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Abstract

In this paper we study the statistical issues related to the omission and catego-
rization of important covariates in the context of the Fine-Gray model in randomized
controlled trials with competing risks. We show that the omission of an important
covariate from the Fine-Gray model leads to attenuated estimates for treatment ef-
fect and loss of proportionality in general. Our simulation studies reveal substantial
attenuation in the estimate for treatment effect and the loss of statistical power, while
dichotomizing a continuous covariate leads to similar but less pronounced impact.
Our results are illustrated using data from a randomized clinical trial of HIV-infected
individuals. The relative merits of conducting an adjusted versus an unadjusted anal-
ysis of treatment effect in light of both statistical and practical considerations are
discussed.
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1 Introduction

A randomized controlled trial (RCT) is the gold standard study design for investigating
the effect of a medical treatment on progression of disease or another biological condition
in humans. In this experimental design, the allocation of random treatment ensures that
all possible confounders will be approximately balanced between treatment groups. Con-
sequently, confounding is not typically a concern for RCTs. However, it is well described
that, even without the confounding issue, whether the important baseline covariates are
being adjusted or not may result in different estimates for treatment effect (Gail et al.,
1984).

This phenomenon is typically the case for models with non-linear link functions (Gail
et al., 1984). For example, in logistic regression, omitting important covariates leads to
attenuated estimates for treatment effect (Gail et al., 1984) and reduced statistical power
(Robinson and Jewell, 1991; Struthers and Kalbfleisch, 1986). In the Cox proportional
hazards model, which is widely used in the analysis of RCTs with time-to-event outcomes,
omission of an important covariate leads to an attenuation of the effect estimate (Gail
et al., 1984; Struthers and Kalbfleisch, 1986) and loss of proportionality in general (Schu-
macher et al., 1987). Categorization of an important continuous covariate or aggregation
of the covariate would have similar effects (Schmoor and Schumacher, 1997; Abrahamowicz
et al., 2004). In all these cases, the statistical power of the test for the treatment effect
is reduced (Lagakos and Schoenfeld, 1984; Morgan et al., 1986; Schmoor and Schumacher,
1997; Hernández et al., 2006).

In some RCTs, participants may be at risk of multiple mutually exclusive events or
competing causes of failure (Andersen et al., 2002; Putter et al., 2007; Bakoyannis and
Touloumi, 2012). With such competing risks data, it is recommended to analyze the cause-
specific hazards and the cumulative incidence functions for all the causes of failure in order
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to get a better understanding of the competing risks process of interest (Latouche et al.,
2013). The most popular approach for the analysis of cumulative incidence function is the
semiparametric proportional subdistribution hazards model or the Fine-Gray model (Fine
and Gray, 1999). It is important to note that the impact of omitting an important covariate
in the framework of the Fine-Gray model, however, has not been investigated.

In this article, we investigate the effects of omitting or categorizing a continuous co-
variate on the estimate of the treatment effect in RCTs with competing endpoints under
the Fine-Gray model. We have previously shown that omitting an important prognostic
factor from the Fine-Gray model results in attenuated effect estimate of the covariate of
interest, assuming independence between the two covariates (Bakoyannis et al., 2010). In
this study, we analytically study the impact of omitting a covariate on treatment effect,
under the Fine-Gray model. We further evaluate the effect of omitting or dichotomizing a
continuous covariate on the estimate for treatment effect and statistical power in a simula-
tion study. We illustrate our results using data from an RCT of HIV-infected individuals.
Finally, we conclude with a discussion about the relative merits of conducting an adjusted
versus an unadjusted analysis of treatment effect in light of both statistical and practical
considerations.

2 Effects of covariate omission and categorization

2.1 Competing risks data and the Fine-Gray model

In many cohort studies and RCTs, participants are at risk of mutually exclusive endpoints.
For example, in cohort studies of HIV related mortality, participants are also at risk of dying
from non-HIV related causes. The nature of these studies give us competing risks data. The
term ”competing risks” also refers to studies with multiple endpoints where these endpoints
are not mutually exclusive but the first occurring event is of interest (Putter et al., 2007;
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Bakoyannis and Touloumi, 2012). This is the case, for example, in studies that focus on
the first major change in the combined antiretroviral treatment (cART) for HIV infected
individuals, which can be either treatment interruption or change of the cART regimen
(Touloumi et al., 2006).

For simplicity and without loss of generality, we will consider only two competing end-
points. Let T be the time to the occurrence of the first endpoint and C be the type of the
endpoint, denoting C = 1 to be the event of interest and 2 to be the competing event. Along
with treatment, denoted by Z, we consider an additional continuous prognostic variable
X.

