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Abstract

It is increasingly recognised that the gut microbiota plays a role in the progression of chronic 

diseases, and that diet may confer health benefits by altering the gut microbiota composition. This 

is of particular relevance for chronic kidney disease (CKD), as the gut is a source of uremic 

retention solutes which accumulate as a result of impaired kidney function and can exert 

nephrotoxic and other harmful effects. Kidney dysfunction is also associated with changes in the 

composition of the gut microbiota and the gastrointestinal tract. Diet modulates the gut microbiota 

and there is much interest in the use of pre-, pro- and synbiotics as dietary therapies in CKD, as 

well as dietary patterns that beneficially alter the microbiota. This review provides an overview of 

the gut microbiota and its measurement, its relevance in the context of CKD and the current state 

of knowledge regarding dietary manipulation of the microbiota.

Introduction

The role of the gut microbiota and its implications for health and disease have evolved 

rapidly over the last decade, with studies suggesting that the gut microbiota (the community 

of bacteria that reside in the gastrointestinal tract) has an integral role in modulating the risk 

of several chronic diseases, including kidney disease. Indeed, alterations to the gut 

microbiota have been repeatedly linked to diseases such as inflammatory bowel disease1, 

cardiovascular disease2, chronic kidney disease (CKD)3, obesity4,5, type 2 diabetes6 and 

cancer.7 The gut microbiota is variable with diet and antibiotic use significantly impacting 

its composition and diversity8. Increasingly, studies have demonstrated the significant role 
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diet plays in shaping the gut microbiota with proof-of-concept studies demonstrating it is 

amenable to therapeutic intervention.9

Scientific research and general public interest in the use of gut targeted therapies, such as 

pro- , pre- and synbiotics, as an adjunct to traditional medical therapy to treat or manage 

chronic diseases has grown substantially. It is estimated that two out of every three adults 

use dietary herbal, vitamin and/or mineral supplements to help manage their chronic 

conditions.10 This trend is reflected in supplements targeting gut health with sales in 

probiotics predicted to reach in excess of $64 billion by 2023.11 Patients with CKD have 

highlighted their desire for a preventative approach to managing their health and wellbeing12 

and seek out expert dietitians for individualised nutrition advice.13 It is likely that these 

desires align with the therapeutic potential of gut health supplementation. As such, dietitians 

are in a key position to advise patients with CKD about the evidence and limitations of 

supplements aimed to improve gut health.14

The aim of this article is to provide an overview of the gut microbiota and its measurement, 

describe the link between gut microbiota and clinical outcomes in CKD, and outline 

potential dietary strategies to manipulate the gut microbiota.

Meet the Microbiota

The terms ‘microbiome’ and ‘microbiota’ are often used synonymously, however they have 

specific meanings (Table 1). The term ‘microbiota’ refers to a collection of microorganisms 

that are found in a particular sample or location, whilst the ‘microbiome’ refers to the 

collective genetic material of a microbial community. Approximately 500-1000 bacterial 

species are present in the community that is the gut microbiota15, with many bacteria sharing 

similar genes that can perform similar functions16, known as genetic redundancy. Many 

bacterial genes encode for proteins that possess functions such as fermentation of dietary 

fibre or the production of Vitamin K, that the human genetic component is not capable of. 

Here we use the term microbiota to refer to bacteria as most studies that refer to the 

microbiota, particularly the gut microbiota, are focused on the bacterial organisms that 

inhabit that ecosystem. However, it is important to note that a number of other 

microorganisms inhabit the gut including Archaea (many of which are methane producers), 

viruses (the virome), fungi (the mycobiome) and bacteriophages (the phageome).17

Measuring Microbes

Up until the 1990s, the primary method for assessment of the microbiota was the use of 

culture-based techniques.18 As this involved the use of selective growth media, permitting 

the growth of particular types of bacteria whilst restricting the growth of others, it enabled 

enumeration of selectively grown bacteria. For example, to ascertain the relative abundance 

of lactobacilli between two samples, a dilution would be plated out onto the agar plate and 

allowed to incubate. Following incubation, the number of bacterial colonies that were visible 

on the plate would be counted and from this a concentration of colony forming units could 

be calculated. This technique has the benefit of being relatively cheap and for many years 

was considered the gold standard for microbial identification.18 However, less than 30% of 
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gut bacteria are culturable using current culture techniques.19 Furthermore, this approach 

does not typically allow the differentiation between bacterial species or strains. Over the past 

two decades, there have been notable advances in the development of culture-independent 

techniques, that has greatly broadened our understanding of the microbiota. These include 

DNA microarrays, targeted PCR (qPCR), denaturing gradient gel electrophoresis (DGGE), 

terminal restriction fragment length polymorphism (T-RFLP) and fluorescence in situ 

hybridization (FISH), which have been described in detail elsewhere.18 Whilst useful for 

advancing our understanding of the microbiota, these techniques have largely been 

superseded over the past decade by next generation sequencing (NGS) methodologies. The 

relevance and application of sequencing methodologies, as it applies to research and practice 

in CKD will be detailed below.

