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Abstract 

Background: Nitrogen (N) addition may have strong impacts on legume growth and 

their biological N fixation (BNF), but how legume N acquisition sources respond to N 

inputs have yet to be comprehensively assessed. 

Aims: We quantified the effects of N addition on the growth and BNF of Medicago 

sativa and to assess the response of legume N acquisition to N addition. 

Methods: We grew M. sativa in the greenhouse with NH4NO3 added at rates of 0, 2, 5, 

10, 20, 50 g N m−2 yr−1, and analysed the variables that were relative to growth and N 
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fixation, such as N concentration, biomass, δ15N values, nodule number, the percentage 

of plant N derived from symbiotic fixation of atmospheric N2 (Ndfa%). 

Results: Nitrogen addition had marginal effects on accumulative plant biomass 

production (total biomass was 20.36 ± 1.57 and 22.26 ± 2.08 g pot-1 for the N0 and N50 

treatment, respectively) and foliar N concentration (4.62 ± 0.21% and 4.89 ± 0.09% for 

the same treatments). The δ15N value of the leaves increased with increasing added N, 

while Ndfa% decreased. The number of nodules formed also decreased with N addition 

while the nitrogenase (nifH) gene copies per unit nodule mass was not significantly 

different with N addition. 

Conclusions: These findings indicate that increasing mineral N availability decreases 

symbiotic investment into BNF, mainly by reducing nodule formation; this was found 

to have no significant impact on plant growth because the plant changes its N source 

from BNF-N to mineral N derived from the soil. 

Keywords: biological N fixation; biomass; N concentration; δ15N; nodulation; stable 

isotope    
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1. Introduction 

Nitrogen (N) is an essential element, required for growth and maintenance of all 

plants (Vitousek and Howarth 1991; Elser et al. 2007; LeBauer and Treseder 2008). 

Biological nitrogen fixation (BNF), characteristic of some free living or symbiotic N 

fixers, is a dominant pathway of new N input into terrestrial ecosystems (Vitousek et al. 

2013). Over recent decades, the increasing atmospheric N deposition caused by 

intensifying anthropogenic activities also become increasingly important N sources for 

ecosystems (Vitousek et al. 1997; Galloway et al. 2004, 2008). BNF has a high energy 

cost and appears to be sensitive to exogenous N inputs (Gutschick 1981; Zheng et al. 

2019, 2020). Thus, understanding how exogenous N inputs affects the growth of N-

fixing plants, especially the ability to fix atmospheric N2, is needed to better predict the 

contribution of BNF to the N cycle in terrestrial ecosystems, considering the increasing 

N inputs in the future.  

Legumes are an important plant functional group of terrestrial vegetation worldwide 

and appear to be provided with a competitive advantage in the N-limited ecosystems 

because of their ability of symbiotic BNF (Rogers et al. 2009; Vitousek et al. 2013). 

However, under which circumstances BNF benefits legumes is largely related to soil N 

availability, which provides a less energy-demanding N source for plants (Menge et al. 

2017; Regus et al. 2017). Previous work has demonstrated at both regional and global 

scales that N inputs could increase legume biomass (Skogen et al. 2011; Barneze et al. 

2020) and suppress BNF (Batterman et al. 2013a; Zheng et al. 2019, 2020). Additionally, 

increasing soil N availability is accompanied with decreasing nodulation, which, in turn, 
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affects species composition and diversity of N-fixing bacteria (Wang et al. 2017a). 

Meanwhile, some other studies found no response, minor response or even positive 

response of BNF, to the improved soil N availability (Binkley et al. 2003; Drake 2011). 

Regarding the different response patterns to increasing soil N availability, two distinct 

strategies have been proposed, i.e., the facultative N-fixing and obligate N-fixing 

strategy (Barron et al. 2011; Menge et al. 2014, 2015; Menge and Chazdon 2016). 

Facultative N-fixers can adjust their BNF depending on the exogenous N availability. 

In contrast, obligate N-fixers generally keep active N fixation regardless of soil N 

conditions. For this reason, the facultative strategy is considered more adoptive than 

the obligate one (Menge et al. 2009). 

