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Abstract

Brain imaging genetics becomes more and more important in brain science, which integrates 

genetic variations and brain structures or functions to study the genetic basis of brain disorders. 

The multi-modal imaging data collected by different technologies, measuring the same brain 

distinctly, might carry complementary information. Unfortunately, we do not know the extent to 

which the phenotypic variance is shared among multiple imaging modalities, which further might 
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trace back to the complex genetic mechanism. In this paper, we propose a novel dirty multi-task 

sparse canonical correlation analysis (SCCA) to study imaging genetic problems with multi-modal 

brain imaging quantitative traits (QTs) involved. The proposed method takes advantages of the 

multi-task learning and parameter decomposition. It can not only identify the shared imaging QTs 

and genetic loci across multiple modalities, but also identify the modality-specific imaging QTs 

and genetic loci, exhibiting a flexible capability of identifying complex multi-SNP-multi-QT 

associations. Using the state-of-the-art multi-view SCCA and multi-task SCCA, the proposed 

method shows better or comparable canonical correlation coefficients and canonical weights on 

both synthetic and real neuroimaging genetic data. In addition, the identified modality-consistent 

biomarkers, as well as the modality-specific biomarkers, provide meaningful and interesting 

information, demonstrating the dirty multi-task SCCA could be a powerful alternative method in 

multi-modal brain imaging genetics.

Keywords

Brain imaging genetics; sparse canonical correlation analysis; multi-task learning; the dirty multi-
task SCCA

I. Introduction

Recently, brain imaging genetics gains more and more attention in brain science. The primal 

aim of the imaging genetics is to uncover the genetic basis of brain structures, brain 

functions, and brain disorders such as Alzheimer’s disease (AD) [1]–[3]. Therefore, the 

genetic variations such as single nucleotide polymorphisms (SNPs) and neuroimaging 

quantitative traits (QTs) are usually analyzed together [3]. Benefiting from the advances of 

imaging technology, different types of brain imaging data have been collected [4]. For 

example, the structural magnetic resonance imaging (sMRI) scans provide the morphometry 

of the brain such as the gray matter (GM), white matter (WM) and cerebrospinal fluid 

(CSF), and the positron-emission tomography (PET) scans measure the metabolic processes 

of the brain. These imaging QTs obtained by different image technologies, measuring the 

same brain from different perspectives, might carry complementary information. As a result, 

combining multi-modal imaging QTs could help better identify those relevant imaging QTs 

and SNPs that are correlated to the brain disorder. Moreover, an imaging QT could be only 

relevant when it is measured by a specific imaging technology, while another QT could be 

relevant no matter which imaging technology is used. This might trace back to the complex 

genetic mechanism, and further complicate the identification of meaningful SNPs. 

Therefore, incorporating multi-modal imaging QTs and genetic variations into the imaging 

genetic framework, and studying the modality-consistent biomarkers, as well as the 

modality-specific biomarkers, could be beneficial to exploit meaningful genetic mechanism 

for brain disorders [5].

The regression-oriented multi-task learning (MTL) is widely used in imaging genetics for its 

power in identifying complex multi-SNP-multi-QT associations [3], [6], [7]. These MTL 

methods usually preselect a few imaging QTs of interest as dependent variables and multiple 

SNPs as independent variables, and then reveal the joint effect of multi-locus genotype on a 
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few phenotypes via multivariate multiple regression [7]. Obviously, they can select SNPs 

which are relevant to the candidate imaging QTs simultaneously. On the contrary, the joint 

effect of multiple imaging QTs on a few SNPs can also be studied by MTL [8]. We have 

known that the brain is comprised of multiple regions, thereby multiple imaging QTs [9]. 

Therefore, utilizing only a few of them might be inadequate because it may lose critical 

information conveyed by those excluded cerebral components [5].

In addition, the bi-multivariate learning methods such as the sparse canonical correlation 

analysis (SCCA) are also very popular in imaging genetics [10]–[18]. These SCCA methods 

could also identify complex multi-SNP-multi-QT associations [3]. And, they can conduct 

feature selection for both SNPs and imaging QTs, while those MTL methods cannot. 

Generally, they are two-view SCCA, indicating that these SCCA methods can only analyze 

the relationship between SNPs and QTs of an unimodal imaging data. To the best of our 

knowledge, most SCCA methods fall into this category. They cannot include multi-modal 

imaging QTs and SNPs in a unified model, making them suboptimal since using only one 

modality of imaging QTs is inadequate. In order to incorporate more than two data 

modalities, it is straightforward to extend the two-view SCCA to multi-view/multi-set SCCA 

(mSCCA), and a few efforts has been made in this direction. For example, Hao et al. [19] 

proposed the three-way SCCA to study the relationships among SNPs, imaging QTs and 

diagnosis status, and Fang et al. [20] proposed the joint SCCA to learn diverse associations 

among subtype populations. Both methods are the naive extension of the conventional two-

view SCCA. As a result, they might not identify reasonable genetic loci since, unless the 

multiple modalities of imaging QTs are highly correlated, demanding SNPs to be associated 

with imaging QTs of multiple heterogeneous modalities simultaneously could be a too 

stringent requirement.

The multi-task SCCA (MTSCCA) is recently proposed in [5], [21], [22], which studies the 

multi-modal imaging genetic problem by constructing multiple SCCA tasks jointly, with 

each associating SNPs with imaing QTs of one modality. This joint bi-multivariate learning 

shows great success in multi-modal imaging genetics. The aforementioned imaging 

technologies could be quite different, and thus the multiple modalities of imaging QTs can 

be weakly correlated [23]. In other words, an imaging QT could be informative under one 

imaging modality, while another imaging QT could be informative under another imaging 

modality. At the same time, there are still imaging QTs which might be informative no 

matter which imaging technology is used. Therefore, identifying modality-consistent and 

modality-specific imaging QTs as well as revealing associated SNPs are quite essential and 

meaningful.

With these observations above, in this paper, we propose a novel learning method which is 

designed for multi-modal imaging data oriented imaging genetics. The proposed method 

absorbs the merits of both MTL and parameters decomposition. The MTL framework makes 

it easier and practical to integrate multiple modalities of imaging QTs, and the parameters 

decomposition makes a diverse regularization which is quite meaningful. We name it the 

dirty MTSCCA in accordance with the terminology in [24], [25]. The dirty MTSCCA 

decomposes the conventional canonical weights into two parts, i.e. the task-consistent 

component shared among all tasks, and the task-specific component that is closely related to 
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a specific task. It then penalizes the task-consistent and task-specific components differently 

to encourage different sparse structures. Thus dirty MTSCCA can identify both SNPs and 

imaging QTs that are measured by all imaging technologies, and SNPs and imaging QTs 

that could be only revealed by a specific imaging technology. In order to solve this dirty 

model, we propose an efficient iteration algorithm which guarantees to converge to a local 

optimum. Compared with two state-of-the-art methods including the multi-view SCCA [16] 

and multi-task SCCA [5], the results on both synthetic data and real neuroimaging genetics 

data from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database [26] show that, 

our method obtains improved or comparable bi-multivariate associations. Moreover, our 

method could identify the modality-consistent imaging QTs and SNPs, as well as the 

modality-specific imaging QTs and SNPs, showing a flexible and meaningful identification 

ability. Therefore, the dirty multitask SCCA model is very suitable for multi-modal imaging 

genetic association analysis, and can be a significant addition to the imaging genetic method 

library.