Sequencing

The primary driver behind the advancing knowledge base and interest in the microbiome (as 

well as genomics in general) is the decrease in the cost of sequencing, largely due to the 

development of NGS technologies.18 Rather than trying to culture specific bacterial 

organisms, these approaches identify the genetic material from the bacterial samples, and 

use this to determine bacterial identity. This has the benefit of identifying both non-

culturable and culturable bacteria. There are two main NGS methods that are commonly 

used for gut microbiota work: 16S rRNA sequencing and metagenomics (often referred to as 

shotgun sequencing).20 Metagenomics involves sequencing all of the bacterial DNA within a 

sample, whilst 16S rRNA sequencing only sequences a portion of the bacterial 16S rRNA 

gene.21

16S Sequencing

All bacteria have a portion of their genome which codes for the highly conserved 16S rRNA 

gene, coding for 16S ribosomal RNA, which forms part of the ribosome.20 This 16S rRNA 

gene contains nine highly variable regions, named V1 to V9, which can be used to 

differentiate between bacterial species.22 Typically, a particular region of the 16S gene will 

be used, such as the V3-V5 region. Sequencing of these 16S rRNA gene regions can be 

compared with databases of previously classified 16S sequences to allow for identification 

of the bacteria that sequence originated from.20 Commonly used databases for 16S 

sequences classification are Greengenes23, SILVA24 and the Ribosomal Database Project 

(RDP).25 The level of resolution provided by this approach is limited, with not all bacteria 

being able to be identified to a species or genus level. If you are interested in performing 

16S rRNA sequencing, Claesson et al.21 provides an excellent starting overview. 16S 

sequencing provides greater insights into the bacterial community than could be achieved by 

previous methods, however there are limits in terms of the depth and resolution that can be 

achieved.20

Shotgun sequencing (aka metagenomics)

Metagenomic shotgun sequencing provides the most informative view of the microbiome, 

however generates vast volumes of data, is quite computationally intensive and requires 

specialised bioinformatics skills.21 Metagenomics involves the sequencing of all microbial 

DNA within a sample. This is achieved by shearing bacterial DNA into fragments, which are 
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subsequently sequenced simultaneously (known as massive parallel sequencing).26 These 

sequences then need to be aligned into a continuous sequence to represent the bacterial 

genome, a process known as metagenome assembly.20 The process of metagenome assembly 

requires significant compute power and requires access to a high performance computing 

cluster.26 Metagenomics has the advantage of characterising bacteria to the strain level, 

which 16S rRNA sequencing cannot, however is significantly costlier and requires 

specialised skill sets and access to high-powered computing resources.

Non-Genetic Techniques for Microbiota Analysis

Whilst the use of culture-based and sequencing techniques detailed above may answer the 

question of form, i.e. “who’s there?”, there are a number of techniques that seek to answer 

the question of function, i.e. “what are they doing?”. These are based around the central 

dogma of biology, namely that genes are transcribed into messenger RNA (mRNA) which 

are translated into proteins, which can have functional impact for the organism. Critically, 

the commonly used sequencing based techniques for identifying the gut microbiota 

discussed above do not give rise to information about function, nor discriminate between 

alive and dead bacterial cells.

Metatranscriptomics and Metaproteomics

Metatranscriptomics involves the sequencing of total microbial mRNA whilst 

metaproteomics involves identifying all microbial proteins in a sample.27 A bacterium may 

possess a particular gene, however if that gene is not transcribed into mRNA and 

subsequently translated into a protein, there is no opportunity for a functional effect to occur. 

For example, data from metagenomic sequencing indicated that the microbiome of 

participants contained genes for tryptophan biosynthesis, however the mRNA transcripts of 

these genes were consistently underexpressed.28 It was suggested that, due to the high 

bioavailability of tryptophan in the host diet, it was not favourable for the bacteria to expend 

the energy synthesising the proteins required to make tryptophan, when it was freely 

available in the environment. Whilst metagenomic sequencing provided an indication of the 

genetic potential of the microbiome, the use of metatranscriptomics provided a greater 

insight into the function of the microbiota.