In addition to increasing soil N availability, there are some other potential mechanisms 

that could explain how N inputs affect legume BNF. First, N inputs could cause leaching 

loss of phosphorus (P), thereby lead to N fixation constraint, as P is used for parts of 

nitrogenase and cell metabolism (Batterman et al. 2013b; Zheng et al. 2016). Second, 

N inputs causes soil acidification, which can change the microbial community and 

affect the host-rhizobia symbiosis via decreasing rhizobia colonization and nitrogenase 

activity (Caetanoanolles et al. 1989; Graham 1992; Lu et al. 2014; Ferreira et al. 2016). 

Third, N inputs also incur indirectly negative effects on BNF via molybdenum (Mo) 

limitation (a key component of nitrogenase) (Vitousek and Howarth 1991; Wurzburger 

et al. 2012). 

Since the 1990s, N deposition has increased dramatically throughout China from 9.4 kg 

N ha-1 yr-1 in 1980 to 20.6 kg N ha-1 yr-1 in 2018 (Yu et al. 2019; Wen et al. 2020) and 
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N fertilizer consumption in China is highest in the world (FAOSTAT, 2010). As an 

important plant functional group in terrestrial ecosystems worldwide, legumes have 

played critical roles in the functioning of N cycling and provisioning of ecosystem 

services. However, how they respond to a less costly mineral N source derived from 

atmospheric sources is unclear yet. Here we report a greenhouse experiment on the 

effects of N addition (covered both N deposition and current N fertilization amount) on 

the growth and BNF of a leguminous plant with application of stable isotope and qPCR 

analysis, combined with some conventional plant morphological and ecological 

measurements. Our target species Medicago sativa L. is a widely cultivated pasture 

species and a common N-fixing plant with wide natural distribution in the grasslands 

of northern China. The objectives of this study were to quantify how the growth and N 

fixation capacity would respond to N inputs and if M. sativa would adjust its N 

acquisition source. We expected that M. sativa would (1) increase its biomass after N 

addition; (2) change its N source from BNF to the less costly soil mineral N source (i.e., 

with a facultative strategy) with increasing N addition, and would suppress its N 

fixation altogether; and (3) reduce investment into nodulation after N addition, 

therefore would be decrease in number of nodules formed and in the abundance of 

rhizobia sustained in the nodules. 
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Materials and methods 

Experimental design 

Our experiment was carried out in the greenhouse at the Institute of Botany, the Chinese 

Academy of Sciences. The temperature in the greenhouse during experiment was 

maintained at 25±5℃ and the relative humidity was ca. 20%. Commercially available 

alfalfa seeds of the variety Longmu 801 (Medicago sativa L. cv. Longmu 801) were 

obtained and the seeds were surface sterilized with 98% sulfuric acid before the seeds 

were germinated in a glass culture dish. After germination, seedlings with similar size 

and healthy appearance were transplanted into pots (H 25 cm × D 20 cm) with soil 

media. The soil, classified as Haplic Calcisol (IUSS Working Group WRB, 2014), was 

collected from a typical steppe grassland in Xilingol, Inner Mongolia, China, where M. 

sativa has been cultivated as forage for many years (Deng et al. 2014; McNeill et al. 

2021). The soil was completely homogenised prior to planting. Soil physical-chemical 

properties were shown in Table 1. To ensure sufficient supply of nutrients, we added 

P2O5 (in the form of Ca(H2PO4)2, 0.41 g/pot), K (K2SO4, 0.56 g/pot) and Mg (MgSO4, 

2.05 g/pot) to the soil. We also applied 20 ml of a modified N-free Hoagland’s nutrient 

solution every two months to all plants throughout the experiment to provide the 

necessary nutrients (McNickle et al. 2013). 

After growing 14 d in the greenhouse, liquid inoculum containing ~108 cell ml-1 of 

Sinorhizobium meliloti strain AFS32 was injected in the soil around the roots of the 

plants at a rate of 5 ml per plant to ensure nodule formation (Elkherbawy et al. 1989; 

Elnesairy et al. 2005). Two weeks after inoculation, the plants were fertilised with N at 
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the following rates: equivalent of annual rates of 0 (control), 2, 5, 10, 20, 50 g N m-2 yr-

1 as NH4NO3, designated as N0, N2, N5, N10, N20 and N50, respectively. The 

background rate of N deposition in the study area was 1.8 g N m-2 year-1. Our N addition 

levels involved the ambient N deposition rate, the threshold of biomass production 

response (ca. 10 g N m-2 year-1), and a high N fertilization rate for the artificial hay 

production pastures (Li et al. 2015; Xu et al. 2015). Each level of N addition treatment 

had six replicate potted plants, totalling 36 pots in the experiment. As M. sativa is a 

perennial plant, we ran our experiment for about 16 months, from April 2017 to July 

2018, with the N treatment repeated at the end of April 2018. All plants were watered 

equally as needed. Pots were rotated by 45° each day and were rearranged randomly 

weekly. During the first year of the experiment (and before the second N addition) the 

plant were clipped back to ground level four times (at the end of July 2017, September 

2017, December 2017 and March 2018). The plants were harvested at the end of July 

2018. 