II. The Dirty Multi-task SCCA

In this paper, we denote scalars as italic letters, column vectors as boldface lowercase letters, 

and matrices as boldface capitals. The i-th row and j-th column of X = (xij) is denoted as xi 

and xj respectively. Yc denotes the c-th matrix of {Y1, · · ·, YC}. ǁxǁ2 denotes the Euclidean 

norm of the vector x, ǁXǁ1,1 denotes the element-wise ℓ1-norm of X, i.e. ‖X‖1, 1 = ∑i ∑j xij , 

and ‖X‖F = ∑i ∑jxij2  denotes its Frobenius norm. X ∈ ℝn × p represents the genetic data 

with n subjects and p SNPs, and Yc ∈ ℝn × q(c = 1, ⋯, C) represents the phenotype data with q 

imaging QTs of the c-th modality, where C is the number of imaging modalities (tasks).

1) The Multi-task SCCA:

According to [5], [27], we use U ∈ ℛp × C to denote the canonical weight matrix associated 

with X and V ∈ ℛq × C to denote that associated with imaging QTs, where each vc 

corresponds to Yc. Then the multi-task SCCA (MTSCCA) model is defined as follows

min
uc, vc

∑
c = 1

C
‖Xuc − Ycvc‖2

2

s.t.‖Xuc‖2
2 = 1, ‖Ycvc‖2

2 = 1, Ω(U) ≤ b1, Ω(V) ≤ b2, ∀c .
(1)

This MTSCCA, overcoming the limitation of the conventional SCCA and multi-view/multi-

set SCCA, can model the bi-association between SNPs and imaging QTs from multiple 

modalities [5]. However, in the multi-modal scenario, we usually desire both group-sparsity 

and individual-sparsity across multiple modalities, and element-sparsity that is only effective 

to a specific modality. Fig. 1 presents the group-sparsity, individual-sparsity and element-

sparsity for canonical weight U. Generally, in multi-task learning, group-sparsity, individual-

sparsity and element-sparsity penalties are imposed on U and V to achieve this aim. 

Obviously, group-sparsity, individual-sparsity and element-sparsity for the same weight 
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matrix such as U are conflicting, and thus could harm the performance, and further the 

feature selection ability.

2) The Proposed Dirty MTSCCA Model:

In order to construct a flexible and robust modeling method, and overcome the shortcomings 

of MTSCCA, we propose a novel dirty multitask SCCA based on parameters decomposition 

[24], [25]. The dirty MTSCCA is formally defined as follows

min
S, W, B, Z ∑

c = 1

C
‖X sc + wc − Yc bc + zc ‖2

2

+λs‖S‖G2, 1 + βs‖S‖2, 1 + λw‖W‖1, 1 + βb‖B‖2, 1 + λz‖Z‖1, 1

s.t . ‖X sc + wc ‖2
2 = 1, ‖Yc bc + zc ‖2

2 = 1, ∀c .

(2)

In our model, the canonical weight U associated with the SNP data is decomposed into two 

components, i.e. U = S + W, where S is the task-consistent component being shared by all 

tasks, and W is the task-specific component being associated with a single task. Similarly, 

the canonical weight V associated with the imaging data is also decomposed into the task-

consistent component B and the task-specific component Z, i.e. V = B + Z. The λs, βs, λw, 

βb, λz are nonnegative tuning parameters.

Benefiting from the parameter decomposition, we can impose distinct penalties on different 

components of the canonical weight. Specifically, we use the G2,1-norm [7], [27], i.e.

‖U‖G2, 1 = ∑
k = 1

K
‖Uk‖F = ∑

k = 1

K
∑

i ∈ gk
∑

c = 1

C
uic

2, (3)

to pursuit a similar weight value for a group of SNPs, e.g. SNPs in the same linkage 

disequilibrium (LD), across multiple tasks. This group-sparsity, illustrated in Fig. 1, selects 

those relevant groups of SNPs shared among all tasks. However, a SNP in a relevant LD 

might be irrelevant to AD, while another SNP in an irrelevant LD could be informative. This 

prompts us to impose the popular ℓ2,1-norm, defined as

‖U‖2, 1 = ∑
i = 1

p
‖ui‖2 = ∑

i = 1

p
∑

c = 1

C
uic

2, (4)

in multi-task learning, which helps accommodate the individual-sparsity shared by multiple 

tasks. It is worth mentioning that, to pursuit the task-consistent feature selection, both G2,1-

norm and ℓ2,1-norm are imposed onto task-consistent component S, and the ℓ2,1-norm is used 

for B.

In addition to the task-consistent features, there are some features (SNPs or QTs) which 

could be relevant to only one specific task. This is a common situation in imaging genetics 

in which the imaging QTs are collected by different imaging technologies, thereby forming 

the heterogeneous multi-task learning. Then the element-sparsity is also of great importance 
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in multi-modal brain imaging genetics. Finally, for the task-specific component W and Z, 

we use the ℓ1,1-norm which is defined previously to select the relevant feature for a specific 

SCCA task.

To sum up, the distinct regularization terms for different components encourage both task-

consistent and task-specific feature selection instead of balancing between these two 

conflicting objectives as traditional SCCAs do. Therefore, this could assure an improved 

performance in terms of both the correlation and canonical weight profiles.

3) Extension to the Weighted Model:

The model above equally treats each SCCA task regarding the SNPs and QTs of a specific 

imaging modality. In order to further make it practical and flexible, we introduce a weight 

vector κ ∈ ℝ1 × C 0 ≤ κc ≤ 1, ∑cκc = 1, c = 1, ⋯, C  to the loss function of the dirty 

MTSCCA, i.e.

min
S, W, B, Z

∑
c = 1

C
κc‖X sc + wc − Yc bc + zc ‖2

2

+λs‖S‖G2, 1 + βs‖S‖2, 1 + λw‖W‖1, 1 + βb‖B‖2, 1 + λz‖Z‖1, 1

s.t . ‖X sc + wc ‖2
2 = 1, ‖Yc bc + zc ‖2

2 = 1, ∑
c

κc = 1, ∀c .

(5)

It is easy to verify that when all κc’s are equal, Eq (5) will reduce to Eq (2). This model will 

also reduce to the conventional SCCA if only one of κc’s is nonzero since the task-consistent 

components disappear.

Besides, the merits of the dirty MTSCCA are fourfold. First, it submerges both MTSCCA 

and mSCCA. For example, the dirty MTSCCA reduces to MTSCCA when W = 0 and Z = 0. 

Second, based on the parameter decomposition, it encourages the task-consistent (modality-

consistent) sparsity [24] and task-specific (modality-specific) sparsity simultaneously in a 

unified model. On the contrary, the MTSCCA and mSCCA can only promote task-consistent 

sparsity. Third, the task-consistent component is jointly penalized by the group level 

regularization, such as the G2,1-norm for SNPs to induce the task-consistent group-sparsity, 

and the ℓ2,1-norm for both SNPs and imaging QTs for the task-consistent individual-sparsity. 

