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Abstract

The hedgehog signaling pathway is best known for its role in developmental patterning of the neural tube and
limb bud. More recently, hedgehog signaling has been recognized for its roles in growth of adult tissues and
maintenance of progenitor cell niches. However, the role of hedgehog signaling in fully differentiated cells like
neurons in the adult brain is less clear. In mammals, coordination of hedgehog pathway activity relies on pri-
mary cilia and patients with ciliopathies such as Bardet–Biedl and Alström syndrome exhibit clinical features
clearly attributable to errant hedgehog such as polydactyly. However, these ciliopathies also present with fea-
tures not clearly associated with hedgehog signaling such as hyperphagia-associated obesity. How hedgehog
signaling may contribute to feeding behavior is complex and unclear, but cilia are critical for proper energy ho-
meostasis. Here, we provide a detailed analysis of the expression of core components of the hedgehog signal-
ing pathway in the adult mouse hypothalamus with an emphasis on feeding centers. We show that hedgehog
pathway genes continue to be expressed in differentiated neurons important for the regulation of feeding be-
havior. Furthermore, we demonstrate for the first time that pathway activity is regulated at the transcriptional
level by fasting. These data suggest that hedgehog signaling is involved in the proper functioning of brain re-
gions that regulate feeding behavior and that hedgehog pathway dysfunction may play a role in the obesity
observed in certain ciliopathies.

Key words: feeding behavior; hedgehog signaling; hypothalamus; primary cilia

Significance Statement

Here we investigate the expression of hedgehog pathway components in the adult mouse hypothalamus.
Using dual-labeling in situ hybridization, we show that core components of the signaling pathway are ex-
pressed in multiple neuronal cell types within the hypothalamic feeding centers. Our findings also support
previous findings that astrocytes are responsive to hedgehog signaling, as determined by Gli1 and Ptch1
expression. Using quantitative PCR analysis, we show that hypothalamic hedgehog pathway activity is up-
regulated in response to fasting and that this response is nuclei specific. These data not only provide a
more detailed understanding of hedgehog pathway expression in the adult mouse hypothalamus but also
provide direct evidence of a novel role for hedgehog signaling in the physiological response to fasting.
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Introduction
Initially described in a Drosophila mutant screen, the

hedgehog pathway is now classically recognized for its iter-
ative role in the formation and function of several mamma-
lian tissues and organs such as the limb bud, neural tube,
and skeleton (Nüsslein-Volhard and Wieschaus, 1980;
Goetz and Anderson, 2010). In mammals, the hedgehog
pathway is dependent on the primary cilium as an organiz-
ing center (Huangfu et al., 2003; Breunig et al., 2008;
Willaredt et al., 2008; Gorivodsky et al., 2009; Stottmann et
al., 2009). Components of the hedgehog pathway such
as patched (PTCH1), smoothened (SMO), and the Gli
transcription factors GLI2 and GLI3 dynamically local-
ize to the primary cilia (Corbit et al., 2005; Haycraft et
al., 2005; Rohatgi et al., 2007). Upon binding to the li-
gand sonic hedgehog (SHH), PTCH1 leaves the cilia,
allowing for SMO to enter primary cilia. GLI2 is acti-
vated into its transcriptional activator (GLI2A) form,
while GLI3R formation is inhibited, leading to the ex-
pression of Gli target genes, which includes Ptch1 and
Gli1 (Chen and Struhl, 1996; Marigo and Tabin, 1996;
Bai et al., 2004; Fuccillo et al., 2006). Numerous other
genes are known to regulate hedgehog signaling in
embryonic development, such as Gpr161, an orphan
G-protein-coupled receptor (GPCR) shown to localize
to cilia and negatively regulate pathway activity
(Mukhopadhyay et al., 2013).
Beyond embryonic development, cilia and hedgehog

