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A pyramidal deep learning pipeline 
for kidney whole‑slide histology 
images classification
Hisham Abdeltawab1, Fahmi Khalifa1, Mohammed Ghazal2, Liang Cheng3,4, 
Dibson Gondim5 & Ayman El‑Baz1*

Renal cell carcinoma is the most common type of kidney cancer. There are several subtypes of 
renal cell carcinoma with distinct clinicopathologic features. Among the subtypes, clear cell renal 
cell carcinoma is the most common and tends to portend poor prognosis. In contrast, clear cell 
papillary renal cell carcinoma has an excellent prognosis. These two subtypes are primarily classified 
based on the histopathologic features. However, a subset of cases can a have a significant degree 
of histopathologic overlap. In cases with ambiguous histologic features, the correct diagnosis is 
dependent on the pathologist’s experience and usage of immunohistochemistry. We propose a new 
method to address this diagnostic task based on a deep learning pipeline for automated classification. 
The model can detect tumor and non-tumoral portions of kidney and classify the tumor as either 
clear cell renal cell carcinoma or clear cell papillary renal cell carcinoma. Our framework consists of 
three convolutional neural networks and the whole slide images of kidney which were divided into 
patches of three different sizes for input into the networks. Our approach can provide patchwise and 
pixelwise classification. The kidney histology images consist of 64 whole slide images. Our framework 
results in an image map that classifies the slide image on the pixel-level. Furthermore, we applied 
generalized Gauss-Markov random field smoothing to maintain consistency in the map. Our approach 
classified the four classes accurately and surpassed other state-of-the-art methods, such as ResNet 
(pixel accuracy: 0.89 Resnet18, 0.92 proposed). We conclude that deep learning has the potential to 
augment the pathologist’s capabilities by providing automated classification for histopathological 
images.

Kidney cancer is a major health problem due to morbidity, mortality, and health care costs. In 2021, the Ameri-
can Cancer Society estimates the occurrence of 76,080 new cases of kidney cancer and 13,780 deaths1. Renal 
cell carcinoma (RCC) is the most common type of kidney cancer, and is a heterogeneous group of malignancies 
originating from epithelial cells of the kidney parenchyma. There are more than 10 subtypes of RCC​2. These 
subtypes have distinct molecular characteristics, responses to treatment, and clinical outcomes3. The most preva-
lent subtypes of RCC are clear cell (70–80%), papillary (14–17%), chromophobe (4–8%), and clear cell papillary 
(4%)4. Classification of RCC subtypes is primarily based on morphological features observed on histopathologi-
cal hematoxylin and eosin–stained slides. Among the four subtypes, the possibility of morphologic overlap is 
greatest for a subset of clear cell RCC and clear cell papillary RCC cases. This is because both types of tumors can 
be exclusively comprised of clear cells and can have a predominant tubular/alveolar architecture. Some difficult 
cases can be accurately diagnosed by an experienced pathologist based on confident identification of distinctive 
histologic features. Immunohistochemistry can also facilitate the diagnosis since the two tumor types tumors 
typically have a distinct immunoprofile. Distinction between these two subtypes of RCC is crucial because of 
prognostic and treatment implications. Clear cell RCC tends to portend poor prognosis with high potential of 
becoming metastatic2. In contrast, clear cell papillary RCC is an indolent tumor with minimal risk of recur-
rence or metastasis2. There is only one case of metastatic clear cell papillary RCC in the literature5. Experts in 
kidney tumor pathology are limited and immunohistochemistry may not be readily available in a low resource 
setting. Therefore, there is a need to develop techniques that would facilitate this diagnostic process. Pathology 
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is transitioning to become a digital discipline and artificial intelligence–based image analysis techniques are 
showing promising results to augment pathologist’s capabilities6. Deep learning for RCC classification has been 
reported previously7, but the authors only included the three most common types of RCC which have little mor-
phologic overlap. We propose a pyramidal deep learning pipeline for kidney whole slide image (WSI) histology 
classification to address this challenging task, using a computer-aided diagnostic system of convolutional neural 
networks (CNNs) for the automated classification of kidney tissues (data and non-tumoral kidney tissues), to 
separate clear cell RCC from clear cell papillary RCC.

Our framework has the following contributions:

•	 The first study to discriminate between clear cell RCC and clear cell papillary RCC. This classification has 
high clinical relevance.