This could help identify the SNPs and imaging QTs shared by multiple tasks, thereby by 

different imaging technologies. Fourth, our model penalizes the task-specific component 

differently via the ℓ1,1-norm to encourage element-wise sparsity for both SNPs and imaging 

QTs. This helps find out SNPs and imaging QTs that could only be identified by a specific 

imaging modality, i.e. imaging technology. In summary, thanks to the parameter 

decomposition, our method facilitates joint feature selection while allowing disparities as 

well [24], [25]. This makes our model flexible and practical since simultaneously demanding 

features to be task-consistent and task-specific is conflicting. In a word, this weighted model 

is very practical and powerful in multi-modal imaging genetics. Thereafter, we will use the 

dirty MTSCCA to refer to the weighted model.
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4) The Optimization Algorithm:

In this subsection, we will present how to solve the dirty MTSCCA efficiently. According to 

Eq. (5), the objective is not convex with joint consideration of S, W, B and Z. Thus it cannot 

be directly solved by gradient descent methods. The MTSCCA is a bi-convex problem 

indicating that U and V can be solved alternatively [5]. As a modified MTSCCA, our model 

is also bi-convex and thus could be handled by the alternative convex search (ACS) strategy. 

Specifically, the Eq. (5) is convex in S when fixing W, B and Z as constants. Similarly, Eq. 

(5) is also convex in W, B and Z alternately by fixing those remaining weight matrices. For 

this reason, the dirty MTSCCA can be solved via the alternative iteration method. Next, we 

first show how to solve S and W since they both originate from canonical weights 

associating with SNP data. Then we present the solution to B and Z which are associated 

with multiple modalities of imaging data.

a) Updating S and W: If B and Z are fixed as constants, the objective with respect to S 
and W can be simplified as

min
S, W

∑
c = 1

C
κc‖X sc + wc − Yc bc + zc ‖2

2

+λs‖S‖G2, 1 + βs‖S‖2, 1 + λw‖W‖1, 1

s.t . ‖X sc + wc ‖2
2 = 1, ∀c .

(6)

In order to solve S and W, we have the following theorem.

Theorem 1: The solution to Eq. (6) is attained by

sc* = sc
‖X sc + wc ‖2

, and wc* = wc
‖X sc + wc ‖2

, (7)

where sc is the solution of

min
S

∑
c = 1

C
κc‖Xsc − Yc bc + zc ‖2

2 + λs‖S‖G2, 1 + βs‖S‖2, 1, (8)

and wc is the solution of

min
W

∑
c = 1

C
κc‖Xwc − Yc bc + zc ‖2

2 + λw‖W‖1, 1 . (9)

Proof: Following the same procedure in [28] (Appendix A.2), Eq. (7) in Theorem 1 can be 

proved straightforwardly. Thus we concentrate on the derivations of Eqs. (8–9).

We first expand the quadratic term in Eq. (6)
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min
S, W

∑
c = 1

C
κc[‖X sc + wc ‖2

2 − 2sc⊤X⊤Yc bc + zc − 2wc⊤X⊤Yc bc + zc

+‖Yc bc + zc ‖2
2] + λs‖S‖G2, 1 + βs‖S‖2, 1 + λw‖W‖1, 1

s . t . ‖X sc + wc ‖2
2 = 1, ∀c .

(10)

Given ‖X sc + wc ‖2
2 = ‖Yc bc + zc ‖2

2 = 1, we then minus 
κc
2 ‖X sc + wc ‖2

2 and plus 

κc‖Yc bc + zc ‖2
2 into Eq. (10). At the same time, it is easier to derive

1
2‖X sc + wc ‖2

2 = 1
2‖Xsc‖2

2 + sc⊤X⊤Xwc + 1
2‖Xwc‖2

2 ≤ ‖Xsc‖2
2 + ‖Xwc‖2

2 .

Therefore, we easily have the upper bound of Eq. (10), thereby Eq. (6) as follows

min
S, W

∑
c = 1

C
κc‖Xsc − Yc bc + zc ‖2

2 + κc‖Xwc − Yc bc + zc ‖2
2

+λs‖S‖G2, 1 + βs‖S‖2, 1 + λw‖W‖1, 1

s . t . ‖X sc + wc ‖2
2 = 1, ∀c .

(11)

Now by dropping the constraints, we have the objective function with respect to S as

min
S

∑
c = 1

C
κc‖Xsc − Yc bc + zc ‖2

2 + λs‖S‖G2, 1 + βs‖S‖2, 1, (12)

and that with respect to W as

min
W

∑
c = 1

C
κc‖Xwc − Yc bc + zc ‖2

2 + λw‖W‖1, 1, (13)

which completes the proof. ■

Since Eq. (8) is a multi-task regression problem, we can solve it using the off-the-shelf 

methods. We observe that the penalization of each sc is different due to different κc’s, and 

thus we separately solve each sc. Specifically, we first take the derivative of Eq. (8) with 

respect to sc, and then let it be zero, viz,

X⊤X + λs
κc

D + βs
κc

D sc = X⊤Yc bc + zc , (14)

where D is a block diagonal matrix with the k-th block being 1
2‖Sk‖F

Ik, and Ik is an identity 

matrix which has the same size as the k-th group. The grouping information can be 
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previously given based on the LD structure of SNPs. D is a diagonal matrix whose i-th 

diagonal element is 1
2‖si‖2

(i = 1, ⋯, p). Then we can iteratively obtain sc as follows

sc = X⊤X + λs
κc

D + βs
κc

D
−1

X⊤Yc bc + zc . (15)

Attributing to the ℓ1,1-norm penalty, wc’s in Eq. (9) are not coupled closely, indicating that 

each wc can be obtained separately. We take the derivative of Eq. (9) with respect to each wc 

respectively, and let it be zero, i.e.

X⊤X + λw
κc

D̆c wc = X⊤Yc bc + zc , (16)

where D̆c is a diagonal matrix with its i-th element being 1
2 wic

(i = 1, ⋯, p). Further, the wc 

can be attained by

wc = X⊤X + λw
κc

D̆c
−1

X⊤Yc bc + zc . (17)

Now both S and W are attained based on Theorem 1, we proceed to solve B and Z by fixing 

S and W.

b) Updating B and Z: Firstly, B and Z can be solved using the same Theorem 1 as 

shown above. We further find that each bc and zc are associated with each modality of 

imaging QTs, i.e. Yc. Therefore, bc and zc should be solved separately. In particular, bc and 

zc can be solved iteratively by fixing the remaining bc′ and zc′ c′ ≠ c , as well as S and W.

Then following the same procedure of solving wc, we easily have

bc = Yc
⊤Yc + βb

κc
Q

−1
Yc

⊤X sc + wc , (18)

by taking the derivative with respect to every bc separately, and letting them be zero. Q here 

is a diagonal matrix and its j-th element is 1
2‖bj‖2

(j = 1, ⋯, q).

Finally, the same procedure leads to

zc = Yc
⊤Yc + λz

κc
Q̆c

−1
Yc

⊤X sc + wc , (19)

where Q̆c is a diagonal matrix whose i-th diagonal element is 1
2 zjc

(j = 1, ⋯, q).

Combining Eqs. (18)–(19) together, we finally have the solution to B and Z as follows
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bc* = bc
‖Yc bc + zc ‖2

, and zc* = zc
‖Yc bc + zc ‖2

. (20)

Eqs. (14)–(20) pave the way to solve the dirty MTSCCA problem, we then show the pseudo-

code in Algorithm 1. To ensure efficiency, this algorithm iteratively updates S, W, B and Z 
when the pre-defined stopping condition, such as the maximum iterations or the tolerated 

error, is satisfied. Moreover, this algorithm is guaranteed to converge to a local optimum 

which is supported by the Theorem 2 in the next subsection.

Algorithm 1

The Dirty Multi-task SCCA Algorithm

Require:

X ∈ ℛn × p
, Yc ∈ ℛn × q

, c = 1, ···, C; λs, βs, λw, βb, λz

Ensure:

Output S, W, B, Z.