signaling continue to play an important role in the
postnatal brain for growth and the maintenance of
neural progenitors (Machold et al., 2003; Chizhikov et
al., 2007; Breunig et al., 2008; Han et al., 2008; Vaillant
and Monard, 2009). Primary cilia are found on almost
all mammalian cell types, and their dysfunction under-
lies a class of human genetic disorders known as cilio-
pathies (Reiter and Leroux, 2017). Ciliopathies present
a wide range of clinical symptoms, some of which are
associated with genetic defects in hedgehog signaling
such as bone, limb patterning, and genitalia malforma-
tions (Umehara et al., 2000; Gao et al., 2001;
Hellemans et al., 2003; Mujahid et al., 2018; Khan et
al., 2019). Furthermore, the ciliopathy Carpenter syn-
drome [#20100, Online Mendelian Inheritance in Man
(OMIM)] results from mutations in Rab23, a negative
regulator of hedgehog signaling. Interestingly, obesity
is also a core clinical phenotype of certain ciliopathies
such as Bardet–Biedl syndrome (#209900, OMIM),
Alström syndrome (#203800, OMIM), and Carpenter
syndrome (Jenkins et al., 2007; Alessandri et al., 2010;
Marshall et al., 2011; Forsythe et al., 2018). Thus,
these genetic disorders implicate a potential role for

hedgehog signaling in regulation of energy homeosta-
sis in humans.
Ciliopathy mouse models, as well as conditional animal

models of cilia loss, have implicated hypothalamic neuronal
cilia-mediated feeding behaviors in obesity (Davenport et al.,
2007; Siljee et al., 2018; Wang et al., 2019; Rouabhi et al.,
2021; Sun et al., 2021). Neuronal primary cilia preferentially
localize GPCRs known to be important for the regulation of
energy homeostasis and feeding behavior, such as neuro-
peptide Y (NPY) receptors 2 and 5, melanin-concentrating
hormone receptor 1 (MCHR1) and melanocortin-4 receptor
(MC4R; Berbari et al., 2008; Loktev and Jackson, 2013; Siljee
et al., 2018). However, the impact of ciliary localization on
their signaling capabilities is not well understood. We have
previously demonstrated in primary mouse hypothalamic
neurons in vitro, interactions between a ciliary GPCR and
hedgehog signaling, suggesting that the hedgehog pathway
may modulate GPCR activity at the cilium in differentiated
neurons (Bansal et al., 2019). However, the role of hedgehog
signaling in vivo in the adult hypothalamus is less clear. In situ
hybridization studies have shown that Shh, Ptch1, and Smo
mRNA are expressed in several regions of adult rat brain, in-
cluding the hypothalamus (Traiffort et al., 1998, 1999, 2001;
Banerjee et al., 2005). Here we characterize in greater de-
tail the expression and transcriptional activity of the
hedgehog pathway in the feeding centers of the adult hy-
pothalamus in vivo. We also demonstrate that hedgehog
pathway activity changes based on feeding status and
that this response is absent following the onset of obe-
sity, suggesting a role for hedgehog signaling in the
modulation of adult behaviors.

Materials and Methods
Animals
All procedures were approved by the Institutional

Animal Care and Use Committee at Indiana University-
Purdue University Indianapolis. Male C57BL/6J mice
(stock #000664) were ordered from The Jackson
Laboratory, and they were housed on a standard 12 h
light/dark cycle and given food and water ad libitum
except for experiments as described previously.
Chow-fed mice were maintained on a standard chow
diet consisting of 13% fat, 67% carbohydrate, and
20% protein caloric content (2014 Teklad, Envigo).
High-fat diet (HFD)-fed animals were maintained on a
diet consisting of 40% fat, 39% carbohydrate, and
21% protein caloric content starting at 6 weeks of age
(catalog #TD95217, Envigo).