Metabolites and Metabolomics

One of the primary ways in which the microbiota has an effect on the host is by the 

production of microbial metabolites and the measurement of these metabolites is one way to 

assess the effect of an intervention on the microbiota.29 The metabolome refers to the 

complete set of metabolites present in a particular sample. Commonly assessed microbial 

metabolites that have relevance for CKD populations include uremic retention solutes, 

detailed below, and short-chain fatty acids (SCFAs).30 These metabolites may be measured 

in faeces, blood or urine. The measurement of specific metabolites of microbial origin 

provide an insight into the effects of diets and drugs on the microbiota.
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Sampling and Processing Effects

Most studies in humans utilise stool samples as a proxy that is indicative of the distal colonic 

luminal microbiota. The mucosal microbiota, that is the bacteria that are closely associated 

with the intestinal mucus layers, is significantly different from the fecal microbiota.31–33 

The mucosal microbiota has close interactions with intestinal epithelial cells, as well as 

those of the immune system, and may have relevance for the integrity of the gastrointestinal 

barrier. In experimental animal models of CKD, it has been shown that gastrointestinal 

permeability is increased with CKD34–36, and markers of intestinal permeability are 

inversely correlated with decreasing estimated glomerular filtration rate (eGFR) in CKD 

patients.37,38 Of practical relevance for patients is that an endoscopy is required for 

obtaining mucosa-associated microbes.33 Furthermore, the bowel preparation required for a 

colonoscopy changes the composition of the stool microbiota39 and it was recently shown to 

also alter the composition of the mucosal microbiota.40 To decrease patient burden the 

majority of human microbiota studies utilise stool samples, however it is important to 

understand the potential limitations with this approach.

Another important consideration with regards to stool sampling is that the bacterial 

composition of the stool is not uniform, and the area of sampling may affect results. 

Sampling from the exterior of the stool sample resulted in significantly lower abundance of 

Bifidobacteria, compared with an interior sample, a fact ascribed to the anaerobic nature of 

Bifidobacteria,41 Another study, which obtained samples from the same stool 1cm apart, 

observed differences in the microbial composition between the samples, particularly for low 

abundance taxa.42 Homogenisation of the entire sample, as opposed to taking a subsample 

from a section of the stool, has been identified as a technique to limit this variability.41 

Whilst this approach has been recommended41, it may be impractical to implement this in 

the field setting.43

Following sample collection, the subsequent shipping and storage conditions may also 

impact the microbiome. Whilst there is some inconsistency with regards to whether freezing 

alters the composition of the gut microbiome44–47 it has been recommended that, where 

possible, DNA extraction be conducted on freshly collected samples.48 Understandably this 

is not always possible, in which case samples should be stored at −80°C as soon as possible.
49 When immediate freezing is not possible, the use of a commercial stabilising kit such as 

the OMNIgene gut tube is recommended.50 If SCFA analysis is to be undertaken, it is 

recommended that samples be frozen at −80°C immediately, as these compounds are highly 

volatile.51

Finally, the bacterial DNA extraction method may also impact the microbiota. Costea et al.52 

assessed 21 DNA extraction protocols utilized in research and established a benchmark 

method for DNA extraction based on DNA quantity, quality and community diversity. This 

benchmark DNA extraction protocol, standards of practice for sample collection methods, 

and visual aids can be found in the International Human Microbiome Standards (IHMS) 

website (www.microbiome-standards.org/).
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The Gut Microbiota and Renal Disease

Kidney dysfunction induces changes in the gastrointestinal tract

There are changes in the gastrointestinal tract as kidney function declines. Specifically, there 

is an effect of urea which may directly damage the epithelial cells of the gastrointestinal 

tract. Experimentally, Vaziri et al.53 demonstrated that, in a cell line of human enterocytes, a 

concentration of urea similar to that observed in patients with end-stage kidney disease 

(ESKD), leads to a decrease in several tight junction proteins. In the same study, the 

presence of urease, a bacterial enzyme that metabolizes urea into ammonia, was associated 

with an even greater reduction in tight junction proteins. Tight junction proteins play a 

pivotal role in maintaining the integrity of the gastrointestinal epithelial barrier and a 

decrease in these tight junction proteins leads to increased intestinal permeability, permitting 

the translocation of bacteria or bacterial fragments into the systemic circulation.