Plant biomass 

  Plant heights were measured before the harvest in the end of July 2018, and the 

average plant height of each treatment was calculated at the end of the experiment. To 

determine above-ground biomass (AGB), each plant was cut at the soil surface and 

dried at 105℃ for 15 min and then at 65℃ to a constant weight. We also collected the 

belowground biomass (BGB). Root systems were separated from soil and cleaned with 

distilled water, and the axial root length was recorded. The roots were dried at 65℃ for 

48 h and weighed. Total biomass was calculated as the sum of AGB and BGB. Healthy 
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green leaves were sampled from all individuals in the last harvest for analyzing δ15N 

and nutrient concentration. Soil samples from each pot were collected to measure soil 

pH, and concentration of NH4
+ and NO3

-. 

Foliar N and P concentration 

Leaf samples were ground in a Mixer Mill MM400 (Retsch Technology, Haan, 

Germany). Total N concentration of leaves was analysed with a Vario El cube CHNS 

elemental analyzer (Elementar Analysensysteme, Germany). Leaf P was determined by 

inductive coupled plasma emission spectrometer (ICP-OES; ICAP6300; Thermo 

Electric, West Chester, Pennsylvania, USA) after being digested with a mixture of nitric 

acid and hydrogen peroxide. 

Foliar 15N determination 

The N source used by the plants was estimated by the 15N natural abundance method 

(Shearer et al. 1983; Boddey et al. 2000). The small difference in 15N abundance 

between samples and the air are usually expressed as δ15N which is calculated with the 

following equation (Eq. 1):  

δ15N (‰) = 1000×(atom%15N sample-atom%15N standard)
atom%15N standard

                (Eq. 1) 

The standard is atmospheric N2 (0.3663 atom% 15N). Because N2 fixation uses the N 

from atmospheric N2 and there is almost no fractionation during N fixation, plants that 

benefit from symbiotic relationships with N-fixing microbes show a δ15N value closer 

to that of the standard atmospheric N2. In general, soil N is usually more abundant in 

15N than atmospheric N2 because of the fractionation during the soil N transformation 

processes, thus non-N2-fixing plants that take N source from soil are expected to have 
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more abundant 15N value than N2-fixing plants that take N source from atmosphere 

(Shearer et al. 1978; Shearer and Kohl 1986). The δ15N were measured by an isotopic-

ratio mass spectrometers (IRMS; Thermo Finnigan MAT DELTAplus XP; Thermo 

Scientific, Germany).  

N fixation 

The percentage of plant N derived from symbiotic fixation of atmospheric N2 (i.e., 

Ndfa%) was calculated by the following formula (Eq. 2) (Sanford et al. 1994; Unkovich 

et al. 1994; Skogen et al. 2011):  

           Ndfa% = 100× δ15Nreference plant - δ15Nsample

δ15Nreference plant - B
                       (Eq. 2) 

where δ15Nreference plant is the δ15N of non-N2-fixing plant selected to match the study 

legume closely in terms of absorbing the soil sources of N, δ15Nsample is the δ15N for the 

target N2-fixing plant in the particular treatment, and B is the δ15N of N2-fixing growing 

solely with N-free nutrient media. In this study the reference plant was Leymus 

chinensis (Poaceae), planted and treated the same way as M. sativa; we used a B value 

of -0.68‰ from published literature (Unkovich et al. 2008). The standard error of the 

Ndfa% was calculated with the following equation (Eq. 3) (Shearer et al. 1983; Shearer 

and Kohl 1986):  

 SE2= (δ15Nsample - B)2(SEδ15Nreference plant)2

(δ15Nreference plant - B)4 + (SEδ15Nsample)2

(δ15Nreference plant - B)2 + (δ15Nreference plan - δ15Nsample)2(SEB)2

(δ15Nreference plant - B)4     (Eq. 3) 