In situ hybridization
Brains from 8- to 10-week-old male C57BL/6J mice

were harvested and fixed as described previously (Engle
et al., 2018). Sections were cut at a thickness of 15mm
and mounted directly on slides, then were postfixed with
4% paraformaldehyde for 16 h at 4°C. The detection of
transcripts in brain sections was performed using the
RNAscope 2.5 HD Duplex Assay (ACD). Tissue pretreat-
ment was performed according to user manual technical
note 320534 Rev A. Probe hybridization, counterstaining,
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and mounting of slides were performed according to user
manual #322500-USM Rev A. Slides were assayed using
probes to SHH (catalog #314361), SMO (catalog #318411),
GLI1 (catalog #311001), PTCH1 (catalog #402811), GPR161
(G-protein-coupled receptor 161; catalog #318111), AGRP
(agouti-related peptide; catalog #400711-C2), POMC
(proopiomelanocortin; catalog #314081-C2), MC4R (cata-
log #319181-C2), MCHR1 (catalog #317491-C2), or GFAP
(glial fibrillary acidic protein; catalog #313211-C2) tran-
scripts (ACD). Sections were counterstained with
hematoxylin, dehydrated, and mounted using Vecta-
Mount (Vector Laboratories). Slides with positive con-
trol probe (PPIB-C1/POLR2A-C2; ACD catalog #321651)

and negative control probe (DapB; ACD catalog
#320751) were run with each experiment. At least three
animals were analyzed for each group.

Quantitative real-time PCR
RNA was isolated, cDNA was prepared, and quanti-

tative real-time PCR was performed as described pre-
viously (Bansal et al., 2019). Assays-on-Demand Gene
Expression Probes (Applied Biosystems) were as fol-
lows: Shh Mm00436528_m1; Ptch1 Mm00436026_m1;
Smo Mm01162710_m1; Gli1 Mm00494654_m1; and
Gpr161: Mm01291057_m1. Ct values were normalized
to b -actin, relative expression was calculated by the

Figure 1. Hedgehog pathway expression in the adult mouse ARC. Dual-probe in situ hybridization labeling of the ARC with probes
to hedgehog pathway and neuronal gene transcripts. A–J, Pomc (A–E) and Agrp (F–J) probes are labeled in red, while Shh (A, F),
Ptch1 (B, G), Smo (C, H), Gli1 (D, I), and Gpr161 (E, J) probes are labeled in blue. Examples of cells colabeled by both probes are
denoted by an asterisk (*). Pomc- or Agrp-expressing cells adjacent to highly expressing Ptch1 (B, G) or Gli1 (D, I) cells are denoted
by an arrow. Right-hand panels are magnified images of the region shown in a black box on the left-hand side. Scale bars: left pan-
els, 100 mm; right panels, 50mm. V3, Third ventricle.
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DDCt method, and fold change was calculated by nor-
malizing relative expression to the proper control.

Experimental design and statistical analyses
Whole hypothalamus was collected from 35- to 36-

week-old C57BL/6 lean and obese animals that were al-
lowed either ad libitum access to food or were fasted
overnight. Region-specific micropunches were collected
from 7- to 8-week-old, lean, C57BL/6 mice using 1.0 mm
Militex Biopsy Punch (Electron Microscopy Sciences).
There was a minimum of six animals per treatment group.
Statistical analysis was performed using two-way ANOVA
and corrected for multiple comparisons. Differences were
considered significant when p, 0.05. Data are presented
as the mean6 SEM.

Results
To determine whether Shh and components of the

signaling pathway are expressed in the adult mouse
hypothalamus, we performed in situ hybridization studies.
Using a dual-labeling approach, we first assessed whether
neurons of one of the feeding centers, the arcuate nucleus
of the hypothalamus (ARC), express hedgehog pathway
genes. Two major neuronal subtypes within the ARC, the
anorexigenic POMC-expressing neurons and orexigenic
AGRP/NPY-coexpressing neurons, are crucial for normal
energy homeostasis (Belgardt et al., 2009). Hypothalamic
sections from adult, C57BL/6mice were labeled with probes
to Shh, Ptch1, Smo, Gli1, or Gpr161 and colabeled with
probes to either Pomc or Agrp. In the ARC, we found that all
hedgehog pathway genes assayed were coexpressed in
neurons expressing Pomc (Fig. 1A–D) and Agrp (Fig. 1F–I).
We also found that Gpr161 is expressed at a relatively high
level throughout the ARC (Fig. 1E,J). For each experiment,
sections were labeled with positive and negative control
probes (Fig. 2).
We next assessed whether Shh and its pathway com-

