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Abstract
Many of the current recommendation systems are considered to be blackboxes that are
tuned to optimize someglobal objective function.However, their error distributionmay
differ dramatically among different combinations of attributes, and such algorithms
may lead to propagating hidden data biases. Identifying potential disparities in an
algorithm’s functioning is essential for building recommendation systems in a fair and
responsibleway. In this work, we propose amodel-agnostic technique to automatically
detect the combinations of user and item attributes correlated with unequal treatment
by the recommendationmodel.We refer to this technique as theBias Detection Tree. In
contrast to the existing works in this field, our method automatically detects disparities
related to combinations of attributes without any a priori knowledge about protected
attributes, assuming that relevant metadata is available. Our results on five public
recommendation datasets show that the proposed technique can identify hidden biases
in terms of four kinds of metrics for multiple collaborative filtering models. Moreover,
we adapt a minimax model selection technique to control the trade-off between the
global and the worst-case optimizations and improve the recommendation model’s
performance for biased attributes.

Keywords Recommender systems · System fairness · Bias detection

1 Introduction

Modern recommendation systems are often designed as complex hybrid architectures
that deal with heterogeneous input features and combine diverse types of algorithms

B Joanna Misztal-Radecka
joanna.misztal-radecka@ringieraxelspringer.pl

Bipin Indurkhya
bipin.indurkhya@uj.edu.pl

1 Ringier Axel Springer Polska, Warsaw, Poland

2 Jagiellonian University, Kraków, Poland

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11257-022-09334-x&domain=pdf
http://orcid.org/0000-0002-2959-4004


44 J. Misztal-Radecka, B. Indurkhya

(Ricci et al. 2015). Inmany such systems, applying aglobal objective results in optimiz-
ing themainstream trendswhileminority preference groups, as well as those interested
in niche products, are not represented well (Beutel et al. 2017; Chen et al. 2020). Given
a lack of understanding of the dataset characteristics and insufficient diversity of rep-
resented individuals, such approaches inevitably lead to amplifying hidden data biases
and existing disparities (Chen et al. 2020). Chen et al. (2020) summarize different sit-
uations when a recommendation system may propagate hidden biases and unfairness.
They distinguish seven distinct types of biases, including bias resulting from implicit
and explicit feedback, bias in the model and in the results, and unfairness toward cer-
tain users or societal groups based on their sensitive attributes. Similarly, various types
of biases related to social data were distinguished by Olteanu et al. (2019), resulting
from the differences in population characteristics, behavioral and content production
biases, temporal variations, and content redundancy. Moreover, bias is often caused
by certain combinations of circumstances rather than a single feature. For instance,
a recommender may propagate an unintended gender bias from the training data by
underestimating the preferences of female students for technical courses (Yao and
Huang 2017).

While designing a recommender as a transparent box (Guidotti et al. 2018; Rudin
2019; Tintarev andMasthoff 2011)may help in identifying such hidden disparities, it is
often not applicable for many practical use cases. As observed by Ribeiro et al. (2016),
restricting machine learning to interpretable models is often a severe limitation. For
instance, due to the high costs of model training and serving infrastructure, many
companies decide to use machine learning as a service (MLaaS) solutions where the
recommendations are generated by blackbox services such as Amazon Personalize,1

Google Recommendations AI,2 Azure ML,3 and other external tools. In such cases,
the exact functioning of the algorithm remains unknown, and it is not possible to use
a transparent-box design approach to provide explainability (Guidotti et al. 2018).
Moreover, it is often not possible to build explanations of the bias by model inspection
(Guidotti et al. 2018), as the attributes related to disparities are not directly fed into the
model and hence their direct impact on predictions remains unknown. For instance, a
collaborative filtering recommender is trained with user-item interactions, yet it may
propagate latent biases for particular demography groups even though this information
is not directly observable (Yao andHuang 2017). In such situations, a post hoc analysis
and model-agnostic detection (Ribeiro et al. 2016) of disparities in error distribution
among distinct user and item attributes that are available may indicate potential biases
and unfairness to enable taking further remedial actions.

A majority of existing approaches to detecting disparities are based on analyzing
a single source of bias based on dimensions selected a priori, such as a sensitive
user attribute or a protected category of products (Sánchez and Bellogín 2019; Beutel
et al. 2017, 2019; Wan et al. 2020; Yao and Huang 2017; Kershaw et al. 2021; Wei
et al. 2021; Zhu et al. 2021). However, it is not clear how to identify groups that

1 https://aws.amazon.com/personalize/.
2 https://cloud.google.com/recommendations.
3 https://azure.microsoft.com/pl-pl/blog/building-recommender-systems-with-azure-machine-learning-
service/.

123

https://aws.amazon.com/personalize/
https://cloud.google.com/recommendations
https://azure.microsoft.com/pl-pl/blog/building-recommender-systems-with-azure-machine-learning-service/
https://azure.microsoft.com/pl-pl/blog/building-recommender-systems-with-azure-machine-learning-service/


A bias detection tree approach for detecting disparities... 45

should be protected, and different types of recommendation algorithms are prone to
different vulnerabilities. For instance, while it was found in Yao andHuang (2017) that
a CF recommender underestimates the preferences of female students for technical
courses, it is possible that there exist other types of stereotypical biases that the authors
were not aware of (for instance, for male students and arts classes). In our research, we
address the problem of identifying such hidden sources of disparities by automatically
identifying the particular circumstances when a recommender system’s predictions are
less accurate, without making any a priori assumptions. Similar to existing works in
this field (Sánchez and Bellogín 2019; Beutel et al. 2017, 2019; Wan et al. 2020; Yao
and Huang 2017; Kershaw et al. 2021; Wei et al. 2021; Zhu et al. 2021), we assume
the availability of user and item metadata and activity features. However, in contrast
to other research, our approach does not require information about which attributes
are protected.

While handling different types of bias usually requires an in-depth analysis, and
selecting an adequate debiasing technique, some basic approaches can be applied
to reduce the potential bias during the model selection stage (Beutel et al. 2017;
Diana et al. 2020). In our work, we propose the Lambda-Minimax debiasing model
selection method which adapts the Minimax Group Fairness approach (Diana et al.
2020). This method enables a balance between the global optimization and the worst-
case error metrics for the previously detected combination of attributes. The model
selection process optimizes the objective for themost biased case apart from the global
optimization, and therefore, error for the most discriminated cases should be reduced
in comparison with a pure global optimization.

1.1 Contributions

This paper makes the following contributions:

1. A model-agnostic Bias Detection Tree (BDT) approach is proposed to detect any
systematic or unintentional bias in the recommendation model’s performance. Our
method is based on a post hoc tree-based model, and, in contrast to other existing
works on recommendation bias detection, it enables identifying those combina-
tions of attributes for which the recommendations are significantly less accurate
than in other cases without a priori knowledge about the protected categories.

2. We show that our proposed method can detect different types of disparities by
analyzing the disparities in four kinds of metrics for collaborative filtering algo-
rithms on five public datasets. Moreover, we demonstrate that the biases detected
for the feature combinations aremore severe than for single attributes.We consider
here attributes associated with different types of biases and unfairness situations
to identify complex sources of inequalities.

3. We propose a Lambda-Minimax debiasing model selection technique to improve
the functioning for the worst-case combinations of attributes, while controlling the
global optimization trade-off.

Our approach is based on a well-established tree-based technique (Kass 1980), while
its novelty lies in applying this method to detect algorithmic biases in the predictions
of a recommendation model. The preliminary results of our proposed method were
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presented in a workshop paper (Misztal-Radecka and Indurkhya 2021). This work
has been significantly extended now with an in-depth evaluation on multiple datasets
from different domains, concerning different types of error metrics. Moreover, we
have carried out an extensive theoretical analysis and developed a debiasing technique
based on our approach. All these results are reported in the current paper. The code is
available on Github.4

The rest of this paper is organized as follows. Section 2 summarizes the current
challenges of recommendation systems and state of the art in the field of algorithmic
fairness and explainability. The research problem is articulated in Sect. 3 and the
proposed approach is described in Sect. 4. The experimental evaluation is presented in
Sect. 5. Finally,we summarize the conclusions and futureworkdirections inSect. 7.We
provide an analysis of computational complexity along with practical considerations
in “Appendix A”.

2 Background and related work

In this section, we summarize the current challenges related to biases in recommenda-
tion systems (Sect. 2.1). Then we describe the state of the art in algorithmic fairness
(Sects. 2.2 and 2.3) and debiasing techniques (Sect. 2.4). Finally, we compare our
proposed approach with the existing works from this field (Sect. 2.5).

