertices and renaming u and w, the only case to consider is that 
u ≺ v ≺ w. If (H, ≺H) is not X-free, then there must be a copy of X containing the edge 
uw. But then either uv or vw is in a copy of X in (G, ≺), which is a contradiction. �

Scott and Seymour [34] actually proved Theorem 6.1 for banana trees, which are 
obtained from trees by replacing each edge with a banana so that the ends of the edge 
are s and t (the high-degree vertices of the banana). It is natural to ask if this theorem 
could be applied directly to polygon visibility graphs. However, this is not possible; it is 
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not difficult to see that every banana tree is an induced subgraph of a polygon visibility 
graph. Fig. 17 illustrates this for the banana B4.
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