ponents are also expressed in another feeding center, the

paraventricular nucleus of the hypothalamus (PVN). We
labeled sections of hypothalamus with probes to Shh,
Ptch1, Smo, Gli1, or Gpr161, and colabeled them with
probes to either Mchr1 or Mc4r. Both MCHR1 and MC4R
are known to be important for the regulation of energy
homeostasis and feeding behavior and are localized to
primary cilia in neurons (Berbari et al., 2008; Siljee et
al., 2018). In the PVN, we observed relatively few
Mc4r-positive neurons with sparse incidence of colab-
eling with probes to hedgehog pathway genes (Fig.
3A–D). However, Mchr1-positive neurons were much
more abundant and were frequently colabeled with
probes to all hedgehog pathway genes used (Fig. 3F–
I). As in the ARC, Gpr161 is expressed abundantly
throughout the PVN (Fig. 3E,J).
Interestingly, we observed cells highly positive for either

Gli1 or Ptch1 expression throughout the ARC and PVN.
Some of these cells appeared adjacent to neurons ex-
pressing Pomc, Agrp, or Mchr1 (Figs. 1B,D,G,I, 3I, ar-
rows). Previously, it has been reported that astrocytes of
the adult mouse brain are responsive to hedgehog signal-
ing and increase Gli1 expression on pathway activation
(Garcia et al., 2010). Therefore, we sought to determine
whether these hedgehog-responsive cells were astro-
cytes by colabeling with probes to either Gli1 or Ptch1,
and Gfap, an astrocyte marker. In the ARC (Fig. 4A,C) and
PVN (Fig. 4B,D), cells highly expressing Gfap were ob-
served colabeled with Gli1 or Ptch1, suggesting that
some of the hedgehog-responsive cells adjacent to neu-
rons may be astrocytes in the hypothalamus.
Since we determined that genes of the hedgehog path-

way are expressed in neurons of the adult hypothalamus,
we next wanted to determine whether these genes are
transcriptionally regulated by physiological changes as-
sociated with the normal function of this brain region,
such as nutritional status. This was accomplished by
gene expression analysis of the whole hypothalamus from
chow-fed lean and HFD-fed obese animals in the fed and
fasted state. HFD-fed animals weighed significantly more

Figure 2. Controls for dual-probe in situ hybridization studies. A–D, Sections of adult mouse ARC and PVN were labeled with either
positive control probes targeting the mouse genes Ppib and Polr2a (A, C) or negative control probes targeting the bacterial gene
dapB (B, D). Right-hand panels are magnified images of a region shown in a black box on the left-hand side. Scale bars: left panels,
100 mm; right panels, 50 mm.
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than their chow-fed counterparts at 35weeks of age
(57.1 6 0.97 vs 34.8 6 0.75 g; mean 6 SEM; p, 0.05,
Student’s t test). Lean and obese animals were allowed
either ad libitum access to food or were fasted overnight,
then whole hypothalamic RNA was collected for quantita-
tive PCR (qRT-PCR) analysis. In lean animals, there was a
significant increase in both Shh and Gli1 expression in the
hypothalamus after an overnight fast (Fig. 5A). The ex-
pression of Ptch1 also was elevated in fasted compared
with fed animals, but this effect was not significant (Fig.
5A). Strikingly, there were no significant changes in gene
expression in the hypothalamus of obese fasted versus

fed animals (Fig. 5A). Since transcriptional regulation was
observed in response to fasting in control chow-fed ani-
mals at the level of the whole hypothalamus, we wanted
to assess which specific nuclei were contributing to this
effect. Once again, control, normal weight C57BL/6J ani-
mals were allowed either ad libitum access to food or
were fasted overnight. Micropunches were then collected
from the cortex, ventromedial hypothalamus (VMH), PVN,
and ARC for qPCR analysis. We found that fasting that
induces an increase in Gli1 expression in the whole hypo-
thalamus is driven by increases in Gli1 expression specifi-
cally in the VMH and PVN but not in the ARC (Fig. 5B). We