2.1 Bias in recommendations

Current recommendation systems face many tough problems when dealing with real-
world data, thereby degrading their performance in various situations. A summary of
biases existing on theWebwas presented byBaeza-Yates (2018)whereas various types
of biases related to social data are distinguished by Olteanu et al. (2019). Similarly,
in Chen et al. (2020), the authors distinguish seven distinct types of bias in recom-
mendations. Bias in data is caused by the observational rather than experimental data
collection process in recommendation systems (Chen et al. 2020) and may occur dur-
ing the collection or processing of data (Olteanu et al. 2019). Data bias happens when
the distributions in training and test sets are different. In particular, the population bias
(Olteanu et al. 2019) results from the differences in user characteristics and demog-
raphy between the training and the target data. This category also includes selection
bias, which refers to the missing not at random problem of user ratings, and exposure
bias, which refers to the situations when negative interactions are caused by a lack of
exposure to some items. Conformity bias is caused by the users’ behavior according
to their group preferences. Conversely, the grey and black sheep users have unusual
tastes and so have no or few similar users, therefore the CF methods fail to find ade-
quate recommendations for them (Su and Khoshgoftaar 2009;McCrae et al. 2004). As
observed by Baeza-Yates (2018), the presentation and the position biases are related to
how particular items are displayed to a user on a website: Better-positioned products
have a higher probability of being selected than the ones not so prominently visible.

4 https://github.com/JoannaMisztalRadecka/recommendation-bias-detection.
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In contrast to data bias, as defined by Baeza-Yates (2018), algorithmic bias (Boratto
et al. 2019) is added by the algorithm itself. Bias and unfairness in results include the
popularity bias (Abdollahpouri et al. 2017; Wei et al. 2021; Zhu et al. 2021; Boratto
et al. 2021) (when “popular items are recommended even more frequently than their
popularity would warrant”Chen et al. 2020) and unfairness in terms of discrimination
of some users (groups or individuals) (Kershaw et al. 2021). For instance, Tsintzou
et al. (2018) notes that a popular KNN recommendation algorithm tends to amplify
the gender bias related to movie genres. The language bias is another significant phe-
nomenon on the Internet: As observed by Baeza-Yates (2018), more than half of the
web content is in English, whereas only 27% of the web users speak English. More
generally, a small number of influential users may have a large impact on the rec-
ommendations of other users, which is also referred to as an activity bias (Li et al.
2021; Eskandanian et al. 2019; Baeza-Yates 2018; Olteanu et al. 2019). Additionally,
offline recommendation systems face many challenges in dynamic domains such as
online services due to user interest shift and dynamic popularity trends. Such tempo-
ral variations may impact the quality of recommendation for some groups of items
or users (Boratto et al. 2019; Anelli et al. 2019; Olteanu et al. 2019). For example, a
news recommendation system may consider that certain football-related articles were
popular last week and may assign similar articles appearing this week high probability
scores. However, the popularity could be due to a match that took place last week, and
so the probabilities for this week will be overestimated. All these situations can lead to
generating irrelevant recommendations due to systematic biases and disparities. In our
research, we aim to automatically detect such disparities to facilitate taking corrective
actions.

2.2 Fairness evaluation for MLmodels

The problem of algorithmic fairness has recently attracted a lot of research interest,
and it is central to the research presented in this paper. From the legal perspective,
discrimination is a situation where groups are treated less favorably by an algorithm
(Legislation 2009). A generic definition of discrimination was proposed by Lippert-
Rasmussen (2013):

Definition 1 An agent, X , discriminates against someone, Y , in relation to another, Z ,
by Φ-ing (e.g., hiring Z rather than Y ) if, and only if:

1. There is a property, P , such that Y has P or X believes that Y has P , and Z does
not have P or X believes that Z does not have P ,

2. X treats Y worse than he treats or would treat Z by Φ-ing, and
3. It is because (X believes that) Y has P and (X believes that) Z does not have P

that X treats Y worse than Z by Φ-ing.

The property P usually refers to a set of protected attributes, as defined by the
UK Equality Act,5 which may be related to the user’s demography, religion, sexual
orientation, and so on. For ML systems, the action Φ may be defined in terms of the

5 https://www.legislation.gov.uk/ukpga/2010/15/contents.
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classifier output (for instance, a decision about hiring someone or their credit score)
or an evaluation measure (such as the number of false positives). While, in general,
fairness may be defined as the lack of discrimination against individuals or groups, it
has been explored in the literature concerning distinct aspects. As defined by Gajane
and Pechenizkiy (2017), fairness by treatment happens when the protected attributes
are not used explicitly by a predictor.However, itwas shown that removing the sensitive
attributes from an input may lead to propagating hidden biases encoded by other non-
protected attributes (for instance for race-blind approaches Fryer et al. 2008).Parity by
impact happens when the outcomes (for instance, the true positive rate) of a predictor
are balanced across groups. To formalize the non-discrimination criteria, let us first
introduce the definition of conditional independence from the probability theory:

Definition 2 Two random variables X and Y are independent (denoted as X⊥Y ) if
their probability distribution can be expressed as a product:

∀x ∈ X , y ∈ Y : P(X = x, Y = y) = P(X = x)P(Y = y) (1)

Definition 3 Two random variables X and Y are conditionally independent given a
random variable Z (denoted as X⊥Y | Z ) if:

∀x ∈ X , y ∈ Y , z ∈ Z : P(X = x, Y = y | Z = z)

= P(X = x | Z = z)P(Y = y | Z = z) (2)

Accordingly, in Barocas et al. (2019), three fundamental non-discrimination obser-
vational criteria for model fairness are defined as properties of the joint distribution
of the sensitive attribute A (which is the property P from Definition 1), the target
variable Y , and the classifier or score R for the training examples X . The criteria are
defined based on the conditional independence between those variables:

Definition 4 The random variables A, R satisfy independence if R⊥A.

The first criterion requires the sensitive characteristic to be statistically independent
of the score. It is also referred to by other terms such as demographic parity, statistical
parity, group fairness, and disparate impact (Gajane and Pechenizkiy 2017). For a
binary problem, this condition means that the acceptance rate (number of positive
predictions, for instance, for the credit acceptance decision) to equal among the groups,
or the difference should be below a certain threshold ε in the relaxed variant.

Definition 5 The random variables R, A, Y satisfy separation if R⊥A | Y .

In the second criterion, the correlation between the score and the sensitive attribute
is allowed as long as it is justified by the target variable. In the case of classification,
the false-negative rate and false-positive rate should be equal across the groups. (For
instance, the number of innocent people classified as criminals should be equal across
races.)

Definition 6 The random variables R, A, Y satisfy sufficiency if Y⊥A | R.
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The third criterion is satisfied when the sensitive attribute and target variable are clear
from the context. In a binary case, this condition implies a parity of positive and
negative predictive values across all groups.

As further noticed by Barocas et al. (2019), these criteria cannot be satisfied at
the same time, which leads to trade-offs when selecting the fairness goals for a given
problem. For instance, it can be shown by applying the contraction rule for conditional
independence that the first two rules (independence and separation) aremutually exclu-
sive when the attribute A and Y are not independent:

A⊥R ∧ A⊥Y | R �⇒ A⊥(Y , R) �⇒ A⊥Y (3)

More generally, these observational fairness criteria may refer to the features X rather
than a single attribute A and may be verified given samples from the joint distribution
of these variables.

2.3 Fairness evaluation for recommendation systems

While the fairness criteria are well-defined for the standard classification problems
in the decision-making systems, their application to the recommendation systems
is less straightforward. As pointed out by Burke et al. (2018), user equity may have
goals that conflict with personalization for recommendation systems. Kamishima et al.
(2011), the model fairness is measured based on the demographic parity; however, as
pointed out by Yao and Huang (2017), such an approach is appropriate only when the
user behavior does not correlate with their demography, which is often not true for
recommender systems. As further noticed by Barocas et al. (2019), there are multiple
ways in which a recommendation system may show unfair functioning. For instance,
some consumers’ informational needs may be addressed better than others, or the
content of some producers may be privileged. While the fairness evaluation methods
are typically applied to analyze the unfairness toward a selected protected attribute, in
this work, we generalize the above-mentioned criteria to detect disparities in different
biased scenarios, including unfairness and other types of disparities (Chen et al. 2020;
Olteanu et al. 2019).

Moreover, system fairness may be evaluated with respect to rankings (Zehlike et al.
2017; Zehlike and Castillo 2020; Singh and Anand 2018), pairwise metrics (Beutel
et al. 2019), or prediction errors (Yao and Huang 2017; Beutel et al. 2017; Wan
et al. 2020). While ensuring fairness in ranking is an important problem, we focus
here on detecting disparities in rating predictions during training that may be further
propagated to the rankings.