The basic identifiable quantities from competing risks data are the cause-specific haz-
ard and the cumulative incidence function (Putter et al., 2007; Bakoyannis and Touloumi,
2012). The cause-specific hazard quantifies the instantaneous rate of occurrence of a par-
ticular endpoint, in the presence of the other endpoints, whereas the cumulative incidence
corresponds to the cumulative probability of a particular endpoint by a specific time, also
in the presence of the other endpoints. Note that the effect of treatment or other covariates
on the cause-specific hazard may be qualitatively different from the corresponding effect
on the cumulative incidence function (Fine and Gray, 1999; Putter et al., 2007; Bakoyannis
and Touloumi, 2012). Consequently, it is possible to obtain a null effect of treatment for
the former but strong treatment effect for the latter, or vice versa. To obtain a better
understanding of the competing risks process under study, it is recommended to analyze
both the cause-specific hazard and the cumulative incidence function of all the endpoints
(Latouche et al., 2013). Given that the issue of covariate omission or categorization has
not been studied in the framework of the Fine-Gray model for the cumulative incidence
function, our work focuses on this model.

The Fine-Gray model is based on the subdistribution hazard function (SH) (Gray, 1988)
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for the event of interest (C = 1), which is defined as:

λsub1 (t; z) = lim
h→0

1

h
P {t ≤ T < t+ h,C = 1|T ≥ t ∪ (T ≤ t ∩ C = 2), Z = z} .

The SH λsub1 (t; z, x) is defined similarly. The semi-parametric proportional hazards model
for the SH by Fine and Gray (1999) has the following form:

λsub1 (t; z, x) = λsub10 (t) exp(β1z + β2x), (1)

where λsub10 (t) is the unspecified baseline subdistribution hazard function. Throughout this
article, we define an important covariate as a covariate with β2 ̸= 0. Based on (1), the
corresponding cumulative incidence function can be expressed as:

F1(t; z, x) = 1−
[
exp

{
−Λsub

10 (t)
}]exp(β1z+β2x)

.

where Λsub
10 (t) is the cumulative baseline SH. The estimation is based on a combination of

the partial likelihood method and the inverse probability of censoring weighting technique
(Robins and Rotnitzky, 1992), to account for regular random right censoring. Estimation
of the model parameters can be performed in R, using the crr function in the package
cmprsk, and STATA, using the command stcrreg.

2.2 Analytic difference between the adjusted and the unadjusted

treatment effect under the Fine-Gray model

After some algebra it can be shown that, under the Fine-Gray model and randomization,
the unadjusted subdistribution hazard ratio (SHR) of treatment for the primary endpoint
is:

λsub1 (t; z = 1)

λsub1 (t; z = 0)
= exp(β1)g(t; β1, β2), (2)
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where

g(t; β1, β2) =

E[exp{− exp(β1+β2X)Λsub
10 (t)} exp(β2X)]

E[exp{− exp(β1+β2X)Λsub
10 (t)}]

E[exp{− exp(β2X)Λsub
10 (t)} exp(β2X)]

E[exp{− exp(β2X)Λsub
10 (t)}]

,

is a function of time t and the effects of treatment β1 and covariate β2 on the SHR of the
event of interest. The proof of equation (2) is provided in the Appendix. This equation
indicates that the unadjusted SHR for treatment is time dependent, resulting in a loss of
proportionality in terms of the subdistribution hazard ratio. Using a second order Taylor
expansion (see Appendix) of the above relation it can be shown that the difference between
the unadjusted [β∗

1(t)] and the adjusted (β1) treatment effect on the logarithmic scale,
under a small effect of the covariate X on the SH of the primary endpoint, is:

β∗
1(t)− β1 ≈ {1− exp(β1)}Λsub

10 (t)σ2
Xβ

2
2 , (3)

where σ2
X is the variance of the continuous covariate X. Based on (3), it is clear that

the difference β∗
1(t)− β1 depends on the baseline SH of the event of interest, the adjusted

treatment effect β1, the effect β2 of the covariate X, and the variance of X, but not the
mean of X.