1: Initialize S ∈ ℛp × C
, W ∈ ℛp × C

, B ∈ ℛq × C
 and Z ∈ ℛq × C

;

2: while not convergence do

3:  Update sc according to Eq. (15), and update wc according to Eq. (17);

4:  Solve S* and W* according to Eq. (7);

5:  Update bc according to Eq. (18), and update zc according to Eq. (19);

6:  Solve B* and Z* according to Eq. (20);

7: end while

5) Convergence Analysis:

We have the following theorem regarding the dirty MTSCCA algorithm.

Theorem 2: The Algorithm 1 decreases the objective value of Eq. (5) in each iteration.

Proof: (1) We first prove that the objective decreases after updating S and W. We denote the 

updated S, W, B and Z as S, W, B and Z, respectively. From Eq. (15) we have

∑
c = 1

C
κc‖Xsc − Yc bc + zc ‖2

2 + λsTr S⊤DS + βsTr S⊤DS

≤ ∑
c = 1

C
κc‖Xsc − Yc bc + zc ‖2

2 + λsTr S⊤DS + βsTr S⊤DS .
(21)

Based on the definitions of D and D, we have
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∑
c = 1

C
κc Xsc − Yc bc + zc 2

2 + λs ∑
k = 1

K Sk
F
2

2 Sk
F

+ βs ∑
i = 1

p si
2
2

2 si 2

≤ ∑
c = 1

C
κc Xsc − Yc bc + zc 2

2 + λs ∑
k = 1

K Sk
F
2

2 Sk
F

+ βs ∑
i = 1

p Si
2
2

2 si 2
.

(22)

Since Sk
F −

sk F
2

2 Sk F
≤ Sk

F −
sk F

2

2 Sk F
, and si

2 −
si 2

2

2 si 2
≤ si 2 −

si 2
2

2 si 2
. (Lemma 1 in 

[7]), we apply both inequations to Eq. (22) with respect to each group features and 

individual one. This yields

∑
c = 1

C
κc‖Xsc − Yc bc + zc ‖2

2 + λs ∑
k = 1

K
Sk

F + βs ∑
i = 1

p
si

2

≤ ∑
c = 1

C
κc‖Xsc − Yc bc + zc 2

2 + λs ∑
k = 1

K
Sk

F + βs ∑
i = 1

p
si 2

∑
c = 1

C
κc‖Xsc − Yc bc + zc 2

2 + λs S
G2, 1

+ βs S
2, 1

≤ ∑
c = 1

C
κc‖Xsc − Yc bc + zc 2

2 + λs S
G2, 1

+ βs S
2, 1

.

(23)

Therefore, the objective value decreases when updating S. After that, we can also prove that 

the objective value decreases in each iteration when updating W. According to Theorem 1, 

the objective still decreases after scaling. This yields that the objective decreases after 

updating S and W.

(2) Similarly, we can prove that the objective also decreases with each update of B and Z.

The proof completes by combining conclusions (1) and (2). ■

According to Eq. (5), we know that the objective is lower bounded by 0. Therefore, given the 

Theorem 2, the Algorithm 1 is guaranteed to converge to a local optimum.

III. Experiments and Results

A. Experimental Setup

To evaluate the effectiveness of the proposed dirty MTSCCA, we choose two closely related 

methods as benchmarks. They are the multi-task SCCA (MTSCCA) [5] and the conventional 

multi-view/multi-set SCCA (mSCCA) [28]. Both methods can identify the complex bi-

associations among three or more data sets, and thus could integrate multiple modalities of 

imaging QTs in one model, while those conventional two-view SCCA cannot [28].
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The regularization parameters for each method should be fine tuned before experiments. In 

this paper, we employ the nested 5-fold cross-validation method. In particular, in the inner 

loop, parameters that generate the highest mean correlation coefficients will be selected as 

the optimal parameters, i.e. CV(λ, β) = 1
5 ∑j = 1

5 ∑c = 1
C Corr Xj uc j, Yc j vc j , where Xj and 

(Yc)j are the j-th testing sets in the inner loop, and (uc)j and (vc)j are the canonical weights 

learned from the inner training sets. Then the external loop calculates the final results based 

on the optimal parameters obtained from the inner loop. It is easy to know that too small 

parameters generate under-penalized results while too large ones generate over-penalized 

results. Therefore, we tune λs, βs, λw, βb and λz from a moderate interval 10i (i = −5, −4, · · 

·, 0, · · ·, 4, 5) via the grid search strategy.

Apart from the regularization parameters, task weight parameters κc’s could affect the 

performance as well. Fortunately, they merely imply the priority of different tasks, and thus 

have less impact compared with those regularization parameters. For example, if the sMRI 

data is of good quality with high resolution, we then prefer a high weight for sMRI-derived 

SCCA task (the SCCA task between sMRI data and SNPs) and small weights for those 

remaining tasks such as AV45-SNP and FDG-SNP. We, as is often the case, do not have the 

priori knowledge regarding the tasks’ priorities, thus we use equal weights for different 

tasks. As a result, we use κc = 1
C (c = 1, ⋯, C) in this study. The average results from 100 

repeated experiments are shown to assure a stable result. In this study, our method is 

terminated when both maxc sc + wc
t + 1 − sc + wc

t ≤ ϵ and 

maxc ∣ bc + zc
t + 1 − bc + zc

t ∣ ≤ ϵ are met, where ϵ is the pre-defined tolerable error and is 

set to ϵ = 10−5 according to experiments.

B. Results on Synthetic Data

1) Data Source: We simulate four synthetic data sets using different numbers of 

samples, features, and noise intensities. The first three data sets are generated from the same 

ground truth, however, they have different levels of noise. Specifically, the signal-to-noise 

ratio (SNR) in the first data set is the smallest, followed by the second and third one. We 

expect that this could show a method’s performance under different noise levels. The fourth 

data set simulates a high-dimensional situation. The ground truthes of these data sets are 

listed below, which are shown in Fig. 2 (top row).

• Data 1: n = 100, u = (0, ⋯, 0
50

, 1, ⋯, 1
40

, 0, ⋯, 0
60

)⊤, v1 = (0, ⋯, 0
45

, 1, ⋯, 1
30

, 0, ⋯, 0
45

)⊤, 

v2 = (0, ⋯, 0
20

, 2, ⋯, 2
20

, 0, ⋯, 0
20

, 1, ⋯, 1
20

, 0, ⋯, 0
40

)⊤, v3 = (1, ⋯, 1
20

, 0, ⋯, 0
30

, 2, ⋯, 2
40

, 0, ⋯, 0
30

)⊤, 

and v4 = (0, ⋯, 0
45

, 1.5, ⋯, 1.5
30

, 0, ⋯, 0
45

)⊤. We generate a random latent vector μ of 

length n with unit norm. The data matrix X is generated from xℓ,i ~ N(μℓui, σx), 

where σx = 5 denotes the noise variance. Yj is generated from 

yl, j c N μlvj, c, σyc  with σy1 = σy2 = σy3 = σy4 = 5.
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• Data 2 ~ Data 3: These two data sets are generated using the same ground truth 

as Data 1 but with different noise levels, i.e. σx = σy1 = σy2 = σy3 = σy4 = 0.5 for 

Data 2, and σx = σy1 = σy2 = σy3 = σy4 = 0.1 for Data 3. Hence the true correlation 

coefficients of these three data sets are different. In particular, Data 1 has the 

lowest correlation coefficient, followed by Data 2, and Data 3 has the highest 

correlation coefficient.