Figure 3. Hedgehog pathway expression in adult mouse PVN. A–J, Dual-probe in situ hybridization of probes for hedgehog pathway
gene transcripts colabeled with probes to neuronal gene transcripts in the PVN of adult mice. Mc4r (A–E) and Mchr1 (F–J) probes
are labeled in red, while Shh (A, F), Ptch1 (B, G), Smo (C, H), Gli1 (D, I), and Gpr161 (E, J) probes are labeled in blue. Example of
cells colabeled by both probes are denoted by an asterisk (*). Mchr1-expressing cells adjacent to highly expressing Gli1 cells are
denoted by an arrow (I). Right-hand panels are magnified images of a region in a black box on the left hand-side. Scale bars: left
panels, 100 mm; right panels, 50 mm. V3, Third ventricle.
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also found that Gli1 was upregulated, to a lesser extent, in
the cortex (Fig. 5B). Additionally, expression of Smo was
increased in the VMH, while Shh gene expression was re-
duced in the ARC following an overnight fast (Fig. 5B).
Finally, we performed qPCR on whole hypothalamus and
cortex, a brain region known to exhibit hedgehog pathway
activity (Garcia et al., 2010; Harwell et al., 2012; Hill et al.,
2019), collected from adult animals. We found that all
hedgehog pathway genes measured were more highly ex-
pressed in the hypothalamus than the cortex (Fig. 6).
Overall, these data demonstrate that not only does ex-
pression of the hedgehog pathway continue into adult-
hood in the hypothalamus, a region critical for energy
homeostasis, but that specific nuclei respond with tran-
scriptional changes based on feeding status.

Discussion
Primary cilia are crucial for mediating hedgehog signal-

ing in mammals and, furthermore, certain ciliopathies are
associated with pediatric obesity (Engle et al., 2021).
Therefore, we focused our efforts on evaluating the ex-
pression of the hedgehog pathway in hypothalamic feed-
ing centers of adult mice. Because reliable commercial
antibodies for many pathway proteins are currently un-
available, making immunolabelling studies difficult, we
used a dual-labeling in situ hybridization approach that al-
lowed for sensitive detection of hedgehog pathway gene
transcripts in specific adult neurons. Our in situ data re-
vealed the broad expression of Shh and core pathway
components throughout the hypothalamus of adult mice.
We found that mRNA for Shh, Ptch1, Smo, Gli1, and
Gpr161 could be detected in both the ARC and PVN.
Within the ARC, each one of these transcripts are de-
tected in neurons coexpressing Pomc or Agrp. While a
similar labeling pattern was observed in the PVN, tran-
scripts for hedgehog pathway genes were more readily
found colabeled with probes to Mchr1 than Mc4r.

However, this could potentially be because of the rela-
tively low abundance of MC4R-expressing neurons or low
mRNA expression for this particular GPCR. Our results
expand on prior studies that found hedgehog pathway ex-
pression in the adult rat brain (Traiffort et al., 1998, 1999;
Banerjee et al., 2005) by demonstrating that neurons in
two nuclei of the hypothalamus important for regulation of
feeding behavior express Shh and members of its signal-
ing pathway. Somewhat surprisingly, we also found that
Gpr161 is expressed abundantly throughout both the
ARC and PVN. This is contrary to previously published
findings that used digoxigenin probes for in situ analysis
of the adult mouse brain and showed a more restricted
expression pattern of Gpr161 in the nucleus accumbens
and amygdala with low hypothalamic expression (Ehrlich
et al., 2018). Analysis of the amygdala and accumbens
was outside the scope of the present study, and relative
expression of Gpr161 between these brain regions was
not determined. However, a thorough understanding of
this GPCR-negative regulator of hedgehog signaling in
the adult brain may reveal themes for its roles in cilia-
mediated behaviors.
Interestingly, in both the ARC and PVN we observed