While it is generally impractical to assess changes in gastrointestinal epithelial tight junction 

proteins in individuals with CKD, bacterial translocation can be assessed through the 

measurement of circulating levels of endotoxin. Indeed, several studies have reported higher 

endotoxin levels in patients with advancing grades of CKD. McIntyre at al.37 observed a 

negative association between eGFR and level of circulating endotoxin, with the highest level 

in those undergoing dialysis. Recently, Shah et al.54 conducted a pilot study comparing the 

blood microbiome of patients with normal and reduced kidney function. Whilst patients with 

CKD had a lower bacterial richness and a higher relative abundance of several bacteria, 

primarily in the Enterobacteriaceae and Pseudomonadaceae families, it is interesting to note 

that there was no difference in microbial DNA concentration in the blood between groups.54 

Overall, these data suggest that kidney dysfunction affects gastrointestinal tract integrity and 

increases intestinal permeability.

Changes in the gut microbiota with CKD

Concurrent with changes in gastrointestinal tract permeability, there are changes in the gut 

microbiota with CKD. Animal models of CKD have been shown to have a different 

microbial composition compared to littermates with normal kidney function. For example, 

Vaziri et al.3 reported that colonic contents from 5/6 nephrectomy rats had a reduced relative 

bacterial richness compared to sham-operated rats. Furthermore, the relative abundance of 

Betaproteobacteria class was enriched, while the Lactobacillaceae and Prevotellaceae 

families were reduced in CKD rats. Similarly, in fecal pellets from 5/6 nephrectomy mice, 

Nishiyama et al.55 showed that at the genus level, there was an increase in the relative 

abundance of Allobaculum, Bifidobacterium, and Turicibacter, while there was a decrease in 

Lactobacillus, Oscillospira, unclassified Ruminococcaceae, and unclassified Rikenellaceae, 

compared to sham-operated mice.

Assessing the gut microbiota of colonic contents or fecal pellets is a closer indication to the 

luminal distal microbiota as mentioned above. However, some researchers have assessed the 

effects of kidney dysfunction in the cecal digesta in animal studies, which is a more 

representative indication of the proximal large intestine microbiota. Lau et al.56 observed 

that 5/6 nephrectomy rats had lower bacterial diversity and a higher relative abundance of 
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the phylum Bacteroidetes and fewer Firmicutes, compared to rats with normal kidney 

function. In adenine-induced CKD mice, Yang et al.57 found that there were 17 genera that 

were different between normal and CKD mice. Particularly, Dorea, Coprobacillus, 
Clostridium, Ruminococcus, Lactobacillus, unclassified Erysipelotrichaceae, 

Staphylococcus, Allobaculum, and Blautia were enriched in the CKD mice cecal digesta. 

While these studies are informative, they may not translate into human studies due to the 

difficulty and invasiveness that would constitute obtaining proximal colon samples.

Experimental studies have provided an indication that the gut microbiota changes with 

kidney dysfunction. However, it is important to note that there are key differences in the 

gastrointestinal tract between mammals and some animal traits do not translate into human 

studies. These differences include the predominant site of bacterial fermentation, where 

rodents are cecal fermenters, while humans are colonic fermenters.58 In addition, rodents are 

a coprophagic species, a trait which alters the microbiome.59 In terms of the gut microbiota 

composition, at the phyla level, Firmicutes and Bacteroidetes are the most abundant in both 

humans and murines. However, up to 85% of the bacteria genera in mice are not present in 

humans and, therefore, comparisons of the gut microbiota of murines and humans should be 

made with caution.60

In humans, changes in the gut microbiota may start early in the development of CKD. Vaziri 

et al.3 reported that individuals with ESKD undergoing hemodialysis treatment had a higher 

relative abundance of Actinobacteria, Firmicutes, and Gammaproteobacteria, while 

individuals without CKD had a higher relative abundance of Lactobacillaceae, 

Sutterellaceae, and Bacteroidaceae families. Crespo-Salgado et al.61 compared the fecal 

microbiota of pediatric patients undergoing peritoneal dialysis, hemodialysis, post-kidney 

transplant and healthy controls. Peritoneal dialysis and post-transplant patients had lower 

bacterial species richness compared with patients on hemodialysis and healthy controls. At 

the phyla level, patients undergoing peritoneal dialysis had a lower relative abundance of 

Firmicutes and Actinobacteria, while pediatric patients on hemodialysis had a higher relative 

abundance of Bacteroidetes. At the family level, peritoneal dialysis patients had an 

expansion of Enterobacteriaceae and a contraction of Bifidobacteriaceae. In a targeted 

quantitative real-time PCR analysis, Wang et al.62 observed that adult patients undergoing 

peritoneal dialysis had decreased relative abundances of Bifidobacterium and Lactobacillus 
spp. including B. catenulatum, B. longum, B. bifidum, L. plantarum, and L. paracasei. 
Therefore, somewhat consistently it has been observed that in patients with CKD, the 

relative abundance of symbiotic bacteria is reduced, while some potential pathobionts are 

increased. However, it is still unclear if shifting the gut microbiota composition or increasing 

the relative abundance of symbiont bacteria improves outcomes in CKD patients.