It follows that the unadjusted treatment effect [β∗
1(t)] will be smaller than the adjusted

treatment effect (β1) when treatment is associated with an increased cumulative incidence
(i.e. β1 > 0) and larger when treatment is associated with a decreased cumulative incidence
(i.e. β1 < 0). The equality holds when: (i) the treatment Z has no effect on the SH of
the event of interest (i.e. treatment does not predict the cumulative incidence of the
primary endpoint; β1 = 0), or (ii) the covariate X does not affect the SH of the outcome
of interest (β2 = 0). In other words, compared to the adjusted treatment effect, under the
above mentioned conditions (i.e. β1 ̸= 0, β2 ̸= 0), the unadjusted treatment effect will be
attenuated (tendency towards the null).
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3 Simulation Experiments

The analytic expression for β∗
1(t)− β1 in Section 2.2 provides the degree of effect estimate

attenuation under a small effect of the covariate X. It is also of interest to investigate the
degree of this attenuation under a more pronounced effect of X. As this attenuation is
expected to lead to a reduced power in clinical trials, it is also practically important to
investigate the extent of this power loss. In this section, we explore these issues in finite
samples via a simulation study. The simulation study setup was similar to that used in Fine
and Gray (1999). Briefly, we simulated a binary variable Z ∈ {0, 1} with P (Z = 1) = 0.5

and a continuous variable X (independent of Z) from N(0, σ2
X), with the variance σ2

X

depending on the scenario. In our simulation study, Z represents treatment and X is an
(independent of treatment) continuous covariate. Conditionally on (Z,X), cause of failure
C ∈ {1, 2} was simulated from the Bernoulli distribution with

P (C = 1|z, x) = 1− (1− 0.7)exp(β1z+β2x).

Conditional on the cause of failure (C), failure time (T ) was simulated from:

P (T ≤ t|C = 1, z, x) =
1− [1− 0.7{1− exp(−t)}]exp(β1z+β2x)

1− (1− 0.7)exp(β1z+β2x)

P (T ≤ t|C = 2, z, x) = 1− exp [− exp{log(1.3)(z + x)}t]

This data generation scheme led to the following proportional SH model for the primary
endpoint:

λsub1 (t; z, x) = λsub01 (t) exp(β1z + β2x),

where λsub01 (t) = 0.7 exp(t)/ [1− 0.7{1− exp(−t)}]. Censoring time was set equal tomin(1, U),
where U was an exponential random variable with parameter equal to 0.05.

Different scenarios were defined according to the effect of treatment (Z) and of the
prognostic factor X on λsub1 (t; z, x), as well as the variance σ2

X of X. Specifically, the
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true treatment effect was assumed to be either moderate {β1 = log(0.8)} or strong {a =

log(0.6)}. Similarly, the effect of X on the primary endpoint was assumed to be either null
{β2 = 0}, moderate {β2 = log(1.5)} or strong {β2 = log(2)}. The standard deviation σX
of X was set equal to either 1 or 2, indicating a small and large variance of X respectively.
For each scenario, 10,000 datasets were generated. For each dataset, the number of subjects
needed to achieve a power of 80% to reject the null hypothesis (i.e. β1 = 0), was calculated
using the approximate formula provided by Latouche et al. (2004):

n =
(u 0.05

2
+ u1−0.8)

2

[log(SHR)]20.52ψ,

where up is the (1-p)-quintile of the standard normal distribution, SHR is the true treatment
subdistribution hazard ratio, and ψ the proportion of failures from the cause of interest.
Before the simulations, ψ was calculated numerically via Monte Carlo methods. To get a
better approximation based on this sample size formula, we used the censoring complete
partial likelihood approach (Fine and Gray, 1999; Latouche et al., 2004) in this simulation
study.

The Fine-Gray model for the primary endpoint was fitted for each dataset to estimate
the treatment effect using STATA. For each scenario, three different analysis strategies
were applied based on how we considered the covariate X in the model: i) X is used as a
continuous covariate, ii) X is dichotomized, and iii) X is excluded from the model. For each
strategy, we computed the relative difference between the estimated and the true adjusted
effect of treatment, as well as the empirical power.

Results from the simulation experiments are presented in Tables 1-3. The Tables
shows, for each scenario, the standard deviation of X, the sample size, the exponent
of the estimated effect of treatment mean (i.e. the estimated SHR), the relative differ-
ence between the estimated and the true, adjusted for the covariate X, treatment effect
(i.e. 100 × [mean(β̂1) − β1]/β1), the observed power and the required relative increase
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in sample size for achieving power of 80%, under the actual estimated treatment effect
(exp[mean(β̂1)]).