•	 We propose a pyramidal deep learning model that utilizes a hierarchy of three CNNs that process different 
image sizes. The deep learning improves the precision of the diagnosis and decreases human error. Further-
more, it delivers reproducible results and an objective assessment.

•	 Our approach can provide both patchwise and pixelwise classifications.
•	 We incorporated a statistical approach based on generalized Gauss-Markov random field (GGMRF) to remove 

inconsistencies in the final pixelwise classification.

Materials and methods
We proposed a computer-aided diagnostic system (Fig. 1) based on deep learning for the automated classifica-
tion of four kidney tissues: fat (Class 1), parenchyma (Class 2), clear cell papillary RCC (Class 3), and clear cell 
RCC (Class 4). We started with dividing the WSI into small patches to be fed to the CNNs. These patches were 
preprocessed to enhance their visual appearance and features, and then used to train and test our deep learning 
framework.

This study used de-identified digital images (whole slide images) acquired from archived pathology specimens 
at Indiana University. The dataset consists of images and associated histological findings only. Collection and 
analysis of this data was approved by the Institutional Review Boards (IRB) of Indiana University, USA (IRB 
1301010350) and of University of Louisville, USA (IRB 19.0778). This study was exempt from informed consent 
by both IRBs. Before digitization, we de-identified all of the hematoxylin and eosin–stained slides. We removed 
all patient identifying links from the used image files. From the institution files, we randomly chose 30 cases 
diagnosed with clear cell RCC and 22 cases diagnosed with clear cell papillary RCC. A pathologist with expertise 
in genitourinary pathology reviewed these cases. We selected one representative slide from each case. Then, we 
selected 7 slides for the parenchyma tissue type and 5 slides for the fat tissue type. We scanned the slides with a 
Philips UFS. A pathologist manually segmented the images into four tissue classes: fat, renal parenchyma, clear 
cell RCC, and clear cell papillary RCC.

Patch generation.  Our dataset consisted of 64 whole slide images (30 clear cell RCC, 22 clear cell papil-
lary RCC, 7 parenchyma, and 5 fat). To follow the best practice in validating our deep learning framework, the 
data were divided into two sets (Supplemental Table S1): Set 1 for training and testing (44 WSI) and Set 2 for 

Figure 1.   Schematic illustration of the proposed computer aided diagnostic system for automated classification 
of kidney tissues.
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final validation (20 WSI). The image slides are too large to be processed by a CNN. Therefore, generating image 
patches to form the image slides produces a suitable image size for the CNN and creates the high sample size 
necessary for obtaining accuracy from the deep learning framework. Overlapping patches were generated from 
Set 1 WSI using the three patch sizes: small = 250 × 250, medium = 350 × 350, and large = 450 × 450. A folder 
for every image slide was created, each containing folders for the three specific patch sizes. A 50% overlap was 
kept between each patch and the next one. The overlap between patches resulted in learning multiple viewpoints 
within the tissue by the deep learning framework. Patches that were dominated by background pixels were 
removed, resulting in approximately 70% available patches for training and the reminder for testing. Figure 2 
shows samples for the patches of the Set 1 (training) at different sizes. Overlapping patches were generated for 
Set 2 (validation). Again, for each image slide, the three different sizes were stored in individual folders. The 
degree of overlap was higher than of the first set; there was a five-pixels shift in both dimensions between each 
patch. During inference by our deep learning framework, we assign a label for each input patch and obtained 
multiple labels for the same pixel because a pixel can belong to multiple patches.

Preprocessing.  To enhance the visual appearance of the patches, we applied two preprocessing techniques 
for the two datasets: adaptive histogram equalization, followed by edge enhancement.

Adaptive histogram equalization.  Adaptive histogram equalization, an image processing technique, was used 
to improve the contrast of the image patches8. A standard histogram equalization generates only one histogram 
for the whole image; however, adaptive histogram equalization generates multiple histograms, from different 
parts in the image, which are used to redistribute the pixel values of the image. By doing this redistribution, 
the local contrast and the edges are enhanced in each part of the image. However, adaptive histogram equaliza-
tion is prone to noise amplification within homogeneous regions of the image where the histogram is highly 
concentrated. To prevent noise amplification, a variant was utilized that limits the amplification. This variant is 
called contrast limited adaptive histogram equalization. After the equalization step in contrast limited adaptive 
histogram equalization, the artificially generated boundaries were removed by employing bilinear interpolation 
between neighboring regions (Fig. 3A,B).