2.4 Debiasing techniques for recommendations

A summary of recent debiasing approaches for recommendation systems is presented
in Chen et al. (2020). The authors classify these approaches according to the types of
bias addressed. It is also noted that amajority of debiasing techniques address only one
or two types of bias, which may not be sufficient for multiple real-world scenarios. In
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Beutel et al. (2017), a focused learning approach is proposed to learn additionalmodels
to improve the recommendation quality for a specified subset of items. However, this
method requires training and serving multiple models which may increase the overall
costs of the system. In Yao and Huang (2017), the fairness metrics are optimized
by including a fairness term in the learning objective. The Minimax Group Fairness
techniquewasproposedbyDiana et al. (2020) for a fairmodel selection in classification
and regression problems. In their approach, the information about the worst-case error
value is incorporated in the model selection objective. In our research, we generalize
this approach to enable controlling the trade-off between the global accuracy and the
worst-case optimization of recommendation models.

2.5 Related research

The definition of bias in this work is based on the fairness objectives defined by Yao
and Huang (2017) for measuring the disparities in rating prediction errors between
the advantaged and disadvantaged users. Similarly, in Wan et al. (2020) the rating
prediction error of collaborative filtering algorithms is compared for distinct consumer-
product market segments revealing certain biases propagated by the recommender
systems. The authors assume that a fair algorithm is supposed not to worsen the mar-
ket imbalance in interactions and they focus on enhancing the parity of prediction
errors in recommendations for combinations defined by the product image and the
consumer’s identity. Similarly, in Sánchez and Bellogín (2019), the evaluation met-
ric for recommendations is aggregated according to the groups defined by the user
attributes to detect if an algorithm makes more relevant recommendations for users
belonging to some specific groups. As shown in Beutel et al. (2017), a recommender
tuned to improve a global prediction objective leaves many items badly modeled in
terms of prediction error, and thus these products are under-served.

We would like to point out that in most of these approaches, recommendation
fairness evaluation is limited to a single pre-defined attribute (such as a demography
feature Sánchez and Bellogín 2019 or an item category Beutel et al. 2017, 2019),
and the combinations of potentially discriminated attributes are defined a priori (Wan
et al. 2020; Yao and Huang 2017). In our work, we consider disparity related to a
combination of factors and aimat generating these combinations automaticallywithout
any a priori assumptions about protected groups.

As observed by Diana et al. (2020), “(...)equalizing error rates and similar notions
may require artificially inflating error on easier-to-predict groups - without necessarily
decreasing the error for the harder to predict groups(...)”. Accordingly, they propose
minimax group fairness for minimizing the maximum group loss instead of equalizing
the results across groups. Following this observation, we extend their technique by
adding a λ coefficient to control the global and the worst-case optimization trade-off.

We use a tree-based model for explaining the model errors; thus, our approach
may be formally characterized as an Explanation Through Interpretable Model via
Single Tree Approximation (Guidotti et al. 2018). Similar approaches were previously
applied for building explainable recommenders (Zhang and Chen 2018; Tintarev and
Masthoff 2011; Singh and Anand 2018). For example, a tree-based model is trained by
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Singh and Anand (2018) on a set of interpretable labels to provide explanations for a
black-box learning-to-rank algorithm on web search. Though our work also applies a
tree-based post hoc model, we aim at approximating the model errors, whereas (Singh
and Anand 2018) focuses on evaluating howwell the post hoc model approximates the
original ranking. Thus, we use a similar model to solve a different type of problem, and
therefore these approaches are not comparable. The concept of training new models
on the errors of previous ones is reminiscent of the gradient boosting technique, which
is commonly applied in ensemble learning approaches. However, the goal of gradient
boosting is to improve the accuracy of weak learners while we use this technique for
identifying error-prone situations.

3 Problem definition

3.1 Motivation

Inmost standard recommendation algorithms, themodel parameters are adjusted based
on a global optimization function. For instance, for the popular model-based matrix
factorization algorithms (Koren et al. 2009), the predicted ratings are calculated as:

r̂ui = μ + bu + bi + qT
i pu (4)

where μ is the overall average of the ratings, qi and pu represent the latent vector
representations of user u and item i respectively and b denotes the bias intercept
assigned to a user u or an item i which is independent of the user-item interaction.
(For instance, some users tend to give higher ratings and some items are more popular
than others.) The learning is performed by minimizing a global objective, which is
defined as the sum of the differences between the real r and the predicted r̂ ratings in
training set for all the data samples (with λ regularization coefficient):

L =
∑

rui ∈Rtrain

(
rui − r̂ui

)2 + λ
(

b2i + b2u + ||qi ||2 + ||pu ||2
)

(5)

Hence, the model weights are adjusted to optimize the predictions for the majority of
the cases or the most impactful instances. As shown by Beutel et al. (2017), this leads
to underfitting for some unusual situations such as specific interest groups and niche
products and results in a long-tailed distribution of the prediction errors.

Another example of unequal error distribution is the standard k-nearest neighbors
collaborative filtering algorithm. In the kNN methods, the rating prediction for the
given user and item is calculated by taking the weighted average of all the ratings of
the k most similar users (user-user approach):

r̂ui =
∑

v∈N k
i (u) sim(u, v) · rvi

∑
v∈N k

i (u) sim(u, v)
(6)
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or items (item–item approach):

r̂ui =
∑

j∈N k
u (i) sim(i, j) · ru j

∑
j∈N k

u (i) sim(i, j)
(7)

where N k
i (u) denotes k nearest neighbors of u whohave ratings for item i and sim(u, v)

is a similarity measure between vectors u and v. To generate a top-N recommendation,
the list of N most frequent items from k closest neighbors is aggregated as the recom-
mendation. Hence, the predictionsmay be inaccurate for users who have low similarity
to others (grey sheep) or those with very few ratings (the cold-start problem).

Moreover, when tuning the model hyper-parameters (such as the number of neigh-
bors forKNNor the vector size forMF), the performance of themodel on the validation
set is estimated with an average error measure, such as MSE, or a performance met-
ric such as the precision or NDCG of all the examples. Though the optimization is
performed globally, the model may underperform in certain situations, such as for
particular types of users or items. As the average error does not carry any information
about the metric’s distribution, these hidden biases may remain unnoticed.

3.2 Research problem

To define the research problem formally, we introduce the following notations. Let
ru,i ∈ IR denote a rating (interaction) of user u for item i . Then, r̂u,i is the predicted
rating (score) for user u for item i . We refer to a pointwise performance measure
defined as an error function applied to the real and predicted ratings for user u and
item i E(ru,i , r̂u,i ) ∈ IR.

Then, X is the set of the user and the item attribute features, xui = [xui
1 , . . . , xui

N ] ∈
X is a vector of user and item attributes associated with rating ru,i (for instance x1
is the item’s category, x2 is the production year and x3 is the user’s age, N = 3) and
Tk = {k1, . . . kK } is a set of possible values for an attribute xk . (For instance, for feature
genre the possible values are Tgenre = {crime, comedy, thriller}, Kgenre = 3.) We
define the recommendation context as a subset of instances with specific combinations
of attributes:

Xkn ,lm ,... = Xkn ∩ Xlm ∩ . . . = {xui : xui
k = kn ∧ xui

l = lm ∧ . . .};
Xkn ,lm ,... ⊂ X

X∼kn ,lm ,... = X\Xkn ,lm ,... (8)

For instance, a context Xgenderfemale,genrecrime
refers to all the cases x where gender =

female and genre = crime, while X∼genderfemale,genrecrime
denotes the remaining cases

(where gender �= female or genre �= crime).
The average error for ratings with attributes from Xkn ,lm ,... (for instance, the average

error between the real and the predicted ratings of female users for crime movies) is
denoted by:
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E Xkn ,lm ,...
=

N∑

n=1

E(ru,i , r̂u,i )

N
, xui ∈ Xkn ,lm ,... (9)

where N is the number of instances in Xkn ,lm ,....
Then, let us formulate the generic definition of a fair recommendation model:

Definition 7 Given a rating prediction error function E and a set of attribute com-
binations X that describe the recommendation context, a recommendation model is
considered fair if E⊥X .

which means that the performance of a fair recommender in terms of the error metric
E does not depend on the recommendation context. In case when E is a pointwise error
metric between ru,i and r̂u,i , this can be written by adapting the separation criterion
for algorithmic fairness (Definition 5): R̂⊥X | R.

It should be noted that this criterion does not imply the parity of predictions (R̂ | X
from Definition 4)—for instance, one group of users kn may be more likely to highly
rate particular type of items lm and the predictions for these instances will be higher,
yet the error rate should be equal for all cases. Moreover, while the term fairness
usually refers to a set of sensitive user attributes, in this research, we focus on the
equality of error rates for any user or item attribute.

Definition 8 If the performance E(ru,i , r̂u,i ) of a recommendation model depends on a
recommendation context Xk , the recommendations are considered biased with respect
to k.