In the case of a moderate treatment effect (SHR=0.8) on the primary endpoint, proper
covariate adjustment produced almost identical treatment effect estimates with the corre-
sponding true effect of treatment, and achieved empirical power levels of 80% (range of
relative difference: -0.9% to 0.2%; range of empirical power: 79.8% to 80.0%). Similar
results were obtained for the scenario where X did not affect the event of interest {i.e.
exp(β2) = 1}, irrespectively of the analysis strategy (i.e. including X as a continuous or
dichotomized covariate or when omitting X; relative difference: around -0.5%; range of
empirical power: 80.6% to 80.7%). However, when X had a non-null effect on the primary
endpoint, both misspecified analysis strategies resulted in attenuated treatment effect esti-
mates, with the power levels being below 80% in most cases. Including X as a dichotomized
covariate in the model was associated with lower degree of treatment effect estimate at-
tenuation and power loss (range of relative difference: 1.7% to 17.1%; range of observed
power: 63.5% to 78.6%) compared to totally omitting X from the model (range of relative
difference: 4.1% to 32.5%; range of observed power: 47.1% to 76.3%). We must note that
the observed power loss is due to treatment effect estimate attenuation. As expected, the
degree of treatment effect estimate attenuation and power loss were more pronounced in
scenarios with a larger variance of X and a stronger effect of X. When the effect of X
on the primary endpoint was non-null, achieving the desired level of power would require,
for a given study duration, a 2.9% to 47.5% increase in sample size for the strategy of
including X as a binary covariate, and a corresponding 8.1% to 122.5% increase for the
strategy of omitting X from the model. Model misspecification was not associated with
biased standard error estimates (range of bias: -1.2% to 0.7%; data not shown).

When a stronger treatment effect was assumed (SHR=0.6), results were similar, al-
though the consequences of covariate omission or categorization on treatment effect esti-
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Table 1: Simulation results under a moderate effect of treatment on the outcome of interest
(adjusted true SHR=0.8). The estimation of the SHR for treatment was based on an
unadjusted for X model. Covariate X was assumed to follow a N(0, σ2

X) distribution.

Analysis exp(β1)
a exp(β2)

b σX nc exp
(
¯̂
β1

)
% diff.d Power n∗e/n

Unadjusted 0.8 1.0 1 1579 0.799 -0.463 0.806 1.008
2 0.799 -0.463 0.806 1.008

1.5 1 1538 0.807 4.050 0.763 1.081
2 0.827 15.017 0.664 1.367

2.0 1 1484 0.820 11.034 0.704 1.272
2 0.860 32.517 0.471 2.225

0.6 1.0 1 333 0.596 -1.185 0.792 0.955
2 0.596 -1.185 0.792 0.955

1.5 1 323 0.608 2.662 0.765 1.040
2 0.642 13.170 0.673 1.309

2.0 1 309 0.631 9.827 0.703 1.204
2 0.705 31.566 0.474 2.060

a True SHR for Z; b True SHR for X; c Sample size needed to achieve 80% power under the

conditional treatment effect; d 100 ∗ (
¯̂
β1 − β1)/β1; e Sample size needed to achieve 80% power

under exp
(
¯̂
β1

)
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Table 2: Simulation results under a moderate effect of treatment on the outcome of in-
terest (adjusted true SHR=0.8). The estimation of the SHR for treatment was based on
an adjusted for dichotomized X model. Covariate X was assumed to follow a N(0, σ2

X)

distribution.

Analysis exp(β1)
a exp(β2)

b σX nc exp
(
¯̂
β1

)
% diff.d Power n∗e/n

Dichotomized X 0.8 1.0 1 1579 0.799 -0.503 0.807 1.008
2 0.799 -0.503 0.807 1.008

1.5 1 1538 0.803 1.676 0.786 1.029
2 0.813 7.197 0.736 1.147

2.0 1 1484 0.809 4.877 0.762 1.113
2 0.831 17.104 0.635 1.475

0.6 1.0 1 333 0.596 -1.357 0.793 0.952
2 0.596 -1.357 0.793 0.952

1.5 1 323 0.601 0.451 0.780 0.994
2 0.618 5.870 0.741 1.115

2.0 1 309 0.613 4.075 0.758 1.061
2 0.656 17.394 0.624 1.413

a True SHR for Z; b True SHR for X; c Sample size needed to achieve 80% power under the

conditional treatment effect; d 100 ∗ (
¯̂
β1 − β1)/β1; e Sample size needed to achieve 80% power

under exp
(
¯̂
β1

)
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Table 3: Simulation results under a moderate effect of treatment on the outcome of in-
terest (adjusted true SHR=0.8). The estimation of the SHR for treatment was based on
an adjusted for continuous X model. Covariate X was assumed to follow a N(0, σ2

X)

distribution.