Image edge enhancement.  The edges of important objects were enhanced in image patches from the two data-
sets (Fig. 3A,C). Resulting in improvement of the visual perception of the image patches from the suppression 
of low frequency components. This high-pass filtering can be done in the spatial or the frequency domain; we 
filter the image patches by performing a convolution with a sharpening filter (Supplemental Figure S1) in the 
spatial domain. For example, if filter is h(m,n) and the input image patch is x(m,n), then the filtered image patch 
is given by Eq. (1).

(1)y(m, n) = h(m, n) ∗ x(m, n)

Figure 2.   Samples of the generated patches from different image slides at different patch sizes. Note that C1, C2, 
C3, and C4 refer to Class 1, Class 2, Class 3, and Class 4, respectively.
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Figure 3.   Examples of preprocessing step where original patches are shown in (A) and their histogram 
equalized versions are in (B) followed by edge enhancement (C).

Figure 4.   The pyramidal deep learning framework which consists of three convolutional networks for the 
automated classification of kidney histopathological images.
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where * is the convolution operator. Figure 3 shows examples for edge enhancement of the image patches.

The proposed deep learning framework.  The proposed deep learning framework (Fig. 4) is composed 
of three CNNs. Each CNN was designed to process a specific patch size. We referred to the three CNNs by CNNS, 
CNNM, and CNNL which processed patches with small (250 × 250), medium (350 × 350), and large (450 × 450) 
sizes, respectively. We designed the three CNNs to have the same architecture except the input size. The archi-
tecture of our CNNs was composed of a series of convolutional blocks where each block contained two convolu-
tional layers followed by a max-pooling layer. After convolutional blocks, there were two fully connected layers. 
Finally, the output of the fully connected layers was fed to a soft-max layer. The convolutional layer extracted 
feature maps by convolving the input image with a group of trainable kernels/filters. The feature maps contained 
features that described the input objects in the input image. Each convolutional layer produced a volume of fea-
ture maps because we used a filter group. In our design, filters of size 3 × 3 and stride of 1 were used. The spatial 
dimensions of the feature maps were reduced by a factor of two in max-pooling layers. The max-pooling layers 
kept the most prominent features and discarded those less important. Furthermore, max-pooling layers reduced 
the training time and the computational cost. We used a stride of 2 in max-pooling layers. To summarize, each 
CNN contains 8 convolutional layers and 4 max-pooling layers. The first fully connected layer was composed of 
twelve neurons and the second fully connected layer was composed of four neurons for four class classification. 
The purpose of the soft-max layer is to take the output of the last fully connected layer and convert it to class 
probabilities in the range of zero to one. The neuron which has the highest probability is the classification result 
for the input image patch. Table 1 shows our CNN configuration for an input patch of size 250 × 250. Similarly, 
the same concepts can be applied on the other patch sizes. Each CNN was trained by finding the minimum of the 
cross-entropy loss. In this loss, the cross-entropy between the predicted class probabilities and the ground truth 
labels is minimized. The cross-entropy loss is defined as follows:

where M is the number of classes. yo,i is a binary indicator (0 or 1) which indicates the correct classification that 
observation o belongs to class i. Po,i is the predicted probability that observation o belongs to class i. To overcome 
network overfitting, a drop out was used with a rate 0.2 in the convolutional and fully connected layers.

Output of the deep learning framework.  The input image patches are classified to one of the four classes. Then, 
we assembled the classification of the patches to obtain a classification map for the whole-slide image. Each CNN 
in our deep learning framework can provide a patchwise and pixelwise accuracy. Our CNNs provide patchwise 
accuracy because it can classify the input patch to one of the four classes. For one slide image, the patchwise 
accuracy is defined as follows:

(2)LBCE = −

M
∑

i=1

yo,i log(Po,i)

(3)Patchwise Accuracy =
number of correctly classified patches

total number of patches

Table 1.   The proposed CNN configuration for an input patch of size 250 × 250. Total number of 
parameters = 18,462.