• Data 4: n = 500, σx = σy1 = σy2 = σy3 = σy4 = 0.1,

u = (0, ⋯, 0
400

, 1, ⋯, 1
200

, 0, ⋯, 0
300

, 2, ⋯, 2
100

, 0, ⋯, 0
1000

)⊤, v1 = (0, ⋯, 0
300

, 1.5, ⋯, 1.5
100

, 0, ⋯, 0
200

)⊤, 

v2 = (0, ⋯, 0
250

, 1.5, ⋯, 1.5
150

, 0, ⋯, 0
200

)⊤, v3 = (0, ⋯, 0
250

, 1.5, ⋯, 1.5
150

, 0, ⋯, 0
200

)⊤ and 

v4 = (0, ⋯, 0
250

, 1.5, ⋯, 1.5
150

, 0, ⋯, 0
200

)⊤. The data matrices X is created by xℓ,i ~ N(μℓui, 

σx), and Yc is generated by yl, j c N μlvj, c, σyc , with the random latent vector μ 

of length n with unit norm.

2) Bi-multivariate Association Identification: We run all methods on four synthetic 

data sets, and show the training and testing canonical correlation coefficients (CCCs) in 

Table I. The CCCs of the first three data sets clearly show the effectiveness of each method 

under different noise levels. All three methods perform poorly on the first data set, since they 

are all overfitted. The results on Data 2 and Data 3 become better and better as the noise 

level decreases. We can also observe that both MTSCCA and our method outperform 

mSCCA owing to the multi-task modeling paradigm, and moreover, our method perform 

slightly better than MTSCCA, which is supported by the parameter decomposition. The 

CCCs of the fourth data set confirm this too. This reveals that, owing to the multi-task 

learning framework and parameter decomposition, the ability of identifying bi-multivariate 

associations could be improved.

3) Task-consistent and Task-specific Feature Selection: In addition to the CCC, 

selecting relevant features is also very important and meaningful. The heat maps in Fig. 2 

present the decomposed feature selection results of our method, as well as those of the 

benchmarks. For our method, the identified features with non-zero weight of the task-

consistent and task-specific components are quite interesting. The proposed method can not 

only show the features shared across multiple tasks, but also identify features that are only 

associated with a specific task. In contrast, both mSCCA and MTSCCA only return a single 

feature selection results with task-consistent or task-specific component fused. This could be 

insufficient when we care about which features are task-consistent or which ones are task-

specific. It is interesting that a part of task-specific features are missed on Data 2 and Data 3. 

The reason is that, in this study, we only focus on the leading pair of canonical weights, 

which could omit those features with relative weak signals. We then keep on identifying the 

second pair of canonical weights, and our method successfully identifies these missed task-

specific features. In summary, both CCCs and feature selection results demonstrate that our 

method is a powerful learning approach in this simulated multi-modal bi-association 

identification problem.
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C. Results on Real Neuroimaging Genetics Data

1) Data Source: The genotyping and brain imaging data used in this article were 

obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database 

(adni.loni.usc.edu). One primary goal of ADNI has been to test whether serial magnetic 

resonance imaging (MRI), positron emission tomography (PET), other biological markers, 

and clinical and neuropsychological assessment can be combined to measure the progression 

of mild cognitive impairment (MCI) and early Alzheimer’s disease (AD). For up-to-date 

information, see www.adni-info.org.

The neuroimaging data of 755 non-Hispanic Caucasian participants were downloaded from 

the ADNI website (adni.loni.usc.edu), and the details of the participant characteristics are 

shown in Table II. There are five kinds of diagnostic groups, i.e. healthy control (HC), 

significant memory concern (SMC), early mild cognitive impairment (EMCI), late mild 

cognitive impairment (LMCI) and AD, and each of them have three modalities of imaging 

data, including 18F florbetapir (AV45) PET scans, fluorodeoxyglucose (FDG) PET scans, 

and sMRI scans. These multi-modal imaging data were aligned to each subject’s same visit. 

The sMRI scans were processed with voxel-based morphometry (VBM) by SPM [29]. And, 

every scan had been aligned to a T1-weighted template image, segmented to the gray matter 

(GM), the white matter (WM) and the cerebrospinal fluid (CSF) maps, normalized to the 

standard Montreal Neurological Institute (MNI) space as 2×2×2 mm3 voxels, and smoothed 

with an 8mm FWHM kernel. Besides, the AV45-PET and FDG-PET scans were registered 

into the same MNI space. We further extracted region-of-interest (ROI) level measurements 

based on the MarsBaR automated anatomical labeling (AAL) atlas [30]. They were mean 

gray matter densities for VBM-sMRI scans, beta-amyloid depositions for AV45-PET scans 

and glucose utilizations for FDG-PET scans. In the experiments, the imaging measures were 

pre-adjusted to remove the effects of the baseline age, gender, education, and handedness by 

the regression weights derived from the HC subjects.

The genotyping data were also downloaded from the ADNI website. They were genotyped 

using the Human 610-Quad or OmniExpress Array (Illumina, Inc., San Diego, CA, USA), 

and preprocessed using the standard quality control (QC) and imputation steps. According to 

the quality-controlled SNPs, the missing genotypes were imputed by the MaCH software 

tool [31]. Among all human chromosomes, the chromosome 19 has the highest gene density 

of all human chromosomes, more than double the genome-wide average [32], [33]. In 

addition, this chromosome also includes the well-known AD risk genes such as APOE, 

TOMM40 and ABCA7. Therefore, a bi-multivariate association study between this 

chromosome and whole brain imaging markers could be of great interest, and has potential 

to yield interesting AD risk factors. We investigated 1,011 SNPs from chromosome 19 with 

the well-known AD risk genes such as APOE included. The linkage disequilibrium (LD) 

block information, indicating the structure of highly correlated SNPs, was used as the prior 

knowledge. Our aim is to study the associations between multi-modal imaging QTs (GM 

densities for VBM-sMRI scans, amyloid values for AV45-PET scans and glucose 

utilizations for FDG-PET scans) and this segment of SNPs, and select those relevant 

imaging markers and genetic loci.
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2) Bi-multivariate Association Identification: We first show the training and testing 

CCCs in Table III, which indicates the strength of the identified bi-multivariate associations 

between SNPs and imaging QTs of three modalities. There are three CCCs for each method 

since we have three imaging modalities, thereby three SCCA tasks. In this table, we clearly 

observe that the proposed method obtains better CCCs than or comparable CCCs to both 

mSCCA and MTSCCA in terms of each task. The multi-task SCCA also performs better 

than mSCCA for most cases, confirming the superior modeling capability of multi-task 

learning in multi-modal imaging genetic scenes. This demonstrates that, decomposing 

canonical weights into task-consistent and task-specific components, and penalizing them 

distinctly to pursue a diverse feature selection, the dirty MTSCCA exhibits improved bi-

multivariate associations.