Analysis exp(β1)
a exp(β2)

b σX nc exp
(
¯̂
β1

)
% diff.d Power n∗e/n

Continuous X 0.8 1.0 1 1579 0.799 -0.499 0.807 1.008
2 0.799 -0.499 0.807 1.008

1.5 1 1538 0.800 0.043 0.798 0.996
2 0.800 0.154 0.795 0.990

2.0 1 1484 0.800 -0.214 0.803 1.002
2 0.798 -0.931 0.805 0.995

0.6 1.0 1 333 0.596 -1.354 0.792 0.952
2 0.596 -1.354 0.792 0.952

1.5 1 323 0.597 -1.087 0.795 0.966
2 0.597 -0.926 0.795 0.970

2.0 1 309 0.598 -0.766 0.792 0.964
2 0.598 -0.618 0.787 0.954

a True SHR for Z; b True SHR for X; c Sample size needed to achieve 80% power under the

conditional treatment effect; d 100 ∗ (
¯̂
β1 − β1)/β1; e Sample size needed to achieve 80% power

under exp
(
¯̂
β1

)
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mate were slightly less pronounced.

4 Data Example

In this section we re-analyzed data from the Delta 2 trial (Darbyshire et al., 1996) to
illustrate the impact of covariate omission in a real clinical trial setting. Briefly, the Delta
2 trial was an international randomized double-blind clinical trial involving HIV-1 infected
individuals. The aim was to test whether combination antiretroviral therapy of zidovudine
(AZT) with didanosine (ddI) or zalcitabine (ddC) was more effective than AZT alone in
extending overall survival and delaying disease progression. All patients had been treated
with AZT alone for at least 3 months before randomization. In the original publication
(Darbyshire et al., 1996), overall mortality was analyzed using the Cox proportional hazards
model. The main conclusion of the trial was that, compared to AZT alone, AZT plus ddI
significantly reduced the hazard of death, but there was no significant difference between
AZT alone and AZT plus ddC.

Alternatively, we analyzed separately AIDS-related and non-AIDS related deaths, con-
sidering them as competing events. Specifically, we analyzed the cumulative incidence of
the HIV-related mortality (outcome of interest) using the Fine-Gray model, treating deaths
from other causes as the competing risk. To fit the Fine-Gray model using this dataset we
used STATA’s stcrreg command.

Of the total of 1,083 HIV-infected individuals receiving treatment with AZT, 355
(32.8%) continued on the AZT monotherapy, whereas the remaining patients were initiated
either a combined treatment with AZT and ddI (N=362, 33.4%) or with AZT and ddC
(N=366, 33.8%). The majority of patients were males, with an overall median (IQR) age
of 35.7 (30.6, 42.9) years at enrollment (Table 4). Half of the study population (49.7%) was
asymptomatic at enrollment, whereas a relatively small portion (16.6%) had experienced
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an AIDS defining event (Table 4).
At the end of the trial, 350 (32.3%) patients died, most of whom (89.4%) with a defi-

nite or possible diagnosis of an HIV-related cause of death. The remaining causes of death
included suicides/euthanasia and others unlikely to be attributed to HIV or the trial ther-
apy. To estimate the effect of adding ddI or ddC to AZT on the cumulative incidence of
an HIV-related death we fitted the Fine-Gray model, considering deaths from other causes
as the competing endpoint. Results from this analysis, regarding both unadjusted and
adjusted treatment effect estimates, are presented in Table 5. Based on the unadjusted
analysis, it is estimated that adding ddI on an AZT-based monotherapy is associated with a
reduced subdistribution hazard of an HIV-related death by 22.7% (SHR= 0.77), although
this difference is marginally non-significant (p-value= 0.07). After adjusting for gender,
age and HIV stage at trial entry, the estimate for treatment effect was slightly stronger
(SHR= 0.73) and statistically significant (p-value= 0.03). This difference between the two
analyses is attributed to the additional adjustment for the important covariates age and
HIV stage at trial entry. The corresponding difference in the p-values is mainly attributed
to the difference in the estimated treatment effects and not on the difference in the standard
errors (standard errors for the log-SHR: 0.141 and 0.143 in the unadjusted and adjusted
analysis respectively). Thus ignoring important covariates led to an attenuation of the
treatment effect estimate by 6.5%. AZT plus ddC did not differ significantly from AZT
alone in both analyses.