While there are changes in the gastrointestinal microbiota with kidney dysfunction, the 

results are not always consistent between studies. One of the limitations is the diversity in 

protocols utilized, including different sample processing methods, sequencing techniques 

and analysis platforms. In addition to knowing the composition of the gut microbiota, the 

functional capacity differences may be of more clinical relevance. Wong et al.63 observed 

that in patients undergoing hemodialysis, there was an expansion in the bacterial families 

that possess urease, uricase, and indole and p-cresol forming enzymes and a decrease in 
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bacterial families with butyrate-forming capacity. Similarly, Jiang et al.64 reported that there 

is a decrease in the butyrate-producing bacteria Roseburia spp. and Faecalibacterium 
prausnitzii with even a mild reduction in kidney function compared to healthy individuals, 

but it is important to note that they used a targeted qPCR approach which only detected 

these bacterial species. By understanding the bacterial capacity for producing particular 

metabolites, we can gain further insight into the relevance of the microbiota to CKD.

Uremic retention solutes

As kidney function declines, there is an increased accumulation of molecules normally 

cleared by the kidneys, collectively called uremic retention solutes. These uremic retention 

solutes include metabolites of microbial metabolism. The European Uremic Toxin Work 

Group has published a variety of articles related to uremic retention solutes, with helpful 

information including reference values.65 The most widely studied uremic retention solutes 

derived of microbial metabolism are indoxyl sulfate, p-cresyl sulfate, and trimethylamine-N 

oxide (TMAO) (Figure 1). These uremic retention solutes have been associated with an 

increased risk of kidney disease progression66,67, cardiovascular disease68,69, mineral and 

bone disorder70, and even mortality.71,72

Indoxyl Sulfate

Indoxyl sulfate is derived from the microbial metabolism of dietary tryptophan to indole, 

through the bacterial enzyme tryptophanase.73 Tryptophanase activity is facilitated at higher 

pH and, therefore, occurs mostly in the distal colon.74 However, patients with CKD often 

consume a low-fiber diet due to dietary restrictions to limit phosphorus and potassium 

intake75,76, leading to a reduction in colonic SCFA production. This reduction in SCFA 

production may lead to an increase in luminal pH in the proximal colon, facilitating 

tryptophanase activity across the length of the colon. The indole cleaved from tryptophan is 

absorbed into the portal circulation. In the liver, the indole is oxidized to indoxyl and 

sulfated leading to the formation of indoxyl sulfate.77 Ninety to 98% of indoxyl sulfate is 

bound to plasma proteins, such as albumin, and is excreted in urine by tubular secretion 

through organic anion transporters.78

Plasma indoxyl sulfate increases as kidney function declines, and those receiving dialysis 

treatment have the highest serum concentration.79 The European Uremic Toxin Work Group 

reported that comparing the average concentration of indoxyl sulfate in uremia to normal 

concentrations, CKD patients have ~40-fold higher total indoxyl sulfate.65 Elevated indoxyl 

sulfate concentrations in dialysis patients are in part due to the fact that traditional dialysis 

treatment does not replicate the kidney’s high efficiency of tubular secretion.78 Some of the 

deleterious effects of indoxyl sulfate include increased oxidative stress through the activation 

of NADPH-oxidases, enhanced inflammatory state through the activation of NF-kB via 

STAT3, activation of the renin-angiotensin-aldosterone system (RAAS), enhanced aortic 

calcification, and mineral and bone disorder, all of these reviewed by Leong and Sirich.78

Observational and controlled trials have targeted the production, absorption, and removal of 

indoles and indoxyl sulfate. Some of the mechanisms to decrease circulating indoxyl sulfate 

include limiting the production of indole by very-low80 and low-protein diets81, therapies 
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targeting the gut microbiota (i.e., pro-, pre-, and synbiotics82), reduction of indole absorption 

through adsorptive therapies (i.e., AST-12083,84 and sevelamer85–88) and enhanced removal 

via hemodiafiltration.89,90 Recently, the infusion of an albumin binding competitor, 

ibuprofen, during dialysis led to a reduction in serum levels of indoxyl sulfate.91 Overall 

however, the evidence for any single approach is uncertain, due to inconclusive and/or small 

clinical trials to date.