3) Modality-consistent and Modality-specific Feature Selection: Now we 

investigate the identified SNPs and imaging QTs based on the absolute values of canonical 

weights. The heat maps in Fig. 3 show the feature selection for SNPs. Since our model has 

two separate components for SNPs, i.e. the task-consistent component S and the task-

specific component W, we show both of them here. mSCCA yields one canonical weight 

vector for SNPs, and thus we repeatedly stack its weight vector for three times. We observe 

that all SNPs with non-zero values of our method have been shown to be relevant to the 

progression of AD. For example, rs429358 (APOE) is identified by both S and W, 

demonstrating its strong association with AD. In addition, the dirty MTSCCA shows a clear 

task-consistent pattern, indicating that these SNPs, e.g. rs12721051 (APOC1) [34], 

rs56131196 (APOC1) [34], rs438811 (APOC1) [35], rs483082 (APOC1), rs5117 (APOC1) 

etc., could be identified no matter which imaging technology is employed. Our method and 

MTSCCA identify more AD-related loci than mSCCA, demonstrating the multi-task 

modeling possesses comprehensive feature selection capacity. The heat maps of imaging 

QTs, shown in Fig. 4, exhibit interesting task-consistent and task-specific profiles. Our 

method shows that the left hippocampus, the left olfactory sulcus [36], the right inferior 

parietal lobule [37] and the left amygdala [38] exhibit clearly task-consistent patterns, 

indicating that these brain areas can be identified by all imaging technologies. Besides, task-

specific Z shows that the beta-amyloid deposition in the left medial orbitofrontal cortex [39] 

and the left medial frontal gyrus could be identified using the AV45-PET scans. The left and 

right angular gyri [40], and the cingulum [41] are identified by using the FDG-PET scans. 

Both left and right of the eighth cerebellum [42] are highlighted when using the VBM-sMRI 

scans. MTSCCA and mSCCA can also identify several meaningful brain areas, however, 

they could not uncover the different types of complex associations between SNPs and 

imaging QTs of multiple modalities. This real data study demonstrates that the dirty 

MTSCCA could be very promising and meaningful in multi-modal brain imaging genetics.

IV. Discussion

In this section, we investigate the selected features regarding the SNPs and imaging QTs, 

and their relationships to the diagnosis status. This could further demonstrate the stratified 

feature selection ability of the proposed method.

Du et al. Page 15

IEEE Trans Med Imaging. Author manuscript; available in PMC 2021 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A. Top Selected Loci

We average the canonical weights across five folds to select the top ten SNPs and show them 

in Table IV where both the modality-consistent and modality-specific SNPs are contained. 

The top ten modality-consistent SNPs and those of the modality-specific are similar and the 

major difference is their SNPs’s priorities. This is interesting since it reveals that imaging 

QTs from different scanning machines focus on different aspects of Alzheimer’s disease, 

thereby leading to the identification of SNPs with distinct priorities. At the same time, as 

long as the relevant ROIs are correctly identified, the same sets of SNPs could be identified 

no matter which imaging technology is used. It is worth noting that rs429358, the well-

known AD-risk locus, ranks the first within all three modality-specific results, while it is not 

the first one in the modality-consistent result. This seems unusual at first glance but the truth 

is not. In the task-consistent results, the first six loci are from the same LD group and thus 

their combined effect might dominate rs429358 owing to the G2,1-norm for consistent 

feature selection across multiple tasks.

To understand the modality-specific SNPs, we choose rs10119, rs73052335 and rs12721046 

for further investigation because they are identified by only one or two SCCA tasks. The 

one-way analysis of variance (ANOVA) is applied to verify a SNP’s effect on the diagnosis 

with age, gender, years of education and handedness being included as covariates. The p-

values show that all three SNPs pass through the significance level (rs10119, p = 1.42 × 

10−14; rs73052335, p = 6.13 × 10−12; rs12721046, p = 8.41 × 10−11), indicating their strong 

relationship to the AD. This demonstrates that the dirty MTSCCA could successfully find 

out meaningful modality-specific SNPs.

B. Top Selected Brain Imaging ROIs

The top ten brain imaging ROIs based on the averaged canonical weights are shown in Table 

V. We observe that distinct sets of modality-consistent and modality-specific ROIs are 

identified in our analyses. Within the modality-consistent ROIs, three types of imaging 

measurements show high consistency which is guaranteed by the ℓ2,1-norm. Meanwhile, 

there are still modality-specific ROIs such as the left inferior occipital lobe of FDG-PET and 

left insula gyrus of VBM-sMRI scans. The brain glucose hypometabolism in the occipital 

lobe revealed by the FDG-PET, and the atrophy in the left insula gyrus revealed by the 

VBM-sMRI have been shown to be related to AD [43], [44]. This complex and diverse 

neurodegenerative patterns of AD is successfully identified by our method, endorsing the 

necessity of the modality-specific feature selection, which further underpins the motivation 

and significance of this study.

We further investigate the selected modality-specific ROIs. The first ROI of each SCCA task 

is the left medial orbitofrontal gyrus (AV45-PET), the left posterior cingulate gyrus (FDG-

PET), and the left hippocampus lobe (VBM-sMRI), respectively. The one-way ANOVA 

analysis shows that their main effects reach the significance level (p < 2.2×10−16) when 

including age, gender, education and handedness as covariates. This is very interesting since 

our method not only identifies significant imaging ROIs, but also assigns different priorities 

to different ROIs based on different imaging technologies. Therefore, our method provides a 

diverse and meaningful clue for AD diagnosis and monitoring.
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C. Population Stratification Analysis

We here conduct the population stratification analysis to further evaluate the effectiveness of 

the modality-specific feature selection. For the sake of simplicity, we investigate the first 

ROI of each SCCA task associating with each imaging modality, since those remaining ROIs 

can be analyzed in the same way.

Fig. 5(a) presents distributions of the beta-amyloid deposition in the left medial orbitofrontal 

gyrus among different diagnostic groups and different imaging modalities. We clearly 

observe that the beta-amyloid deposition patterns exhibits differently. In particular, the beta-

amyloid deposition shows a significant increase (HCs vs. ADs: p = 6.93 × 10−19, SMCs vs. 

ADs: p = 5.34×10−16, EMCIs vs. ADs: p = 8.73×10−14, LMCIs vs. ADs: p = 2.12 × 10−4) in 

the AD group compared with other groups. This significance also exists in EMCIs and 

LMCIs compared with those other diagnostic groups. The AD group also shows a clear 

brain glucose hypometabolism (FDG-PET) in this ROI compared with those other groups. It 

is interesting that, still in the left medial orbitofrontal gyrus, the significant atrophy happens 

in dementia groups such as LMCIs and ADs, while no pronounced difference among 

preclinical and prodromal diagnostic groups such as EMCIs, SMCs and HCs. The proposed 

dirty MTSCCA, as expected, identifies this AD risk ROI in consistent with its diverse 

distributions among different groups. The similar patterns can also be observed in the left 

posterior cingulate gyrus in Fig. 5(b), where the hypometabolism, revealed by the FDG-PET, 

shows a significantly lower level in AD patients than non-AD subjects. In contrast, the beta-

amyloid deposition in this ROI shows no significant difference among preclinical and 

prodromal groups, and also shows no significant difference between dementia groups. 

Interestingly, between preclinical or prodromal groups and dementia groups, the beta-

amyloid deposition reaches the significance level. Fig. 5(c) shows that more severe atrophy 

happens to the left hippocampus lobe in AD patients compared with those non-AD subjects. 

The severer the atrophy, the severer the dementia is. Moreover, both reduced beta-amyloid 

deposition and glucose hypometabolism happen to the left hippocampus lobe, which is 

different from those observations in Fig. 5(a) and Fig. 5(b). Combined three subfigures 

together, we obtain the similar results to previous works which show that regional beta-

amyloid deposition and regional glucose metabolism have little to no association [45]. On 

the contrary, we cannot draw the same conclusion without identifying modality-specific 

imaging QTs.