The bias in this definition may be viewed as a specification of Definition 1 (Lippert-
Rasmussen 2013) where the action Φ is evaluated with the error metric E , and the
property P is the recommendation context X . However, since the dependence may
be due to some latent factors extracted from the behavioral patterns that are not given
explicitly, we consider the parity by impact rather than fairness by treatment (Gajane
and Pechenizkiy 2017). Hence, the dependence between the error and attributes is
inferred from the observable samples from the distribution ofE(ru,i , r̂u,i ) and attributes
X .

Definition 9 If the average error E for a recommendation context Xkn ,lm ,... is signifi-
cantly higher than the average error for the rest of cases

B = {(kn, lm, . . .) : E Xkn ,lm ,...
> E X∼kn ,lm ,...

} (10)

the recommendation algorithm is biased against Xkn ,lm ,... in terms of the error metric
E .

This research aims to detect the circumstances Xkn ,lm ,... that lead to a systematic
bias by a given recommendation algorithm concerning a pointwise error metric E .
This information may contain user and item attributes—either explicit (such as user
demography or category of an item) or implicit (such as the activity rate), as well as
latent interest patterns learned by the model.
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Additionally, the information about potential biases must be understandable so
that adequate remedial actions may be taken to address the disparity problem (such
as increasing the dataset diversity or tuning the algorithm parameters). Hence, the
explainability of the model must be ensured for the bias detection method.

3.3 Measuring disparities

We adapt here four unfairness criteria for recommendation systems that were proposed
by Yao and Huang (2017) based on distinct types of errors to apply them to different
types of biases. The average of each error is calculated for the groups defined by the
attributes Xkn ,lm ,... (as defined in Eq. 9), where E(ru,i , r̂u,i ) is defined below for each
of these metrics.

Definition 10 Value error measures inconsistency in signed estimation error:

EV (ru,i , r̂u,i ) = ru,i − r̂u,i (11)

As defined byYao andHuang (2017), the value error occurswhen one group Xkn ,lm ,... is
consistently given higher or lower predictions than their true preferences. For instance,
this could mean that the ratings for the last year’s Oscar movies are consistently too
high or the ratings of female users for horrormovies are consistently too low. However,
if the predicted ratings are sometimes too low and sometimes too high, this error will
be close to zero. This measure combines the underestimates and the overestimates of
the error (defined below) and is related to the prediction bias (in contrast to its variance
or noise).

Definition 11 Absolute error measures inconsistency in absolute estimation error:

EA(ru,i , r̂u,i ) = |ru,i − r̂u,i | (12)

Following Yao and Huang (2017), the absolute error occurs “if one user type has a
small reconstruction error and the other user type has a large reconstruction error;
one type of user has an unfair advantage of a good recommendation, while the other
user type has a poor recommendation”. The same definition applies to the attributes
of items or a combination of user and item attributes. For instance, if the predicted
ratings of young users for documentary movies have a high absolute error, it indicates
an inaccuracy without defining the sign of the difference. This type of error measures
both bias and variance in predictions for a particular group.

Definition 12 The underestimate error measures inconsistency in how much the pre-
dictions underestimate the true ratings:

EU (ru,i , r̂u,i ) = max(ru,i − r̂u,i , 0) (13)

This type of error happens when the ratings for one group Xkn ,lm ,... are consistently
too low (for instance, the ratings of female users for horror movies).
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Definition 13 The overestimate error measures inconsistency in how much the pre-
dictions overestimate the true ratings:

EO(ru,i , r̂u,i ) = max(r̂u,i − ru,i , 0) (14)

Contrary to the underestimate error, an overestimation occurs when the predictions
for Xkn ,lm ,... are consistently too high (for instance, for the last year’s Oscar movie).

Additionally, for evaluating the disparities in pointwise rating prediction error, we
define a total bias measure for the whole dataset, which measures the difference
between the two most extreme cases:

Δtotal
bias E(Xmax, Xmin) = |E Xmax − E Xmin | (15)

where Xmin, Xmax denote the combinations of attributes with the smallest and the
largest error values, respectively, and E is calculated according to Eq. (9). Note that
this metric measures the equality of results among the groups regardless of the global
average.

4 Proposed algorithm

This section proposes a bias detection tree algorithm to detect the combinations of
user and item attributes that may be associated with a less accurate performance of
recommendations.

4.1 Algorithm description

In the proposed approach (Algorithm 1), a post hoc decision tree model is applied to
identify the combinations of explicit user and item attributes for which the recommen-
dations are significantly worse than in other cases.

The problem of finding the optimal tree structure for a given dataset is known to be
NP-complete. Thus, the BDT algorithm is based on chi-square automatic interaction
detection (CHAID) tree for regression, which is a well-established statistical method
proposed byKass (1980). CHAID decision tree method is a greedy heuristic algorithm
that usually finds a reasonable solution, yet it is not guaranteed to be optimal.

The tree model is fitted with the inputs of xui as independent variables and the
target E , that may be one of the pointwise error metrics E(ru,i , r̂u,i ) (Yao and Huang
2017), as the predicted dependent variable. In each node of the decision tree, the split
is performed based on the significant difference in the error distribution between the
instances. The algorithm consists of two stages:

1. Merge phase (Algorithm 1, Steps 2–4)
The goal of this stage is to find the set T ∗

k of combinations of attribute values from
Tk for each attribute k such that the values with no significant difference in the error
distribution are merged together. However, to find an exact solution, all possible
subsets of the set |Tk | = n should be explored, and the number of such subsets
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can be calculated as the Bell’s number, which is large even for small n. Hence,
in the merge stage, the CHAID algorithm applies a heuristic method for selecting
the splits that iteratively merges pairs of categories with insignificant differences
in a greedy way.

2. Split phase (Algorithm 1, Step 5)
The second stage of the CHAID method aims at finding the attribute k that will
be split as the next node in the tree. The node selection is determined by the most
significant difference (the smallest adjusted p-value) concerning the predicted
error value.

This procedure is repeated recursively until no further splits can be done. (p > αsplit

for all nodes or the max tree depth was achieved.) An additional step may be added
after the merging phase to split compound categories consisting of over two single
categories into two significantly different subgroups (Kass 1980).

Algorithm 1 Bias Detection Tree
1: for k = 1 . . . K do
2: Calculate the pairwise p-value for the target error metric EXkn

and EXkm
for all pairs of attribute

values km , kn ∈ Tk and select the pair km , kn with the least significant difference.
3: If this difference is not significant p > α, merge these categories into one compound category km,n

and add the new category to Tk .
4: Repeat steps 2–3 until there are no more attribute values to be merged in this way.
5: Select attribute k with the smallest adjusted p-value (using Bonferroni correction) as the next node

in the tree and perform split into categories from Tk if p < αsplit.
6: end for
7: Repeat steps 1–5 for each node recursively until there are no attributes with a significant difference in

the error metric distribution or the maximum tree depth was achieved.

The detected biases are visualized as the decision tree rules that lead to the signifi-
cant differences for the target error metric.

4.2 Hypothesis testing

Since the independence in Definition 9 is inferred from the observable samples from
population, it is prone to sampling errors. Accordingly, an adequate hypothesis test
should be applied to verify the significance of the obtained results. In a general case,
we define the following null-hypothesis H0 and an alternative hypothesis H1:

H0 : the mean value of error metric E among different recommendation contexts X is
equal.

H1 : there exists a context kn, lm, . . . such that:

E Xkn ,lm ,...
> E X∼kn ,lm ,...

(16)

If the resulting p-value is less than the significance level α, the obtained variance dif-
ferences are unlikely to have occurred in random samples taken from a populationwith
equal variances, and the null hypothesis is rejected. Importantly, if the null hypothesis
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is not rejected, it does not imply that it is necessarily true but that we do not have
enough evidence to reject it. (For instance, there may additional latent variables that
are not given in X or the sample size is too small.) The alternative hypothesis can also
be written for a two-tailed comparison so that both the disadvantaged and advantaged
cases will be detected:

E Xkn ,lm ,...
�= E X∼kn ,lm ,...

(17)

Since we do not make any assumptions about the distribution of errors E , an ade-
quate statistical test should be selected to verify the significance of the difference
depending on its distribution. In the experiments with prediction errors that have con-
tinuous values and do not necessarily have a normal distribution, the median Levene’s
test (Brown and Forsythe 1974) is used for assigning the statistical significance of par-
ticular splits by evaluating the homogeneity of their variances that provides robustness
for non-normal data while retaining good statistical power.