P-cresyl Sulfate

P-cresol is derived from the fermentation of tyrosine through microbial metabolism.92 In the 

liver, p-cresol is sulfated by aryl sulfotransferase forming p-cresyl sulfate.93 Similarly to 

indoxyl sulfate, in circulation 90-98% of p-cresyl sulfate is protein-bound and is excreted in 

urine by tubular secretion through the organic anion transporters94, albeit to a lower extent 

than indoxyl sulfate.95 Serum p-cresyl sulfate concentrations increase as kidney function 

declines, with the highest concentrations being observed in ESKD and dialysis patients.79,95 

The European Uremic Toxin Work Group reported that comparing the average concentration 

of p-cresyl sulfate in uremia to normal concentrations, CKD patients have ~21-fold higher 

total p-cresyl sulfate.65 P-cresyl sulfate has been associated with poor outcomes in 

experimental, observational, and clinical studies. At the renal level, p-cresyl sulfate causes 

renal tubular damage through activation of NADPH-oxidases.96 Additionally, p-cresyl 

sulfate has been associated with increased inflammation97, reduced antioxidant capacity97, 

activation of RAAS, increased insulin resistance, cardiovascular risk, all-cause and 

cardiovascular mortalities in patients with CKD.66,93,98,99

Several observational and clinical trials have targeted indoxyl and p-cresyl sulfate with 

approaches such as low-protein diets100, supplementation of dietary fiber (i.e., resistant 

starch101,102, arabinoxylan oligosaccharides103), synbiotics9,82 and hemodiafiltration. 

Recently, the infusion of a binding competitor, ibuprofen, during dialysis led to a reduction 

in serum levels of indoxyl sulfate and p-cresyl sulfate.91 However, results have been 

inconsistent and comprehensive studies are still needed to assess the effect on outcomes with 

the reduction on p-cresyl sulfate.

Trimethylamine-N oxide (TMAO)

In the colon, dietary choline, carnitine, and γ-butyrobetaine are cleaved to form 

trimethylamine, which is absorbed intestinally and oxidized in the liver to trimethylamine-

N-oxide (TMAO).82–8485 Contrary to indoxyl sulfate and p-cresyl sulfate, TMAO is not 

protein-bound, and is cleared through tubular secretion or hemodialysis.104 The interest in 

TMAO increased substantially after Wang et al.2 reported that metabolites derived from 

microbial metabolism of phosphatidylcholine were associated with increased risk of major 

adverse cardiovascular mortality. Further experimental and clinical studies revealed that 

other molecules with a trimethylamine moiety, such as carnitine105 and γ-butyrobetaine106 

acted in a similar fashion. Mechanistically, TMAO promotes atherosclerosis by enhancing 

macrophage cholesterol accumulation.107 Tang et al.67 demonstrated that TMAO also caused 

progressive kidney fibrosis experimentally and clinically was associated with progression of 

CKD. TMAO increases as kidney function declines, with concentrations reported up to ~40-

fold higher in hemodialysis patients before dialysis compared with healthy controls.108
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Diets that are predominantly animal-based have been shown to increase levels of TMAO, in 

comparison to predominantly plant-based diets.109 Cho et al.110 compared the effects of a 

single meal of fish (naturally high in TMAO) with foods containing dietary precursors to 

TMAO, eggs (choline) and beef (carnitine). They showed that circulating TMAO was 

significantly higher following the fish meal compared to either eggs or beef. Despite reports 

of interventions to reduce TMAO levels in other clinical populations, there have been limited 

interventions to reduce TMAO levels in patients with CKD. Recently, Borges et al.111 

showed no effect on TMAO concentrations following a 4-week supplementation with 

probiotics. Despite the lack of evidence, several researchers have hypothesized that the 

reduction of meat consumption, plant-based diets, low-protein diets, and interventions 

targeting the gut microbiota composition may lower TMAO levels in CKD and improve 

outcomes, particularly decreasing cardiovascular risk.112,113

Short-chain fatty acids (SCFA)

Whilst uremic retention solutes are microbially produced metabolites that may harm the 

host, there are some end products of microbial metabolism that have a beneficial effect for 

the host. SCFAs are mostly derived from the bacterial fermentation of non-digestible 

carbohydrates that reach the colon. SCFAs have a carbon chain length of less than six, with 

acetate (C2), propionate (C3), and butyrate (C4) being the most abundant, produced in the 

proportion of 60:20:20 of acetate, propionate, and butyrate, respectively.114 In comparison to 

uremic retention solutes, SCFA are desirable as they have several physiological benefits, 

including enhancing gut barrier function115, increasing production of intestinal hormones 

(i.e. glucagon-like peptide 1116), improving metabolic health (i.e. glucose and lipid 

metabolism117), enhancing mineral absorption (i.e. calcium, magnesium, and iron118), 

among other benefits.114

Implications for Practice

Nutrition supplementation with prebiotics, probiotics and synbiotics have emerged over the 

last decade as potential strategies to manipulate the microbiota and restore gut health. 