5 Discussion

In this article, we studied the effects of covariate omission and categorization when analyz-
ing data from RCTs with competing endpoints using the Fine-Gray model. There is a vast
literature on covariate omission in models with non-linear link functions. However, this
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Table 4: Descriptive characteristics of the Delta 2 trial population by health outcome and
overall.

Outcome
Alive HIV death* Other death** Overall
N(%) N(%) N(%) N(%) p-value

Drug 0.261
AZT 229(31.2) 111(35.5) 15(40.5) 355(32.8)

AZT+ddl 259(35.3) 91(29.1) 12(32.4) 362 (33.4)
AZT+ddC 245(33.4) 111(35.5) 10(27.0) 366(33.8)
Gender 0.026

Male 628(85.7) 287(91.7) 32(86.5) 947(87.4)
Female 105(14.3) 26(8.3) 5(13.5) 136(12.6)

HIV stage < 0.001

at entry
Asymptomatic 428(58.4) 93(29.7) 17(45.9) 538(49.7)
AIDS-related 223(30.4) 130(41.5) 12(32.4) 365(33.7)

complex
AIDS 82(11.2) 90(28.8) 8(21.6) 180(16.6)

Median(IQR) p-value

Age(years) 34.8 37.7 37.1 35.7 0.004
(30.2,42.6) (32.0,43.5) (31.6,44.3) (30.6,42.9)

∗ Definite or possible diagnosis

∗∗ Mainly deaths due to adverse effects or unknown cause of death
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Table 5: Unadjusted and adjusted treatment effect estimates based on the Fine-Gray model
for the cumulative incidence of HIV related death: Results from the Delta Trial.

Unadjusted analysis Adjusted analysis
SHR* 95% C.I. p-value SHR* 95% C.I. p-value

Drug 0.26
AZT 1 1

AZT+ddl 0.77 (0.59,1.02) 0.07 0.73 (0.55,0.96) 0.03
AZT+ddC 0.96 (0.74,1.25) 0.77 0.96 (0.74,1.25) 0.76
Age(years) - 1.01 (1.00,1.03) 0.04
Gender

Male 1
Female 0.91 (0.60,1.39) 0.67

HIV stage
at entry

Asymptomatic 1
AIDS-related 2.22 (1.70,2.91) < 0.001

complex
AIDS 3.62 (2.70,4.86) < 0.001

∗ Subdistribution hazard ratio.
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issue has not been studied and discussed in the context of the Fine-Gray model. Given the
growing popularity of the Fine-Gray model, our work may be insightful for future clinical
research. It is important to note that the estimation approach by Fine and Gray (1999)
requires the estimation and specification of the independent right censoring distribution. In
practice, the censoring distribution is commonly assumed to be independent of the covari-
ates and is estimated using the nonparametric Kaplan-Meier estimator (Kaplan and Meier,
1958). However, the Fine-Gray method will produce biased estimates if the assumption on
the censoring distribution is incorrect, such as when the censoring distribution depends on
a set of covariates (see simulation studies in Mao and Lin, 2017). An attractive alternative
that does not impose assumptions regarding the independent right censoring distribution
is the semiparametric estimation approach by Mao and Lin (2017). We must note that the
results presented in this article are applicable to the proportional SH model regardless of
the estimation approach.

We have analytically shown that, in RCTs with competing endpoints, covariate omission
in the Fine-Gray model results in loss of proportionality and treatment effect attenuation.
The latter was also shown numerically in our simulation experiments. The treatment effect
attenuation is more pronounced when the omitted covariate has a stronger effect on the
endpoint of interest and a larger variance. We argue that the attenuation in the estimate
of treatment effect may not be a bias, but rather it reflects the difference between the true,
conditional and unconditional treatment effects, a phenomenon known as non-collapsibility
(Pearl et al., 2009).

Our simulation experiments showed a substantial loss in statistical power as a result of
treatment effect attenuation. Moreover, to obtain the desired power level, for a given study
duration, requires a significant increase in sample size with omitted covariates. Treatment
effect attenuation and power loss were less pronounced when the additional covariate was
not omitted but was included in the model in a misspecified form (i.e. dichotomized version
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of the continuous covariate).
Our findings are in agreement with those from previous work regarding the attenua-

tion effect with omitted covariates (Gail et al., 1984; Struthers and Kalbfleisch, 1986) and
power loss (Lagakos and Schoenfeld, 1984; Morgan et al., 1986; Robinson and Jewell, 1991;
Schmoor and Schumacher, 1997; Hernández et al., 2006), in several models with non-linear
link functions. In the Cox proportional hazards model, omitting covariates leads in ad-
dition to loss of proportionality (Schumacher et al., 1987). However, in contrast to the
present article, most previous work interpreted the difference between the conditional and
unconditional effects as bias rather than a consequence of non-collapsibility issue.