4.3 Example

To generate an illustrative example of the bias detection process, we simulated predic-
tions from a biased recommender and analyzed the detected disparities. A synthetic
recommendation dataset is generated for 10,000 user-item ratings generated from a
uniform distribution between ru,i ∼ U(1, 5). Additionally, each rating is accompanied
by a vector of user and item attributes xui :

– gender xgender ∼ U({female, male, other}),
– age xage ∼ N (μ = 40, σ = 15) (bucketized into 3 bins based on the percentiles),
– movie genre xgenre ∼ U({thriller, comedy, crime, action}),
– movie year xyear ∼ N (μ = 2000, σ = 15) (bucketized into 3 bins based on the
percentiles).

The synthetic model predictions were generated by adding random Gaussian noise
to the real target values from the test set:

r̂u,i = ru,i + ε, ε ∼ N (μ, σ ) (18)

where the distribution parameters of this noise determine the error characteristics. A
perfect theoretical predictor has μ = 0, σ = 0 (outputs the real ratings in all cases).
The value ofμ defines howmuch the predicted ratings are different from the true value,
while σ determines how the results vary among the samples set. We consider here the
following simulated cases with different types of systematic biases that correspond to
the fairness objectives defined by Yao and Huang (2017):

1. Fair recommendations (Fig. 1a)—μ = 0 and σ = 0.1 are equal for all subsets of
attributes.

2. Underestimation disparity (Fig. 1b)—the predictions for certain situations are
systematically underestimated:μb < 0. In this example, the predictions for female
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Fig. 1 Examples of the distribution and conditions of the detected recommendation biases for the simulated
cases: a A fair recommendation model. b A recommender makes systematically inaccurate predictions for
old crime movies (higher σ of the generated rating distribution). c A recommender makes systematically
lower predictions of thriller movie ratings for female users (lower μ of the generated rating distribution).
The probability density (Y -axis) of the absolute error of the model (X-axis) is estimated with KDE

users and thriller movies are systematically lower than the real ratings, which leads
to a higher error on the test set (σ = 0.1 for all cases).

μ =
{−0.5 if gender = F and genre = thriller
0 otherwise

(19)
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Table 1 P-values (below the
diagonal) and test statistics
(above the diagonal) for genres
in the absolute unfairness
example

p-value/test stat. Thriller Comedy Crime Action

Thriller – 1.027 10.782 0.086

Comedy 0.311 – 18.537 1.788

Crime 0.001* 1.67e−5* – 9.552

Action 0.768 0.181 0.002* –

The p-value for categories action and thriller is the highest (highlighted
in bold); hence, these values will be merged

Table 2 P-values (below the
diagonal) and test statistics
(above the diagonal) for genres
in the absolute unfairness
example after the first merge

p-value/test stat. Thriller|action Comedy Crime

Thriller|action – 0.116 52.151

Comedy 0.732 – 18.537

Crime 5.64e−13* 1.67e−5* –

The p-value for categories thriller action and comedy is the highest
(highlighted in bold); hence, these values will be merged

3. Absolute disparity (Fig. 1c)—the prediction accuracy is lower for certain com-
bination of attributes (the model underfits for some situations): σb > σ . In this
example, the estimations for a category of old crime movies are less accurate and
μ = 0 for all cases.

σ =
{
1.5 if genre = crime and year = old
0.8 otherwise

(20)

In cases 2 and 3, the error of the samples from the biased groups is higher than for the
remaining instances. Below we describe the first steps of the tree generation process,
for example 3 (absolute unfairness).

1. Merge phase
First, the pairwise statistical test is calculated for each pair of values in each cate-
gory. Resulting p-values and test statistics for genre categories are summarized in
Table 1. The p-value for categories action and thriller is the highest (p > αmerge);
hence, these values will be merged in the next iteration. Then, the same opera-
tion is repeated for the new set of genre values, including the merged category
thriller|action. The statistics and p-values for the next iteration of merging for
genres is presented in Table 2 showing that categories thriller|action and comedy
will be merged as their p-value is the highest (p > αmerge). Then, the same proce-
dure is repeated until no category values can be merged in this way and thus the
final set of values for genre will be T ∗

genre = {{thriller, action, comedy}, {crime}}.
The merge phase for other attributes (year, age and gender) is performed in an
analogical way.

2. Split phase
Next, in the split stage, the p-values and statistics for all attributes are compared
(Table 3). The p-value of genre is the lowest (p < αsplit); hence, this attribute will
be selected as the next node split in the tree.
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Table 3 P-values and test
statistics for all categories in the
absolute unfairness example

Genre Year Gender Age

Statistics 21.396 19.941 1.528 1.764

p-value 8.25e−14* 2.27e−09* 0.216 0.171

The p-value for genre is the lowest (highlighted in bold); hence, this
attribute will be selected for the next split

Stages 1–2 are repeated recursively for each node until no further splits can be
done. The resulting bias trees and corresponding distributions of error in each leaf
node are presented in Fig. 1. We use kernel density estimate (KDE) to visualize the
distribution of the error metric for the detected tree nodes as a continuous probability
density curve. The distribution for each node is normalized separately such that the
area under each of the density curves sums to 1.

Figure 1 shows the detected bias trees for all simulated cases (1, 2, 3) and corre-
sponding error distributions for each of the branches. In the first example (Fig. 1a),
there is no difference in error distribution for any combinations of attributes; hence, no
splits were performed by the BDT algorithm. In the second case (Fig. 1b), the average
error on the whole dataset is 0.344 (value in the tree root). The split is first performed
for the crimemovies (error 0.402 vs. 0.325), and then the ratings are divided depending
on the movie production year, with the highest error detected for the oldest movies
(0.573).

Similarly, in the third example (Fig. 1c), the first split is performed based on the
thriller genre (error 0.192 for thrillers and 0.04 for others), and the second split is based
on the user’s gender (0.499 for female and 0.042 for other users). The average values
and distributions of errors for non-thrillers and thrillers for non-female users are equal,
and the attributes corresponding to the significant biases were correctly identified. In
both these examples (B and C), the average error of the whole sample clearly does not
reflect these differences, and the detected tree nodes correspond with the pre-defined
biases.

4.4 Comparison with other tree-based algorithms

We use the CHAID tree architecture in which the stopping conditions are determined
by a statistically significant difference between the children nodes, in contrast to other
tree-based models (such as CART) that require post-pruning to remove insignificant
splits. Since themore popular decision treemethods such as CART or C4.5 are primar-
ily oriented toward the classification and prediction problems, they use homogeneity
measures for determining the splits. In contrast to this, the goal of the CHAIDmethod
is mostly to differentiate the groups in terms of the target distribution while the pre-
diction or classification accuracy is rather implicit (Ritschard 2013). Moreover, the
CHAID algorithm enables performing non-binary splits, resulting in less complicated
and easier to interpret tree structures.
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4.5 Lambda-Minimax debiasing for model selection

We adapt here the Minimax Group Fairness method, which was proposed by Diana
et al. (2020) for optimizing the classification and regression problems, to the rec-
ommendation model setting. Accordingly, we incorporate the information about the
worst-case loss across detected groups (denoted by E Xmax ) into the model selection
objective. In the basic minimax model selection process (Diana et al. 2020), the goal
is to find a model h∗ that minimizes the maximum error rate over all groups:

h∗ = argminh∈H {E Xmax} (21)

To control the trade-off between theminimax and the global optimizations, a relaxed
version of this method was proposed by Diana et al. (2020):

(…) given a target maximum group error bound γ ≥ O PT 1, the goal is to find a
randomized model that minimizes overall population error while staying below
the specified maximum group error threshold.

However, while this definition was proposed for regression and classification prob-
lems,we note that the selection of γ for the recommendation system evaluationmetrics
is highly dependent on the dataset characteristics. Accordingly, instead of applying
this relaxed variant, we propose here a generalization of the basic minimax definition,
Lambda-Minimax, by applying a relaxation coefficient λbias, where Eλbias is calcu-
lated as a weighted sum of the global error metric E and the most discriminated subset
EXmax :

Eλbias = (1 − λbias)Ē + λbiasE Xmax (22)

where 0 ≤ λbias ≤ 1 is the weight of the bias metric value. In this approach, the impact
of the bias term on the final objective may be controlled by the parameter λbias—in
particular, when λbias = 0, Eλbias is equal to the global measure, and when λbias = 1,
only the worst-case error is considered (pure minimax approach).

5 Experimental evaluation

The preliminary results of the BDTmethod on a single dataset (Movielens 100K) were
presented inMisztal-Radecka and Indurkhya (2021).Here,we extend the experimental
evaluation by verifying if the proposed method is capable of detecting disparities that
are more severe than for single user or item attributes for different recommendation
scenarios with each of the unfairness metrics defined in Sect. 3.3.

First, we analyze the detected disparities for different measures and a deep neural
network model trained on five public datasets. Next, we test the proposed approach to
bias reduction by introducing the Lambda-Minimax debiasing (Sect. 4.5) to verify if
the worst-case error value can be improved in the CF model selection process.