Prebiotics, substrates that are selectively utilised by the host microorganism to confer a 

health benefit119, alter the carbohydrate-to-protein ratio in the gut resulting in increased 

production of SCFAs, decreased colonic pH, reduced colonic transit time and the modulation 

of the colonic microbiota.120 Prebiotics occur naturally in many foods, such as onion, garlic 

and bananas121, however they make up only a small percentage of the Western diet. More 

commonly, prebiotics, such as inulin and fructo-oligosaccharides, are added to foods, such 

as yoghurt, breads and cereals, to form functional foods.121 Probiotics, live beneficial 

bacteria, limit the intestinal concentration of potentially pathogenic microorganisms through 

colonisation resistance or competitive exclusion.122 The most common commercially 

available probiotic strains belong to the following genera: Lactobacillus, Streptococcus and 

Bifidobacterium.121 In other chronic diseases, the results from probiotic interventions have 

been strain specific123, with only certain strains and doses achieving meaningful clinical 

outcomes. Therefore, commercial probiotic preparations tend to include multiple bacterial 

strains. Synbiotics, the co-administration of pre- and probiotics, may be effective in re-

establishing normal gut microbiome in other chronic diseases.124 The ability to select 
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specific prebiotics that promote the growth of bacterial genera is a key benefit of synbiotic 

therapy.125

The benefit of pre-, pro- and synbiotic supplementation has been well established in several 

conditions126, however, as detailed above, have uncertain effect in CKD. Trials in this area 

have been hampered by study design limitations and produced conflicting results.82 

Potential benefits of supplementation in the CKD population include reductions in uremic 

retention solutes127, improvements in glycaemic response128 and decreased triglycerides.129 

In addition, there has been an associated high level of patient compliance and lack of 

reported side-effects.9 Whilst these results are promising, there remains limited evidence to 

support the routine recommendation of pre-, pro- or synbiotic supplementation in the CKD 

population and larger well-designed intervention trials are justified.82

In addition to commercially available nutrition supplements such as pre- pro- and synbiotics, 

other foods, nutrients and dietary patterns may modulate the gut microbiota and therefore 

influence health outcomes (Table 2). Historically, patients with CKD have been advised to 

follow restrictive dietary recommendations based on individual nutrients such as potassium, 

phosphorus, sodium and protein.119 Not only do patients consider these recommendations 

complex and challenging to adhere to5, but they are also likely to contribute to the altered 

microbiota and production of uremic retention solutes seen in this cohort of patients.120,121 

To this end, healthy dietary patterns such as the Mediterranean and DASH-style diet may be 

a strategy for CKD patients to modulate the gut microbiota. It is therefore encouraging that 

in recent years there has been a shift towards the recommendation of healthy dietary 

patterns; diets rich in vegetables, fruits, legumes and whole grains with lower consumption 

of red meat, sodium and refined sugars for patients with CKD.122 Whilst limited in the CKD 

population, there are studies that confirm that healthy dietary patterns have a positive impact 

on gut health through their increased fibre intake and reduction in red meats, resulting in 

increased prevalence of beneficial bacteria (.Bifidobacterium, Lactobacillus and 

Eubacterium spp.) and lower levels of proteolytic bacteria.123,124 Whilst healthy dietary 

patterns represent an ideal dietary approach for patients with CKD, in part due to the 

associated lower risk of mortality125, their effects on the gut microbiota needs to be further 

explored.

The role of the gut microbiota in human health and disease has advanced greatly, facilitated 

by recent technological developments. The advent of NGS is promising to transform our 

approach to traditional nutrition interventions, with the gut microbiota emerging as a tool for 

personalised treatment strategies. The ultimate aim of precision medicine is to integrate an 

individual’s genome, environment and lifestyle to determine the best approach for the 

prevention or treatment of disease.136 Personalised formulations of pre-, pro- and synbiotic 

supplements that can be used to modulate the gut microbiome represent an intriguing 

personalised nutrition strategy. However, it remains unclear whether these interventions lead 

to improvements in clinical outcomes for patients with CKD.82
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Figure 1: 
Common dietary components that undergo microbial metabolism in the colon, leading to the 

formation of uremic retention solutes which exhibit detrimental effects in CKD. TMAO = 

trimethylamine-N-oxide.
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Table 1.