Nodule collection and genetic analysis 

The nifH gene abundance in the nodules was measured using quantitative polymerase 

chain reaction (qPCR). Nodule samples were collected during root biomass 

measurement. The number of nodules from each plant was recorded and at least 10 
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nodules were kept for further genetic analyses. The collected nodules were surface 

sterilised with ethanol (Weese et al. 2015) and stored in 5 mL centrifuge tubes 

containing silica gel for cryopreservation before being sent to Majorbio Bio-Pharm 

Technology Co. Ltd. (Shanghai, China) for qPCR. Two primers were used, nifHF (5′-

AAAGGYGGWATCGGYAARTCCACCAC-3 ′ ) and nifHR (5 ′ -

TTGTTSGCSGCRTACATSGCCATCAT-3 ′) (Rosch et al. 2002). Quantitative PCR 

was performed using the ChamQ SYBR Color qPCR Master Mix (2X) (Vazyme 

Biotech Co., Ltd., Nanjing, China) and LineGene 9600 Plus Real-Time PCR detection 

system (Bioer Technology Co., Ltd, Hangzhou, China). PCR reactions were conducted 

under the following conditions: an initial incubation at 95 °C for 5 min, followed by 40 

cycles at 95 °C for 5 s, 56 °C for 30 s, and 72 °C for 40 s. Each sample was used in 

triplicates, and the average values were used for quantification. Relative gene 

expression levels were calculated using the ΔCt method according to Schmittgen and 

Livak (2008), and the results were expressed as bacterial colonies per gram of nodule. 

Soil pH and inorganic N 

Fresh soil samples were sieved using a 2-mm sieve. Air-dried soil samples, 10g each, 

were placed in 50mL CO2-free deionized water and and left to stand for 30 min after 

being stirred to measure pH (Hanna PH211; Hanna Instruments, Padova, Italy).  A 

sub-sample was stored at 4 ℃  for inorganic N analysis. Nitrate (NO3
--N) and 

ammonium (NH4
+-N) were extracted with 2 M KCl and were measured with an AA3 

continuous flow-analyzer (Bran+Luebbe, Germany).   

Statistical analyses 
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Data were log-transformed to achieve homoscedasticity and normality where 

necessary. Regression analyses were made to analyse the relationship between Ndfa% 

and N addition levels. One‐way ANOVA with a Duncan test was carried out to 

determine the effects of N addition levels on the rest of the variables. Data were 

analyzed in R 3.6.3 (R Core Team 2020) statistically significant differences were 

determined at a significance level set at p ≤ 0.05. 

Results 

Plant growth 

The average height of plants at harvest was not related to the applied level of N 

addition; root length at the final harvest was significantly different among N addition 

rates (Figure 1a, b). The axial root length increased with N addition up to N10 but 

decreased when N addition reached the level of N20. Nitrogen addition had no 

significant effect on AGB, BGB and total biomass (Table 2). There was no significant 

effect of N addition on the root : shoot ratio, although there was a decreasing trend with 

increasing N addition (Figure S1). 

Foliar N and P concentration 

N fertilisation had no significant effect on either on leaf N or P concentration (Figure 

2). The lowest mean (±SE) foliar N concentration was 4.3% (± 0.1%) at 10 g N m-2 yr-

1, while the highest was 4.9% (± 0.1%) at 50 g N m-2 yr-1. Mean (±SE) P concentration 

ranged from 3.63 mg g-1 (± 0.17 mg g-1) to 3.99 mg g-1 (± 0.34 mg g-1). Correspondingly, 

there were no significant differences in the N:P among treatments (P > 0.05).  

δ15N and %N derived from atmospheric N2-fixation 
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We examined the δ15N and Ndfa% to explore if M. sativa indeed used the added N. The 

δ15N value of the leaves increased with increasing rates of N addition (Figure 3). At the 

N0 and N2 addition levels, the δ15N values were negative at -0.42‰ (± 0.14‰) and -

0.52‰ (± 0.15‰), respectively. The δ15N values turned to positive with further increase 

of additional N and they were significantly different among addition levels (P < 0.001, 

F = 34.90).  