123



62 J. Misztal-Radecka, B. Indurkhya

Table 4 Attributes used in the experiments and potential biases related to each attribute (as available for
each dataset)

Attribute type Attributes Potential biases

User attributes Gender, age, country, body shape Model unfairness

Item attributes Item category, production year, size,
brand

Disparities in performance among
distinct item categories

Context Date of the rating Interest shift, data drift

Activity A number of rated items for a user Activity bias

Popularity Number of users with a rating for an
item

Popularity bias

5.1 Experimental data

We perform evaluations on five public datasets—MovieLens 100K and 1M (movies)
(Harper and Konstan 2015), BookCrossing (books) and two datasets published by
Wan et al. (2020) for analyzing bias in marketing data for ModCloth (clothes) and
electronics (based on Amazon review data). A summary of these datasets is presented
in Table 5. We use explicit information about the user-item ratings for all datasets. For
MovieLens, we use older versions of the dataset due to availability of both user and
item features. We use the user, item, and context features to search for the potential
biases as summarized in Table 4.

The continuous variables are discretized into five buckets based on the sample
quantiles (the intervals for each feature are selected so that each bin contains 20% of
examples). We set the significance level α = 0.01 to detect the significant differences
in error distribution. To avoid overfitting and selecting too specific rules that would
be hard to interpret, we set the minimum number of samples in a leaf node to 1% of
the sample size.

5.2 Detecting bias for different error metrics

In the first experiment, we apply the proposed method for evaluating a deep learning
two-tower collaborative filtering recommendation algorithm (Yi et al. 2019) on five
recommendation datasets from distinct domains with different error measures. The
model consists of user and item embedding layers of size 64, a dense layer of 16
neurons with ReLU activation and a single output layer for predicting the user-item
ratings. For each dataset, we randomly split the datasets into training and test subsets
with 20% of ratings in the test set, and we train the model for 20 epochs with Adam
optimizer and L2 regularization. Next, we build the bias detection tree model for each
type of error and calculate the total bias (Eq. 15) for each dataset on the training and
test sets. Next, we analyze the tree structure for the detected disparities to verify which
attributes are associated with the biased results.
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Fig. 2 Results of total bias measures (absolute, overestimation, underestimation and value error) for each
dataset split

Fig. 3 Error values in each detected leaf node for different error metrics and datasets

5.2.1 Results

Figure 2 presents the total bias for each metric and dataset calculated as an absolute
difference between the maximum and minimum node value in the tree. We observe
that the disparities in error distribution were detected for all the analyzed cases except
overestimation error for the Electronics dataset, with the most severe difference in the
absolute error for the BookCrossing training set.

Figure 3 shows the average error values E(X) for the tree leaves for each dataset. It
can be seen that for each dataset, there exist somenodes (combinations of attributes) for
which the algorithmyields higher and lower errors. In particular, for BookCrossing and
Electronics datasets, the absolute error for the nodes in the training set is significantly
lower than on the test set, which indicates an overfitting problem for this case; however,
the algorithm seems to overfit for some combinations of attributes more severely. For
MovieLens datasets, there exist single nodes with significantly higher absolute error
on the test set.

Table 6 presents the global error and results for the maximum (E(Xmax)) and min-
imum (E(Xmin)) detected combinations of parameters for different error metrics as
well as the global average for all datasets. In some cases (in particular for the test
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Table 6 Global error and results for the maximum and minimum detected combinations of parameters for
different error metrics

Dataset Metric Global E #leaves E(Xmin) E(Xmax)

Test Train Test Train Test Train Test Train

BookCrossing E A 1.227 0.876 3 10 1.143 0.665 1.368 0.974

EO 0.657 0.459 3 8 0.591 0.368 0.692 0.505

EU 0.566 0.414 2 4 0.542 0.312 0.625 0.447

EV 0.069 0.045 3 9 0.102 −0.062 0.156 0.081

Electronics E A 0.912 0.271 2 6 0.875 0.174 0.914 0.391

EO 0.670 0.137 1 3 0.660 0.122 0.660 0.164

EU 0.236 0.132 3 3 0.112 0.113 0.287 0.159

EV 0.412 0.016 3 7 0.369 −0.067 0.604 0.014

ModCloth E A 0.838 0.775 6 17 0.774 0.636 0.944 0.943

EO 0.431 0.398 12 21 0.246 0.282 0.461 0.496

EU 0.403 0.378 2 6 0.423 0.321 0.449 0.425

EV 0.011 0.010 2 12 −0.008 −0.022 0.070 0.185

MovieLens100K E A 0.730 0.641 4 14 0.702 0.540 0.845 0.748

EO 0.376 0.328 4 8 0.356 0.242 0.413 0.404

EU 0.362 0.313 2 5 0.343 0.282 0.374 0.442

EV 0.017 0.017 4 12 −0.050 −0.040 0.087 0.126

MovieLens1M E A 0.694 0.599 23 30 0.620 0.518 0.853 0.661

EO 0.352 0.305 18 29 0.244 0.236 0.415 0.370

EU 0.342 0.293 8 16 0.321 0.271 0.409 0.334

EV 0.013 0.012 21 29 −0.048 −0.030 0.058 0.045

set of BookCrossing), there is only one level of the bias tree, which means that there
were no further significant splits, and the bias was detected based on a single attribute.
However, in most cases, there exist multiple attributes that diversify the error distribu-
tion, and the mean value for these cases is significantly higher or lower than the global
error.

The combinations of attributes associated with the highest and the lowest values
in the tree nodes for absolute error are presented in Table 7. We can observe that for
MovieLens 100K, the lowest average error on the training set (0.540) is detected for
the male users and mystery movies produced before 1993, while the highest error
(0.748) is associated with predictions for female users of medium activity level and
particular age groups below 44 y.o.; hence, this group may be less satisfied with the
recommendations. The most severe disparities on the test set concern the highest
error for female users and older movies; however, the disparities are most severe
in particular time ranges, which may indicate some seasonal trends or an interest
shift.

For the MovieLens-1M dataset, the most significant difference for both training
and the test sets is detected based on the movie production year and user age—the
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predictions are more accurate for users above 25 y.o. and for movies produced before
1979, and less accurate formore recent productions and adolescent users. Interestingly,
we do not observe significant biases related to user gender for this newer dataset which
was present inML-100K.Hence, themodels trained on the older version ofMovieLens
data might propagate the historical stereotypes.

For BookCrossing, the most significant bias is associated with the activity and pop-
ularity features. Interestingly, we observe that these discrimination rules are different
for the training and the test sets—for instance, the least active users have the smallest
training error while they have the largest error on the test set. Clearly, these are the
cases when a model overfits on some groups from the training set (cold-start users in
this case), and the predictions on the test set are less accurate.

The analysis of the most extreme values for the marketing bias datasets indicates
that the algorithmmay propagate some additional sources of bias than those considered
by Wan et al. (2020). The tree structures for an absolute error on the training set of
these datasets are presented in Fig. 4. In particular, for the clothes data, the bias may
be related to particular years of production, item categories, and brands apart from the
sizing. For the electronics data, we observe that the training error is the highest for the
computers and headphones products and non-male gender while the item popularity
has the largest impact on the error in the test set.

5.3 Model selection with Lambda-Minimax Debiasing

In the second experiment, we analyze the trade-off between the global and the worst-
case (minimax) optimizations during the model selection process. To this end, we
apply the BDT method to analyze the absolute error ΔbiasEA for five different col-
laborative filtering recommendation algorithms: Slope One (Li et al. 2012), k-nearest
neighbors (KNN), Co-Clustering (George and Merugu 2005), Non-Negative Matrix
Factorization (NMF) (Lee andSeung 1999), andSingularValueDecomposition (SVD)
(Salakhutdinov and Mnih 2008). To ensure that our results can be reproduced, we use
publicly available open-source implementation of the CF algorithms (Hug 2020).

Each of the selected recommendation algorithms is trained to predict ratings from
the training set. We use a fivefold cross-validation procedure for selecting the hyper-
parameters of each recommendation model with the parameter grid defined in Table 8,
and a 20% hold-out test set. First, the hyper-parameters are selected on the cross-
validated training set, and then the model is re-trained on the whole training set. To
filter out the outliers, only the items with at least 5 ratings are considered in CF model
training for this experiment. We report the recommendation model results for the test
sets with respect to global mean absolute error (EA) and the most extreme leaf values
(maximum EA(Xmax) and minimum EA(Xmin) average errors) are analyzed.