Layer Depth kernel Stride Spatial Size Parameters

Input 3 – – 250 × 250 × 3 0

1. Conv 9 3 × 3 1 × 1 248 × 248 × 9 3 × 3 × 3 × 9

2. Conv 9 3 × 3 1 × 1 246 × 246 × 9 3 × 3 × 9 × 9

3. Max-pool 9 2 × 2 2 × 2 123 × 123 × 9 0

4. Conv 9 3 × 3 1 × 1 121 × 121 × 9 3 × 3 × 9 × 9

5. Conv 9 3 × 3 1 × 1 119 × 119 × 9 3 × 3 × 9 × 9

6. Max-pool 9 2 × 2 2 × 2 59 × 59 × 9 0

7. Conv 9 3 × 3 1 × 1 57 × 57 × 9 3 × 3 × 9 × 9

8. Conv 9 3 × 3 1 × 1 55 × 55 × 9 3 × 3 × 9 × 9

9. Max-pool 9 2 × 2 2 × 2 27 × 27 × 9 0

10. Conv 9 3 × 3 1 × 1 25 × 25 × 9 3 × 3 × 9 × 9

11. Conv 9 3 × 3 1 × 1 23 × 23 × 9 3 × 3 × 9 × 9

12. Max-pool 9 2 × 2 2 × 2 11 × 11 × 9 0

13. Concat 1 – – 1089 × 1 0

14. Full 1 – – 12 × 1 1089 × 12

15. Full 1 – – 4 × 1 12 × 4

16. Softmax 1 – – 4 × 1 0
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We estimated the patchwise accuracy for all slide images. Then, we estimated the average accuracy along 
slide images.

Patches of the second dataset had a five-pixels shift between each other. Therefore, each pixel in the image 
can belong to several patches. Normally, when a single patch was classified, a label was assigned; the same label 
was given to the pixels of this patch. When we assign the patch label to all pixels in the patch, the background 
was checked for pixels (pixels with green color) in the patch. Then, the background pixels were assigned a 
background label which was kept until the final labeling. Given that pixels belong to many patches, each pixel 
could have several labels. We used majority voting to convert the several labels of a pixel into one label. Then, a 
labeled slide image (on the pixel level) was created for each slide image. For a single slide image, the pixelwise 
accuracy was defined as follows:

The average of accuracies for all slide images was then estimated. To get an improved pixelwise accuracy, 
we combined the result of the three CNNs. Given that our framework contains three CNNs, we obtained three 
labels for each pixel in an inputted slide image. Again, we adopted a majority voting strategy to get one label for 
each pixel. Finally, the final pixelwise accuracy and the average accuracy over all slide images were estimated 
after combining CNNs results.

Generalized Gauss‑Markov random field smoothing.  We assigned a label for each pixel in the slide image, result-
ing in a labeled image for the WSI. To preserve continuity and remove inconsistencies (smooth) the labeled 
image, we considered the estimated labels (denoted δ) as samples generated from a generalized 2-D GGMRF 
model9. Each pixel had an eight-neighborhood voxel set (Supplemental Fig. S2). The voxelwise relaxation22 and 
maximum a posteriori estimates amplified the continuity of the δ values:

where the original label and its expected estimates are denoted by δs and δˆ
s, respectively, at s = (x,y) which is the 

observed 2D location. The GGMRF potential is denoted by ηs,r. The eight-neighborhood voxel set is denoted by 
νs (Supplemental Fig. S2). ρ and λ are scaling factors. α ∈ 1,2 is a parameter that determines the Laplace (α = 1) 
or the gaussian (α = 2) estimator’s prior√ distribution. β is a parameter that controls the degree of smoothness. 
We set α = 2, β = 1.01, ρ = 1, λ = 5, and ηs,r = 2. We hypothesized that GGMRF smoothing could increase the 
pixelwise accuracy of the labeled slide image.

Algorithm 1 summarizes how our deep learning framework produced a pixelwise classification map for the 
tested slide image and the estimated classification accuracy. The average accuracy over all slide images is reported 
in the “Results” section.

Results
The deep learning library, TensorFlow10, was used to develop our deep learning framework. The parameters of 
our deep learning framework, such as network architecture, should be optimized to obtain the optimal accuracy. 
We performed this optimization process using grid search strategy by searching for the framework parameters 
that gave the best system performance. The searched parameters were: (1) the number of convolutional layers, 
(2) kernel size, (3) initialization of the convolutional kernels, (4) number of filters, (5) stride, (6) patch size, (7) 
number of epochs, (8) learning rate, and (9) type of optimizer. The best parameters from the grid search are 
presented in Table 2. During training of our deep learning framework, we kept 20% of the training data for vali-
dation. After each epoch, we estimated the validation accuracy and validation loss. The best final model was the 
one that gave the highest validation accuracy. Data augmentation was a way to increase training data to avoid 
overfitting. We adopted a data augmentation strategy that consisted of random rotation, scaling, and flipping.