When N addition was low (N0 and N2), M. sativa obtained most of their N from 

N2 fixation at Ndfa% of 87% (± 7%) and 91% (± 8%), respectively; further increase in 

N addition rates decreased sharply the proportion of atmospheric N in the leaf tissues 

(Figure 4). The value reached a low of 3.7 ± 11%) in the N20 treatment and the Ndfa% 

value was negative (recorded as 0) in the N50 treatment.  

Nodule formation and nifH gene copies 

Given the changes in δ15N and Ndfa% in the N treatments, we investigated how the 

symbionts and corresponding microorganisms would respond to the N addition. Overall, 

the average number of nodules per plant decreased with N addition (Figure. 5, P = 0.001, 

F = 6.86). Nodule formation was completely absent in the N50 treatment.  

We determined the nifH gene copies per unit mass of nodules to represent the Rhizobium 

quantity in nodules. N fertilisation resulted in no significant differences in the quantity 

of nifH among treatments (Figure 6); in the N50 nifH could not be as no nodules were 

formed. 

Discussion  

N addition did not change N leaf N concent and biomass production 
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Previous studies have indicated that N inputs can increase the biomass production of 

grasslands where non-leguminous plants dominate (LeBauer and Treseder 2008; Xia 

and Wan 2008; Tian et al. 2016). However, our results indicate that the N addition 

largely had no significant effects on the biomass production of M. sativa and thus our 

results do not support our first hypothesis. We are aware that our results obtained from 

a greenhouse experiment using amenable temperature and irrigation in limited pot size 

require careful interpretation and extrapolation to plant growth in the field, especially 

in dryland ecosystems. Although, similar results have been reported previously 

whereby mineral N applications did not affect the biomass and N concentration of grain 

legumes (Lee et al. 2003; Guinet et al. 2018; Pampana et al. 2018). 

The statistically non-significant effects of N addition on the biomass production of 

M. sativa may closely correlate with no significant changes in the leaf N and P 

concentration, which corroborated biomass production as most N in leaves were used 

to produce enzymes such as rubiscos for photosynthesis carbon assimilation. The results 

of foliar N and P concentration also indicate that M. sativa shows relatively strong 

stoichiometric homoeostasis, with the foliar N and P concentration and their ratios being 

stable along the N supply gradient. This stoichiometric homoeostasis appears to be 

stronger than that reported in non-leguminous plant species in semiarid grasslands (Yu 

et al. 2010). It may also implicate that legumes can have high stoichiometric 

homoeostasis because of their capacity to capture N by the BNF. Our results on the 

responses of M. sativa foliar N concentration to the exogenous N input were largely 

consistent with previous field studies (Menge and Hedin 2009) and with the findings of 
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a meta-analysis (Xia and Wan 2008). The results of the alfalfa biomass production and 

foliar N concentration indicate that alfalfa can keep itself N-unlimited by a shift of N 

source from the biologically fixed N to the soil available N. 

Our results also showed that high N supply not only suppresses N fixation but might 

even damage growth. M. sativa increased the length of axial roots when N addition was 

low but decreased the length and increased the diameter of roots when N addition 

increased, resulting in largely no significant change in BGB. Moreover, the axial root 

tips turned black and damaged in the N50 treatment. All the above results indicate that 

lower dose of N addition could promote root development in terms of root axial length 

while higher levels of N supply might cause acidity-induced toxicity to root growth 

(Mills and Jones 1979; Voisin et al. 2002).  

N addition inhibited N fixation 

Our results showed that alfalfa shifted its N source from the biologically fixed N 

gradually to fertiliser N, which supported our second hypothesis. The leaf δ15N values 

increased with N addition indicating that alfalfa reduced BNF gradually, which was also 

corroborated by changes in the Ndfa% results (Figures. 3 and 4). The Ndfa% became 0 

when N addition reached N50, which indicated that the N absorbed by alfalfa was 

exclusively from fertilized source and the BNF was completely stopped. These results 

were also consistent with Skogen et al.(2011) and Guinet et al.(2018). The increasing 

tendency of leaf δ15N and decreasing tendency of Ndfa% after N addition related to the 

level of N addition illustrated the downregulation of BNF, which indicated that M. 

sativa is a facultative N fixer (Liu et al. 2016). Facultative N fixers adjust N fixation 
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rates to match change in soil N supply (Barron et al. 2011; Wurzburger and Hedin 2016). 

Previous studies have pointed out that BNF may be constrained by P availability 

especially in the P-poor soils (Binkley et al. 2003; Batterman et al. 2013b; Ament et al. 