Then, we perform the model selection considering the most discriminated node in
objective function as described in Definition 22. We compare the results for λbias =
0 and λbias = 1 to analyze the global-worst-case optimization trade-off. Next, we
analyze the results for varying λbias values.
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Fig. 4 Bias detection tree structures for the absolute error of on the train set of Electronics (upper) and
ModCloth (lower) datasets

Table 8 Recommendation algorithms with corresponding hyper-parameter grids

Algorithm Hyper-parameter grid

Slope One –

KNN K: [10, 20, 50, 100], user-based: [True, False]

Co-Clustering n user clusters: [5, 10, 20, 50, 100], n item clusters: [5,
10, 20, 50, 100]

NMF n factors: [10, 20, 50, 100], biased: [True, False]

SVD n factors: [10, 20, 50, 100], biased: [True, False]

5.3.1 Results

Table 9 and Fig. 5 present the global EA, EA(Xmax) and minimum EA(Xmin) absolute
error detected by the BDT algorithm for different recommendation models. It can be
observed from these results that in some cases the choice of global-optimal model is
different than the one with the lowest worst-error—for example, for Movielens 100K,
KNN results in the smallest global error (0.725) while SVD yields a lower worst-case
error (0.819 vs. 0.869 for KNN).

Figure 6 shows an example of the constructed bias tree (with the maximum depth
limited to 2 for better readability), and the test error distributions for each detected
leaf for the KNN model on Movielens 100K dataset (selected according to the global
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Table 9 Global EA and results for the maximum EA(Xmax) and minimum EA(Xmin) detected tree nodes
for the compared CF algorithms on five datasets. The results in bold are the lowest error values for each
dataset

Dataset Model Global EA #leaves EA(Xmin) EA(Xmax)

BookCrossing CoClustering 1.292 7 1.097 1.468

KNN 1.295 9 1.092 1.447

NMF 1.437 3 1.359 1.502

SVD 1.217 5 1.074 1.338

SlopeOne 1.395 8 1.117 1.507

Electronics CoClustering 0.810 3 0.695 0.884

KNN 0.851 2 0.819 0.873

NMF 0.793 4 0.594 0.831

SVD 0.787 6 0.573 0.899

SlopeOne 0.830 4 0.692 0.912

ModCloth CoClustering 0.845 6 0.767 0.962

KNN 0.831 8 0.740 0.933

NMF 0.772 4 0.639 0.836

SVD 0.819 6 0.689 0.910

SlopeOne 0.844 8 0.735 0.967

MovieLens100K CoClustering 0.747 7 0.666 0.871

KNN 0.725 8 0.655 0.869

NMF 0.775 9 0.682 0.902

SVD 0.736 7 0.671 0.819

SlopeOne 0.735 7 0.678 0.875

MovieLens1M CoClustering 0.710 15 0.657 0.774

KNN 0.693 15 0.613 0.792

NMF 0.755 15 0.702 0.854

SVD 0.684 13 0.632 0.771

SlopeOne 0.713 16 0.649 0.809

Fig. 5 Global EA , EA(Xmax) and minimum EA(Xmin) absolute error for different recommendation algo-
rithms and datasets

objective). The main difference is detected with respect to the movies’ production
year so that the error is larger for the latest movies (produced after 1993)—0.758 vs.
0.684 for the old ones. For newer movies, the error is larger for female users; hence,
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Fig. 6 Distribution of the test error for detected tree leaves with the maximum depth limited to 2, and
tree structures for the KNN algorithm on Movielens 100K dataset. The probability density (Y -axis) of the
absolute error of the model (X- axis) is estimated with KDE

Fig. 7 Global and maximum node error EA for each CF model on five datasets

this group may be less satisfied with the recommendations. However, for the older
movies, we observe a popularity bias as the error is higher for less popular items. The
most biased combination of attributes in this case is female gender and new movies.
Accordingly, the λ-minimax approach will be applied to reduce the error for these
cases.

Figure 7 shows a visualization of the trade-off between the global EA (X-axis) and
maximum error Emax (Y -axis) for the CF models on each dataset. It can be observed
that the optimal model selected with global (λbias = 0) and minimax (λbias = 1)
objective for three datasets are equal (SVD for BookCrossing and MovieLens 1M,
NMF for ModCloth). However, for Electronics and MovieLens, the choice is depen-
dent on the objective (global SVD versus minimax NMF for Electronics, KNN vs.
SVD for MovieLens 100K, respectively). From the comparison in Table 10, it can
be observed that by applying minimax optimization on these datasets, it is possible
to significantly reduce the maximum node error while retaining an acceptable global
error. For MovieLens, SVD results in −5.8% lower maximum node error while the
global error increases by 1.6% compared to the globally optimal KNN. For Electron-
ics, the NMF (minimax objective) reduces the maximum error by 7.5% compared to
SVD (global objective), while the global error is increased by 1.6%. Figure 8 presents
the results of the relaxed version according to Definition 22. In the case of Electron-
ics, NMF would be selected for the positive λbias values, same as SVD for MovieLens
100K.We can observe that the loss for these datasets growsmuch faster for other types
of models, which suggests that the selected models provide the most stable trade-off
between global and worst-case optimization.
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Table 10 Best models selected based on global (λbias = 0) and minimax (λbias = 1) objective considering
EA for each dataset

Dataset λbias Model EA EA Xmax Δ(EA) Δ(EA Xmax )

MovieLens1M 0 SVD 0.684 0.771 – –

1 SVD 0.684 0.771

MovieLens100K 0 KNN 0.725 0.869 +1.6% −5.8%

1 SVD 0.736 0.819

ModCloth 0 NMF 0.772 0.836 – –

1 NMF 0.772 0.836

Electronics 0 SVD 0.787 0.899 +0.7% −7.5%

1 NMF 0.793 0.831

BookCrossing 0 SVD 1.217 1.338 – –

1 SVD 1.217 1.338

We report the percentage difference for λ = 0 and 1 in terms of global and maximum node error when the
fair-optimization is applied

Fig. 8 λ-weighted EA for varying λbias parameter for each CF model on five datasets

We suspect that for the other three datasets the detected bias may not be related
to the model architecture itself, and an additional analysis is needed to identify the
source of disparities and indicate potential remedial actions. Additionally, we would
like to note that in this experiment, we performed a model selection from a set of
CF models that were trained on the same set of user-item ratings. This process could
be further improved by incorporating other types of models, such as content-based
recommendations, which might be more efficient for addressing other types of biases
(as shown in Ghazanfar and Prügel-Bennett 2014 for grey sheep users).

6 Results summary and discussion

Based on the results presented in this paper, we can make the following conclusions:

– Some significant disparities in model performance for distinct groups of attributes
were detected for almost all of the analyzed recommendation scenarios. From
these results, we can conclude that while different recommendation algorithms
may yield comparable results when averaged globally, the error distributions may
differ dramatically for different combinations of attributes.

– Our proposed BDT method identified severe disparities for certain feature com-
binations that are missed by the single-attribute approaches most often used for
analyzing recommender fairness. By analyzing the errors on the train and test sets,
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we could identify situations when a model under- or overfits for certain types of
inputs. Moreover, by comparing the biases for two versions of the movies dataset,
we demonstrated that the older dataset may contain gender biases which may lead
to propagating stereotypical recommendations.

– For two datasets, it was possible to improve the recommendation performance for
the worst-case combinations of attributes by incorporating the proposed Lambda-
Minimax debiasing method in the model selection process. By balancing between
the global and pessimistic optimization trade-off, the error was reduced for the
biased cases without any significant loss in global performance.

We note that the analysis could be extended by incorporating other types of models
that use different features (such as content-based) to verify other disparities.Moreover,
the information about the combinations of attributes associated with biases detected
by the BDT technique may be used to automate the design of hybrid recommenders.

6.1 Limitations

There are some limitations of the proposed method, which are discussed below.

6.1.1 Metadata availability

The quality of detected disparities is highly dependent on the availability of attributes.
Hence, theremay exist some disparities that were not detected if the providedmetadata
is not sufficient.However, to the best of our knowledge, all of the existing bias detection
approaches also require that the attributes are known (Sánchez and Bellogín 2019;
Beutel et al. 2017, 2019; Wan et al. 2020; Yao and Huang 2017; Kershaw et al. 2021;
Wei et al. 2021; Zhu et al. 2021).

6.1.2 Computational complexity

The computational complexity may be large for a high number of attributes and cat-
egories. However, we included a detailed worst-case analysis and provide practical
recommendations for selecting the algorithm parameters in “Appendix A” to ensure
that the method works fast for practical cases.

6.1.3 Lack of causality

While the use of post hoc bias detector and model-agnostic approaches is flexible
enough to handle different types of models, it does not truly explain the reasons for
the bias and shows the correlations, and descriptive statistics of featureswith the output
rather than the causation of phenomena (Rudin 2019). However, based on the results
presented in this paper, we conclude that it may constitute a useful and universal tool
to suggest the directions for further investigating the reasons for the bias and reducing
the disparities.
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7 Conclusion

In this paper, we proposed a model-agnostic bias detection tree method to detect
systematic biases in a recommendation model’s performance. Our proposed technique
identifies combinations of attributes for which the recommendations are significantly
worse than in other cases without a priori knowledge about the protected categories.