(4)Pixelwise Accuracy =
number of correctly classified pixels

total number of pixels

(5)
δ̂s = argmin

{

∣

∣

∣
δs − δ̂s

∣

∣

∣

α

+ ρα
�
β
∑

ηs,r

∣

∣

∣
δs − δ̂s

∣

∣

∣

β
}

δ̂s r ∈ vs

Table 2.   Optimal parameters of our deep learning framework.

Parameter Value

Number of convolutional layers 8

Kernel size 3 × 3

Kernel initialization He initialization11

Number of filters 9

Stride 1 (convolution), 2 (max-pooling)

Patch size 32

Number of epochs 60

Learning rate 0.001

Optimizer Adam
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We trained our framework by 70% of the patches of the first dataset and the remaining 30% was used for 
testing. During training and testing, each CNN of the three CNNs was fed by the appropriate patch size. After 
testing, we calculated the patchwise accuracy for the four tissue types. Supplemental Table S2 shows the patchwise 
accuracy for each tissue type. Furthermore, Fig. 5 shows samples of correctly and wrongly classified patches for 
the four kidney tissue types.

Algorithm 1: Pixelwise Classifica
on

Result: A pixelwise classifica
on map
Divide the input slide images into overlapped patches; 

for each CNN do
Assign a label for each patch;
Es
mate the patchwise accuracy by Eq. 3;
Assign labels for each pixel;
Apply majority vo
ng for the labels of each pixel;
Apply GGMRF smoothing;

Es
mate the pixelwise accuracy by Eq.4; 
end
Apply majority vo
ng for the results of the CNNs (fusion);
Apply GGMRF smoothing;
Es
mate the pixelwise accuracy by Eq.4;

After testing the framework using the testing set, we performed final validation using the second dataset. In 
the second dataset we made a five-pixels shift between successive patches to perform pixelwise classification in 
addition to the patchwise classification. The second dataset was fed to our framework one slide at time, dividing 
the slide image into the three patch sizes, and performed patch and pixel classification for that slide image. The 
average accuracy over slide images for each tissue type was recorded. Supplemental Table S3 shows the average 
of patchwise accuracy and the average of pixelwise accuracy of fat, parenchyma, clear cell papillary RCC, and 
clear cell RCC cases. The classifications of the three CNNs were combined. Each pixel in the tested slide image 
could have three labels and by applying majority voting we obtain one label for each pixel. Then, we estimated the 
pixelwise accuracy for the labeled slide image. To remove inconsistencies, we applied GGMRF smoothing on the 

Figure 5.   Samples of correctly and wrongly classified patches for the four.
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labeled slide image. To assess the performance of our method after obtaining the final labeling, we constructed 
a confusion matrix from which we estimated the accuracy, sensitivity, and specificity for detecting each tissue 
type. Supplemental Table S4 shows the confusion matrix of our proposed method and Supplemental Table S5 
shows the performance metrics for detecting each tissue type.

To compare the performance of our proposed approach with other deep learning models, we used two pre-
trained models: ResNet18 and ResNet34. In these two models, we replaced the last layers with two output layers. 
Then, fine-tuning was performed using the kidney data. Supplemental Tables S6, S7 show the confusion matrices 
for the labeling resulted from the use of ResNet18 and ResNet 34, respectively. Table 3 demonstrates a quantitative 
comparison in terms of accuracy, sensitivity, and specificity between our framework and ResNets. We performed 
a t-test to show that there is a significant difference between our method of approach and ResNets’. We obtained 
a P-value of 0.01 for ResNet18 and a P-value of 0.02 for ResNet34. The P-values are less than 0.05. Therefore, the 
null hypothesis can be rejected in the two tests. We can conclude that the differences between our method and 
other models are statistically significant. Supplemental Figures S3, Fig. S4, Fig. S5, and Fig. S6 show the labeling 
on the pixel level for the four tissue types.