Several articles have discussed the appropriateness of using the conditional or the un-
conditional treatment effect estimate, and this is a controversial issue (Hernández et al.,
2006). From a practical perspective, focusing on conditional or unconditional treatment
effects, is, to some extent, a matter of clinical importance. That is, if the interest lies
on the average effect of a treatment intervention in the general population, which would
be desirable from a public health perspective, then an unconditional model seems not ap-
propriate. As an example, unconditional effects would be of interest when studying the
efficacy of a particular vaccine as a means to control the spread of an infectious disease or
to lower the corresponding morbidity. On the other hand, if the focus of the study is on the
treatment effect in a specific patient (with some unique characteristics), which is common
in clinical practice, then a conditional model seems to be more appropriate (Hauck et al.,
1998). Having said that, covariate adjustment is sometimes considered to be necessary in
correcting for covariate imbalances due to chance (Hernández et al., 2006). Also, since
treatment may have different effect on different groups of people, including other covari-
ates allows the examination of interaction effects. A detailed discussion on the effect of
individual differences on the efficacy of treatment can be found in Liu et al. (2005). It
is important to note that, including important covariates in the model is associated with
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increased power which can substantially reduce number of individuals to be recruited and
study costs. Some researchers have concluded that adjustment for important covariates is
recommended (Hauck et al., 1998; Hernández et al., 2006). Specifically, Hauck et al. (1998)
and Pocock et al. (2002) suggested that the inclusion of covariates should be pre-specified
(i.e. in the study protocol). Post hoc covariate adjustment can be applied as a secondary
analysis if the RCT is designed to evaluate an unadjusted treatment effect. In cases where
complex interactions with treatment are suspected, one can go one step further and utilize
modern methods for precision medicine (Kosorok and Laber, 2019; He et al., 2021).

Given the non-collapsibility issue, one may question the usefulness of the Fine-Gray
model in practice. However, we feel that the interpretability of the SHR as a measure of
relative risk along with the existence of off-the-shelf software to fit this model, are attractive
features from a practical standpoint. Therefore, we believe that the Fine-Gray model is a
valuable tool for the analysis of clinical trials with competing risks. However, one has to
bear in mind both the non-collapsibility issue and the scientific focus of the trial.

To conclude, important covariates should be included in the Fine-Gray model if the
study focuses on the effect of a particular treatment on individual patients. In modern pre-
cision medicine applications (Kosorok and Laber, 2019), where the interest is on treatments
tailored to the individual patient characteristics, it is more appropriate to estimate optimal
treatment regimes using proper methods (He et al., 2021) and consider a potentially large
number of covariates that may interact with treatment. In both cases, categorization of a
continuous covariate should be avoided. On the other hand, when evaluating community
interventions, unadjusted effect estimates may be more clinically relevant, in spite of the
statistical drawbacks.
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Appendix A: Analytic difference between the adjusted

and unadjusted effect

Let A = {t ≤ T < t+h,C = 1} and B = {T ≥ t∪ (T ≤ t∩C = 2)}. Then the conditional
on treatment subdistribution hazard can be written as:

λsub1 (t; z) = lim
h→0

1

h
P {A|B,Z = z}

= lim
h→0

1

h

∫
x
P(A,B,Z = z,X = x)dx∫
x
P(B,Z = z,X = x)dx

= lim
h→0

1

h

∫
x
fZ,X(z, x)P(B|Z = z,X = x)P(A|B,Z = z,X = x)dx∫

x
fZ,X(z, x)P(B|Z = z,X = x)dx

.

Given Z ⊥⊥ X (due to randomization) we have

λsub1 (t; z) = lim
h→0

1

h

fZ(z)
∫
x
fX(x)P(B|Z = z,X = x)P(A|B,Z = z,X = x)dx

fZ(z)
∫
x
fX(x)P(B|Z = z,X = x)dx

=

∫
x
fX(x)P(B|Z = z,X = x)λsub1 (t; z, x)dx∫

x
fX(x)P(B|Z = z,X = x)dx

.

Since Bc, the compliment of B = {T ≥ t ∪ (T ≤ t ∩ C = 2)}, is equal to {T ≤ t, C = 1},
the P(B|Z = z,X = x) can be written as 1 − P(Bc|Z = z,X = x) = 1 − P(T ≤ t, C =

1|Z = z,X = x) = 1−F1(t; z, x). Consequently, the unadjusted SH of the event of interest
can be expressed as

λsub1 (t; z) =

∫
x
{1− F1(t; z, x)}λsub1 (t; z, x)fX(x)dx∫

x
{1− F1(t; z, x)}fX(x)dx

.