cells with high expression of either Ptch1 or Gli1 immedi-
ately adjacent to neurons expressing Pomc, Agrp, or
Mchr1. By colabeling sections of hypothalamus with
probes to Gfap and Gli1 or Ptch1, we were able to identify
some of these hedgehog-responsive cells as Gfap-posi-
tive astrocytes. While neurons of the adult mouse hypo-
thalamus express Shh and components required for its
signal transduction, the cells that are most responsive to
hedgehog signaling, as indicated by high levels of Gli1
and Ptch1 expression, may in fact be astrocytes. This
supports previous findings showing that not only do neu-
rons produce Shh, but subpopulations of mature astro-
cytes in the forebrain are responsive to hedgehog
signaling (Garcia et al., 2010). It remains unclear why

Figure 4. Gli1 and Ptch1 expression in astrocytes in adult mouse hypothalamus. Dual-probe in situ hybridization was performed
with probes for Gli1 or Ptch1 and astrocyte marker Gfap gene transcripts. A–D, Sections of the ARC (A, C) and PVN (B, D) from
adult mice were colabeled with probes to Gli1 or Ptch1 labeled in blue and probes to Gfap labeled in red. Example cells that are
highly positive for both probes are denoted by an arrow. Right-hand panels are magnified images of a region shown in a black box
on the left-hand side. Scale bars: left panels, 100 mm; right panels, 50 mm. V3, Third ventricle.
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these Gfap-positive cells outside of known neurogenic
niches exhibit high levels of Gli1 and Ptch1 relative to
neighboring neurons.
There is growing evidence suggesting that the hedge-

hog pathway is involved in the regulation of whole-body
energy homeostasis. It has been demonstrated in both
the fat body of Drosophila and the adipose tissue of mice
that hedgehog signaling regulates adipocyte differentia-
tion (Suh et al., 2006; Pospisilik et al., 2010). Circulating
forms of Hedgehog have been detected, and during
Drosophila larval development have been shown to be se-
creted from the gut and to act on multiple tissues to coor-
dinate development with nutrient availability (Palm et al.,
2013; Rodenfels et al., 2014). Given these findings, we
also analyzed the expression of Shh, Smo, and Gli1 in the
adult mouse hypothalamus in response to changes in
metabolic state and nutritional status. We compared tran-
scriptional regulation of the hedgehog pathway in both
lean control diet-fed animals and obese HFD-fed animals.

Figure 5. Feeding status mediated changes in hypothalamic hedgehog pathway gene expression. A, Hedgehog
pathway gene expression in the whole hypothalamus of adult mice. Lean animals fed a standard chow diet or obese ani-
mals fed a high-fat diet were allowed ad libitum access to food or fasted overnight. A minimum of six animals were used
per treatment group. Whole hypothalamic RNA was used for qPCR. B, Hedgehog pathway gene expression in brain micro-
punches of adult mice. A total of 16 animals, 8 per treatment group, fed a chow diet were allowed ad libitum access to food
or fasted overnight. Micropunches were taken from specific nuclei of the hypothalamus and cortex for qPCR analysis.
*p, 0.05.