Discussion
A computer-aided diagnostic system that can automatically classify kidney histopathological images was pro-
posed in this paper. We targeted the challenging task of classifying clear cell papillary RCC and clear cell RCC. 
The morphological features of these tumor subtypes overlap; however, they have different prognoses. Therefore, 
our task is necessary to best determine the appropriate clinical management. We used deep learning algorithms 
to build our system of classification. Our design of pyramidal CNN successfully determined the normal tissues 
and abnormal tissues and managed to differentiate between clear cell papillary RCC and clear cell RCC. Our 
approach also generated classification maps that classify the kidney histopathological images on the pixel-level. 
Finally, our method removed inconsistencies from the generated maps using GGMRF smoothing.

An enormous amount of information can be found in the whole slide histopathological images. The patholo-
gist spends significant time and effort to manually examine the histology image. As there is a growth in the 
number of diagnosed cancer cases, fast and accurate analysis of histology images is needed. Our study addresses 
this shortcoming by proposing a computer-aided diagnostic system that can automatically classify kidney tissues 
and detect kidney cancers. Our approach can be adopted to the diagnosis of other cancers.

As shown in Supplemental Table S3, our approach gave a high patchwise accuracy. In other words, our frame-
work can determine tissue types from image patches with different sizes. Patch size of 350 × 350 resulted in the 
best patchwise accuracy. For the cases of fat, parenchyma, and clear cell papillary RCC, patch size of 350 × 350 
resulted in better patchwise accuracy. For the case of clear cell RCC, patch sizes of 350 × 350 and 450 × 450 
resulted in similar patchwise accuracy; however, patch size of 350 × 350 gave better accuracy than patch size of 
250 × 250.

Our pyramidal framework allowed us to analyze the histopathological images at various spatial scales. Then, 
we combined the classifications of the three CNNs to obtain a better pixelwise classification. Combining the 
results allowed us to get better accuracy than from a single CNN. Furthermore, we can provide the pathologist 
the opportunity to analyze the pathology regions at small scale because our framework resulted in pixel-level 
classification. Patch size of 350 × 350 gave the best pixelwise accuracy. For the cases of parenchyma and clear 
cell RCC, better pixelwise accuracy could be obtained from patch size of 350 × 350. Similar pixelwise accuracy 
resulted from patches with sizes 350 × 350 and 450 × 450 for the cases of fat and clear cell papillary RCC; however, 
patch size of 350 × 350 had better accuracy than patch size of 250 × 250.

Supplemental Table S5 shows that the fusion of CNN classifications produced good classification for the pixels 
in terms of accuracy, sensitivity, and specificity. After fusion, we obtained the best performance metrics from fat 
cases while clear cell papillary RCC and clear cell RCC gave the lowest performance metrics. We can conclude 
that CNNs extract new features related to the underlying tissue texture from each patch size and fusing between 
CNN classifications resulted in enhancing the final classification.

Finally, using GGMRF smoothing enhanced the labeling of the input slide image as it worked on removing 
inconsistencies, (Table 3). Furthermore, our deep learning framework surpassed other state-of-the-art models, 
such as ResNet18 and ResNet34, demonstrating that the notion of fusing CNN decisions is fruitful for obtaining 
improved classification.

Data availability
The datasets generated during and/or analyzed during the current study are available from the corresponding 
author on a reasonable request.

Table 3.   Quantitative comparison between our approach and other deep learning models. The values are the 
estimated averages across tissue types.

Average accuracy Average sensitivity Average specificity

ResNet18 0.942 0.892 0.961

ResNet34 0.937 0.882 0.957

Proposed without GGMRF smoothing 0.946 0.911 0.965

Proposed with GGMRF smoothing 0.957 0.920 0.971



9

Vol.:(0123456789)

Scientific Reports |        (2021) 11:20189  | https://doi.org/10.1038/s41598-021-99735-6

www.nature.com/scientificreports/

Received: 2 April 2021; Accepted: 23 September 2021

References
	 1.	 Key Statistics About Kidney Cancer. American Cancer Society [updated 2020 Feb 1; cited 2020 Jun 29]. https://​www.​cancer.​org/​

cancer/​kidney-​cancer/​about/​key-​stati​stics.​html.
	 2.	 Moch, H., Humphrey, P. A., Ulbright, T. M., Reuter, V. E. & International Agency for Research on Cancer. WHO Classification of 