Under the Fine-Gray model defined in (1), the unadjusted SH of the event of interest is

λsub1 (t; z) =

∫
x
{1− F1(t; z, x)}λsub10 (t) exp(β1z + β2x)fX(x)dx∫

x
{1− F1(t; z, x)}fX(x)dx

= λsub10 (t) exp(β1z)

∫
x
{1− F1(t; z, x)} exp(β2x)fX(x)dx∫

x
{1− F1(t; z, x)}fX(x)dx

.
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The difference between the unadjusted and adjusted forX treatment effects {i.e. β∗
1(t)−

β1} is, by (1) and (2), equal to log {g1(t; β1, β2)/g2(t; β2)}, where

g1(t; β1, β2) =
E
[
exp

{
− exp(β1 + β2X)Λsub

10 (t)
}
exp(β2X)

]
E
[
exp

{
− exp(β1 + β2X)Λsub

10 (t)
}]

and
g2(t; β2) =

E
[
exp

{
− exp(β2X)Λsub

10 (t)
}
exp(β2X)

]
E
[
exp

{
− exp(β2X)Λsub

10 (t)
}]

The second-order Taylor series approximation of this difference around β2 = 0 is:

β∗
1(t)− β1 ≡ u(β2; β1, t) ≈ u(0; β1, t) + u′(0; β1, t)β2 +

u′′(0; β1, t)

2
β2
2 . (4)

It is straightforward to show that u(0; β1, t) = 0. The first derivative of u(β2; β1, t) is

u′(β2; β1, t) =
d

dβ2

{
log

(
E
[
exp

{
− exp(β1 + β2X)Λsub

10 (t)
}
exp(β2X)

])}
− d

dβ2

{
log

(
E
[
exp

{
− exp(β1 + β2X)Λsub

10 (t)
}])}

− d

dβ2

{
log

(
E
[
exp

{
− exp(β2X)Λsub

10 (t)
}
exp(β2X)

])}
+

d

dβ2

{
log

(
E
[
exp

{
− exp(β2X)Λsub

10 (t)
}])}

=
E
[
exp

{
− exp(β1 + β2X)Λsub

10 (t) + β2X
}{

X − exp(β1 + β2X)Λsub
10 (t)X }]

E
[
exp

{
− exp(β1 + β2X)Λsub

10 (t) + β2X
}]

−
E
[
exp

{
− exp(β1 + β2X)Λsub

10 (t)
}{

− exp(β1 + β2X)Λsub
10 (t)X }]

E
[
exp

{
− exp(β1 + β2X)Λsub

10 (t)
}]

−
E
[
exp

{
− exp(β2X)Λsub

10 (t) + β2X
}{

X − exp(β2X)Λsub
10 (t)X }]

E
[
exp

{
− exp(β2X)Λsub

10 (t) + β2X
}]

+
E
[
exp

{
− exp(β2X)Λsub

10 (t)
}{

− exp(β2X)Λsub
10 (t)X }]

E
[
exp

{
− exp(β2X)Λsub

10 (t)
}]

It is straightforward to show that, after setting β2 = 0 in the above expression, the second
term in the right side of (4) is equal to 0. Evaluating the second derivative of u(β2; β1, t)
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at 0 we have

u′′(0; β1, t) = {1− Λsub
10 (t) exp(β1)}2σ2

X − Λsub
10 (t) exp(β1)E(X

2)

−
[
{Λsub

10 (t) exp(β1)}2σ2
X − Λsub

10 (t) exp(β1)E(X
2)
]

−
[
{1− Λsub

10 (t)}2σ2
X − Λsub

10 (t)E(X2)
]

+
[
{Λsub

10 (t)}2σ2
X − Λsub

10 (t)E(X2)
]

= {1− Λsub
10 (t) exp(β1)}2σ2

X − {Λsub
10 (t) exp(β1)}2σ2

X

−{1− Λsub
10 (t)}2σ2

X + {Λsub
10 (t)}2σ2

X

= 2 {1− exp(β1)}Λsub
10 (t)σ2

X

Therefore, the difference between the unadjusted and adjusted for X treatment effects,
after substituting u′′(0; β1, t) in (4), is

β∗
1(t)− β1 ≈ {1− exp(β1)}Λsub

10 (t)σ2
Xβ

2
2 .
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