Despite the pairwise comparisons among different diagnostic groups, it is also necessary to 

interpret the identified phenotype-genotype associations within each group in this imaging 

genetic study. On this account, we use the first modality-specific QT-SNP pair in this refined 

analysis. Certainly, those modality-consistent and modality-specific QT-SNP pairs can be 

analyzed in the same way. Two-way ANOVA results show that the main effects of 

rs73052335 genotype (p = 2.55 × 10−30) and diagnosis (p = 2.64 × 10−16) on beta-amyloid 

deposition in the left medial orbitofrontal gyrus reach the significant level, while their SNP-

by-diagnosis interaction effect (p = 0.46) is not. In addition, Fig. 6(a) contains pairwise 

comparisons among the heterozygote CA, homozygous AA and CC within each groups 

respectively. We observe that, excluding SMCs, subjects with heterozygote CA and 

homozygous CC have higher deposition than those with homozygous AA. Furthermore, 
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subjects with CC tends to hold higher deposition than heterozygote CA in EMCIs and 

LMCIs but not ADs. This reveals that subjects with heterozygote CA and homozygous CC 

in rs73052335 locus are vulnerable to have higher beta-amyloid deposition.

As for brain glucose metabolism, using measurements in the left posterior cingulate gyrus, 

two-way ANOVA results reveal that main effects of rs10119 genotype (p = 1.85 × 10−10), 

diagnosis (p = 3.59 × 10−24), as well as their SNP-by-diagnosis interaction (p = 0.02) are 

significantly different among distinct groups. The histogram, in Fig. 6(b), within each group 

indicates that subjects with the minor allele A, compared with ones without it, suffer from 

severer glucose hypometabolism in left posterior cingulate gyrus. In LMCIs and ADs, 

somewhat severer glucose hypometabolism happens to patients with heterozygote AG than 

those with homozygous AA, while this is not for HCs, SMCs and EMCIs. These results 

indicate that subjects with heterozygote AG and minor homozygous are vulnerable to 

severer glucose hypometabolism.

The atrophy in the left hippocampus is a well-known AD hallmark. The main effects of 

rs12721046 genotype (p = 6.38×10−3) and diagnosis (p = 6.91×10−29) are pronounced 

among distinct groups. Fig. 6(c) shows that atrophy patterns for subjects with heterozygote 

AG, homozygous GG and AA exhibit distinctly across groups. In particular, subjects with 

homozygous AA suffer from heavy atrophy in left hippocampus lobe in HCs, SMCs, EMCIs 

and LMCIs, but not in ADs. This is interesting and further investigation should be 

warranted.

In summary, results above might be caused by the complicated pathogenesis that hallmarks 

of AD of different imaging technologies exhibit regional heterogeneity. On one hand, this 

diversity and complexity captured by different imaging technologies such as PET and sMRI, 

offers the opportunity to understand the pathogenesis of AD comprehensively. On the other 

hand, it makes an urgent request for the modality-consistent and the modality-specific 

feature selection, since modality-consistent (MTSCCA [5] and mSCCA [16]) or modality-

specific (conventional independent SCCA [16]) methods alone are insufficient. Finally, these 

results demonstrate that the dirty MTSCCA can identify both modality-consistent and 

modality-specific SNPs, imaging QTs and their associations in an integrated model. 

Therefore, our method is of great importance and meaning for multi-modal brain imaging 

genetics benefitting from its novel multi-modal bi-multivariate learning and clever parameter 

decomposition strategy.

V. Conclusions

Imaging data collected by different technologies, measuring the same brain distinctly, might 

carry complementary information. In this paper, we propose a dirty multi-task SCCA 

method which incorporates multiple modalities of imaging data into a unified model. By 

decomposing the SCCA’s canonical weights into the task-consistent component and the 

task-specific component, and penalizing them distinctly, our method has the ability of 

identifying diverse and meaningful bi-multivariate associations between SNPs and imaging 

QTs. We derive an efficient optimization algorithm to solve the dirty model, and it is 

guaranteed to converge.
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We compared the dirty MTSCCA with the conventional multi-view SCCA (mSCCA) and 

mutli-task SCCA (MTSCCA) on both synthetic data sets and real neuroimaging genetic 

data. The four synthetic data sets have different numbers of samples, features, and noises. 

The results on synthetic data sets demonstrated that our method improved both correlation 

coefficients and feature selection results. The real neuroimaging genetic data were 

downloaded from the ADNI database. Our method also obtained better performance than the 

benchmarks with higher correlation coefficients and clearer canonical weight patterns. 

Besides, our method identified task-consistent and task-specific features with respect to 

SNPs and imaging QTs. The post analysis showed that most of the top ten SNPs and ROIs, 

including both task-consistent and task-specific markers, are correlated with AD. The task-

specific ROIs identified by our method showed promising consistency with previous studies 

that different ROIs could be the hallmark of AD if different imaging technologies were used. 

This demonstrated the effectiveness of the proposed dirty multitask SCCA, and further 

demonstrated it could be a powerful tool in big brain imaging genetics. Since the diagnosis 

status could be helpful for identifying interesting SNPs and imaging QTs, we intend to 

incorporate the diagnosis status into the model to make it supervised.
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Fig. 1. 
Illustration of the group-sparsity, individual-sparsity and element-sparsity for canonical 

weight U. The group-sparsity indicates that SNPs in the same group are informative for all 

SCCA tasks simultaneously. The individual-sparsity across all tasks indicates that a SNP 

(imaging QT) is informative for all SCCA tasks. The element-sparsity indicates that a SNP 

(imaging QT) is only informative for a specific SCCA task.
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Fig. 2. 
Comparison of canonical weights in terms of each task for synthetic data sets. For each data 

set, the canonical weights U is shown on the left, and V is shown on the right. The top row 

shows the ground truth of U and V, and the remaining rows correspond to the SCCA 

methods: (1) mSCCA; (2) MTSCCA; (3) the proposed method. Our method has two weights 

for X and each Yc owing to the parameter decomposition. Within each panel, there are four 

rows corresponding to four SCCA tasks (denoted as T1~T4) between X and each Yc.
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Fig. 3. 
Comparison of canonical weights of SNPs in terms of each task. Each row corresponds to an 

SCCA method: (1) mSCCA; (2) MTSCCA and (3) the proposed method. Our method has 

two weights for SNPs and imaging QTs owing to the parameter decomposition. Within each 

panel, there are three rows corresponding to three SCCA tasks.
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Fig. 4. 
Comparison of canonical weights of imaging QTs in terms of each task. Each row 

corresponds to an SCCA method: (1) mSCCA; (2) MTSCCA and (3) the proposed method. 

Our method has two weights for SNPs and imaging QTs owing to the parameter 

decomposition. Within each panel, there are three rows corresponding to three SCCA tasks.
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Fig. 5. 
The measurement distributions of imaging QTs (mean value the first ROI of each SCCA 

task) among different diagnostic groups and different imaging modalities. (a) The left medial 

orbitofrontal gyrus. (b) The left posterior cingulate gyrus. (c) The left hippocampus lobe.
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Fig. 6. 
Pairwise comparisons for modality-specific QT-SNP-diagnosis interactions within HCs, 

SMCs, EMCIs, LMCIs and ADs, respectively. Two-way ANOVA was applied to access the 

effects of genotype and baseline diagnosis on imaging QTs. Age, gender, years of education, 

handedness were included as covariates. (a) The beta-amyloid deposition in the left medial 

orbitofrontal gyrus, rs73052335 and diagnostic groups. (b) The glucose metabolism in the 

left posterior cingulate gyrus, rs10119 and diagnostic groups. (c) The atrophy in the left 

hippocampus lobe, rs12721046 and diagnostic groups.
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TABLE II

Participant characteristics.