In the experimental evaluation, we showed that our proposed method can detect
different types of biases by analyzing four kinds of unfairness criteria for collabo-
rative filtering algorithms. The results on five real-world recommendation datasets
from different domains show that our proposed method can identify severe disparities
for certain feature combinations that are missed by the single-attribute approaches
most often used for analyzing recommender fairness. Additionally, we proposed a
Lambda-Minimax debiasing technique to improve the functioning for the worst-case
combinations of attributes, while controlling the global optimization trade-off. The
experimental results showed that this method, applied on the top of groups retrieved
from BDT, enables significant reduction of the worst-case error for two datasets with-
out any significant loss in global accuracy.

In future, we plan to perform experiments with other types of recommendation
algorithms such as content-based methods to analyze potential algorithmic biases in
other recommendation settings.

Another area of research that could be further investigated is related to exploring
different types of attributes thatmay be subject to bias. Since the disparity explanations
are generated based on additional metadata, their quality is dependent on the availabil-
ity of this information. Additional features may incorporate contextual information
related to presentation biases. Moreover, the proposed methods can be extended to
analyze the bias related to ranking quality.

Appendix A: Computational complexity

In this section,we performan analysis of the computational complexity of the proposed
algorithm, and the execution time is measured for experimental data.

Appendix A.1: Theoretical analysis

In the complexity analysis, let L denote the number of attributes, N is the number
of ratings and D is the maximum depth of the tree (1 ≤ D ≤ L). Next, let nk be
the number of subsets of Tk with significant difference in the error metric distribution
(p < αmerge). Without loss of generality, let us assume that the number of attribute
values |Tk | and nk is equal for all attributes k:

|Tk1 | = |Tk2 | = · · · = |TkL | = K , nk1 = nk2 = · · · = nkL = nk (23)

Then K − nk is the number of iterations in the merge phase for an attribute k. Since
the complexity of the split-phase is linear O(L), we only consider the complexity of
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the merge phase in the analysis. Assuming that the complexity of operations in each
node is equal (Eq. 23), the overall complexity of BDT algorithm can be calculated as:

A(L, K ) =
∑

p∈P

F(p) = |P|F(p) (24)

where F(p) denotes the complexity of the merge phase for a non-leaf tree node where
the split of this node is performed based on attribute xk with values Tk = {k1, . . . kK }
and P denotes the set of all parent nodes in the tree.

In each iteration of the merge phase, the significance test is calculated for all pairs
of attribute values from Tk for each k. Next, one pair km, kn with the least significant
difference (if p > αmerge) will be merged. Hence, the algorithm will make K compar-
isons of single values in the first step (i = 1) and the pair km,n will be merged such
that the number of values that will be processed in i = 2 is |T 1

k | = |Tk | − 1 = K − 1.
Consequently, Ki = K − (i −1) values will be compared in the i-th iteration, until no
further merges can be performed (p < αmerge for all combinations). The difference in
error distribution is tested for each pair of attribute values, resulting in K 2

i operations
in each iteration. Accordingly, the complexity of the merge stage for one attribute in
a node is given by:

K−nk∑

i=1

(K − (i − 1))2 (25)

The number of nodes on tree level d, 1 ≤ d ≤ D is equal to nd−1
k and the number

of non-leaf nodes in the tree of depth D can be calculated as:

|P| =
D∑

d=1

nd−1
k = n0

k + n1
k + · · · nD−1

k (26)

For a simple mean-based significance test, the comparison of the error metric σ 2
k

between two attribute values ki , k j ∈ Tk requires N operations, where N is the number
of samples.

Since the number of attributes available for a node on level d is L − d + 1, the
number of operations for the merge stage in one node on level d is given by (From
Formula 25):

F(p) = N (L − d + 1)
K−nk∑

i=1

(K − (i − 1))2 (27)

Hence, the overall general complexity can be bounded by (based on Formulas 27, 26):

A(L, K ) =
D∑

d=1

nd−1
k F(p) = O(nD−2

k L K 3N ) (28)
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To be more precise, let us consider the computational complexity of the BDT
method in the following most extreme cases:

1. Optimistic case
In the optimistic case, there are no significant differences in the error metric dis-
tribution among the parameter values for any attribute (as in the first simulated
example):

∀k∈1...L,ki ,k j ∈Tk : pki ,k j > αmerge, nk = 1

In this case, in the merge phase, the values ki will be merged successively until all
values are merged into one set T ∗

k = {k1, . . . kK }. Since there are no significant
differences between the attribute values, no further splits will be made and the
algorithm stops after the merge phase (D = 1) and the overall complexity will be
(Eq. 27):

A(L, K ) = L N
K−1∑

i=1

(K − (i − 1))2 = O(L N K 3) (29)

2. Pessimistic case
In the worst case, all pairs of parameter values have significant differences in error
metric distribution:

∀k∈1...L,ki ,k j ∈Tk : pki ,k j < αmerge

In this case, there is only one iteration in the merge phase (nk = K ) as no values
are merged together but the depth of the tree is equal to the number of attributes
(D = L). Then, the complexity of merge phase of one node is (Eq. 27):

F(P) = N (L − d + 1)K 2 (30)

And the overall complexity can be restricted by:

A(L, K ) = N
L∑

d=1

K d−1(L − d + 1)K 2

= N
L∑

d=1

K d+1(L − d + 1) = O(N L K L+2) (31)

Appendix A.2: Experimental computation time

To verify the practical complexity of the proposed algorithm, we performed an experi-
ment on synthetic data generated in an analogous way as in Sect. 4.3; however, instead
of a pre-defined set of attributes, we compared the result for varying parameters of the
data characteristics (with α = 0.01):
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Fig. 9 Execution time of the BDT algorithm depending on different parameters: a Number of examples;
b Number of attributes; c Number of categories in each attribute; d Ratio of categories with a significant
difference in the errormetric distribution. For each case, we compared the time for amaximumdepth limited
to 3 and 20 levels

– N—the number of examples varies between 100 and 100.000 (default 10.000),
– L—the number of attributes between 1 and 50 (default 5),
– K—the number of categories per attribute between 2 and 20 (default 4),
– nk—ratio of categories with a different error metric distribution 0–1 (default 0.5),
– D—maximum depth of the tree (3 or 20).

The computation times were calculated for a single machine (CPU Intel Core i5-
4210U, 1.7 GHz), and the results were averaged over ten iterations.
Results The results for each parameter are presented in Fig. 9 for maximum depth
limited to 3 and 20 levels. The correlation between the computation time and the
number of examples is linear and does not depend on D (Fig. 9a) This shows that
our proposed method scales well in terms of dataset size. Figure 9b shows that the
relationship between the time and the number of attributes L for the two tree depths
(D) we investigated does not differ significantly for small L; but, the difference starts
increasing for L > 20. This observation indicates that restricting the depth of the
tree may be important, especially when the number of attributes is large. A similar
observation holds for the number of attribute categories K (Fig. 9c) and the ratio
of categories with a significant difference in the error metric distribution (Fig. 9d).
Moreover, as shown in Fig. 9d, the computation time is the lowest in the optimistic case
when no categories have a significantly different error metric distribution. Importantly,
it is worth noticing that the complexity is reduced significantly after limiting the
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maximum depth of the tree. Since for practical usage in detecting disparities, a large
complexity may lead to difficulties in interpreting the model results, this parameter
should be limited for the sake of optimization.

Appendix A.3: Limiting computation time

In practice, the number of splits for each node is usually significantly lower than
K unless there are significant differences between the error metric distribution in
all nodes. However, since the pessimistic computational complexity can be large,
some steps can be undertaken to limit the complexity of the algorithm for practical
applications:

– Limiting L—to reduce the number of attributes, standard feature extraction tech-
niques may be applied to remove the correlations and group attributes into fewer
categories. For instance, the movie tags could be grouped into several categories
with a topic modeling technique. Additional optimization steps may include sub-
sampling techniques and training multiple trees on subsets of the features or
examples.

– Limiting K—may be achieved, for instance, by bucketizing the numerical
attributes (such as the user’s age or movie production year), removing the out-
liers, or filtering the less frequent values.

– Limiting D—to reduce the complexity and avoid selecting too specific rules that
would be hard to interpret, the tree can be regularized by limiting the maximum
depth. Then, parameter D will be constant.

– Limiting nk—the number of splits in each node can be controlled by the attributes
α that define the statistical significance threshold for the merge or split stages or
by setting the minimum number of samples in a node.
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