Figure 6. Expression of selected hedgehog pathway transcripts in
the adult mouse brain. Whole hypothalamus and cortex were col-
lected for qPCR analysis from six adult animals allowed ad libitum
access to food.
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Animals fed an HFD are a well established model of non-
insulin-dependent type II diabetes, which exhibit many
hallmarks of metabolic dysfunction such as reduced glu-
cose tolerance (Surwit et al., 1988; Fontaine and Davis,
2016). In the whole hypothalamus, the expression of Gli1
was upregulated in lean mice following an overnight fast.
Congruent with this finding, the expression of Ptch1 ex-
hibited a nonsignificant upregulation in lean, fasted
animals. In contrast, we observed no significant transcrip-
tional regulation in the hypothalamus of fasted obese ani-
mals compared with fed controls. These data suggest
that hedgehog signaling is involved in the physiological
response to fasting and may be dysregulated in obese
animals. To determine whether this fasting-induced up-
regulation of Gli1 is a response generated by the whole
hypothalamus or specific nuclei, micropunches were col-
lected from hypothalamic nuclei as well as the cortex. We
found that in fasted animals Gli1 expression was elevated
specifically in the VMH, PVN, and, to a lesser extent, the
cortex, but not the ARC. These data suggest that in-
creased hedgehog pathway activity in the hypothalamus
upon fasting is primarily driven by the VMH and PVN.
Future studies will determine the cell types responsible
within these nuclei for this increase in Gli1 expression.
Additional work is also required to determine the source
of the pathway activation observed in these studies. It is
possible that ligand is produced outside of the hypothala-
mus, therefore, further analysis could potentially reveal
the primary source of Shh following an overnight fast.
Taken as a whole, these data show that neurons of the

hypothalamus express both Shh and members of its sig-
naling pathway that are required for signal transduction,
and that activity of this pathway is upregulated in re-
sponse to fasting in discrete hypothalamic nuclei. Given
our in situ data identifying astrocytes as being highly posi-
tive for Gli1 and Ptch1 in the hypothalamus, it is possible
that astrocytes or other support cells are primarily respon-
sible for this fasting-induced upregulation of hedgehog
signaling. We have previously shown in primary hypo-
thalamic cultures, consisting of both neurons and glia,
that modulation of the hedgehog pathway alters the elec-
trophysiological response to melanin-concentrating hor-
mone (Bansal et al., 2019). Interestingly, it has also been
demonstrated in primary cortical cultures that the pres-
ence of astrocytes alters the response of neurons to ago-
nism of the hedgehog pathway (Ugbode et al., 2017).
Furthermore, astrocyte-specific inhibition of hedgehog
signaling in vivo was shown to disrupt early postnatal or-
ganization and remodeling of cortical synapses resulting
in increased neuronal excitability (Hill et al., 2019). Together,
these findings suggest novel potential roles for hedgehog sig-
naling outside of its roles as a classical developmental
morphogen or in stem cell niche regulation.
The data presented here on the expression and tran-

scriptional regulation of the hedgehog pathway in the
adult mouse hypothalamus lays the foundation for future
mechanistic studies to determine its role in the proper
functioning of the hypothalamus. Given that mammalian
hedgehog signaling is coordinated by primary cilia, our fu-
ture studies will focus on how hypothalamic hedgehog ex-
pression may contribute to the obesity phenotype seen in

ciliopathies such as Bardet–Biedl syndrome and Alström
syndrome (Marshall et al., 2011; Forsythe et al., 2018).
Interestingly, certain ciliopathy clinical features such as
skeletal and external genitalia abnormalities are also ob-
served in patients with genetic defects in the hedgehog
pathway (Umehara et al., 2000; Gao et al., 2001;
Hellemans et al., 2003; Mujahid et al., 2018; Khan et al.,
2019). Therefore, it would be of interest to determine
whether hedgehog signaling is dysregulated in the hypo-
thalamus of animal ciliopathy models. Further mechanis-
tic studies are needed to determine whether hedgehog
signaling modulates neuronal activity critical for the physi-
ological response to fasting and whether genetic modula-
tion of the hedgehog pathway in the hypothalamus alters
feeding behavior. In conclusion, elucidating the involve-
ment of this developmentally important signaling pathway
in feeding behavior and body composition is an exciting
new avenue of the hedgehog pathway to explore. Greater
understanding of the hedgehog pathway in adult energy
homeostasis may also reveal common themes for this
pathway in regulation of other behaviors.
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