Tumours of the Urinary System and Male Genital Organs 4th edn. (International Agency for Research on Cancer, 2016).
	 3.	 Znaor, A., Lortet-Tieulent, J., Laversanne, M., Jemal, A. & Bray, F. International variations and trends in renal cell carcinoma 

incidence and mortality. Eur. Urol. 67, 519–530. https://​doi.​org/​10.​1016/j.​eururo.​2014.​10.​002 (2015).
	 4.	 Kovacs, G. et al. The Heidelberg classification of renal cell tumours. J. Pathol. 183, 131–133. https://​doi.​org/​10.​1002/​(SICI)​1096-​

9896(199710)​183:2%​3c131::​AID-​PATH9​31%​3e3.0.​CO;2-G (1997).
	 5.	 Gupta, S., Inwards, C. Y., Van Dyke, D. L., Jimenez, R. E. & Cheville, J. C. Defining clear cell papillary renal cell carcinoma in 

routine clinical practice. Histopathology 76, 1093–1095. https://​doi.​org/​10.​1111/​his.​14071 (2020).
	 6.	 Tizhoosh, H. R. & Pantanowitz, L. Artificial intelligence and digital pathology: Challenges and opportunities. J. Pathol. Inform. 9, 

38. https://​doi.​org/​10.​4103/​jpi.​jpi_​53_​18 (2018).
	 7.	 Tabibu, S., Vinod, P. K. & Jawahar, C. V. Pan-renal cell carcinoma classification and survival prediction from histopathology images 

using deep learning. Sci. Rep. 9, 10509. https://​doi.​org/​10.​1038/​s41598-​019-​46718-3 (2019).
	 8.	 Zuiderveld, K. In Graphics Gems IV (ed. Heckbert Paul, S.) 474–485 (Academic Press Professional Inc., 1994).
	 9.	 Bouman, C. & Sauer, K. A generalized Gaussian image model for edge-preserving MAP estimation. IEEE Trans. Image Process. 2, 

296–310. https://​doi.​org/​10.​1109/​83.​236536 (1993).
	10.	 Abadi, M. et al. In Proceedings of the 12th USENIX conference on Operating Systems Design and Implementation 265–283 (USENIX 

Association, 2016).
	11.	 He, K., Zhang, X., Ren, S. & Sun, J. In 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 770–778.

Author contributions
D.G., and L.C. were responsible for data acquisition. M.G. and A.E. participated in the formal analysis. H.A., 
F.K., and A.E. were responsible for the conceptualization. All authors participated in the methodology. M.G., 
D.G., and A.E. were responsible for project administration. H.A., and F.K. worked on the software development. 
F.K., D.G., and A.E validated the results. H.A., and F.K. visualized the results. H.A., F.K. were responsible for 
writing the original draft. H.A., and F.K. made all the figures. D.G., and A.E. were responsible for the writing 
review and editing processes.

Competing interests 
The authors declare no competing interests.

Additional information
Supplementary Information The online version contains supplementary material available at https://​doi.​org/​
10.​1038/​s41598-​021-​99735-6.

Correspondence and requests for materials should be addressed to A.E.-B.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access   This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

© The Author(s) 2021, corrected publication 2021

https://www.cancer.org/cancer/kidney-cancer/about/key-statistics.html
https://www.cancer.org/cancer/kidney-cancer/about/key-statistics.html
https://doi.org/10.1016/j.eururo.2014.10.002
https://doi.org/10.1002/(SICI)1096-9896(199710)183:2%3c131::AID-PATH931%3e3.0.CO;2-G
https://doi.org/10.1002/(SICI)1096-9896(199710)183:2%3c131::AID-PATH931%3e3.0.CO;2-G
https://doi.org/10.1111/his.14071
https://doi.org/10.4103/jpi.jpi_53_18
https://doi.org/10.1038/s41598-019-46718-3
https://doi.org/10.1109/83.236536
https://doi.org/10.1038/s41598-021-99735-6
https://doi.org/10.1038/s41598-021-99735-6
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	A pyramidal deep learning pipeline for kidney whole-slide histology images classification
	Materials and methods
	Patch generation. 
	Preprocessing. 
	Adaptive histogram equalization. 
	Image edge enhancement. 

	The proposed deep learning framework. 
	Output of the deep learning framework. 
	Generalized Gauss-Markov random field smoothing. 


	Results
	Discussion
	References