A glossary of key terms related to microbiota and kidney disease

Microbiota

Microbiota refers to a collection of microorganisms that are found in a particular sample or location. Whilst the 
term microbiota may be used to refer to all microorganisms; bacteria, bacteriophage, viruses, fungi and protozoa, it 
is commonly used in reference to bacterial communities. When the term microbiota is preceded by a location, it is 
referring to all the microbes in a specific environment. For example ‘gut microbiota’ refers to the microbial 
community of the intestinal tract.

Microbiome The collective genetic material of the microbiota is called the microbiome.

16S rRNA sequencing

16S rRNA sequencing identifies bacteria by sequencing a portion of the bacterial 16S rRNA gene. 16S sequencing 
provides greater insights into the bacterial community than could be achieved by culture-dependent methods, 
however there are limits in terms of the depth and resolution that can be achieved.

Shotgun sequencing

Shotgun sequencing, also known as metagenomics, involves the sequencing of all microbial DNA within a sample. 
Metagenomic shotgun sequencing provides the most informative view of the microbiome, however generates vast 
volumes of data, is quite computationally intensive and requires specialised bioinformatics skills.

Metatranscriptomics
Metatranscriptomics involves the sequencing of total microbial mRNA to provide insight into the functional impact 
of the microbiota.

Metaproteomics
Metaproteomics involves identifying all microbial proteins in a sample which can provide insight into the function 
of the microbiota.

Metabolomics
Metabolomics involves identifying a set of metabolites within a sample. The measurement of microbially produced 
metabolites can provide insight into the functional impact of the microbiota on the host.

Prebiotics
Prebiotics are dietary components that are selectively utilised by certain microorganisms to confer health benefits 
to the host. Examples of prebiotics include; fructooligosaccharides, galactooligosaccharides and inulin.

Probiotics
Probiotics are live beneficial bacteria which when administered to the host in adequate amounts are beneficial to 
health.

Postbiotic
Postbiotics are the metabolic byproducts from probiotic microorganisms that may have biological activity in the 
host.

Synbiotics The term synbiotic refers to the co-administration of a pre- and a probiotic.

Symbiotic
Not to be confused with synbiotic. A symbiotic relationship refers to a long-term, biological interaction between 
two or more different organisms that are living in close physical association

Uremic Retention 
Solutes

Uremic retention solutes are metabolites produced as end products of microbial metabolism that accumulates in 
circulation in patients with chronic kidney disease.
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Table 2:

Dietary components, their effect on the gut microbiota and evidence in chronic kidney disease

Dietary component Effect on gut microbiota Evidence in CKD

Fermented foods 
(e.g., sauerkraut, 
kimchi, kefir, 
kombucha, tempeh, 
natto, miso)

Fermented foods contain potentially probiotic organisms such 
as Lactobacillus and Bifidobacterium spp. Potential benefits 
include;
• Competitive colonisation122

• Antimicrobial production
  ↑ intestinal transit time
  ↑ intestinal pH122

• Production of immune-regulatory by-products130

No known trials in the CKD population however 
may be a strategy to modulate gut microbiota.

Polyphenols (e.g., 
coffee, tea, cocoa, 
berries, plums, nuts, 
artichokes)

Two-way relationship between polyphenols and the gut 
microbiota;
• polyphenols modulate the gut microbiota through 
competitive colonisation131

• Biotransformation of polyphenols by the gut microbiota 
alters their bioavailability132

No known trials in the CKD population.
The biotransformation of polyphenols by the gut 
microbiota and subsequent alteration in 
bioavailability potentially reduces markers of 
cardiovascular risk.132

Low FODMAP diet A low FODMAP diet results in a decreased concentration of 
Bifidobacteria133 and increased concentrations of Roseburla and 
Ruminococus.134

No known trials in the CKD population however 
may improve gastrointestinal symptoms of IBS.

Artificial Sweeteners Artificial sweeteners induce altered gut microbiota with an 
increased abundance of Enterobacteriaceae, Bacteroides and 
Clostridium.135

No known trials in the CKD population, however 
artificial sweeteners may induce glucose 
intolerance and have been correlated with markers 
of metabolic syndrome.135
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