2018). However, in this study we added sufficient P to the matrix at the beginning of 

the experiment. Our results of the foliar P concentration showed no significant 

difference among different levels of N addition indicating that the alfalfa in our 

experiment had sufficient uptake of P irrespective of N addition. Other micronutrients 

that could affect BNF were also provided equally at beginning of the experiment. Thus, 

the availability of P and other micronutrients could not be the limiting factor for changes 

in the BNF of alfalfa, and we consider that the changes in the BNF in our study were 

primarily caused by additional N input.  

N addition decreased alfalfa nodulation 

Compared with the N from the biological fixation, fertiliser N provides a less costly 

N source for legumes which will offset the growth benefits from rhizobial nodulation 

for host plants (Patriarca et al. 2002; Batterman et al. 2013b; Regus et al. 2015). As a 

result, it is most likely for legumes, especially those with a facultative N strategy, to 

reduce their investment in nodule formation and to decrease symbiotic N2 fixation 

where N is freely available in the soil. Our results revealed that nodulation was 

significantly lower when N addition reached agricultural application level at N10 and 

was completely inhibited when N addition reached the level of N50, which was largely 

consistent with our third hypothesis. However, it was uncertain whether plants reduce 

nodule formation in response to a collapse of cost-benefit relation in the symbiosis or 
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other factors such as soil acidification caused by N addition. A previous study showed 

that the accumulation of nitrate in the soil was the primary factor that caused the 

decrease of nodule formation (Tanner and Anderson 1964). In this study, soil pH did 

not show significant change with N addition below N20, but some decrease was found 

at the level of N50. The unchanged pH under low N addition might relate to the 

increased uptake by plants while more considerable N in excess of plant demand under 

the highest N addition was still retained in the soil and converted to nitrate (significant 

higher NO3
- concentration with N50 treatment, Figure. S3a) by nitrification process 

which could cause acidification. Nevertheless, the accumulation of nitrate in soil and 

the NO3
-:NH4

+ ratio were significantly higher at the end of the experiment when N 

addition reached N20 and N50. Therefore, the remarkable accumulation of nitrate and 

accompanying soil pH decrease under higher N addition might be the direct reason for 

the decrease in nodule formation in this study. Soil nitrate have long been considered 

to cause a series of impacts on the biological N fixation of legumes related to rhizobia 

infection, nitrogenase activity, and nodulation (Streeter 1988), all relevant plastic 

responses are seemingly genetically controlled (Murray et al. 2017). 

As we inoculated the M. sativa plants with rhizobium bacteria at start of the 

experiment, we only determined the nifH gene copies but not the diversity of rhizobia 

in the nodules to compare the abundance of rhizobium under different rates of N 

addition. We did not find a decreasing tendency in nifH gene copies, while a previous 

study reported that the number of of the nifH gene copies was positively correlated with 

pH and negatively with inorganic N (ammonium and nitrate) concentration was high 
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(Pereira e Silva et al. 2013). In our study, the insignificant changes in nifH gene copies 

before the highest N addition rate might relate to that neither soil pH decrease nor soil 

nitrate concentration increase (Figure. S3) after N addition (except at the highest N 

addition rate). Previous studies have also shown that influences of N addition on plant 

growth, nodulation and nifH gene abundance may vary with the N addition levels 

(Wang et al. 2017b), the type of N fertiliser (Cui et al. 2017), and genotypes of legume 

species (Guinet et al. 2018; Pampana et al. 2018). Thus, our results from this study 

indicate that M. sativa decreases BNF primarily by reducing nodulation which probably 

results from soil inorganic N accumulation especially with high N addition (Figure. S4).  

Conclusions 

Our study showed that N addition did not enhance foliar N concentration and biomass 

production in M. sativa grown experimentally, however M. sativa changed its N source, 

which shifted gradually from biologically fixed N to available mineral soil N. Our 

results indicate that M. sativa is a typical facultative strategy N-fixing plant, i.e., it 

switches on BNF when N mineral is below the need for plant growth, but completely 

shut off BNF when available N for plant growth is sufficient. Increasing N supply by 

fertilization decreased the BNF primarily by reducing nodulation, which is likely a 

resultant of significant accumulation of soil inorganic N. Our results suggest that 

increasing N deposition will have fundamental impacts for crop genetic diversity and 

crop improvement breeding programs because efficient symbionts may not be 

necessary anymore for legumes under the predicted increasing N deposition. 