HC SMC EMCI LMCI AD

Num 182 75 217 184 97

Gender (M/F) 89/93 29/46 113/104 96/88 54/43

Handedness (R/L) 163/19 65/10 194/23 165/19 89/8

Age (mean±std) 73.93±5.51 71.77±5.76 70.59±7.16 71.89±7.92 73.99±8.44

Education (mean±std) 16.43±2.68 16.87±2.71 15.94±2.64 16.14±2.92 15.60±2.61
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TABLE III

CCCs (mean±std) estimated between SNPs and imaging QTs of three modalities.

Training CCCs

SNP-AV45 SNP-FDG SNP-VBM

mSCCA 0.44±0.01 0.33±0.01 0.25±0.02

MTSCCA 0.47±0.01 0.35±0.01 0.29±0.01

Our Method 0.48±0.01 0.36±0.01 0.29±0.01

Testing CCCs

mSCCA 0.41±0.07 0.29±0.07 0.21±0.07

MTSCCA 0.43±0.07 0.30±0.06 0.19±0.08

Our Method 0.44±0.07 0.30±0.06 0.21±0.07
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TABLE IV

Top ten modality-consistent and modality-specific SNPs by averaged canonical weights.

Modality-consistent AV45-specific FDG-specific VBM-specific

rs12721051 rs429358 rs429358 rs429358

rs56131196 rs12721051 rs12721051 rs12721051

rs4420638 rs56131196 rs56131196 rs56131196

rs438811 rs4420638 rs4420638 rs4420638

rs483082 rs769449 rs769449 rs438811

rs5117 rs10414043 rs10414043 rs483082

rs429358 rs7256200 rs7256200 rs5117

rs769449 rs438811 rs10119 rs10119

rs10414043 rs483082 rs438811 rs769449

rs7256200 rs73052335 rs483082 rs12721046

IEEE Trans Med Imaging. Author manuscript; available in PMC 2021 November 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Du et al. Page 32

TA
B

L
E

 V

To
p 

te
n 

m
od

al
ity

-c
on

si
st

en
t a

nd
 m

od
al

ity
-s

pe
ci

fi
c 

R
O

Is
 b

y 
av

er
ag

ed
 c

an
on

ic
al

 w
ei

gh
ts

.

M
od

al
it

y-
co

ns
is

te
nt

M
od

al
it

y-
sp

ec
if

ic

A
V

45
F

D
G

V
B

M
A

V
45

F
D

G
V

B
M

H
ip

po
ca

m
pu

s-
L

ef
t

H
ip

po
ca

m
pu

s-
L

ef
t

H
ip

po
ca

m
pu

s-
L

ef
t

Fr
on

ta
l-

M
ed

-O
rb

-L
ef

t
C

in
gu

lu
m

-P
os

t-
L

ef
t

H
ip

po
ca

m
pu

s-
L

ef
t

O
lf

ac
to

ry
-L

ef
t

C
in

gu
lu

m
-P

os
t-

L
ef

t
Pa

ri
et

al
-I

nf
-R

ig
ht

Fr
on

ta
l-

su
p-

M
ed

ia
l-

L
ef

t
A

ng
ul

ar
-L

ef
t

C
er

eb
el

um
-8

-L
ef

t

Pa
ri

et
al

-I
nf

-R
ig

ht
O

lf
ac

to
ry

-L
ef

t
A

m
yg

da
la

-L
ef

t
Fr

on
ta

l-
M

id
-R

ig
ht

H
ip

po
ca

m
pu

s-
L

ef
t

Pa
ri

et
al

-I
nf

-R
ig

ht

A
m

yg
da

la
-L

ef
t

Pa
ri

et
al

-I
nf

-R
ig

ht
C

er
eb

el
um

-8
-L

ef
t

C
er

eb
el

um
-6

-R
ig

ht
C

in
gu

lu
m

-P
os

t-
R

ig
ht

A
m

yg
da

la
-L

ef
t

C
in

gu
lu

m
-P

os
t-

L
ef

t
A

m
yg

da
la

-L
ef

t
O

lf
ac

to
ry

-L
ef

t
O

lf
ac

to
ry

-L
ef

t
A

m
yg

da
la

-L
ef

t
C

er
eb

el
um

-8
-R

ig
ht

Fr
on

ta
l-

su
p-

M
ed

ia
l-

R
ig

ht
A

ng
ul

ar
-L

ef
t

V
er

m
is

-8
Fr

on
ta

l-
su

p-
M

ed
ia

l-
R

ig
ht

A
ng

ul
ar

-R
ig

ht
V

er
m

is
-8

A
ng

ul
ar

-L
ef

t
C

er
eb

el
um

-8
-L

ef
t

C
er

eb
el

um
-8

-R
ig

ht
H

ip
po

ca
m

pu
s-

L
ef

t
O

cc
ip

ita
l-

In
f-

L
ef

t
O

lf
ac

to
ry

-R
ig

ht

C
er

eb
el

um
-6

-R
ig

ht
O

cc
ip

ita
l-

In
f-

L
ef

t
A

ng
ul

ar
-L

ef
t

C
er

eb
el

um
-3

-L
ef

t
V

er
m

is
-1

0
C

er
eb

el
um

-9
-L

ef
t

V
er

m
is

-8
V

er
m

is
-8

C
in

gu
lu

m
-P

os
t-

L
ef

t
Fr

on
ta

l-
M

id
-L

ef
t

C
er

eb
el

um
-1

0-
L

ef
t

C
au

da
te

-R
ig

ht

Fr
on

ta
l-

M
id

-O
rb

-R
ig

ht
C

in
gu

lu
m

-P
os

t-
R

ig
ht

In
su

la
-L

ef
t

Te
m

po
ra

l-
M

id
-R

ig
ht

C
er

eb
el

um
-4

-5
-L

ef
t

O
cc

ip
ita

l-
M

id
-R

ig
ht

IEEE Trans Med Imaging. Author manuscript; available in PMC 2021 November 01.


	Abstract
	Introduction
	The Dirty Multi-task SCCA
	The Multi-task SCCA:
	The Proposed Dirty MTSCCA Model:
	Extension to the Weighted Model:
	The Optimization Algorithm:
	Updating S and W:
	Updating B and Z:


	Algorithm 1
	Convergence Analysis:

	Experiments and Results
	Experimental Setup
	Results on Synthetic Data
	Data Source:
	Bi-multivariate Association Identification:
	Task-consistent and Task-specific Feature Selection:

	Results on Real Neuroimaging Genetics Data
	Data Source:
	Bi-multivariate Association Identification:
	Modality-consistent and Modality-specific Feature Selection:


	Discussion
	Top Selected Loci
	Top Selected Brain Imaging ROIs
	Population Stratification Analysis

	Conclusions
	References
	Fig. 1.
	Fig. 2.
	Fig. 3.
	Fig. 4.
	Fig. 5.
	Fig. 6.
	TABLE I
	TABLE II
	TABLE III
	TABLE IV
	TABLE V