Furthermore, we demonstrate that there is a limit for exogenous N fertilization that 
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controls a facultative strategy of alfalfa (switch from BNF to soil increasing available 

N from N addition) and consequently impacts its function as an economic plant and as 

part of healthy ecosystem functioning. 
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Table 1 Initial physical-chemical properties of the soil used in this study. 
 

 

 

 

  

Soil properties    Value obtained 

Total C (%)    0.88 (±0.02) 

Total N (%)    0.08 (±0.001) 

Available P (mg/kg)    16.48 (±5.48) 

Exchangeable K (mg/kg)    387.80 (±2.55) 

Exchangeable Ca (mg/kg)    1093.90 (±4.10) 

Exchangeable Mg (mg/kg)    19.59 (±0.21) 

pH    7.65 (±0.10) 



29 
 

Table 2 Alfalfa biomass (mean ± SE) under different N addition treatments (n = 6). 

AGB represents the aboveground biomass, BGB the belowground biomass.  

N levels 

(g m-2 yr-1) 
AGB (g) BGB (g) 

Total Biomass 

(g) 

0 9.84 (±0.75)  10.52 (±1.19) 20.36 (±1.57) 

2 11.27 (±0.92)  11.33 (±1.04) 22.60 (±1.56) 

5 10.77 (±0.69)  8.49 (±1.12)  19.26 (±0.95) 

10 10.66 (±0.48)  11.03 (±1.36) 21.69 (±1.60) 

20 11.70 (±1.08)  9.69 (±1.46)  21.40 (±1.50) 

50 11.72 (±0.94)  10.55 (±1.79) 22.26 (±2.08) 

 
  



30 
 

Figure captions 

Figure. 1 Average height (a) and axial root length (b) of alfalfa at increasing N addition 

levels. Bars represented as the geometric mean ± SE (n = 6). Different letters above the 

bars indicate significant differences among treatments (α = 0.05).  

Figure. 2 Foliar nitrogen (N) and phosphorus (P) concentration and their ratios (inset) 

at increasing N addition levels (mean ± SE, n = 6).  

Figure. 3 The δ15N values (mean ± SE) of alfalfa leaves at increasing N addition levels 

(n = 6). Different letters indicate significant differences among treatments (α = 0.05). 

Figure. 4 The relationship between the percentage of plant N derived from atmospheric 

N2 (Ndfa%) and N addition levels (values are mean ± SE, n = 6). Error bars are 

sometimes hidden behind symbols. 

Figure. 5 The average number of nodules formed per plant at increasing N addition 

levels (n = 6). Bars represented as the geometric mean ± SE. Different letters above the 

bars indicate significant differences among the N addition treatments (α = 0.05). No 

nodule was formed at N50 treatment. 

Figure. 6 The quantity of nifH copies with per unit nodule at increasing N addition 

levels (n = 3). Bars represented as the geometric mean ± SE. Different letters above the 

bars indicate significant differences among the N treatments (α = 0.05). Data was not 

determined at N50 treatment as no nodule was collected. 

Figure. 7 The integrative response of alfalfa to the increasing N addition 
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Figure. 1 
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Figure. 2 
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Figure. 3  
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Figure. 4  
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Figure. 5  
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Figure. 6 
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Figure. 7 

 

 



Supplementary information 
 

Fig. S1. Changes in the root:shoot ratio at increasing N addition levels. The error bars 

represent the 1 SE (α = 0.510).  

 

  



Fig. S2 Relationship between foliar N concentration of alfalfa and soil inorganic N 

concentrations, and the calculated value of stoichiometric homeostasis (H) based on the 

relationship. 

 
  



Fig. S3. Changes in the soil inorganic N concentration (a), NO3
- : NH4

+ ratio (b) and 

changes in the soil pH value (c) as a function of increasing N addition levels. Errors 

bars represent 1 SE. In (a) different lowercase and capital letters denote significant 

difference (α < 0.05) in NH4
+-N and NO3

--N among N addition treatments, respectively. 

In (b) and (c) different letters above columns indicate the significant difference among 

treatments (α < 0.05). 



  
  



Fig. S4. The average number of nodules under different soil nitrate concentration. 

Errors bars represent 1 SE. 
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